JPH11274088A - 珪素薄膜の製造方法 - Google Patents

珪素薄膜の製造方法

Info

Publication number
JPH11274088A
JPH11274088A JP10093988A JP9398898A JPH11274088A JP H11274088 A JPH11274088 A JP H11274088A JP 10093988 A JP10093988 A JP 10093988A JP 9398898 A JP9398898 A JP 9398898A JP H11274088 A JPH11274088 A JP H11274088A
Authority
JP
Japan
Prior art keywords
silicon
single crystal
thin film
semiconductor single
crystal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10093988A
Other languages
English (en)
Inventor
Hitoshi Habuka
等 羽深
Shoji Akiyama
昌次 秋山
Toru Otsuka
徹 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP10093988A priority Critical patent/JPH11274088A/ja
Priority to US09/267,696 priority patent/US6309458B1/en
Publication of JPH11274088A publication Critical patent/JPH11274088A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4411Cooling of the reaction chamber walls
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Abstract

(57)【要約】 【課題】 珪素原料の供給効率が高い珪素薄膜の製造方
法を提供する。 【解決手段】 反応容器10内に半導体単結晶基板1を
載置し、反応容器10内に珪素原料3を供給して半導体
単結晶基板1上に珪素薄膜を成長する方法において、珪
素薄膜の成長工程時に反応容器10から排出される排気
ガス5中の四塩化珪素(SiCl4)濃度が、排気ガス
中の珪素原料の濃度の1/10以下になるように、反応
容器10の壁を冷却する。また、半導体単結晶基板1の
表面と反応容器10の壁との間における温度勾配が、半
導体単結晶基板1の温度との関係において下式(1) 温度勾配(K/cm)≧0.3×基板温度(K)−90
(1) を満たすように反応容器10の壁を冷却する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、半導体単結晶基板
上に珪素薄膜を成長する方法に関するものである。
【0002】
【従来の技術】半導体単結晶基板上に珪素薄膜を成長す
る方法として、珪素原料ガスを供給して気相成長により
珪素薄膜を半導体単結晶基板上に成長させる方法が用い
られている。
【0003】図1は、珪素薄膜の製造装置の一例を示
す。この装置で珪素薄膜を形成する場合、石英ガラス等
からなる反応容器10内に珪素半導体単結晶基板等の半
導体単結晶基板1を載置し、反応容器10の外側に設け
られた赤外線ランプ11に通電して赤外線を半導体単結
晶基板1に照射し、半導体単結晶基板1を例えば950
℃、1000℃などの所望の温度に昇温する。そして、
ガス導入口12から水素ガス等の希釈ガス中にトリクロ
ロシラン(SiHCl3)等を希釈して形成した珪素原
料ガス3を導入し、高温に保持された半導体単結晶基板
1の表面に珪素単結晶薄膜等の珪素薄膜を成長する。ま
た、珪素薄膜の抵抗率を調整するため、ジボランガス
(B26)やホスフィンガス(PH3)などが併せて導
入される。また、珪素原料として、トリクロロシラン
(SiHCl3)の代わりに、ジクロロシラン(SiH2
Cl2)または四塩化珪素(SiCl4)を用いることも
ある。
【0004】なお、反応容器10の壁に珪素原料の反応
による珪素の堆積が起こるのを防止するため、低温の空
気、窒素ガスなどの冷媒4を流して反応容器10から熱
を奪うことにより、反応容器10の壁の温度を調節して
いる。また、半導体単結晶基板1の温度は、例えば反応
容器10の外側に設けられた放射温度計2により計測さ
れる。
【0005】従来、上記のようにトリクロロシラン(S
