JP4404976B2 - 有機性廃水の処理方法及び有機性廃水の処理装置 - Google Patents

有機性廃水の処理方法及び有機性廃水の処理装置 Download PDF

Info

Publication number
JP4404976B2
JP4404976B2 JP23918698A JP23918698A JP4404976B2 JP 4404976 B2 JP4404976 B2 JP 4404976B2 JP 23918698 A JP23918698 A JP 23918698A JP 23918698 A JP23918698 A JP 23918698A JP 4404976 B2 JP4404976 B2 JP 4404976B2
Authority
JP
Japan
Prior art keywords
activated sludge
treatment
sludge
treated
organic wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23918698A
Other languages
English (en)
Other versions
JP2000061497A (ja
Inventor
一郎 山本
修 小山
和義 鈴木
Original Assignee
日鉄環境エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄環境エンジニアリング株式会社 filed Critical 日鉄環境エンジニアリング株式会社
Priority to JP23918698A priority Critical patent/JP4404976B2/ja
Publication of JP2000061497A publication Critical patent/JP2000061497A/ja
Application granted granted Critical
Publication of JP4404976B2 publication Critical patent/JP4404976B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Description

【0001】
【発明の属する技術分野】
本発明は、有機物を含有する被処理水を活性汚泥により処理する有機性廃水の処理方法に関し、更に詳しくは、放流される処理液の水質の悪化を生じさせることなく、余剰汚泥の格段の減量化を達成し、しかも既設処理設備のBOD負荷量の増加を生じることのない簡易且つ経済的な有機性廃水の処理方法、及び有機性廃水の処理装置に関する。
【0002】
【従来の技術】
水中の汚濁物質は、河川や湖沼等の自然の中で、沈殿、凝集、酸化、還元等の物理化学的、生物学的な作用を受けて分解除去されて浄化される。特に有機物を含んだ汚濁は、微生物によって生物学的な作用で浄化され易い。これを利用した有機性廃水の浄化方法として、好気性微生物を含んだ活性汚泥により有機性廃水を処理する活性汚泥法があるが、該方法は、浄化能力が高く、比較的、処理経費が少なくて済む等の利点があるため、これを利用した種々の方法が提案されており、下水処理や産業廃水処理等において広く一般に使用されている。
【0003】
上記活性汚泥法では、調整槽等で廃水のpH調整や均一化といった前処理を行なった後、有機性廃水をエアレーションタンク(曝気槽)へと導き、この曝気槽内で、活性汚泥によりBODで示される廃水中の有機汚濁成分を分解させて浄化処理している(図5参照)。この際、分解したBODのうちの50〜70%は微生物の維持エネルギーとして消費されるが、残りの30〜50%は菌体の増殖に使用されるので、処理に伴って活性汚泥の量は次第に増加していく。このため、一般的には、図5に示したように、曝気槽で処理された廃水を沈澱槽へと導き、沈殿した活性汚泥の中から有機性廃水の浄化処理に必要な量だけを返送汚泥として曝気槽内へと戻し、返送されない余剰の活性汚泥は、余剰汚泥として取り除いている。このように、活性汚泥を利用した浄化処理では多量の余剰汚泥が発生するという問題を抱えている。この余剰汚泥は、生物難分解性物質等を含み、粘性が高く、取り扱いにくいこと等の欠点があるため、有機性廃水を活性汚泥法によって浄化処理する場合においては、常に余剰汚泥処理の問題がつきまとう。
【0004】
これに対し、現在、一般に行なわれている余剰汚泥の処理方法には、余剰汚泥を脱水して水分を分離し、固形分を焼却するか或いは産業廃棄物として埋め立て処分する等の方法、或いは余剰汚泥を嫌気性消化処理して、メタンガス、二酸化炭素、水素、硫化水素等に分解して減量化し、その後に分解されなかった余剰汚泥及びその他の固形物を脱水により分離し、固形分を焼却するか或いは産業廃棄物として処分する方法等がある。更に、近年では、余剰汚泥の減量化を目的として、余剰汚泥の一部をオゾンにより処理した後、オゾン処理汚泥を、再度、曝気槽に導入して好気的処理を行う方法が知られている(特公昭57−19719号、特開平7−88495号公報参照)。
【0005】
しかしながら、上記した従来の余剰汚泥の処理方法には、下記に述べる様な種々の問題がある。
先ず、余剰汚泥を嫌気性消化処理を行わずに脱水機により濃縮し、焼却或いは産業廃棄物として処分する場合には、余剰汚泥量が多いために、処理コストが著しく嵩むという問題がある。現在の汚泥の処分費は2〜3万円/m3と高く、更に、この処分費は今後一層高騰する傾向にある。又、埋め立て処分場の確保の問題や、汚泥焼却に伴うエネルギー消費の増加の問題等、地球規模での環境劣化に及ぼす影響も看過できない。
【0006】
又、先に述べた嫌気性消化による余剰汚泥の減量化方法においては、エネルギーがメタンガスとして回収される等の利点があるものの、消化に要する日数が20〜40日と長く、余剰汚泥の分解率が60%程度と低いため、広い敷地面積が必要とされ、更に、未分解余剰汚泥及びその他の固形物を脱水機により分離し、焼却するか或いは産業廃棄物として処分しなければならないため、非効率で、処理コストが嵩むという問題がある。更に、上記と同様に、地球環境に及ぼす影響もある。
