JPH1126939A - Multilayered wiring board - Google Patents

Multilayered wiring board

Info

Publication number
JPH1126939A
JPH1126939A JP9181094A JP18109497A JPH1126939A JP H1126939 A JPH1126939 A JP H1126939A JP 9181094 A JP9181094 A JP 9181094A JP 18109497 A JP18109497 A JP 18109497A JP H1126939 A JPH1126939 A JP H1126939A
Authority
JP
Japan
Prior art keywords
organic resin
insulating layer
board
substrate
resin insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9181094A
Other languages
Japanese (ja)
Inventor
Takeshi Kume
健士 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP9181094A priority Critical patent/JPH1126939A/en
Publication of JPH1126939A publication Critical patent/JPH1126939A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable multilayered wiring board in which prescribed organic resin insulating layer and thin film wiring conductive layer can be exactly formed, by forming a wiring conductor in a board with high density, approximating the thermal expansion coefficient of the board and that of an organic resin insulating layer, widening a joint area between the wiring conductor provided in the board and the organic resin insulating layer for strongly joining them, and strengthening the mechanical strength of the board and flattening the board. SOLUTION: This board is constituted of a board 1 and a multilayered wiring part 4 adhered to at least one main face of the board 1, in which plural organic resin insulating layers 2 and thin film wiring conductive layers 3 are alternately accumulated, and the thin film wiring conductive layers 3 positioned at upper and lower parts are electrically connected through a through-hole conductor 9 provided at the organic resin insulating layers 2. In this case, the board 1 is formed by containing inorganic power in the organic resin, and a wiring conductor 6 formed of a copper foil in relation of 0.1 μm<Ra<=10 μm with surface roughness in its center line mean roughness Ra electrically connected with the thin film wiring conductive layer 3 is adhered to the main face to which at least the multilayered wiring part 4 is adhered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は多層配線基板に関
し、より詳細には混成集積回路装置や半導体素子を収容
する半導体素子収納用パッケージ等に使用される多層配
線基板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer wiring board, and more particularly to a multilayer wiring board used for a hybrid integrated circuit device, a semiconductor element housing package for housing a semiconductor element, and the like.

【0002】[0002]

【従来の技術】従来、混成集積回路装置や半導体素子収
納用パッケージ等に使用される多層配線基板はその配線
導体がMo−Mn法等の厚膜形成技術によって形成され
ている。
2. Description of the Related Art Hitherto, a multilayer wiring board used in a hybrid integrated circuit device, a package for accommodating a semiconductor element, or the like, has its wiring conductor formed by a thick film forming technique such as the Mo-Mn method.

【0003】このMo−Mn法は通常、タングステン、
モリブデン、マンガン等の高融点金属粉末に有機溶剤、
溶媒を添加混合し、ペースト状となした金属ペーストを
生セラミツク体の外表面にスクリーン印刷法により所定
パターンに印刷塗布し、次にこれを複数枚積層するとと
もに還元雰囲気中で焼成し、高融点金属粉末と生セラミ
ツク体とを焼結一体化させる方法である。
[0003] This Mo-Mn method is generally used for tungsten,
Organic solvents for high melting point metal powders such as molybdenum and manganese,
A solvent is added and mixed, and a paste-like metal paste is printed and applied on the outer surface of the raw ceramic body in a predetermined pattern by a screen printing method. Then, a plurality of these are laminated and fired in a reducing atmosphere to obtain a high melting point. This is a method in which the metal powder and the raw ceramic body are sintered and integrated.

【0004】なお、前記配線導体が形成されるセラミッ
ク体としては通常、酸化アルミニウム質焼結体やムライ
ト質焼結体等の酸化物系セラミックス、或いは表面に酸
化物膜を被着させた窒化アルミニウム質焼結体や炭化珪
素質焼結体等の非酸化物系セラミックスが使用される。
The ceramic body on which the wiring conductor is formed is usually an oxide ceramic such as an aluminum oxide sintered body or a mullite sintered body, or an aluminum nitride having an oxide film deposited on the surface. Non-oxide ceramics such as a porous sintered body and a silicon carbide sintered body are used.

【0005】しかしながら、このMo−Mn法を用いて
配線導体を形成した場合、配線導体は金属ペーストをス
クリーン印刷することにより形成されることから微細化
が困難で配線導体を高密度に形成することができないと
いう欠点を有していた。
However, when the wiring conductor is formed by using the Mo-Mn method, the wiring conductor is formed by screen-printing a metal paste. Had the drawback that it could not be done.