iHCl3)を水素ガス中に希釈して形成した珪素原料
ガスを供給して珪素薄膜を成長する方法においては、ト
リクロロシラン(SiHCl3)が気相中でSiCl2
分解し、これが珪素薄膜の成長において主たる化学反応
を進める重要な反応中間体であることが知られている。
また、この反応に伴って、四塩化珪素(SiCl4)が
生成することも報告されている(例えば、J.Nish
izawa and M.Saito,J.Cryst
al growth,52巻,213〜218頁(19
81年))。
【0006】
【発明が解決しようとする課題】四塩化珪素(SiCl
4)は、一旦形成されると熱に対してトリクロロシラン
(SiHCl3)よりも相対的に安定であるため、珪素
薄膜の形成への寄与率が減少してしまい、これが珪素原
料の供給効率を下げる大きな原因となっていた。また、
四塩化珪素(SiCl4)は、1分子から珪素1原子を
珪素薄膜の成長に寄与させる度に発生する塩化水素分子
の数が多いために、珪素薄膜の表面に小孔を生じるなど
の好ましからざる結果を生む原因ともなっていた。
【0007】そこで本発明は、珪素原料の供給効率が高
い珪素薄膜の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】上記課題を解決するた
め、発明者らが基礎実験の結果に基づく研究を重ねた結
果、以下の発明に至った。
【0009】本願の請求項1記載の発明は、反応容器内
に半導体単結晶基板を載置し、前記反応容器内に珪素原
料を供給して前記半導体単結晶基板上に珪素薄膜を成長
する方法において、珪素薄膜の成長工程時に前記反応容
器から排出される排気ガス中の四塩化珪素(SiC
4)濃度が、排気ガス中の前記珪素原料濃度の1/1
0以下になるように、反応容器の壁を冷却することを特
徴とする珪素薄膜の製造方法を提供する。
【0010】本願の請求項2記載の発明は、請求項1に
おいて、前記半導体単結晶基板の表面と前記反応容器の
壁との間における気相の温度勾配が、半導体単結晶基板
の温度との関係において下式(1) 温度勾配(K/cm)≧0.3×基板温度(K)−90 (1) を満たすように、前記反応容器の壁を冷却することを特
徴とする珪素薄膜の製造方法を提供する。
【0011】本願の請求項3記載の発明は、請求項2に
おいて、前記半導体単結晶基板の温度が800℃以上で
あることを特徴とする珪素薄膜の製造方法を提供する。
【0012】本願の請求項4記載の発明は、請求項1な
いし請求項3のいずれか1項において、前記珪素原料が
トリクロロシラン(SiHCl3)であることを特徴と
する珪素薄膜の製造方法を提供する。
【0013】本願の請求項5記載の発明は、請求項1な
いし請求項4のいずれか1項において、前記半導体単結
晶基板が珪素半導体単結晶基板であり、前記珪素薄膜が
珪素単結晶薄膜であることを特徴とする珪素薄膜の製造
方法を提供する。
【0014】本願の請求項1においては、反応容器内で
の珪素薄膜の成長工程中に反応容器から排出される排気
ガス中で、四塩化珪素(SiCl4)の濃度を供給され
た珪素原料の濃度の1/10以下にすることにより、珪
素原料の供給効率が上がるので、珪素原料の供給量が従
来と同量でも珪素薄膜の成長速度を向上させることがで
きる。
【0015】本願の請求項2においては、半導体単結晶
基板上の高さ方向の温度勾配を大きくすることにより、
半導体単結晶基板の表面から離れた領域における気相中
の化学反応を抑制し、四塩化珪素(SiCl4)の生成
によるトリクロロシラン(SiHCl3)等の珪素原料
の損失を抑制できる。また、気相中でSiCl2が生成
する領域を半導体単結晶基板の表面に極めて近い領域に
限定できるので、SiCl2が半導体単結晶基板の表面
から離れた気相中に散逸することを抑制できる。従っ
て、珪素原料の供給効率を向上させることができる。
【0016】本願の請求項3においては、半導体単結晶
基板の温度が800℃以上で且つ前記温度勾配が前式
(1)を満たすようにすることにより、半導体単結晶基
板の表面の直上での化学反応の反応効率を低下させずに
四塩化珪素(SiCl4)の生成及びSiCl2の散逸を
防止することができる。
【0017】
【発明の実施の形態】本発明の実施の形態について、図
を参照しながら説明する。
【0018】珪素薄膜の成長は、図1に示した装置を用
い、前述した工程に従って進行する。ここでは、珪素半
導体単結晶基板1上に珪素原料のトリクロロシラン(S
iHCl3)を水素ガスに希釈させて形成した珪素原料
ガス3を供給することにより、珪素単結晶薄膜を成長す
る実施形態について説明する。最初に、反応容器10内
