JPH11277087A - 有機性廃水の処理方法及び有機性廃水の処理装置 - Google Patents

有機性廃水の処理方法及び有機性廃水の処理装置

Info

Publication number
JPH11277087A
JPH11277087A JP8200198A JP8200198A JPH11277087A JP H11277087 A JPH11277087 A JP H11277087A JP 8200198 A JP8200198 A JP 8200198A JP 8200198 A JP8200198 A JP 8200198A JP H11277087 A JPH11277087 A JP H11277087A
Authority
JP
Japan
Prior art keywords
treatment
activated sludge
sludge
treated
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8200198A
Other languages
English (en)
Other versions
JP4406749B2 (ja
Inventor
Kazunori Nakamura
和憲 中村
Osamu Koyama
修 小山
Original Assignee
Agency Of Ind Science & Technol
工業技術院長
Kankyo Eng Co Ltd
環境エンジニアリング株式会社
Kazunori Nakamura
和憲 中村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency Of Ind Science & Technol, 工業技術院長, Kankyo Eng Co Ltd, 環境エンジニアリング株式会社, Kazunori Nakamura, 和憲 中村 filed Critical Agency Of Ind Science & Technol
Priority to JP8200198A priority Critical patent/JP4406749B2/ja
Publication of JPH11277087A publication Critical patent/JPH11277087A/ja
Application granted granted Critical
Publication of JP4406749B2 publication Critical patent/JP4406749B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