【0006】そこで上記欠点を解消するために配線導体
の一部を従来の厚膜形成技術で形成するのに変えて微細
化が可能な薄膜形成技術を用いて高密度に形成した多層
配線基板が使用されるようになってきた。
In order to solve the above-mentioned drawbacks, a multilayer wiring board formed at a high density by using a thin film forming technique capable of miniaturization instead of forming a part of the wiring conductor by the conventional thick film forming technique has been proposed. It has come to be used.

【0007】かかる配線導体の一部を薄膜形成技術によ
り形成した多層配線基板は、スクリーン印刷法等の厚膜
形成技術により配線導体が形成されている酸化アルミニ
ウム質焼結体等のセラミックスから成る絶縁性の基板上
面に、スピンコート法及び熱硬化処理等によって形成さ
れるエポキシ樹脂等の有機樹脂から成る絶縁層と、銅や
アルミニウム等の金属を無電解めっき法や蒸着法等の薄
膜形成技術及びフォトリソグラフィー技術を採用するこ
とによって形成される薄膜配線導体層とを交互に積層さ
せるとともに、上下に位置する薄膜配線導体層を有機樹
脂絶縁層に設けたスルーホールの内壁に被着されている
スルーホール導体を介して電気的に接続させた構造を有
しており、基板に形成した配線導体と薄膜配線導体層と
を電気的に接続させておくとともに最上層の有機樹脂絶
縁層上面に、前記薄膜配線導体層と電気的に接続するボ
ンディングパッドを形成しておき、該ボンディングパッ
ドに半導体素子等の能動部品や容量素子、抵抗器等の受
動部品の電極を半田等のロウ材を介して接続させるよう
になっている。
A multilayer wiring board in which a part of such a wiring conductor is formed by a thin film forming technique is made of an insulating material such as an aluminum oxide sintered body having a wiring conductor formed by a thick film forming technique such as a screen printing method. An insulating layer made of an organic resin such as an epoxy resin formed by a spin coating method and a thermosetting treatment on the upper surface of a conductive substrate, and a thin film forming technique such as an electroless plating method or a vapor deposition method using a metal such as copper or aluminum. The thin film wiring conductor layers formed by adopting photolithography technology are alternately laminated, and the thin film wiring conductor layers located above and below are attached to the inner wall of the through hole provided in the organic resin insulating layer. It has a structure in which it is electrically connected via a hole conductor, and the wiring conductor formed on the substrate and the thin-film wiring conductor layer are electrically connected. In addition, a bonding pad electrically connected to the thin film wiring conductor layer is formed on the upper surface of the uppermost organic resin insulating layer, and an active component such as a semiconductor element, a capacitive element, a resistor and the like are formed on the bonding pad. The electrodes of the passive components are connected via a brazing material such as solder.

【0008】なお、前記多層配線基板においては、積層
された各有機樹脂絶縁層間に配設された薄膜配線導体層
が有機樹脂絶縁層に設けたスルーホールの内壁に被着さ
れているスルーホール導体を介して電気的に接続されて
おり、各有機樹脂絶縁層へのスルーホールの形成はまず
各有機樹脂絶縁層上にレジスト材を塗布するとともにこ
れに露光、現像を施すことによって所定位置に所定形状
の窓部を形成し、次に前記レジスト材の窓部にエッチン
グ液を配し、レジスト材の窓部に位置する有機樹脂絶縁
層を除去して、有機樹脂絶縁層に穴(スルーホール)を
形成し、最後に前記レジスト材を有機樹脂絶縁層上より
剥離させ除去することによって行われている。
In the above-mentioned multilayer wiring board, a thin-film wiring conductor layer provided between the laminated organic resin insulating layers is provided on the inner wall of the through hole provided in the organic resin insulating layer. The through holes in each organic resin insulating layer are formed by first applying a resist material on each organic resin insulating layer and exposing and developing the resist material to a predetermined position. A window having a shape is formed, and then an etchant is disposed on the window of the resist material, the organic resin insulating layer located on the window of the resist material is removed, and holes (through holes) are formed in the organic resin insulating layer. And finally removing and removing the resist material from the organic resin insulating layer.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、この多
層配線基板においては、基板が酸化アルミニウム質焼結
体等のセラミックスで形成されており、該酸化アルミニ
ウム質焼結体等のセラミックスは熱膨張係数が約5〜1
0×10-6/℃であり、上面に被着される有機樹脂絶縁
層の熱膨張係数(約20〜30×10-6/℃)と相違す
るため、基板と有機樹脂絶縁層に半導体素子や容量素子
等の電子部品をボンディングパッドに接続させる時の熱
や電子部品が作動時に発生する熱等が印加されると基板
と有機樹脂絶縁層の接合部に両者の熱膨張係数の相違に
起因する熱応力が発生し、該熱応力によって有機樹脂絶
縁層が基板より剥離してしまうという欠点を誘発した。
特に基板が大きく、基板と有機樹脂絶縁層との接合面積
が広い場合、上記欠点は極めて顕著なものとなる。
However, in this multilayer wiring board, the substrate is formed of a ceramic such as an aluminum oxide sintered body, and the ceramic such as the aluminum oxide sintered body has a coefficient of thermal expansion. About 5-1
0 × 10 −6 / ° C., which is different from the coefficient of thermal expansion (about 20 to 30 × 10 −6 / ° C.) of the organic resin insulating layer deposited on the upper surface. When connecting electronic components such as capacitors and capacitive elements to the bonding pad, or heat generated when the electronic components are activated, due to the difference in the coefficient of thermal expansion between the joints between the substrate and the organic resin insulation layer This causes a disadvantage that the organic resin insulating layer is peeled off from the substrate by the thermal stress.
In particular, when the substrate is large and the bonding area between the substrate and the organic resin insulating layer is large, the above-described disadvantage becomes extremely significant.