を窒素ガスなどの不活性ガスで充満させて安全な状態を
形成させた後に、反応容器10を開き、該反応容器10
内に珪素半導体単結晶基板1を導入し、所定の位置に載
置する。次に、反応容器10内に珪素薄膜成長時の反応
雰囲気ガスである水素ガスを導入する。そして、赤外線
ランプ11に通電して珪素半導体単結晶基板1を所望の
温度に昇温し、温度が安定するまで待つ。
【0019】珪素薄膜を成長する前には、珪素半導体単
結晶基板1の表面に不可避的に付着している自然酸化膜
などを除去しておく。これには、例えば水素ガス雰囲気
中で加熱することにより還元分解除去する方法、室温で
フッ化水素ガスを用いて自然酸化膜を除去した後に70
0℃付近で塩化水素ガスを用いて有機汚染物を除去する
などの方法がある。
【0020】次に、珪素単結晶薄膜の成長工程時には、
反応容器10内に珪素単結晶薄膜の成長原料であるトリ
クロロシラン(SiHCl3)ガスを導入する。このト
リクロロシラン(SiHCl3)ガスは、液体のトリク
ロロシラン(SiHCl3)中に水素ガスをバブリング
させて一定濃度の混合気体とし、該混合気体を所望流量
の水素ガスでさらに希釈してトリクロロシラン(SiH
Cl3)の濃度を調整したものである。反応容器10内
に導入されたトリクロロシラン(SiHCl3)ガス
は、高温に保持された珪素半導体単結晶基板1の表面に
珪素原子を結合させて珪素単結晶薄膜を成長させる化学
反応を生じる。
【0021】所定の時間、珪素単結晶薄膜を成長させた
後にトリクロロシラン(SiHCl3)ガスの供給を終
了させ、水素ガスにより反応容器10内からトリクロロ
シラン(SiHCl3)ガスを十分に排除した後、赤外
線ランプ11の通電量を調整して降温する。次に、反応
容器10に窒素ガスなどの不活性ガスを導入して水素ガ
スを排除した後、反応容器10を開いて珪素単結晶薄膜
が形成された珪素半導体単結晶基板1を取り出す。
【0022】図2に、上記珪素単結晶薄膜の成長工程時
における化学反応の様子を示す。ガス導入口12より反
応容器10内に導入されたトリクロロシラン(SiHC
3)は、気相中において塩化水素分子を放出してSi
Cl2となる(過程(1),(3))。SiCl2は珪素
半導体単結晶基板1の表面に運ばれて珪素半導体単結晶
の表面に化学吸着し(過程(2))、反応雰囲気の水素
分子と反応して塩化水素分子を放出して(過程(5))
珪素原子となる。このようにして、珪素半導体単結晶の
表面に珪素単結晶薄膜が成長する。
【0023】気相中で生成したSiCl2は、Fick
の法則によりSiCl2の濃度が小さい領域に拡散され
て輸送されるが、これは珪素半導体単結晶の表面への輸
送だけではなく、珪素半導体単結晶から離れた低温の気
相中へも輸送される(過程(4))。この過程(4)
は、珪素単結晶薄膜の成長における重要な反応中間体で
あるSiCl2が珪素半導体単結晶の表面から離れる輸
送であるから、珪素単結晶薄膜の成長に必要な反応中間
体の損失を意味する。すなわち、珪素単結晶薄膜の成長
速度の低下をもたらすものである。
【0024】また、気相中で未反応のトリクロロシラン
(SiHCl3)分子はそのまま珪素半導体単結晶の表
面に到達し(過程(6))、HCl分子を放出後SiC
2として珪素半導体単結晶の表面に化学吸着する。そ
の後に水素分子と反応して珪素を生じる過程は前記した
過程(5)と共通である。
【0025】一方、例えば前記Nishizawaらに
よって明らかにされたように、気相中において、トリク
ロロシラン(SiHCl3)の不均等化反応により四塩
化珪素(SiCl4)と珪素(Si)を生成する化学反
応(過程(7),(8))が進行することが知られてい
る。この四塩化珪素(SiCl4)ガスによる問題点は
前述の通りである。
【0026】発明者らは、珪素単結晶薄膜の成長工程中
に反応容器10から排出される排気ガス中の四塩化珪素
(SiCl4)濃度のトリクロロシラン(SiHCl3
濃度に対する割合に着目し、これと珪素単結晶薄膜の成
長速度との関係を調べた。図3はその結果を示す。図か
ら分かるように、四塩化珪素(SiCl4)濃度のトリ
クロロシラン(SiHCl3)濃度に対する割合が大き
くなるに従って珪素単結晶薄膜の成長速度が低下する。
しかし、上記四塩化珪素(SiCl4)の割合が1/1
0以下であれば成長速度の低下はほとんど起こらないこ
とも確認できた。すなわち、排気ガス中の組成は反応雰
囲気をある程度反映しているので、この組成を制御する
ことにより、反応雰囲気を間接的に制御し、四塩化珪素
(SiCl4)の生成を抑えることができることを見出
した。
【0027】つまり、反応容器10内での珪素単結晶薄