【0007】
又、余剰汚泥の一部をオゾンにより処理する方法は、余剰汚泥の量をかなり減少させることができるが、特別にオゾン発生装置を設ける必要がある。そのため、小規模施設には不向きであり、設備費が高い上に運転費が嵩み、処理コストが上昇し、経済性に劣るという実用上の問題がある。更に、余剰汚泥の一部をオゾンにより処理した後、処理した活性汚泥処理物を既設の活性汚泥処理設備に再度導入して処理するため、既設の活性汚泥処理設備のBOD負荷量の増加を招き、負荷量を高く設定している処理設備においては適用できないといった問題がある。
【0008】
【発明が解決しようとする課題】
従って本発明の目的は、活性汚泥法を利用した有機性廃水の処理方法において、既設の活性汚泥処理設備のBOD負荷量の増加を招くことなく、従来と同様の条件で活性汚泥処理を行なうことが可能で、且つ、最終段階で放流される処理水の水質を悪化させることなく、更に、余剰汚泥量を簡便な方法で大幅に減量化し、最適には余剰汚泥の発生をなくすことが可能な、簡易で且つ経済的な有機性廃水の処理方法、及び有機性廃水の処理装置を提供することにある。
【0009】
【課題を解決するための手段】
上記の目的は、下記の本発明によって達成される。即ち、本発明は、有機性廃水を好気性微生物を含む活性汚泥処理系により浄化処理する有機性廃水の処理方法において、原水を活性汚泥処理系に導入し、活性汚泥処理系で有機性廃水を好気性微生物で処理した後、活性汚泥処理系から活性汚泥の少なくとも一部を抜き出して被処理汚泥とし、該被処理汚泥を構成している微生物を殺菌及び可溶化処理し、続いて、殺菌及び可溶化処理した活性汚泥処理物、硝酸イオン及び/又は亜硝酸イオンを添加し、これを、嫌気的雰囲気下、硝酸イオン及び/又は亜硝酸イオンを酸素源として有機物を分解する好気性微生物及び/又は硝酸呼吸性微生物を含む活性汚泥で処理した後、前記活性汚泥処理系に再度導入して活性汚泥による浄化処理をすることを特徴とする有機性廃水の処理方法、及び有機性廃水の処理装置である。
【0010】
【発明の実施の形態】
本発明の好ましい実施の形態を挙げて本発明を詳細に説明する。
本発明者らは、上記従来技術の問題点を解決すべく鋭意研究の結果、有機性廃水を、好気性微生物を含む活性汚泥法により浄化処理する場合に、活性汚泥の少なくとも一部を抜き出し、この抜き出した活性汚泥(以下、被処理汚泥と呼ぶ)を殺菌及び可溶化処理した後、直ちに活性汚泥処理系に再度導入せずに、殺菌及び可溶化処理した活性汚泥(以下、可溶化活性汚泥と呼ぶ)を嫌気的雰囲気下、硝酸イオン及び/又は亜硝酸イオンが存在する状態で、これらを酸素源として好気性微生物を含む活性汚泥によって処理し、該処理された活性汚泥(以下、活性汚泥処理物と呼ぶ)を活性汚泥処理系に再度導入し、引き続き活性汚泥により処理すれば、殺菌及び可溶化処理によって生じる活性汚泥中のBOD成分が、予め酸化分解されるので、既設の活性汚泥処理設備のBOD負荷量の増加を招くことがなく、従来と同様の条件で効率的な活性汚泥処理することが可能であり、且つ、放流される処理水の水質を悪化させることなく、特別に大規模な装置を必要とすることなく、余剰汚泥の発生を格段に減少させることができることを知見して本発明に至った。
更に、特に、殺菌或いは可溶化の方法として、金属イオンを触媒とした酸化剤による酸化分解による方法を用いれば、簡易な処理によって顕著な効果が得られることがわかった。以下、本発明の有機性廃水の処理方法の各処理段階における作用について更に詳細に説明する。
【0011】
活性汚泥による有機性廃水の生物処理において、廃水中の有機物は、活性汚泥中の細菌によって酸化分解され、これに伴って細菌自体は有機物を栄養源として増殖していく。又、これらの細菌の一部は、活性汚泥中の原生動物によって捕食されて、凝集性及び沈降性のよい活性汚泥となって沈澱するので、活性汚泥の量は次第に増加する。従って、本発明の有機性廃水の処理方法では、先ず、沈澱分離された活性汚泥の一部を引き抜いて被処理汚泥とし、該被処理汚泥を構成している細菌(微生物)を殺菌し、或いは可溶化する過程を設けることによって、細菌自体をBODで示される有機汚濁成分として細菌や原生動物の格好な餌となるように変換した後、再度、生物処理することにより、生物処理によって生じる活性汚泥の増加の抑制を図る。
【0012】
例えば、活性汚泥を構成している微生物を殺菌及び可溶化処理する過程において、沈澱槽から送られる返送汚泥の一部を引き抜いて被処理汚泥とし、該被処理汚泥を金属イオンを触媒とした酸化剤による酸化分解による方法で化学処理すると、明白ではないが、一つには、強力な酸化剤である・OH(ヒドロキシルラジカル)が発生するため、該ヒドロキシルラジカルによって活性汚泥を構成している微生物の細胞壁が分解或いは傷つく結果、活性汚泥を構成している微生物が殺菌され、或いは、細胞の一部が可溶化して細胞壁内の多糖類や蛋白質等が溶け出る結果、微生物自体がBOD成分となる。
従って、このようにして処理された可溶化活性汚泥を再び曝気槽中に入れて生物的処理すると、殺菌された細胞の一部や可溶化されて生成した有機物は、正常な微生物による分解を受け易くなっているので、曝気槽内の正常な微生物によって酸化分解される。この結果、余剰汚泥の発生量を格段に減少させることが可能となる。
【0013】
しかしながら、上記のように、可溶化活性汚泥は、殺菌及び可溶化処理によってBOD成分となっているので、これを再び既設の活性汚泥処理設備(曝気槽)中に入れると、通常の状態よりも曝気槽のBOD負荷量を増加させることになる。この場合に、BOD負荷量を差程高く設定していない処理設備においては何ら問題ないが、有機性廃水の種類によっては、既設の活性汚泥処理設備のBOD負荷量が増加し過ぎてしまい、従来と同様の条件での活性汚泥処理では処理が不充分となる恐れが生じる。即ち、例えば、食品工場からの有機性廃水等を扱っているBOD負荷量の高い処理設備においては、被処理汚泥が殺菌及び可溶化処理されてBOD成分へと変換した状態の可溶化活性汚泥が再導入されると、BOD負荷量の増加によって充分な生物的処理が行なわれなくなることが懸念される。そして、この場合には、最終段階で放流される処理水が、BODの高い水質の悪い処理水になってしまうことが生じる。