【0010】また前記多層配線基板においては、基板を
形成する酸化アルミニウム質焼結体等は固くて脆弱な性
質を有するため外部から衝撃力が印加されると該衝撃力
によって容易に割れ等の破損を発生してしまうという欠
点も有していた。
In the multilayer wiring board, the aluminum oxide sintered body or the like forming the board has a hard and brittle property. Therefore, when an impact force is applied from the outside, the aluminum oxide sintered body is easily broken by the impact force. Also had the disadvantage of generating

【0011】更に前記多層配線基板においては、配線導
体の一部を薄膜成形技術で形成される薄膜配線導体層に
置き換えたことから配線導体の形成密度はある程度、高
いものになるが基板に形成した配線導体は依然としてス
クリーン印刷法等の厚膜形成技術を採用することによっ
て形成されているため、より配線導体をより高密度に形
成するには対応できないという欠点を有していた。
Further, in the multilayer wiring board, since a part of the wiring conductor is replaced by a thin film wiring conductor layer formed by a thin film forming technique, the formation density of the wiring conductor is increased to some extent, but the wiring conductor is formed on the substrate. Since the wiring conductor is still formed by employing a thick film forming technique such as a screen printing method, it has a drawback that it is not possible to cope with a higher density of the wiring conductor.

【0012】また更に前記酸化アルミニウム質焼結体等
から成る基板は該基板を焼成し製作する際に不均一な焼
成収縮によって反りや寸法ばらつきが発生し易く、基板
に反りや寸法ばらつきが発生していると基板表面に有機
樹脂絶縁層と薄膜配線導体層を正確に形成することがで
きないという欠点も有する。
Further, the substrate made of the aluminum oxide sintered body or the like is liable to cause warpage or dimensional variation due to non-uniform firing shrinkage when the substrate is baked and manufactured. In this case, the organic resin insulating layer and the thin film wiring conductor layer cannot be accurately formed on the substrate surface.

【0013】そこで前記基板を、機械的強度が強く、熱
膨張係数が有機樹脂絶縁層の熱膨張係数に近似し、かつ
焼成収縮による反りや寸法ばらつきの発生がない、例え
ば、絶縁物粉末を有機樹脂で結合してなる絶縁層と、銅
箔を所定パターンにエッチング加工することによって形
成した配線導体とで形成することが考えられる。
Therefore, the substrate is made to have a high mechanical strength, a coefficient of thermal expansion close to the coefficient of thermal expansion of the organic resin insulating layer, and no occurrence of warpage or dimensional variation due to firing shrinkage. It is conceivable to form the insulating layer with a resin and a wiring conductor formed by etching a copper foil into a predetermined pattern.