(57)【要約】 【課題】 既設の活性汚泥処理設備のBOD負荷量が増
加せず、従来と同様の条件での活性汚泥処理が可能で、
且つ、最終段階で放流される処理水の水質を悪化させる
ことなく、更に、余剰汚泥量を簡便な方法で大幅に減量
化できる、簡易且つ経済的な有機性廃水の処理方法、及
び有機性廃水の処理装置の提供。 【解決手段】 有機性廃水を好気性微生物を含む活性汚
泥により浄化処理する有機性廃水の処理方法において、
活性汚泥の少なくとも一部を抜き出して被処理汚泥と
し、該被処理汚泥を構成している微生物を殺菌及び可溶
化処理し、続いて、殺菌及び可溶化処理した活性汚泥処
理物を原生動物の実質的不存在下で細菌処理した後、活
性汚泥処理系に再度導入して活性汚泥による浄化処理を
する有機性廃水の処理方法、及び有機性廃水の処理装
置。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、有機物を含有する
被処理水を活性汚泥により処理する有機性廃水の処理方
法に関し、更に詳しくは、放流される処理液の水質の悪
化を生じさせることなく、余剰汚泥の格段の減量化を達
成し、しかも既設処理設備のBOD負荷量の増加を生じ
ることのない簡易且つ経済的な有機性廃水の処理方法、
及び有機性廃水の処理装置に関する。
【0002】
【従来の技術】水中の汚濁物質は、河川や湖沼等の自然
の中で、沈殿、凝集、酸化、還元等の物理化学的、生物
学的な作用を受けて分解除去されて浄化される。特に有
機物を含んだ汚濁は、微生物によって生物学的な作用で
浄化され易い。これを利用した有機性廃水の浄化方法と
して、好気性微生物を含んだ活性汚泥により有機性廃水
を処理する活性汚泥法があるが、該方法は、浄化能力が
高く、比較的、処理経費が少なくて済む等の利点がある
ため、これを利用した種々の方法が提案されており、下
水処理や産業廃水処理等において広く一般に使用されて
いる。
【0003】上記活性汚泥法では、調整槽等で廃水のp
H調整や均一化といった前処理を行なった後、有機性廃
水をエアレーションタンク(曝気槽)へと導き、この曝
気槽内で、活性汚泥によりBODで示される廃水中の有
機汚濁成分を分解させて浄化処理している(図3参
照)。この際、分解したBODのうちの50〜70%は
微生物の維持エネルギーとして消費されるが、残りの3
0〜50%は菌体の増殖に使用されるので、処理に伴っ
て活性汚泥の量は次第に増加していく。このため、一般
的には、図3に示したように、曝気槽で処理された廃水
を沈澱槽へと導き、沈殿した活性汚泥の中から有機性廃
水の浄化処理に必要な量だけを返送汚泥として曝気槽内
へと戻し、返送されない余剰の活性汚泥は、余剰汚泥と
して取り除いている。このように、活性汚泥を利用した
浄化処理では多量の余剰汚泥が発生するという問題を抱
えている。この余剰汚泥は、生物難分解性物質等を含
み、粘性が高く、取り扱いにくいこと等の欠点があるた
め、有機性廃水を活性汚泥法によって浄化処理する場合
においては、常に余剰汚泥処理の問題がつきまとう。
【0004】これに対し、現在、一般に行なわれている
余剰汚泥の処理方法には、余剰汚泥を脱水して水分を分
離し、固形分を焼却するか或いは産業廃棄物として埋め
立て処分する等の方法、或いは余剰汚泥を嫌気性消化処
理して、メタンガス、二酸化炭素、水素、硫化水素等に
分解して減量化し、その後に分解されなかった余剰汚泥
及びその他の固形物を脱水により分離し、固形分を焼却
するか或いは産業廃棄物として処分する方法等がある。
更に、近年では、余剰汚泥の減量化を目的として、余剰
汚泥の一部をオゾンにより処理した後、オゾン処理汚泥
を、再度、曝気槽に導入して好気的処理を行う方法が知
られている(特公昭57−19719号、特開平7−8
8495号公報参照)。
【0005】しかしながら、上記した従来の余剰汚泥の
処理方法には、下記に述べる様な種々の問題がある。先
ず、余剰汚泥を嫌気性消化処理を行わずに脱水機により
濃縮し、焼却或いは産業廃棄物として処分する場合に
は、余剰汚泥量が多いために、処理コストが著しく嵩む
という問題がある。現在の汚泥の処分費は2〜3万円/
3と高く、更に、この処分費は今後一層高騰する傾向
にある。又、埋め立て処分場の確保の問題や、汚泥焼却
に伴うエネルギー消費の増加の問題等、地球規模での環
境劣化に及ぼす影響も看過できない。
【0006】又、先に述べた嫌気性消化による余剰汚泥
の減量化方法においては、エネルギーがメタンガスとし
て回収される等の利点があるものの、消化に要する日数
が20〜40日と長く、余剰汚泥の分解率が60%程度
と低いため、広い敷地面積が必要とされ、更に、未分解
余剰汚泥及びその他の固形物を脱水機により分離し、焼
却するか或いは産業廃棄物として処分しなければならな
いため、非効率で、処理コストが嵩むという問題があ
る。更に、上記と同様に、地球環境に及ぼす影響もあ
る。
【0007】又、余剰汚泥の一部をオゾンにより処理す
る方法は、余剰汚泥の量をかなり減少させることができ
るが、特別にオゾン発生装置を設ける必要がある。その
ため、小規模施設には不向きであり、設備費が高い上に
運転費が嵩み、処理コストが上昇し、経済性に劣るとい
う実用上の問題がある。更に、余剰汚泥の一部をオゾン
により処理した後、処理した活性汚泥処理物を既設の活
性汚泥処理設備に再度導入して処理するため、既設の活
性汚泥処理設備のBOD負荷量の増加を招き、負荷量を
高く設定している処理設備においては適用できないとい
った問題がある。
【0008】
【発明が解決しようとする課題】従って本発明の目的
は、活性汚泥法を利用した有機性廃水の処理方法におい
て、既設の活性汚泥処理設備のBOD負荷量の増加を招
くことなく、従来と同様の条件で活性汚泥処理を行なう
ことが可能で、且つ、最終段階で放流される処理水の水
質を悪化させることなく、更に、余剰汚泥量を簡便な方
法で大幅に減量化し、最適には余剰汚泥の発生をなくす
ことが可能な、簡易で且つ経済的な有機性廃水の処理方
法、及び有機性廃水の処理装置を提供することにある。
【0009】
【課題を解決するための手段】上記の目的は、下記の本
発明によって達成される。即ち、本発明は、有機性廃水
を好気性微生物を含む活性汚泥により浄化処理する有機
性廃水の処理方法において、活性汚泥の少なくとも一部
を抜き出して被処理汚泥とし、該被処理汚泥を構成して
いる微生物を殺菌及び可溶化処理し、続いて、殺菌及び
可溶化処理した活性汚泥処理物を原生動物の実質的不存
在下で細菌処理した後、活性汚泥処理系に再度導入して
活性汚泥による浄化処理をすることを特徴とする有機性
廃水の処理方法、及び有機性廃水の処理装置である。本
発明における“原生動物の実質的不存在下”とは、原生
動物の増殖を制止し、その結果、細菌処理工程中に原生
動物の出現が見られない状態を意味する。
【0010】
【発明の実施の形態】本発明の好ましい実施の形態を挙
げて本発明を詳細に説明する。本発明者らは、上記従来
技術の問題点を解決すべく鋭意研究の結果、有機性廃水