【0014】
そこで、本発明の有機廃水の処理方法においては、殺菌及び可溶化処理することによって微生物がBOD成分(微生物分解を受ける成分)へと変換された可溶化活性汚泥を直ちに既設の活性汚泥処理系を構成している活性汚泥処理設備(曝気槽)に再導入するのではなく、予め、嫌気的雰囲気下、硝酸イオン及び/又は亜硝酸イオンが存在する状態で好気性微生物及び/又は硝酸呼吸性微生物を含む活性汚泥で処理し、その後、既設の活性汚泥処理設備に導入するように構成する。即ち、このようにすれば、可溶化活性汚泥のBOD成分が、硝酸イオン及び/又は亜硝酸イオンを酸素源とする好気性微生物及び/又は硝酸呼吸性微生物を含む活性汚泥で処理されて酸化分解されるので、既設の活性汚泥処理設備へ再度導入してもBOD負荷量の増加を招くことがない。この結果、既設の活性汚泥処理設備(曝気槽)において従来と同様の条件で、同様の処理を行なっているにもかかわらず、放流する処理水の水質を悪化させることなく、且つ、余剰汚泥の発生量を格段に減少させることが可能となる。更に、可溶化活性汚泥の処理を嫌気的雰囲気下で行なえるので、曝気装置が不要であり、装置が大型化したり、運転コストが大幅に増加することもない。
【0015】
以上説明したように、活性汚泥処理系から抜き出された被処理汚泥は、殺菌及び可溶化処理の段階で、被処理汚泥を構成している微生物が殺菌されると共に、細胞の一部が可溶化されて、殺菌された細胞の一部や可溶化されて生成した有機物からなるBOD成分に変換した可溶化活性汚泥になる。この可溶化活性汚泥中のBOD成分は、次の、硝酸イオン及び/又は亜硝酸イオンの存在下での活性汚泥処理の過程で酸化分解されるので、活性汚泥処理物を曝気槽に再度導入しても、そのBOD負荷量を著しく増加させることはなく、しかも、余剰汚泥の発生を格段に減量化することができる。
上記のような処理が行なわれる本発明の有機性廃水の処理方法では、活性汚泥の処理能力や余剰汚泥の発生量を加味して、上記した殺菌及び可溶化処理、それに続く硝酸イオン及び/又は亜硝酸イオンの存在下での活性汚泥処理を行うために活性汚泥系から抜き出す被処理汚泥の量を決定すれば、理論的には、余剰汚泥の発生を100%抑制することも可能となる。
【0016】
上記では、殺菌及び可溶化処理の方法として、金属イオンを触媒とした酸化剤による酸化分解による方法を例として挙げたが、本発明はこれに限定されず、処理される活性汚泥を構成している微生物の細胞壁が分解或いは傷つき、被処理汚泥を構成している微生物が殺菌されると共に細胞の一部が可溶化されて、可溶化活性汚泥が、正常な微生物によって捕食され易い状態となり得るものであればいずれの方法でもよい。
【0017】
本発明の有機性廃水の処理方法の具体的な態様について、図を参照しながら詳細に説明する。本発明の有機性廃水の処理方法では、基本的には、通常の活性汚泥法による処理フローとほぼ同様のフローによって有機性廃水の処理が行われる。例えば、図1に示したように、通常の場合は、沈澱槽で沈澱した活性汚泥の少なくとも一部を返送汚泥として曝気槽へと戻しているが、本発明の有機性廃水の処理方法の特徴は、例えば、この返送汚泥の一部を抜き出して、抜き出した被処理汚泥を、何らの前処理をすることなく殺菌及び可溶化処理工程へと導いて処理して、被処理汚泥を構成している微生物をBOD成分に変換した後、更に、この殺菌及び可溶化処理された可溶化活性汚泥を硝酸イオン及び/又は亜硝酸イオンの存在下で行なう活性汚泥処理(以下、単に可溶化汚泥処理とも呼ぶ)工程へと導き、可溶化活性汚泥中のBOD成分を酸化分解した後、処理された活性汚泥処理物を再び曝気槽へと戻すことにある。
【0018】
上記で説明した図1には、沈澱槽から曝気槽への返送汚泥の一部を被処理汚泥として取り出す例を示したが、本発明はこれに限定されず、例えば、沈澱槽を設けない回分式の活性汚泥法の場合には、活性汚泥を含む有機性廃水の一部を曝気槽内から取り出して被処理汚泥としてもよい。上記したようにすれば、種々の形態がある現状の活性汚泥処理による有機廃水の処理フローに大きな変更を加えることなく、上記した殺菌及び可溶化処理工程及び可溶化汚泥処理工程を簡便に組み入れることができる。
【0019】
以下、本発明の有機性廃水の処理方法にける殺菌及び可溶化処理工程について詳細に説明する。先ず、殺菌及び可溶化処理工程へと導く被処理汚泥の量は、対象とする有機性廃水の種類や、殺菌及び可溶化処理工程における処理条件にもよるが、1日に生成する活性汚泥量に対して1〜10倍程度とするのが好ましい。この結果、本発明の処理方法で有機性廃水を処理した場合に、従来の様な余剰汚泥が発生することが殆どなくなり、余剰汚泥の抜き出し、及びこれに続く煩雑な余剰汚泥処理を不要とできる。加えて、本発明によって処理された処理水の水質は、従来一般に行われている活性汚泥法によって処理された処理水に比べて劣ることなく、処理水の水質の悪化が生じることもない。
【0020】
本発明の有機性廃水の処理方法において、被処理汚泥を殺菌及び可溶化処理する方法の好ましい一例である金属イオンを触媒とした酸化剤による酸化分解、更に好ましくは、反応液を加温した状態での金属イオンを触媒とした酸化剤による酸化分解処理について詳細に説明する。
【0021】
酸化処理において使用する酸化剤は、従来公知の化学酸化方法において使用されている酸化剤、例えば、過酸化水素、過酸化カルシウム、過硫酸アンモニウム、アルキルヒドロペルオキシド、過酸化エステル、過酸化ジアルキル又はジアシル等が使用されるが、コストや副生物等の点からみて過酸化水素が最も好ましい。過酸化水素等の酸化剤の使用量は、特に限定されず処理する汚泥の内容によって変化するが、好ましい使用量としては、汚泥1g(乾燥重量)に対して0.1〜0.001gとなる範囲である。
【0022】
触媒として使用する金属イオンとしては、鉄、チタン、セリウム、銅、マンガン、コバルト、バナジウム、クロム、鉛のイオン等が挙げられ、これらの金属イオンを有すれば、その形態は、金属、金属酸化物、金属塩及び錯体等いずれのものでもよい。本発明において特に好ましいものは鉄イオンである。