【0014】しかしながら、この基板の場合、基板に配
設される配線導体が銅箔により形成されており、該銅は
有機樹脂絶縁層と接合性が悪く、表面の粗さが中心線平
均粗さ(Ra)でRa<0.05μmと平滑であること
から、基板上に有機樹脂絶縁層と薄膜配線導体層とを積
層して多層配線基板となした後、外力が印加されるとそ
の外力によって基板の上面に形成されている配線導体と
有機樹脂絶縁層との間に剥離が発生し易く、該剥離が発
生すると基板の配線導体と有機樹脂絶縁層上に設けた薄
膜配線導体層との電気的接続が破れ、多層配線基板とし
て機能が喪失してしまうという欠点が誘発されてしま
う。
However, in the case of this substrate, the wiring conductor provided on the substrate is formed of copper foil, and the copper has a poor bonding property with the organic resin insulating layer, and the surface roughness is the center line average roughness. Since Ra is less than 0.05 μm in (Ra), an organic resin insulating layer and a thin film wiring conductor layer are laminated on a substrate to form a multilayer wiring substrate, and when an external force is applied, the external force is applied. Separation easily occurs between the wiring conductor formed on the upper surface of the substrate and the organic resin insulating layer, and when the separation occurs, the electrical connection between the wiring conductor of the substrate and the thin film wiring conductor layer provided on the organic resin insulating layer is generated. The connection is broken, and a disadvantage that the function is lost as a multilayer wiring board is induced.

【0015】本発明は上記諸欠点に鑑み案出されたもの
で、その目的は基板に配線導体を高密度に形成し、かつ
基板と有機樹脂絶縁層との熱膨張係数を近似させるとと
もに基板に設けた配線導体と有機樹脂絶縁層との接合面
積を広くして両者を強固に接合させ、更に基板の機械的
強度を強固とするとともに基板を平坦として所定の有機
樹脂絶縁層と薄膜配線導体層を正確に形成することがで
きる高信頼性の多層配線基板を提供することにある。
The present invention has been made in view of the above-mentioned drawbacks, and has as its object to form a wiring conductor on a substrate at high density, to approximate the thermal expansion coefficient between the substrate and the organic resin insulating layer, The bonding area between the provided wiring conductor and the organic resin insulating layer is increased so that the two are firmly bonded together, and furthermore, the mechanical strength of the substrate is strengthened and the substrate is flattened to provide a predetermined organic resin insulating layer and a thin film wiring conductor layer. It is an object of the present invention to provide a highly-reliable multilayer wiring board that can accurately form a wiring board.

【0016】[0016]

【課題を解決するための手段】本発明は、基板と、該基
板の少なくとも一主面に被着され、複数の有機樹脂絶縁
層と薄膜配線導体層とを交互に積層するとともに上下に
位置する薄膜配線導体層を有機樹脂絶縁層に設けたスル
ーホール導体を介して電気的に接続した多層配線部とか
ら成る多層配線基板であって、前記基板は有機樹脂中に
無機物粉末を含有させて形成されており、かつ少なくと
も前記多層配線部が被着される主面に前記薄膜配線導体
層と電気的に接続され、表面粗さが中心線平均粗さ(R
a)で0.1μm≦Ra≦10μmである銅箔により形
成された配線導体が被着されていることを特徴とするも
のである。
According to the present invention, a substrate and a plurality of organic resin insulating layers and thin-film wiring conductor layers, which are attached to at least one principal surface of the substrate and are alternately laminated, are positioned above and below. A multi-layer wiring board comprising a thin-film wiring conductor layer and a multi-layer wiring portion electrically connected via a through-hole conductor provided in an organic resin insulating layer, wherein the substrate is formed by containing an inorganic powder in an organic resin. And at least a main surface on which the multilayer wiring portion is adhered is electrically connected to the thin-film wiring conductor layer, and has a surface roughness having a center line average roughness (R
a) a wiring conductor formed of a copper foil satisfying 0.1 μm ≦ Ra ≦ 10 μm is applied.

【0017】また本発明は前記無機物粉末の粒径が0.
05μm乃至10μmであることを特徴とするものであ
る。
Further, in the present invention, the particle diameter of the inorganic powder is 0.1.
It is characterized in that the thickness is from 05 μm to 10 μm.

【0018】更に本発明は前記無機物粉末の含有量が6
0重量%乃至95重量%であることを特徴とするもので
ある。
Further, the present invention relates to a method for producing a composition comprising the inorganic powder having a content of 6%.
It is characterized in that the content is 0% to 95% by weight.