を、好気性微生物を含む活性汚泥法により浄化処理する
場合に、活性汚泥の少なくとも一部を抜き出し、この抜
き出した活性汚泥(以下、被処理汚泥と呼ぶ)を殺菌及
び可溶化処理した後、直ちに活性汚泥処理系に再度導入
せずに、殺菌及び可溶化処理した活性汚泥(以下、可溶
化活性汚泥と呼ぶ)を原生動物の実質的不存在下で細菌
処理し、該処理された活性汚泥(以下、活性汚泥処理物
と呼ぶ)を活性汚泥処理系に再度導入し、引き続き活性
汚泥により処理すれば、殺菌及び可溶化処理によって生
じる活性汚泥中のBOD成分が、予め酸化分解されると
共に非凝集性細菌に変換されるので、既設の活性汚泥処
理設備のBOD負荷量の増加を招くことがなく、従来と
同様の条件で効率的な活性汚泥処理することが可能であ
り、且つ、放流される処理水の水質を悪化させることな
く、余剰汚泥の発生を格段に減少させることができるこ
とを知見して本発明に至った。更に、特に、殺菌或いは
可溶化の方法として、金属イオンを触媒とした酸化剤に
よる酸化分解による方法を用いれば、簡易な処理によっ
て顕著な効果が得られることがわかった。以下、本発明
の有機性廃水の処理方法の各処理段階における作用につ
いて更に詳細に説明する。
【0011】活性汚泥による有機性廃水の生物処理にお
いて、廃水中の有機物は、活性汚泥中の細菌によって酸
化分解され、これに伴って細菌自体は有機物を栄養源と
して増殖していく。又、これらの細菌の一部は、活性汚
泥中の原生動物によって捕食されて、凝集性及び沈降性
のよい活性汚泥となって沈澱するので、活性汚泥の量は
次第に増加する。従って、本発明の有機性廃水の処理方
法では、先ず、沈澱分離された活性汚泥の一部を引き抜
いて被処理汚泥とし、該被処理汚泥を構成している細菌
(微生物)を殺菌し、或いは可溶化する過程を設けるこ
とによって、細菌自体をBODで示される有機汚濁成分
として細菌や原生動物の格好な餌となるように変換した
後、再度、生物処理することにより、生物処理によって
生じる活性汚泥の増加の抑制を図る。
【0012】例えば、活性汚泥を構成している微生物を
殺菌及び可溶化処理する過程において、沈澱槽から送ら
れる返送汚泥の一部を引き抜いて被処理汚泥とし、該被
処理汚泥を金属イオンを触媒とした酸化剤による酸化分
解による方法で化学処理すると、明白ではないが、一つ
には、強力な酸化剤である・OH(ヒドロキシルラジカ
ル)が発生するため、該ヒドロキシルラジカルによって
活性汚泥を構成している微生物の細胞壁が分解或いは傷
つく結果、活性汚泥を構成している微生物が殺菌され、
或いは、細胞の一部が可溶化して細胞壁内の多糖類や蛋
白質等が溶け出る結果、微生物自体がBOD成分とな
る。従って、このようにして処理された可溶化活性汚泥
を再び曝気槽中に入れて生物的処理すると、殺菌された
細胞の一部や可溶化されて生成した有機物は、正常な微
生物による分解を受け易くなっているので、曝気槽内の
正常な微生物によって酸化分解される。この結果、余剰
汚泥の発生量を格段に減少させることが可能となる。
【0013】しかしながら、上記のように、可溶化活性
汚泥は、殺菌及び可溶化処理によってBOD成分となっ
ているので、これを再び既設の活性汚泥処理設備(曝気
槽)中に入れると、通常の状態よりも曝気槽のBOD負
荷量を増加させることになる。この場合に、BOD負荷
量を差程高く設定していない処理設備においては何ら問
題ないが、有機性廃水の種類によっては、既設の活性汚
泥処理設備のBOD負荷量が増加し過ぎてしまい、従来
と同様の条件での活性汚泥処理では処理が不充分となる
恐れが生じる。即ち、例えば、食品工場からの有機性廃
水等を扱っているBOD負荷量の高い処理設備において
は、被処理汚泥が殺菌及び可溶化処理されてBOD成分
へと変換した状態の可溶化活性汚泥が再導入されると、
BOD負荷量の増加によって充分な生物的処理が行なわ
れなくなることが懸念される。そして、この場合には、
最終段階で放流される処理水が、BODの高い水質の悪
い処理水になってしまうことが生じる。
【0014】そこで、本発明の有機廃水の処理方法にお
いては、殺菌及び可溶化処理することによって微生物が
BOD成分(微生物分解を受ける成分)へと変換された
可溶化活性汚泥を直ちに既設の活性汚泥処理設備(曝気
槽)に再導入するのではなく、予め、原生動物の実質的
不存在下で細菌処理し、その後、既設の活性汚泥処理設
備に導入するように構成する。このようにすれば、可溶
化活性汚泥を細菌処理することによって、BOD成分が
予め酸化分解されると共に、その一部は非凝集性細菌に
変換されるので、既設の活性汚泥処理設備へ再度導入し
てもBOD負荷量の増加を招くことがなく、又、変換さ
れた非凝集性細菌は、活性汚泥処理設備内の原生動物に
よって捕食除去される。この結果、既設の活性汚泥処理
設備(曝気槽)において従来と同様の条件で、同様の処
理を行なっているにもかかわらず、放流する処理水の水
質を悪化させることなく、且つ、余剰汚泥の発生量を格
段に減少させることが可能となる。
【0015】即ち、殺菌及び可溶化処理された可溶化活
性汚泥を、原生動物の実質的不存在下で細菌処理するこ
とによって、可溶化活性汚泥中のBOD成分が細菌によ
って効率よく酸化分解されると共に、このBOD成分を
栄養源として細菌が増殖する。換言すれば、上記細菌処
理によって、可溶化活性汚泥が細菌に変換されたといえ
るが、このようにして生成した細菌槽中の細菌は非凝集
性のものであり、個々の菌体に分散していることから原
生動物に極めて捕食され易い状態となっている。本発明
の有機性廃水の処理方法では、この細菌処理を原生動物
の実質的不存在下で行っているので、この段階では原生
動物によって細菌が捕食されることはない。これに対
し、細菌処理された活性汚泥処理物が曝気槽へと導入さ
れると、該活性汚泥処理物内の細菌は、原生動物に極め
て捕食され易い状態となっているため、曝気槽内の原生
動物によって直ちに捕食除去されてしまう。
【0016】以上説明したように、活性汚泥処理系から
抜き出された被処理汚泥は、殺菌及び可溶化処理の段階
で、被処理汚泥を構成している微生物が殺菌されると共
に、細胞の一部が可溶化されて、殺菌された細胞の一部
や可溶化されて生成した有機物からなるBOD成分に変
換した可溶化活性汚泥になる。この可溶化活性汚泥中の
BOD成分は、次の細菌処理の過程で、原生動物の実質
的不存在下で細菌処理されることによって、原生動物に
極めて捕食され易い細菌に変換された活性汚泥処理物と
なる。従って、該活性汚泥処理物を曝気槽に再度導入し
ても、そのBOD負荷量を著しく増加させることはな
く、しかも、余剰汚泥の発生を格段に減量化することが
できる。上記のような処理が行なわれる本発明の有機性
廃水の処理方法では、活性汚泥の処理能力や余剰汚泥の
発生量を加味して、上記した殺菌及び可溶化処理、それ
に続く細菌処理を行うために活性汚泥系から抜き出す被
処理汚泥の量を決定すれば、理論的には、余剰汚泥の発
生を100%抑制することも可能となる。