鉄イオンには、従来技術においては第一鉄イオンが使用されたが、本発明においては第一鉄イオンは勿論、第二鉄イオンも有効であり、更に鉄屑等の如き金属鉄や鉄イオンをイオン交換樹脂等で固定した固定鉄イオンも使用することができる。この触媒としての鉄イオンの使用量は、過酸化水素等の酸化剤100mg/l当たり約20〜1000mg/lで十分な処理効果を挙げることができる。
【0023】
図2に、金属イオンを触媒とした酸化剤による酸化分解に使用する反応処理槽の部分を図解的に示したが、被処理汚泥は、先ず、触媒再生槽に導入される。該触媒再生槽では、触媒が加えられ、更に、槽内がpH4以下の酸性に保たれ、且つ40〜100℃程度に加温されて、触媒として加えた金属等が金属イオンとなって活性を有するように処理される。次に、この状態の金属イオンを含む被処理汚泥は、反応槽へと導かれ、ここで過酸化水素等の酸化剤が適宜な濃度となるように添加されて酸化処理される。
【0024】
この際、被処理汚泥を含む反応液のpHが約2〜3.5に保たれるように調節して反応を行なうことが好ましい。この際に使用するpH調整剤として硝酸を用いれば、可溶化処理汚泥を、嫌気的雰囲気下において硝酸呼吸性微生物を含む活性汚泥で処理する際に加える硝酸イオンの添加を省くことができる。更に、酸化反応は反応液を加温して行うことが好ましい。加温温度としては、好ましくは40℃〜100℃の範囲、更に好ましくは50℃〜80℃の範囲である。処理温度が40℃未満である場合には、酸化に時間がかかり、酸化効率が不十分で且つ過酸化水素等の酸化剤の利用効率が不十分である。又、100℃を超える温度としても、それ以上の処理効果を期待することができず、更に過酸化水素等の酸化剤の自己分解が大きくなり、利用効率が低下すると共に、加熱エネルギー消費が大になるだけで特別の利点はない。被処理汚泥を含む反応液を加熱する手段としては、水蒸気等の吹込み、工場における他の温水等による熱交換等、任意の手段を利用することができ、反応液が適宜の温度に加温され維持されれば、加温方法は特に限定されない。
【0025】
又、酸化反応時間は、酸化処理槽のサイズ、撹拌機の性能、温度等によって異なるが、例えば、返送汚泥の一部を抜き出した被処理汚泥(固形分約1重量%)の量が10m3で酸化温度が50℃で充分な撹拌が行われる場合には、約0.5〜3時間の反応温度で充分であり、このようにすれば、被処理汚泥を構成している微生物の殆どが死滅し、BOD成分に変換することが確認できた。
【0026】
次に、処理された活性汚泥を含む反応液を中和槽へと導入し、水酸化ナトリウム等のアルカリを加えて反応液をpH5.0〜7.5にして中和する。本発明においては、図2に示したように、その後、中和した反応液を細菌槽内に導入して細菌処理した後、通常の活性汚泥処理系へと戻して、原水として導入されてくる有機性廃水と共に活性汚泥処理を行なう(図1参照)。細菌処理の詳細については、後述する。
【0027】
上記に挙げた金属イオンを触媒とした酸化剤による酸化分解による方法の他、本発明において用いることのできる、簡易に被処理汚泥を殺菌及び可溶化処理する他の方法としては、上記した例えば、超音波発生機による超音波処理が挙げられる。この場合には、被処理汚泥に、超音波発生機による超音波を用いて、処理出力0.1〜10kW程度で、処理時間1〜30分間、処理温度20℃〜100℃、処理pH3〜10の条件で処理することが好ましい。
【0028】
又、本発明においては、被処理汚泥を殺菌及び可溶化処理する方法として、酵素処理による方法を用いることができる。この際に使用される酵素としては、プロテアーゼ、α−アミラーゼ、リパーゼ、グルカナーゼ、セルラーゼ等を使用し、処理温度10〜100℃、処理pH4〜10の範囲で行なうことが好ましい。酵素の添加量は、酵素の種類や処理汚泥の種類によって異なるが、被処理汚泥(固形分約1重量%)の量が10m3の場合、酵素の添加量を約0.001〜1kg程度とすることが好ましい。
【0029】
その他、被処理汚泥の殺菌及び可溶化処理の方法としては、例えば、オゾンにより処理する方法、次亜塩素酸ナトリウムの添加、UV照射処理、光酸化触媒を添加して行うUV照射処理、或いは機械的な破壊等が挙げられる。又、これらの方法は単独で用いても勿論よいが、上記で挙げた各種の処理を組み合わせて用いてもよい。例えば、オゾンにより処理した後、先に挙げた金属イオンを触媒とした酸化剤による酸化分解する方法や、或いは、被処理汚泥(固形分約1重量%)の量が10m3の場合に、0.05〜1kgの範囲内で、次亜塩素酸ナトリウムを添加して超音波処理したり、酵素を添加して酵素処理を行う共に超音波処理を行うことも好ましい。
【0030】
次に、本発明の有機性廃水の処理方法における上記した殺菌及び可溶化処理に引き続いて行われる、嫌気的雰囲気下、硝酸イオン及び/又は亜硝酸イオンが存在する状態で好気性微生物及び/又は硝酸呼吸性微生物を含む活性汚泥で処理する可溶化汚泥処理工程について説明する。
上記の可溶化汚泥処理工程で使用する活性汚泥としては、硝酸イオン及び/又は亜硝酸イオンを酸素源として有機物を分解する好気性微生物及び/又は硝酸呼吸性微生物を含む活性汚泥を使用することが好ましい。例えば、排水の脱窒汚泥、通常の活性汚泥を上記の排水と或いは他の有機性排水と混合し、これらの排水を上記のイオンの存在下に処理して馴養させた活性汚泥等を用いることができる。このような活性汚泥は、そのままでも、担体に担持させて使用してもよい。担体を使用する場合には、従来から活性汚泥を担持するために使用されている担体をいずれも使用することができ、特に制限されない。又、担体の充填量も、BOD処理負荷に応じて適宜に必要量を充填すればよい。
【0031】