膜の成長工程中に反応容器10から排出される排気ガス
中の四塩化珪素(SiCl4)濃度を、同じく排気ガス
中のトリクロロシラン(SiHCl3)濃度の1/10
以下にすることにより、四塩化珪素(SiCl4)によ
る前述した問題がほとんど生じなくなり、反応効率を向
上させることができるので、従来よりも珪素単結晶薄膜
の成長速度を向上させることができる。
【0028】上記四塩化珪素(SiCl4)の排気ガス
中の割合を実現するためには、反応容器10内の珪素半
導体単結晶基板1から離れた領域の気相温度を低く保て
ばよく、そのために反応容器10の外側に冷媒4を流し
て反応容器10の壁の温度を調節する。
【0029】また、発明者らは、珪素半導体単結晶基板
1の温度を変えずに、珪素半導体単結晶基板1から反応
容器10の壁に向かっての温度低下の割合を増大させる
ことにより、すなわち気相の温度勾配を大きくすること
により、排気ガス中の上記四塩化珪素(SiCl4)の
割合を1/10以下にすることができることを見出し
た。そして、必要な温度勾配を与える条件が、次式
(1)により表現できることが、実験の結果明らかにな
った。 温度勾配(K/cm)≧0.3×基板温度(K)−90 (1) ここで、珪素半導体単結晶基板1と反応容器10の壁の
温度が既知の場合、温度勾配は次式(2)により求めら
れる。
【0030】例えば基板温度が950℃(1223K)
の場合は、上式(1)は温度勾配が276.9K/cm
以上必要という条件であることを示す。そこで、950
℃において反応容器10に供給するトリクロロシラン
(SiHCl3)ガスの濃度を変化させながら、上式
(1)の条件を満たす温度勾配300K/cmの場合
と、上式(1)の条件の下限である276.9K/cm
を下回る温度勾配200K/cmの場合とで、成長速度
を比較した。図4はその結果を示す。温度勾配が300
K/cmの場合は、200K/cmの場合に比べて高い
成長速度を得ることができる。特に、トリクロロシラン
(SiHCl3)が0.15g/リットル・分以下の低
濃度である場合に有効であることが明らかである。
【0031】また、図5は、珪素半導体単結晶基板1の
温度を950℃とし、温度勾配を(1)式に示す条件を
満たす300K/cmにおいて、トリクロロシラン(S
iHCl3)ガスを用いて常圧で珪素半導体単結晶基板
1上に珪素単結晶薄膜を成長させた時に、反応容器10
から排出される排気ガスの成分を四重極質量分析計を用
いて分析した結果を示す。検出された化学種は、質量の
最も小さなものから順に、水素ガス分子がイオン化した
一群(H 2 +)、反応容器からの排出配管に残留してい
るH2O分子がイオン化した一群(H2+)、塩化水素
分子がイオン化した一群(HCl+)、SiCl2がイオ
ン化した一群(SiCl+)、SiCl2とトリクロロシ
ラン(SiHCl3)分子がイオン化した一群(SiC
2 +)、トリクロロシラン(SiHCl3)分子がイオ
ン化した一群(SiCl 3 +)であった。一方、四塩化
珪素(SiCl4)分子がイオン化した一群(SiCl 4
+)が現れる質量には、全く化学種の存在が検出されな
かった。
【0032】次に、温度勾配が(1)式に示す条件の下
限である276.9K/cmにおいて上記と同様の分析
を行った結果、トリクロロシラン(SiHCl3)分子
がイオン化した一群(SiCl 3 +)の約1/10程度
の四塩化珪素(SiCl4)分子がイオン化した一群
(SiCl 4 +)が観察された。また、温度勾配が
(1)式に示す条件の下限である276.9K/cmを
下回る200K/cmにおいては、トリクロロシラン
(SiHCl3)分子がイオン化した一群(SiCl
3 +)の約1/5程度の四塩化珪素(SiCl4)分子が
イオン化した一群(SiCl+ 4)が観察された。
【0033】従って、温度勾配が(1)式を満たすよう
に反応容器10の壁を冷却すれば、排気ガス中の四塩化
珪素(SiCl4)濃度をトリクロロシラン(SiHC
3)濃度の1/10以下にすることができる。
【0034】なお、四塩化珪素(SiCl4)の生成を
抑制するためには基板温度が低いほどよいが、珪素半導
体単結晶基板1の表面の直上の気相温度が800℃未満
になると珪素単結晶薄膜の成長反応が起こらなくなるの
で、珪素半導体単結晶基板1の温度が800℃以上で且
つ前記温度勾配が前式(1)を満たすように反応容器1
0の壁を冷却することが好ましい。
【0035】なお、珪素単結晶薄膜の成長原料であるS
iCl2が気相中で形成されると、珪素半導体単結晶基
板1の表面への輸送(拡散)以外に、気相中の珪素半導
体単結晶基板1の表面から離れた低温側への輸送(拡