【0017】上記では、殺菌及び可溶化処理の方法とし
て、金属イオンを触媒とした酸化剤による酸化分解によ
る方法を例として挙げたが、本発明はこれに限定され
ず、処理される活性汚泥を構成している微生物の細胞壁
が分解或いは傷つき、被処理汚泥を構成している微生物
が殺菌されると共に細胞の一部が可溶化されて、可溶化
汚泥が、正常な微生物によって捕食され易い状態となり
得るものであればいずれの方法でもよい。
【0018】本発明の有機性廃水の処理方法の具体的な
態様について、図を参照しながら詳細に説明する。本発
明の有機性廃水の処理方法では、基本的には、通常の活
性汚泥法による処理フローとほぼ同様のフローによって
有機性廃水の処理が行われる。例えば、図1に示したよ
うに、通常の場合は、沈澱槽で沈澱した活性汚泥の少な
くとも一部を返送汚泥として曝気槽へと戻しているが、
本発明の有機性廃水の処理方法の特徴は、例えば、この
返送汚泥の一部を抜き出して、抜き出した被処理汚泥
を、何らの前処理をすることなく殺菌及び可溶化処理工
程へと導いて処理して、被処理汚泥を構成している微生
物をBOD成分に変換した後、更に、この殺菌及び可溶
化処理された可溶化活性汚泥を細菌処理工程へと導き、
可溶化活性汚泥中のBOD成分を酸化分解すると共に非
凝集性細菌へと変換した後、処理された活性汚泥処理物
を再び曝気槽へと戻すことにある。
【0019】上記で説明した図1には、沈澱槽から曝気
槽への返送汚泥の一部を被処理汚泥として取り出す例を
示したが、本発明はこれに限定されず、例えば、沈澱槽
を設けない回分式の活性汚泥法の場合には、活性汚泥を
含む有機性廃水の一部を曝気槽内から取り出して被処理
汚泥としてもよい。上記したようにすれば、種々の形態
がある現状の活性汚泥処理による有機廃水の処理フロー
に大きな変更を加えることなく、上記した殺菌及び可溶
化処理工程及び細菌処理工程を簡便に組み入れることが
できる。
【0020】以下、本発明の有機性廃水の処理方法にけ
る殺菌及び可溶化処理工程について詳細に説明する。先
ず、殺菌及び可溶化処理工程へと導く被処理汚泥の量
は、対象とする有機性廃水の種類や、殺菌及び可溶化処
理工程における処理条件にもよるが、1日に生成する活
性汚泥量に対して1〜10倍程度とするのが好ましい。
この結果、本発明の処理方法で有機性廃水を処理した場
合に、従来の様な余剰汚泥が発生することが殆どなくな
り、余剰汚泥の抜き出し、及びこれに続く煩雑な余剰汚
泥処理を不要とできる。加えて、本発明によって処理さ
れた処理水の水質は、従来一般に行われている活性汚泥
法によって処理された処理水に比べて劣ることなく、処
理水の水質の悪化が生じることもない。
【0021】本発明の有機性廃水の処理方法において、
被処理汚泥を殺菌及び可溶化処理する方法の好ましい一
例である金属イオンを触媒とした酸化剤による酸化分
解、更に好ましくは、反応液を加温した状態での金属イ
オンを触媒とした酸化剤による酸化分解処理について詳
細に説明する。
【0022】酸化処理において使用する酸化剤は、従来
公知の化学酸化方法において使用されている酸化剤、例
えば、過酸化水素、過酸化カルシウム、過硫酸アンモニ
ウム、アルキルヒドロペルオキシド、過酸化エステル、
過酸化ジアルキル又はジアシル等が使用されるが、コス
トや副生物等の点からみて過酸化水素が最も好ましい。
過酸化水素等の酸化剤の使用量は、特に限定されず処理
する汚泥の内容によって変化するが、好ましい使用量と
しては、汚泥1g(乾燥重量)に対して0.1〜0.0
01gとなる範囲である。
【0023】触媒として使用する金属イオンとしては、
鉄、チタン、セリウム、銅、マンガン、コバルト、バナ
ジウム、クロム、鉛のイオン等が挙げられ、これらの金
属イオンを有すれば、その形態は、金属、金属酸化物、
金属塩及び錯体等いずれのものでもよい。本発明におい
て特に好ましいものは鉄イオンである。鉄イオンには、
従来技術においては第一鉄イオンが使用されたが、本発
明においては第一鉄イオンは勿論、第二鉄イオンも有効
であり、更に鉄屑等の如き金属鉄や鉄イオンをイオン交
換樹脂等で固定した固定鉄イオンも使用することができ
る。この触媒としての鉄イオンの使用量は、過酸化水素
等の酸化剤100mg/l当たり約20〜1000mg
/lで十分な処理効果を挙げることができる。
【0024】図2に、金属イオンを触媒とした酸化剤に
よる酸化分解に使用する反応処理槽の部分を図解的に示
したが、被処理汚泥は、先ず、触媒再生槽に導入され
る。該触媒再生槽では、触媒が加えられ、更に、槽内が
pH4以下の酸性に保たれ、且つ40〜100℃程度に
加温されて、触媒として加えた金属等が金属イオンとな
って活性を有するように処理される。次に、この状態の
金属イオンを含む被処理汚泥は、反応槽へと導かれ、こ
こで過酸化水素等の酸化剤が適宜な濃度となるように添
加されて酸化処理される。
【0025】この際、被処理汚泥を含む反応液のpHが
約2〜3.5に保たれるように調節して反応を行なうこ
とが好ましい。更に、酸化反応は反応液を加温して行う
ことが好ましい。加温温度としては、好ましくは40℃
〜100℃の範囲、更に好ましくは50℃〜80℃の範
囲である。処理温度が40℃未満である場合には、酸化
に時間がかかり、酸化効率が不十分で且つ過酸化水素等
の酸化剤の利用効率が不十分である。又、100℃を超
える温度としても、それ以上の処理効果を期待すること
ができず、更に過酸化水素等の酸化剤の自己分解が大き
くなり、利用効率が低下すると共に、加熱エネルギー消
費が大になるだけで特別の利点はない。被処理汚泥を含
む反応液を加熱する手段としては、水蒸気等の吹込み、
工場における他の温水等による熱交換等、任意の手段を
利用することができ、反応液が適宜の温度に加温され維
持されれば、加温方法は特に限定されない。
【0026】又、酸化反応時間は、酸化処理槽のサイ
ズ、撹拌機の性能、温度等によって異なるが、例えば、
返送汚泥の一部を抜き出した被処理汚泥(固形分約1重
量%)の量が10m3で酸化温度が50℃で充分な撹拌
が行われる場合には、約0.5〜3時間の反応温度で充
分であり、このようにすれば、被処理汚泥を構成してい
る微生物の殆どが死滅し、BOD成分に変換することが
確認できた。
【0027】次に、処理された活性汚泥を含む反応液を
中和槽へと導入し、水酸化ナトリウム等のアルカリを加
えて反応液をpH5.0〜7.5にして中和する。本発
明においては、図2に示したように、その後、中和した
反応液を細菌槽内に導入して細菌処理した後、通常の活
性汚泥処理系へと戻して、原水として導入されてくる有
機性廃水と共に活性汚泥処理を行なう(図1参照)。細
菌処理の詳細については、後述する。
【0028】上記に挙げた金属イオンを触媒とした酸化
剤による酸化分解による方法の他、本発明において用い
ることのできる、簡易に被処理汚泥を殺菌及び可溶化処
理する他の方法としては、上記した例えば、超音波発生
機による超音波処理が挙げられる。この場合には、被処