上記の可溶化汚泥処理工程で使用する硝酸イオン及び亜硝酸イオンの発生物質としては、これらのイオンを発生する水溶解性化合物が好ましく、例えば、硝酸;硝酸ナトリウム、硝酸カリウム、硝酸マグネシウム、硝酸アンモニウム等の硝酸塩;亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸アンモニウム等の亜硝酸塩が挙げられる。これらは単独で、或いは2種以上組み合わせて使用することができる。又、アンモニア含有排水の硝化液等も使用することができる。更に、経済性を考慮すると、所謂、廃硝酸を用いることが好ましい。廃硝酸とは、鉄鋼・鋼材製造業におけるステンレス硝酸洗浄工程排水、有機合成におけるニトロ化工程の濾過廃液等の有機合成化学工場排水等として発生するもの、或いは、排水中の硝酸が中和処理されて硝酸塩として含まれているものをいう。本発明においては、これらの廃硝酸の中でも、特に、中和処理されているものを用いることが好ましい。廃硝酸を原料として製品化されて市販されているものとしては、例えば、ハイポックスNA(環境エンジニアリング社製)等がある。
これらの化合物から発生する硝酸イオン及び/又は亜硝酸イオンの使用量としては、余剰汚泥の種類により異なるが、およそ可溶化活性汚泥中の全有機物質に対して、通常、0.2〜50%程度とすることが好ましいが、可溶化活性汚泥中のBOD成分の状態に応じて添加量を適宜に調整すればよい。
【0032】
上記可溶化汚泥処理工程で使用する汚泥処理槽は、完全混合式、固定床及び流動床(上向流及び下向流式)のいずれも使用可能であり、例えば、図3に示したような嫌気槽で行なってもよいし、図4に示したような上向流好気性流動床装置を用いてもよい。流動床式装置とすると、設置面積が少なくて済むというメリットがある。又、図3及び図4のいずれの汚泥処理槽を用いる場合にも、処理対象の可溶化活性汚泥と活性汚泥との接触を充分に行わせて処理効率を高めるため、撹拌下で行ってもよい。このような処理槽を用い、本発明の有機性廃水の処理方法を構成する可溶化汚泥処理工程で行なう活性汚泥処理は、硝酸イオン及び/又は亜硝酸イオンを酸素源として嫌気的雰囲気下で処理を行ない、曝気を必要としない点で通常の好気処理とは異なっている。即ち、曝気処理に要する設備や運転コストを要さないので、経済的な処理が可能である。
【0033】
図3に、本発明で使用することのできる汚泥処理槽の一例である嫌気槽を示した。本発明においては、通常の嫌気性分解処理を行なう嫌気槽をいずれも使用することができる。嫌気槽は酸素を補給する必要がないので、深い槽とすることができ、広い敷地を要さないというメリットがある。本発明においては、図3に示したように、このような嫌気槽中に可溶化汚泥を導入し、硝酸イオン及び/又は亜硝酸イオンを添加した状態で、好気性微生物及び/又は硝酸呼吸性微生物を含む活性汚泥で処理する。
【0034】
又、図4に、本発明で使用することのできる汚泥処理槽の一例である上向流好気性流動床装置を示した。以下これについて説明する。
可溶化活性汚泥は、ポンプ等によって上向流好気性流動床装置1の下部に流入管3より上向流を形成するように供給される。硝酸イオン及び/又は亜硝酸イオンは、流入される前に、酸素源供給配管4によって被処理物である可溶化活性汚泥中に添加される。装置内に入った可溶化活性汚泥は、硝酸イオン及び/又は亜硝酸イオン及び担体に担持されている活性汚泥5と共に攪拌機6によって超緩速で攪拌される。この結果、可溶化活性汚泥中のBOD成分が、活性汚泥5と接触して生物処理されると共に、可溶化活性汚泥の上向流が形成される。処理された可溶化活性汚泥は集積部7に上昇し、排出管8より出され、通常の活性汚泥処理系の曝気槽内へと送られる。
【0035】
図4に示した上向流好気性流動床装置1内にある攪拌機6は、装置の内容物をできる限り超緩速での攪拌が可能で、デッドスペースを可能な限り少なくするとともにチャネリングを防ぎ得るタイプのものを使用することが好ましい。このようなものとしては、例えば、攪拌翼がタービン翼、或いはスリットパドル翼及びこれらを組み合わせたもの等が挙げられる。攪拌速度は、装置の大きさによっても異なるが、例えば、0.1〜5rpm程度とすればよい。このような攪拌翼を取り付けた攪拌機を使用すれば、可溶化活性汚泥中のBOD成分と活性汚泥との接触効率を著しく向上させることができるので、処理槽容積当たりの処理能力が向上する。図4に示した装置は、上記の攪拌機を設置した例であるが、攪拌機を設置しない装置を使用することもできる。
【0036】
上記の装置を使用する場合には、好気性微生物及び/又は硝酸呼吸性微生物を含む活性汚泥を担体に担持させずに使用することもできる。好気性微生物及び/又は硝酸呼吸性微生物を含む活性汚泥を担体に担持させることによって、可溶化活性汚泥の装置への流入速度が速くなって装置内の上向流速度が上昇した場合や、可溶化活性汚泥中のBOD成分の処理によって炭酸ガス等の気体が発生した場合でも、装置上部から活性汚泥が流出することが防止されるので、装置内の活性汚泥濃度が高濃度に保持され、高負荷処理が可能となる。従って、活性汚泥を担体に担持させて使用することが好ましい。
【0037】
次に、本発明の有機性廃水の処理装置について説明する。本発明の有機性廃水の処理装置では、以上で説明した本発明の有機廃水の処理方法が適用される。即ち、本発明の有機性廃水の処理装置は、活性汚泥処理槽と、殺菌及び可溶化処理する反応処理槽と、反応処理槽で処理された活性汚泥を処理対象とし、嫌気的雰囲気下、硝酸イオン及び/又は亜硝酸イオンが存在する状態で好気性微生物及び/又は硝酸呼吸性微生物を含む活性汚泥で処理する活性汚泥処理槽とを少なくとも有し、反応処理槽は、活性汚泥処理槽及び/又は該活性汚泥処理槽に接続されている沈澱槽から少なくとも一部を抜き出した活性汚泥を処理するものであって、該活性汚泥を構成している微生物を殺菌及び可溶化処理するために設けられており、更に、活性汚泥処理槽は、反応処理槽で処理された可溶化活性汚泥を更に処理するものであって、硝酸イオン及び/又は亜硝酸イオンを構成している酸素を酸素源として好気性微生物及び/又は硝酸呼吸性微生物を含む活性汚泥で処理するために設けられている。更に、本発明の有機性廃水の処理装置においては、これら2つの処理槽での処理を終了した活性汚泥処理物を再度活性汚泥処理槽へと戻すように構成されている。
【0038】