散)が生じ、SiCl2が失われるため、珪素単結晶薄
膜の成長速度の低下が生じる。これも四塩化珪素(Si
Cl4)の生成とともに問題となる。SiCl2の損失を
抑えるためには、SiCl2の生成を可能な限り珪素半
導体単結晶の表面に近い領域で行うことが大切である。
そして、前述の温度勾配を(1)式を満たすように設定
すれば、珪素半導体単結晶基板1の表面から離れた気相
の温度を下げることができ、SiCl2の生成を可能な
限り珪素半導体単結晶の表面に近い領域で行うことが可
能となるのである。
【0036】また、本発明においては、上記効果の他、
気相中での珪素核形成が抑制され、従って珪素の微粒子
生成が抑制されるので、珪素単結晶薄膜の表面における
0.1μm程度から数十μm以上の大きさにわたる突起
の形成(すなわち表面異常不良)が著しく抑制される。
また、大きな温度勾配を用いることによって、図6に示
すように、温度の揺らぎによって化学反応が影響を受け
る領域の幅が狭められるので、珪素単結晶薄膜の成長速
度の揺らぎが抑えられる。その結果、30mm角の範囲
内における微細な厚さ分布が極めて均一となる。同じ
く、気相の温度揺らぎの影響範囲を狭めることにより、
加熱時に珪素半導体単結晶基板1に発生する結晶変形
(スリップ転位)の抑制にも効果が認められる。
【0037】気相の温度揺らぎの影響範囲が狭められる
ことは、副次的に抵抗率の分布にも良い影響を与え、抵
抗率の分布も均一となる。気相の温度を下げ、反応容器
10の壁の温度を下げることは予期せぬ化学反応を抑制
できることに繋がる。すなわち、不可避的に反応容器1
0の壁の一部を構成するステンレススチール等の金属部
分の腐食が抑制されるので、腐食反応に起因して金属元
素が気相中に浮遊することが抑制される。その結果とし
て、珪素単結晶薄膜中に混入する金属元素、例えば鉄、
ニッケル、モリブデン、銅などの濃度を下げることがで
きる。
【0038】発明者らは、本発明が寄与する機構の解明
を進めているが、シャローピットなどの表面欠陥の抑
制、珪素半導体単結晶基板における金属元素のゲッタリ
ング能力の向上、COPなどの結晶欠陥が解消される速
度の増大などが再現性良く観察され、これらも本発明に
よりもたらされたものと考えられる。
【0039】なお、本発明は上記の実施形態に限定され
るものではない。例えば、温度勾配の設定に限定して言
えば、同様の考え方を適用することにより、ジクロロシ
ラン(SiH2Cl2)ガスを用いた珪素薄膜の成長に適
用できることは当然である。また、珪素多結晶薄膜にも
適用可能である。さらに、気相の圧力が常圧から減圧の
広い圧力範囲に有効であることも容易に明らかである。
【0040】
【発明の効果】以上説明した通り本発明によれば、珪素
薄膜の成長工程時に反応容器から排出される排気ガス中
の四塩化珪素(SiCl4)濃度を排気ガス中の珪素原
料濃度の1/10以下になるように反応容器の壁を冷却
することにより、気相中の化学反応を抑制し、SiCl
4の生成によるトリクロロシラン(SiHCl3)の損失
を抑制することができる。従って、反応効率を向上さ
せ、珪素薄膜の成長速度を上げることができる。
【0041】また、特に請求項2記載の発明によれば、
半導体単結晶基板の表面と反応容器の壁との間の温度勾
配を、半導体単結晶基板の温度との関係において下式
(1) 温度勾配(K/cm)≧0.3×基板温度(K)−90 (1) を満たすように反応容器の壁を冷却することにより、気
相中でSiCl2が生成する領域を半導体単結晶基板の
表面に極めて近い領域に限定できるので、SiCl2
半導体単結晶基板の表面から離れた領域の気相中に散逸
することを抑制できる。従って、例えばトリクロロシラ
ン(SiHCl3)ガスが珪素薄膜の成長に用いられる
際の供給効率を向上させ、大きな成長速度が得られる。
【図面の簡単な説明】
【図1】珪素薄膜の製造装置の一例を示す概略構成図で
ある。
【図2】珪素薄膜の成長工程における化学反応の様子を
示す説明図である。
【図3】排気ガス中の四塩化珪素(SiCl4)濃度の
トリクロロシラン(SiHCl3)濃度に対する割合と
珪素単結晶薄膜の成長速度との関係を示すグラフであ
る。
【図4】温度勾配が300K/cm及び200K/cm
における各SiHCl3の供給濃度に対する珪素単結晶
薄膜の成長速度を示すグラフである。
【図5】排気ガスの成分を分析した結果を示すグラフで
ある。
【図6】温度の揺らぎと化学反応が影響を受ける領域の
幅との関係を示すグラフである。
【符号の説明】
1 半導体単結晶基板 3 珪素原料ガス 4 冷媒 5 排気ガス 10 反応容器 11 赤外線ランプ 12 ガス導入口