理汚泥に、超音波発生機による超音波を用いて、処理出
力0.1〜10kW程度で、処理時間1〜30分間、処
理温度20℃〜100℃、処理pH3〜10の条件で処
理することが好ましい。
【0029】又、本発明においては、被処理汚泥を殺菌
及び可溶化処理する方法として、酵素処理による方法を
用いることができる。この際に使用される酵素として
は、プロテアーゼ、α−アミラーゼ、リパーゼ、グルカ
ナーゼ、セルラーゼ等を使用し、処理温度10〜100
℃、処理pH4〜10の範囲で行なうことが好ましい。
酵素の添加量は、酵素の種類や処理汚泥の種類によって
異なるが、被処理汚泥(固形分約1重量%)の量が10
3 の場合、酵素の添加量を約0.001〜1kg程度
とすることが好ましい。
【0030】その他、被処理汚泥の殺菌及び可溶化処理
の方法としては、例えば、オゾンにより処理する方法、
次亜塩素酸ナトリウムの添加、UV照射処理、光酸化触
媒を添加して行うUV照射処理、或いは機械的な破壊等
が挙げられる。又、これらの方法は単独で用いても勿論
よいが、上記で挙げた各種の処理を組み合わせて用いて
もよい。例えば、オゾンにより処理した後、先に挙げた
金属イオンを触媒とした酸化剤による酸化分解する方法
や、或いは、被処理汚泥(固形分約1重量%)の量が1
0m3の場合に、0.05〜1kgの範囲内で、次亜塩
素酸ナトリウムを添加して超音波処理したり、酵素を添
加して酵素処理を行う共に超音波処理を行うことも好ま
しい。
【0031】次に、本発明の有機性廃水の処理方法にお
ける上記した殺菌及び可溶化処理に引き続いて行われ
る、可溶化活性汚泥の細菌処理工程について説明する。
本発明において行なわれる細菌処理は、先に説明したよ
うに、微生物が殺菌、及び細胞の一部が可溶化されるこ
とによって変換した可溶化活性汚泥中のBOD成分を、
細菌によって効率よく酸化分解させると共に、このBO
D成分の一部を栄養源とした分散細菌の増殖を促進させ
て、個々の菌体に分散した原生動物に極めて捕食され易
い状態の細菌に変換させるために行なう。従って、細菌
処理の際に使用する細菌としては、好気性のものであれ
ば任意のものを用いることができるが、上記した目的を
達成するためには、例えば、アルカリゲネス属菌、シュ
ウドモナス属菌、バチルス属菌、アエロバクター属菌、
フラボバクテリウム属菌等の細菌を用いることが好まし
い。又、この様な細菌は、通常、廃水中に生存してお
り、廃水中のBOD成分を栄養源として増殖するもので
あり、当然、処理する活性汚泥の中にも棲息している
が、処理を円滑に行なうためには、必要に応じて適当な
種菌を浄化処理の開始時に外部から添加することが好ま
しい。その際に使用する種菌としては、例えば、バイオ
コア BP、OF−10(以上、商品名環境エンジニア
リング(株)製)等の微生物製剤を好適に利用できる。
【0032】この結果、細菌処理される可溶化活性汚泥
中のBOD成分は、上記したような細菌の働きによって
酸化分解され、これと共に細菌自体はこのBOD成分を
栄養源として増殖するので、細菌処理による現象のみを
みれば、細菌処理工程において、可溶化活性汚泥中のB
OD成分の一部が細菌に変換されたと言うことができ
る。本発明者らの検討によれば、この場合の細菌槽にお
ける可溶化活性汚泥中の溶解性有機物の除去率は、95
〜99%という高い値を示しすことを確認できた。又、
BOD成分の細菌への変換率といった点からみると、約
40〜50%程度であるので、BOD成分100重量部
が、約40〜50重量部の細菌に変換されたと言える。
従って、細菌処理されたこのような活性汚泥処理物を、
活性汚泥系に戻し、再度導入した場合においても、BO
D負荷量の増加は極めて少ない。
【0033】本発明の有機性廃水の処理方法において
は、上記の細菌処理を原生動物の実質的不存在下で行う
ことを要する。この結果、処理された廃水中に含まれる
細菌は非凝集性のものとなり、従って、細菌処理された
後の活性汚泥処理物は、BOD成分が変換した微細な粒
子状に分散された細菌を含んだものとなる。この様な分
散状の細菌は原生動物の好栄養源となるものであるの
で、これらの活性汚泥処理物を原生動物を含む活性汚泥
系に再度導入した場合に、その処理効率が著しく高まる
こととなる。
【0034】これに対し、細菌処理工程において、原生
動物が共存した状態で可溶化活性汚泥を処理した場合に
は、細菌槽において、原生動物に捕食され易い細菌が捕
食されてしまうため、捕食されにくい細菌が主に増殖
し、細菌槽内で細菌凝集塊を生じることが起き易くな
る。このような細菌凝集塊は原生動物によって捕食され
にくいので、細菌槽で処理された活性汚泥処理物が原生
動物を含む活性汚泥系に戻されて、このような細菌凝集
塊を有する状態で処理を行なわれた場合には、これらの
細菌凝集塊が原生動物処理過程を通過してしまうことが
生じる。この結果、活性汚泥系での原生動物処理(活性
汚泥処理)の処理効率が損なわれる原因となる。
【0035】本発明における“原生動物の実質的不存在
下”とは、原生動物の増殖を制止し、その結果、細菌処
理工程中に原生動物の出現が見られない状態を意味して
いるが、原生動物の増殖を制止し、細菌処理工程におい
て原生動物が実質的に不存在の状態とする方法として
は、細菌と原生動物との性状の差異を利用する下記のよ
うな方法が挙げられる。例えば、細菌と原生動物との間
にはその増殖速度に大きな差異があり、細菌の増殖速度
は原生動物のそれに比して極めて高いことから、この増
殖速度の差を利用すれば、細菌処理工程における原生動
物の出現を制止することができる。即ち、この原理に従
えば、処理する活性汚泥を、原生動物の最大比増殖速度
以上及び細菌の最大比増殖速度以下の滞留時間で細菌処
理工程を通過させることによって、原生動物の出現を制
止した状態での細菌処理を達成することが可能となる。
本発明においては、例えば、処理する活性汚泥を細菌処
理工程を通過させる場合に、その滞留時間を原生動物の
最大比増殖速度以上及び細菌の比増殖速度以下、例え
ば、滞留時間DをD=0.5〜12/dayの範囲に調
節することによって、原生動物が実質的に存在しない状
態での細菌処理が行なえる。
【0036】又、細菌処理工程における原生動物の出現
の制止は、温度、pH等の環境条件を調節することによ
っても達成することができる。即ち、細菌は広い範囲の
環境条件で増殖できるが、原生動物の生育し得る環境条
件は細菌に比較して狭い範囲に限定される。例えば、原
生動物は温度40℃以上ではその増殖が著しく抑制され
るので、細菌処理工程の温度を40℃以上に保持すれ
ば、原生動物の出現を制止することができる。又、原生
動物は、pH4以下又はpH10以上ではその増殖が抑
制されることから、処理過程のpH値を4以下又は10
以上の範囲に保持すれば、原生動物の出現を制止させる
ことが可能となる。
【0037】次に、本発明の有機性廃水の処理装置につ
いて説明する。本発明の有機性廃水の処理装置では、以
上で説明した本発明の有機廃水の処理方法が適用され