本発明の有機性廃水の処理装置においては、反応処理槽で、活性汚泥処理系から抜き出した活性汚泥を殺菌及び可溶化処理し、活性汚泥を構成している微生物を殺菌すると共に細胞の一部を可溶化してBOD成分に変換させる。次に、この処理された可溶化活性汚泥を、反応処理槽から活性汚泥処理槽へと導入し、該処理槽において、硝酸イオン及び/又は亜硝酸イオンを構成している酸素を酸素源として好気性微生物及び/又は硝酸呼吸性微生物を含む活性汚泥で処理する。更に、これらの処理がなされた活性汚泥を、既設の活性汚泥処理槽に再度導入して生物処理を行なう。従って、上記のように構成された本発明の有機性廃水の処理装置は、既設の活性汚泥処理槽のBOD負荷量を著しく増加させることはなく、しかも活性汚泥の増加を効率よく抑制できるので、従来の装置に比べて余剰汚泥量を格段に減量化することができる。
【0039】
【実施例】
次に本発明の実施例及び比較例を挙げて本発明を更に詳細に説明する。
実施例1
図1に示したフローに従って建設した500リットル/day規模のパイロットプラントを使用して、有機性廃水の活性汚泥処理を行った。下記の表1に処理に用いた原水の性状を示したが、原水として、食品工場からの有機性廃水を用いた。又、本実施例では、図1に示した処理フローの殺菌或いは可溶化処理工程に、金属イオンを触媒とした酸化剤による酸化分解手段を用いた。触媒としては、鉄触媒を用い、試験開始当初の活性汚泥処理槽中に鉄イオンとして100mg/lになるようにFe(OH)3を添加した。酸化剤としては過酸化水素を用いた。又、酸化分解反応槽の反応液の温度は、ヒータによって50℃に加温した。
【0040】
表1 原水性状(食品工場の廃水)
【0041】
先ず、上記の原水について、pH7.0、BOD負荷量1.0kg/m3、HRT2.0日の運転条件で活性汚泥処理を行った。その際に、沈澱槽から活性汚泥処理系への返送汚泥ライン中に設けられている図2に示した様な構造の反応処理槽に、返送汚泥の一部を導いて熱酸化処理を行った。そして、これらの処理が終了した後、殺菌及び可溶化された可溶化活性汚泥を、硝酸イオンの存在下、嫌気的雰囲気の汚泥処理槽へと導入して、好気性微生物及び/又は硝酸呼吸性微生物を含む活性汚泥で生物処理した。更に、図1に示したように、上記の処理が終了した活性汚泥処理物を、通常の活性汚泥処理槽(曝気槽)内へと再び戻し、活性汚泥処理を連続的に行った。
【0042】
図2に本実施例で使用した反応処理槽の概略図を示したが、該反応槽では、汚泥を含む反応液中の過酸化水素の濃度が100mg/lになるように過酸化水素を添加し、pH3.5に保つように、ハイポックスNA(環境エンジニアリング社製)を添加した。滞留時間を60分間として反応させた。反応前後の汚泥の生菌数を測定したところ、反応前が109cells/mlであったのに対し、反応後は、104cells/mlであり、殆どの微生物が死滅し、可溶化が進行していることが確認できた。
【0043】
図2に示したように、上記のようにして反応処理槽で処理された可溶化活性汚泥は、続いて硝酸イオン及び/又は亜硝酸イオン下で好気性微生物及び/又は硝酸呼吸性微生物を含む活性汚泥で処理がなされる。本実施例では、図3に示した嫌気槽からなる容積10リットルの汚泥処理槽へと導入し、返送汚泥の一部を抜き出し種汚泥として導入し、好気性微生物及び/又は硝酸呼吸性微生物を含む活性汚泥で処理した。又、使用した汚泥は、既設排水処理設備の余剰汚泥を種汚泥とした。上記の可溶化汚泥処理が終了した活性汚泥処理物は、活性汚泥処理槽内へと再び戻し、活性汚泥処理を連続的に行った。
【0044】
上記した処理が行なわれ、最終的に放流される処理水について、投入BOD当たりの汚泥生成量を測定して表3に示した。この結果、余分な活性汚泥の生成が全く見られず、余剰汚泥を抜き出して除去する必要がなかった。従って、従来の処理から余剰汚泥の処理工程を省略することが可能であることがわかった。又、最終的な処理水の水質は、後述する通常の活性汚泥法による処理を行なった比較例1の場合と比べて、BOD値及びSS値共に遜色なく、放流水の水質が悪化することもなかった。
【0045】
実施例2
可溶化活性汚泥に対して生物処理するための汚泥処理槽として図4に示した上向流好気性流動床装置を用いる以外は実施例1と同様にして、活性汚泥処理試験を行った。そして、最終的に放流される処理水の水質、及び汚泥転換率を実施例1と同様に測定して表2に示した。
【0046】
比較例1
汚泥の返送ラインに、汚泥の返送ラインから抜き出した被処理汚泥を処理するための加熱反応槽及び汚泥処理槽を設けない以外は実施例1と同様にして、図5に示した従来のフローに従って活性汚泥処理試験を行った。そして、最終的に放流される処理水の水質、及び汚泥転換率を実施例1と同様に測定して表2に示した。
【0047】
比較例2
可溶化活性汚泥を生物処理する汚泥処理槽を設けない以外は実施例1と同様にして、活性汚泥処理試験を行った。得られた処理水の水質及び汚泥転換率を実施例1と同様に測定し、表2に示した。
【0048】
表2 処理結果
【0049】
【発明の効果】
上記に説明したように、本発明によれば、既設の活性汚泥処理設備のBOD負荷量の増加を招くことなく、従来と同様の条件で活性汚泥処理を行なうことができ、且つ、最終段階で放流される処理水の水質を悪化させることなく、余剰汚泥の量を簡易な方法で且つ大幅に減量化させることができ、最適には余剰汚泥の発生をなくすことが可能である、簡易且つ経済的な活性汚泥法を利用した有機性廃水の処理方法が提供される。
更に、本発明によれば、従来の処理装置に大幅な変更を加えることなく、運転コストの増大を生じることなく上記した優れた効果を有する有機性廃水の処理装置が提供される。
【図面の簡単な説明】
【図1】本発明の有機性廃水の処理方法の処理フローの一例である。
【図2】本発明の有機性廃水の処理方法に使用される反応処理槽及び汚泥処理槽の概略図である。
【図3】本発明の有機性廃水の処理方法に使用される汚泥処理槽の一例を示す図である。
【図4】本発明の有機性廃水の処理方法に使用される汚泥処理槽の一例を示す図である。
【図5】従来の有機性廃水の処理方法の処理フローの一例である。
【符号の説明】
1:上向流好気性流動床装置
3:可溶化汚泥流入管
4:酸素源供給配管
5:担体に担持された活性汚泥
6:撹拌機
7:集積部
8:排出管
M:モーター
P:ポンプ