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 反応容器内に半導体単結晶基板を載置
    し、前記反応容器内に珪素原料を供給して前記半導体単
    結晶基板上に珪素薄膜を成長する方法において、珪素薄
    膜の成長工程時に前記反応容器から排出される排気ガス
    中の四塩化珪素(SiCl4)濃度が、排気ガス中の前
    記珪素原料濃度の1/10以下になるように、反応容器
    の壁を冷却することを特徴とする珪素薄膜の製造方法。
  2. 【請求項2】 前記半導体単結晶基板の表面と前記反応
    容器の壁との間における気相の温度勾配が、半導体単結
    晶基板の温度との関係において下式(1) 温度勾配(K/cm)≧0.3×基板温度(K)−90 (1) を満たすように、前記反応容器の壁を冷却することを特
    徴とする請求項1に記載の珪素薄膜の製造方法。
  3. 【請求項3】 前記半導体単結晶基板の温度が800℃
    以上であることを特徴とする請求項2記載の珪素薄膜の
    製造方法。
  4. 【請求項4】 前記珪素原料がトリクロロシラン(Si
    HCl3)であることを特徴とする請求項1ないし請求
    項3のいずれか1項に記載の珪素薄膜の製造方法。
  5. 【請求項5】 前記半導体単結晶基板は珪素半導体単結
    晶基板であり、前記珪素薄膜は珪素単結晶薄膜であるこ
    とを特徴とする請求項1ないし請求項4のいずれか1項
    に記載の珪素薄膜の製造方法。
JP10093988A 1998-03-23 1998-03-23 珪素薄膜の製造方法 Pending JPH11274088A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10093988A JPH11274088A (ja) 1998-03-23 1998-03-23 珪素薄膜の製造方法
US09/267,696 US6309458B1 (en) 1998-03-23 1999-03-15 Method for fabricating silicon thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10093988A JPH11274088A (ja) 1998-03-23 1998-03-23 珪素薄膜の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002266610A Division JP2003163171A (ja) 2002-09-12 2002-09-12 珪素薄膜の製造方法