る。即ち、本発明の有機性廃水の処理装置は、活性汚泥
処理槽と、殺菌及び可溶化処理する反応処理槽と、細菌
槽とを少なくとも有し、反応処理槽は、活性汚泥処理槽
及び/又は該活性汚泥処理槽に接続されている沈澱槽か
ら少なくとも一部を抜き出した活性汚泥を処理するもの
であって、該活性汚泥を構成している微生物を殺菌及び
可溶化処理するために設けられており、且つ、細菌槽
は、反応処理槽で処理された可溶化活性汚泥を更に処理
するものであって、原生動物の実質的不存在下で細菌処
理するために設けられている。更に、本発明の有機性廃
水の処理装置においては、これら2つの処理槽での処理
を終了した活性汚泥処理物を再度活性汚泥処理槽へと戻
すように構成されている。
【0038】本発明の有機性廃水の処理装置において
は、反応処理槽で、活性汚泥処理系から抜き出した活性
汚泥を殺菌及び可溶化処理し、活性汚泥を構成している
微生物を殺菌すると共に細胞の一部を可溶化してBOD
成分に変換させる。次に、この処理された可溶化活性汚
泥を、反応処理槽から細菌槽へと導入し、該細菌槽にお
いて、原生動物の実質的不存在下で細菌処理して、可溶
化活性汚泥中のBOD成分を原生動物に極めて捕食され
易い細菌に変換する。更に、これらの処理がなされた活
性汚泥を、既設の活性汚泥処理槽に再度導入して生物処
理を行なう。従って、上記のように構成された本発明の
有機性廃水の処理装置は、既設の活性汚泥処理槽のBO
D負荷量を著しく増加させることはなく、しかも活性汚
泥の増加を効率よく抑制できるので、従来の装置に比べ
て余剰汚泥量を格段に減量化することができる。
【0039】
【実施例】次に本発明の実施例を挙げて本発明を更に詳
細に説明する。実施例1 図1に示したフローに従って建設した500リットル/
day規模のパイロットプラントを使用して、有機性廃
水の活性汚泥処理を行った。下記の表1に処理に用いた
原水の性状を示したが、原水として、食品工場からの有
機性廃水を用いた。又、本実施例では、図1に示した処
理フローの殺菌或いは可溶化処理工程に、金属イオンを
触媒とした酸化剤による酸化分解手段を用いた。触媒と
しては、鉄触媒を用い、試験開始当初の活性汚泥処理槽
中に鉄イオンとして100mg/lになるようにFe
(OH)3 を添加した。酸化剤としては過酸化水素を用い
た。又、酸化分解反応槽の反応液の温度は、ヒータによ
って50℃に加温した。
【0040】表1 原水性状(食品工場の廃水)
【0041】先ず、上記の原水について、pH7.0、
BOD負荷量1.0kg/m3、HRT2.0日の運転
条件で活性汚泥処理を行った。その際に、沈澱槽から活
性汚泥処理系への返送汚泥ライン中に設けられている図
2に示した様な構造の反応処理槽に、返送汚泥の一部を
導いて熱酸化処理を行った。そして、これらの処理が終
了した後、殺菌及び可溶化された可溶化活性汚泥を細菌
槽へ導入し、原生動物の実質的不存在下で細菌処理し
た。次に、図1に示したように、上記の細菌処理が終了
した活性汚泥処理物を、活性汚泥処理槽内へと再び戻
し、活性汚泥処理を連続的に行った。
【0042】図2に本実施例で使用した反応処理槽の概
略図を示したが、該反応槽では、汚泥を含む反応液中の
過酸化水素の濃度が100mg/lになるように過酸化
水素を添加し、pH3.5に保ちながら、滞留時間を6
0分間として反応させた。反応前後の汚泥の生菌数を測
定したところ、反応前が109cells/mlであったのに
対し、反応後は、104cells/mlであり、殆どの微生
物が死滅し、可溶化が進行していることが確認できた。
反応終了後、処理物を中和槽内に導き入れ、中和槽内に
水酸化ナトリウムを添加し、pHを7.0に調整して中
和して、次の細菌処理へと導入する可溶化活性汚泥とし
た。
【0043】図2に示したように、上記のようにして反
応処理槽で処理された可溶化活性汚泥は、続いて細菌槽
へと導入されて細菌処理がなされる。本実施例では、細
菌槽へ、種菌としてバイオコアBPを10g添加し、処
理する活性汚泥の供給速度を滞留時間が3時間/day
となるように調整しながら行った。又、処理温度が40
℃以上に保持されるように調整しつつ、且つ、細菌槽の
DO値が60mg/l以上になるように細菌槽へと空気
を供給しながら細菌処理を行なった。このような細菌槽
における細菌処理が終了した処理液について、溶解性B
OD値を測定したところ、50mg/lであった。更
に、上記の細菌処理が終了した活性汚泥処理物は、活性
汚泥処理槽内へと再び戻し、活性汚泥処理を連続的に行
った。
【0044】上記した処理が行なわれ、最終的に放流さ
れる処理水について、投入BOD当たりの汚泥生成量を
測定して表3に示した。この結果、余分な活性汚泥の生
成が全く見られず、余剰汚泥を抜き出して除去する必要
がなかった。従って、従来の処理から余剰汚泥の処理工
程を省略することが可能であることがわかった。又、最
終的な処理水の水質は、後述する通常の活性汚泥法によ
る処理を行なった比較例1の場合と比べて、BOD値及
びSS値共に遜色なく、放流水の水質が悪化することも
なかった。
【0045】比較例1 汚泥の返送ラインに、汚泥の返送ラインから抜き出した
被処理汚泥を処理するための加熱反応槽及び細菌槽を設
けない以外は実施例1と同様にして、図3に示した従来
のフローに従って活性汚泥処理試験を行った。そして、
最終的に放流される処理水の水質、及び汚泥転換率を実
施例1と同様に測定して表2に示した。
【0046】比較例2 細菌槽を設けない以外は実施例1と同様にして、活性汚
泥処理試験を行った。得られた処理水の水質及び汚泥転
換率を実施例1と同様に測定し、表2に示した。
【0047】表2 処理結果
【0048】
【発明の効果】上記に説明したように、本発明によれ
ば、既設の活性汚泥処理設備のBOD負荷量の増加を招
くことなく、従来と同様の条件で活性汚泥処理を行なう
ことができ、且つ、最終段階で放流される処理水の水質
を悪化させることなく、余剰汚泥の量を簡易な方法で且
つ大幅に減量化させることができ、最適には余剰汚泥の
発生をなくすことが可能である、簡易且つ経済的な活性
汚泥法を利用した有機性廃水の処理方法が提供される。
更に、本発明によれば、従来の処理装置に大幅な変更を
加えることなく、上記した優れた効果を有する有機性廃
水の処理装置が提供される。
【図面の簡単な説明】
【図1】本発明の有機性廃水の処理方法の処理フローの
一例である。
【図2】本発明の有機性廃水の処理方法に使用される反
応処理槽及び細菌槽の概略図である。
【図3】従来の有機性廃水の処理方法の処理フローの一
例である。
───────────────────────────────────────────────────── フロントページの続き (74)上記2名の代理人 弁理士 吉田 勝広 (外1名 ) (72)発明者 中村 和憲 茨城県つくば市東1丁目1番3 工業技術 院生命工学工業技術研究所内 (72)発明者 小山 修 東京都千代田区東神田1−9−8 環境エ ンジニアリング株式会社内