Claims (4)

  1. 有機性廃水を好気性微生物を含む活性汚泥処理系により浄化処理する有機性廃水の処理方法において、原水を活性汚泥処理系に導入し、活性汚泥処理系で有機性廃水を好気性微生物で処理した後、活性汚泥処理系から活性汚泥の少なくとも一部を抜き出して被処理汚泥とし、該被処理汚泥を構成している微生物を殺菌及び可溶化処理し、続いて、殺菌及び可溶化処理した活性汚泥処理物、硝酸イオン及び/又は亜硝酸イオンを添加し、これを、嫌気的雰囲気下、硝酸イオン及び/又は亜硝酸イオンを酸素源として有機物を分解する好気性微生物及び/又は硝酸呼吸性微生物を含む活性汚泥で処理した後、前記活性汚泥処理系に再度導入して活性汚泥による浄化処理をすることを特徴とする有機性廃水の処理方法。
  2. 殺菌及び可溶化処理の方法が、金属イオンを触媒とした酸化剤による酸化分解である請求項1に記載の有機性廃水の処理方法。
  3. 酸化分解を、金属イオンが鉄イオンで、酸化剤が過酸化水素であり、且つ被処理液を40〜100℃に加温した条件で行う請求項2に記載の有機性廃水の処理方法。
  4. 有機性廃水を好気性微生物を含む活性汚泥処理系により浄化処理する有機性廃水の処理装置において、原水を導入して処理する活性汚泥処理槽と、活性汚泥を殺菌及び可溶化処理する反応処理槽と、該反応処理槽で処理した活性汚泥を処理するための汚泥処理槽とを少なくとも有し、上記反応処理槽が、活性汚泥処理槽及び/又は該活性汚泥処理槽に接続されている沈澱槽から少なくとも一部を抜き出した活性汚泥を処理対象とし、該活性汚泥を構成している微生物を殺菌及び可溶化処理するためのものであって、且つ上記汚泥処理槽が、反応処理槽で処理された活性汚泥に硝酸イオン及び/又は亜硝酸イオンを添加したものを、嫌気的雰囲気下、硝酸イオン及び/又は亜硝酸イオンを酸素源として、有機物を分解する好気性微生物及び/又は硝酸呼吸性微生物を含む活性汚泥で処理するためのものであり、更に、上記反応処理槽及び汚泥処理槽での処理が終了した活性汚泥処理物を再度活性汚泥処理槽へと戻すように構成されていることを特徴とする有機性廃水の処理装置。
JP23918698A 1998-08-25 1998-08-25 有機性廃水の処理方法及び有機性廃水の処理装置 Expired - Lifetime JP4404976B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23918698A JP4404976B2 (ja) 1998-08-25 1998-08-25 有機性廃水の処理方法及び有機性廃水の処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23918698A JP4404976B2 (ja) 1998-08-25 1998-08-25 有機性廃水の処理方法及び有機性廃水の処理装置