Publications (1)

Publication Number Publication Date
JPH11274088A true JPH11274088A (ja) 1999-10-08

Family

ID=14097792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10093988A Pending JPH11274088A (ja) 1998-03-23 1998-03-23 珪素薄膜の製造方法

Country Status (2)

Country Link
US (1) US6309458B1 (ja)
JP (1) JPH11274088A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138168A (ja) * 1998-10-29 2000-05-16 Shin Etsu Handotai Co Ltd 半導体ウェーハ及び気相成長装置
JP4024764B2 (ja) * 2004-01-20 2007-12-19 松下電器産業株式会社 光照射熱処理方法および光照射熱処理装置
JP4640800B2 (ja) * 2005-06-22 2011-03-02 東京エレクトロン株式会社 被処理体の処理方法、処理装置、薄膜形成方法、薄膜形成装置及びプログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496609A (en) * 1969-10-15 1985-01-29 Applied Materials, Inc. Chemical vapor deposition coating process employing radiant heat and a susceptor
US4081313A (en) * 1975-01-24 1978-03-28 Applied Materials, Inc. Process for preparing semiconductor wafers with substantially no crystallographic slip
US4632058A (en) * 1984-02-27 1986-12-30 Gemini Research, Inc. Apparatus for uniform chemical vapor deposition
US5096534A (en) * 1987-06-24 1992-03-17 Epsilon Technology, Inc. Method for improving the reactant gas flow in a reaction chamber
US5221556A (en) * 1987-06-24 1993-06-22 Epsilon Technology, Inc. Gas injectors for reaction chambers in CVD systems
US5261960A (en) * 1987-06-24 1993-11-16 Epsilon Technology, Inc. Reaction chambers for CVD systems
US5093149A (en) * 1988-05-26 1992-03-03 Energy Conversion Devices, Inc. Method of depositing directly activated species onto a remotely located substrate
DE69421465T2 (de) * 1993-07-30 2000-02-10 Applied Materials Inc Verfahren zur Ablagerung von Silzium-Nitrid auf Siliziumoberflächen
JP3824675B2 (ja) * 1995-03-03 2006-09-20 有限会社デジタル・ウェーブ 結晶製造装置

Also Published As

Publication number Publication date
US6309458B1 (en) 2001-10-30

Similar Documents

Publication Publication Date Title
US6245647B1 (en) Method for fabrication of thin film
EP0464515B1 (en) Method of manufacturing silicon nitride film
US6503563B1 (en) Method of producing polycrystalline silicon for semiconductors from saline gas
EP3879010A1 (en) Sic semiconductor substrate, and, production method therefor and production device therefor
JP3401561B2 (ja) 高純度同位体シリコン結晶膜の製造方法
US4389273A (en) Method of manufacturing a semiconductor device
US8728233B2 (en) Method for the production of group III nitride bulk crystals or crystal layers from fused metals
EP0897192A1 (en) Silicon single crystal and process for producing single-crystal silicon thin film
JP3788836B2 (ja) 気相成長用サセプタ及びその製造方法
JPH11274088A (ja) 珪素薄膜の製造方法
EP0240314B1 (en) Method for forming deposited film
US3290181A (en) Method of producing pure semiconductor material by chemical transport reaction using h2s/h2 system
US3341374A (en) Process of pyrolytically growing epitaxial semiconductor layers upon heated semiconductor substrates
EP0240305B1 (en) Method for forming a deposited film
JP2003163171A (ja) 珪素薄膜の製造方法
JPH0416597A (ja) 炭化珪素単結晶の製造方法
JPH11102871A (ja) 半導体単結晶薄膜の製造方法
JPS63277596A (ja) 炭化珪素単結晶の成長方法
JPS6152119B2 (ja)
JP4401466B2 (ja) シリコンウェーハの製造方法
JPH118226A (ja) 半導体基板表面の清浄化方法及びその装置
JP2003332240A (ja) 珪素堆積膜の成膜装置のガスクリーニング方法
Angermeier et al. The initial stages of Si thin deposits on foreign substrates in a rapid thermal chemical vapor phase reactor
Soman et al. Selective Area Chemical Vapor Deposition of Si1− x Ge x Thin Film Alloys by the Alternating Cyclic Method: Experimental Data: I. Deposition Parameters
CN117867654A (zh) 一种碳化硅同质外延材料的制备方法及其生长室