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 有機性廃水を好気性微生物を含む活性汚
    泥により浄化処理する有機性廃水の処理方法において、
    活性汚泥の少なくとも一部を抜き出して被処理汚泥と
    し、該被処理汚泥を構成している微生物を殺菌及び可溶
    化処理し、続いて、殺菌及び可溶化処理した活性汚泥処
    理物を原生動物の実質的不存在下で細菌処理した後、活
    性汚泥処理系に再度導入して活性汚泥による浄化処理を
    することを特徴とする有機性廃水の処理方法。
  2. 【請求項2】 殺菌及び可溶化処理の方法が、金属イオ
    ンを触媒とした酸化剤による酸化分解である請求項1に
    記載の有機性廃水の処理方法。
  3. 【請求項3】 酸化分解を、金属イオンが鉄イオンで、
    酸化剤が過酸化水素であり、且つ被処理液を40〜10
    0℃に加温した条件で行う請求項2に記載の有機性廃水
    の処理方法。
  4. 【請求項4】 有機性廃水を好気性微生物を含む活性汚
    泥により浄化処理する有機性廃水の処理装置において、
    活性汚泥処理槽と、殺菌及び可溶化処理する反応処理槽
    と、細菌槽とを少なくとも有し、上記反応処理槽が、活
    性汚泥処理槽及び/又は該活性汚泥処理槽に接続されて
    いる沈澱槽から少なくとも一部を抜き出した活性汚泥を
    処理対象とし、該活性汚泥を構成している微生物を殺菌
    及び可溶化処理するためのものであって、且つ上記細菌
    槽が、反応処理槽で処理された活性汚泥を処理対象と
    し、原生動物の実質的不存在下で細菌処理するためのも
    のであり、更に、これら2つの処理槽での処理が終了し
    た活性汚泥処理物を再度活性汚泥処理槽へと戻すように
    構成されていることを特徴とする有機性廃水の処理装
    置。
JP8200198A 1998-03-27 1998-03-27 有機性廃水の処理方法及び有機性廃水の処理装置 Expired - Lifetime JP4406749B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8200198A JP4406749B2 (ja) 1998-03-27 1998-03-27 有機性廃水の処理方法及び有機性廃水の処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8200198A JP4406749B2 (ja) 1998-03-27 1998-03-27 有機性廃水の処理方法及び有機性廃水の処理装置