Publications (2)

Publication Number Publication Date
JP2000061497A JP2000061497A (ja) 2000-02-29
JP4404976B2 true JP4404976B2 (ja) 2010-01-27

Family

ID=17041003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23918698A Expired - Lifetime JP4404976B2 (ja) 1998-08-25 1998-08-25 有機性廃水の処理方法及び有機性廃水の処理装置

Country Status (1)

Country Link
JP (1) JP4404976B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001259675A (ja) * 1999-07-15 2001-09-25 Nippon Kankyo Create Kk 汚泥減量方法及び装置
JP4608057B2 (ja) * 2000-07-26 2011-01-05 オルガノ株式会社 汚泥処理装置および汚泥処理方法
FR2836910B1 (fr) * 2002-03-08 2005-02-11 Amenagement Urbain & Rural Procede de degradation de la matiere organique par voie mycelienne
JP4599955B2 (ja) * 2004-09-16 2010-12-15 株式会社日立プラントテクノロジー 余剰汚泥減容方法
JP5344458B2 (ja) * 2008-05-22 2013-11-20 日鉄住金環境株式会社 活性汚泥に有用微生物を導入する方法
JP5170069B2 (ja) * 2009-11-26 2013-03-27 栗田工業株式会社 有機性排水の生物処理方法
WO2014199500A1 (ja) * 2013-06-13 2014-12-18 三菱重工メカトロシステムズ株式会社 廃水の処理方法
CN103420545B (zh) * 2013-08-17 2014-12-24 嘉善蓝天碧水宝化工有限公司 一种基于微生物复合酶的污泥消解方法

Also Published As

Publication number Publication date
JP2000061497A (ja) 2000-02-29

Similar Documents

Publication Publication Date Title
EP2447222A2 (en) Process for biological treatment of organic waste water and apparatus therefor
JP4892917B2 (ja) 有機性排水の生物処理方法および装置
JP2007105631A (ja) 有機性排水の処理方法及び装置
EP2516337B1 (en) Improved digestion of biosolids in wastewater
JP3360076B2 (ja) 有機性廃水の処理方法
US3867284A (en) Water treatment with nitrogen dioxide
JP2007105630A (ja) 有機性排水の処理方法
JP4404976B2 (ja) 有機性廃水の処理方法及び有機性廃水の処理装置
JP4406749B2 (ja) 有機性廃水の処理方法及び有機性廃水の処理装置
JPH05277486A (ja) 有機性排水の嫌気性処理方法
JP3900796B2 (ja) 有機性廃水の処理方法及びその処理装置
EA003434B1 (ru) Способ обработки отходов
JP3223145B2 (ja) 有機性廃水の処理方法
JP4590756B2 (ja) 有機性排液の処理方法および有機性排液の処理装置
JP5625705B2 (ja) テレフタル酸含有排水の嫌気性処理方法および処理装置
JP4289731B2 (ja) 有機性廃棄物の処理方法およびその装置
JPH0975978A (ja) 活性汚泥処理方法及びそのための活性汚泥処理装置
JP2003334589A (ja) 廃水処理方法及び装置
JP3697900B2 (ja) 排水の処理方法およびそのための装置
JP2004188356A (ja) 有機性廃水の処理方法
JP4581174B2 (ja) 生物処理方法
JP2003340485A (ja) 有機性廃水の処理方法及び廃水処理装置
JP2003260491A (ja) 有機性汚水の生物処理方法及び装置
Kamenev11 et al. Aerobic bio-oxidation combined with ozonation in the treatment of landfill leachates
JP2001259675A (ja) 汚泥減量方法及び装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term