Publications (2)

Publication Number Publication Date
JPH11277087A true JPH11277087A (ja) 1999-10-12
JP4406749B2 JP4406749B2 (ja) 2010-02-03

Family

ID=13762274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8200198A Expired - Lifetime JP4406749B2 (ja) 1998-03-27 1998-03-27 有機性廃水の処理方法及び有機性廃水の処理装置

Country Status (1)

Country Link
JP (1) JP4406749B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073134A1 (ja) * 2004-02-02 2005-08-11 Kurita Water Industries Ltd. 有機性排水の生物処理方法及び装置
JP2006051414A (ja) * 2004-08-10 2006-02-23 Kurita Water Ind Ltd 有機性排水の生物処理方法
JP2006051415A (ja) * 2004-08-10 2006-02-23 Kurita Water Ind Ltd 有機性排水の生物処理方法
JP2009279515A (ja) * 2008-05-22 2009-12-03 Nittetsu Kankyo Engineering Kk 活性汚泥に有用微生物を導入する方法
JP2010036074A (ja) * 2008-08-01 2010-02-18 Nittetsu Kankyo Engineering Kk 有機性廃水の処理方法
JP2010269208A (ja) * 2009-05-19 2010-12-02 Osaka Seibutsu Kankyo Kagaku Kenkyusho:Kk 汚泥処理方法
JP2010269207A (ja) * 2009-05-19 2010-12-02 Osaka Seibutsu Kankyo Kagaku Kenkyusho:Kk 汚泥処理方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073134A1 (ja) * 2004-02-02 2005-08-11 Kurita Water Industries Ltd. 有機性排水の生物処理方法及び装置
EP1712525A1 (en) * 2004-02-02 2006-10-18 Kurita Water Industries Ltd. Process for biological treatment of organic waste water and apparatus therefor
US7332084B2 (en) 2004-02-02 2008-02-19 Kurita Water Industries, Ltd. Process for biological treatment of organic wastewater and apparatus therefor
EP1712525A4 (en) * 2004-02-02 2011-01-12 Kurita Water Ind Ltd PROCESS FOR THE BIOLOGICAL TREATMENT OF ORGANIC WASTEWATER AND APPARATUS THEREFOR
JP2006051414A (ja) * 2004-08-10 2006-02-23 Kurita Water Ind Ltd 有機性排水の生物処理方法
JP2006051415A (ja) * 2004-08-10 2006-02-23 Kurita Water Ind Ltd 有機性排水の生物処理方法
JP2009279515A (ja) * 2008-05-22 2009-12-03 Nittetsu Kankyo Engineering Kk 活性汚泥に有用微生物を導入する方法
JP2010036074A (ja) * 2008-08-01 2010-02-18 Nittetsu Kankyo Engineering Kk 有機性廃水の処理方法
JP2010269208A (ja) * 2009-05-19 2010-12-02 Osaka Seibutsu Kankyo Kagaku Kenkyusho:Kk 汚泥処理方法
JP2010269207A (ja) * 2009-05-19 2010-12-02 Osaka Seibutsu Kankyo Kagaku Kenkyusho:Kk 汚泥処理方法

Also Published As

Publication number Publication date
JP4406749B2 (ja) 2010-02-03

Similar Documents

Publication Publication Date Title
JP3360076B2 (ja) 有機性廃水の処理方法
JP2016175064A (ja) 廃水内のバイオソリッドの改善された消化
Pham et al. Optimization of Fenton oxidation pre-treatment for B. thuringiensis–based production of value added products from wastewater sludge
US5762809A (en) Process for treating a medium containing organic constituents
US7147780B2 (en) Process for reducing sludge derived from the treatment of wastewater by oxygenation and mechanical action
JP3167021B2 (ja) 有機性廃水の処理方法及びこれに使用する薬剤
JP4406749B2 (ja) 有機性廃水の処理方法及び有機性廃水の処理装置
JP4404976B2 (ja) 有機性廃水の処理方法及び有機性廃水の処理装置
JP3763460B2 (ja) 有機性汚水の生物処理方法及び装置
JPH11147801A (ja) 活性汚泥の殺菌剤、これを用いた活性汚泥の殺菌方法、及び有機性廃水の処理方法
JP3223145B2 (ja) 有機性廃水の処理方法
JP3900796B2 (ja) 有機性廃水の処理方法及びその処理装置
JP2003334589A (ja) 廃水処理方法及び装置
JP2001162297A (ja) 有機性廃水の処理方法および処理装置
JP3409728B2 (ja) 有機性廃棄物の処理方法
JP2006326438A (ja) 汚泥処理装置及び汚泥処理方法
JP3611292B2 (ja) 排水処理方法
JP3725212B2 (ja) 活性汚泥処理方法及びそのための活性汚泥処理装置
JP2004188356A (ja) 有機性廃水の処理方法
JP3826589B2 (ja) 新規微生物およびそれを用いた汚泥処理方法
JPH11333489A (ja) 有機性排液の生物処理方法
JP2001079584A (ja) 有機性排水の浄化処理方法
JP3697900B2 (ja) 排水の処理方法およびそのための装置
JP2005034753A (ja) 有機性廃水処理装置及び処理方法
JP4230617B2 (ja) 有機性固形物含有廃水の処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term