【0019】本発明の多層配線基板によれば、有機樹脂
絶縁層と薄膜配線導体層とから成る多層配線部が被着さ
れる基板を有機樹脂中に無機物粉末を例えば、60重量
%乃至95重量%含有させて形成したことから基板の熱
膨張係数が有機樹脂絶縁層の熱膨張係数に近似し、その
結果、基板と有機樹脂絶縁層に熱が印加されても両者間
には両者の熱膨張係数の相違に起因する応力が発生する
ことはなく両者を極めて強固に接合させることができ
る。
According to the multilayer wiring board of the present invention, the substrate on which the multilayer wiring portion composed of the organic resin insulating layer and the thin-film wiring conductor layer is to be adhered is made of an organic resin containing, for example, 60 to 95% by weight of an inorganic powder. %, The coefficient of thermal expansion of the substrate is close to the coefficient of thermal expansion of the organic resin insulating layer. As a result, even when heat is applied to the substrate and the organic resin insulating layer, the thermal expansion of the two layers is between them. There is no occurrence of stress due to the difference in the coefficients, and the two can be joined very firmly.

【0020】また本発明の多層配線基板によれば、基板
を靱性に優れる有機樹脂中に無機物粉末を含有させるこ
とによって形成したことから基板の機械的強度が強くな
り、外部より衝撃力が印加されても容易に破損すること
はない。
Further, according to the multilayer wiring board of the present invention, since the board is formed by incorporating an inorganic powder in an organic resin having excellent toughness, the mechanical strength of the board is increased, and an impact force is applied from the outside. It will not be easily damaged.

【0021】また更に本発明の多層配線基板によれば、
基板は有機樹脂中に無機物粉末を含有させることによっ
て形成され、有機樹脂は熱硬化もしくは光硬化によって
固化し、焼成工程を伴わないことから焼成に伴う不均一
な焼成収縮によって反りや寸法ばらつきを発生すること
もなく、その結果、基板はその表面を平坦とした所定寸
法となし、基板の表面に有機樹脂絶縁層と薄膜配線導体
層とを正確に形成することが可能となる。
Further, according to the multilayer wiring board of the present invention,
The substrate is formed by incorporating inorganic powder into the organic resin.The organic resin solidifies by thermosetting or photocuring, and because it does not involve a firing step, warpage and dimensional variations occur due to uneven firing shrinkage accompanying firing. As a result, as a result, the substrate has a predetermined size with its surface flat, and the organic resin insulating layer and the thin-film wiring conductor layer can be accurately formed on the substrate surface.

【0022】また本発明の多層配線基板によれば、基板
に配設される配線導体をエッチング加工等によって所定
パターンに加工された銅箔を使用し、かつ多層配線部の
薄膜配線導体層を薄膜形成技術を採用することによって
形成したことから全ての配線を微細化することができ、
これによって配線を極めて高密度に形成することが可能
となる。
Further, according to the multilayer wiring board of the present invention, the wiring conductor provided on the substrate is made of a copper foil processed into a predetermined pattern by etching or the like, and the thin film wiring conductor layer of the multilayer wiring portion is formed of a thin film. All wiring can be miniaturized because it is formed by adopting the forming technology,
As a result, it is possible to form the wiring with extremely high density.

【0023】また本発明の多層配線基板によれば、基板
上面に配設される銅箔から成る配線導体の表面粗さを中
心線平均粗さ(Ra)で0.1μm≦Ra≦10μmの
範囲とし、適度に粗したことから基板上に多層配線部を
形成した際、基板上面の配線導体と多層配線部の有機樹
脂絶縁層とはその接合面積が広くなって接合強度が強い
ものとなり、外力印加によっても剥離を発生することは
ない。
Further, according to the multilayer wiring board of the present invention, the surface roughness of the wiring conductor made of copper foil provided on the upper surface of the substrate is defined as a center line average roughness (Ra) in a range of 0.1 μm ≦ Ra ≦ 10 μm. When a multilayer wiring portion is formed on a substrate because of moderate roughness, the bonding area between the wiring conductor on the upper surface of the substrate and the organic resin insulating layer of the multilayer wiring portion becomes large, and the bonding strength becomes strong. No delamination occurs even when applied.

【0024】[0024]

【発明の実施の形態】次に本発明を添付図面に基づき詳
細に説明する。図1は、本発明の多層配線基板の一実施
例を示し、1は基板、2は有機樹脂絶縁層、3は薄膜配
線導体層である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows an embodiment of a multilayer wiring board according to the present invention, wherein 1 is a substrate, 2 is an organic resin insulating layer, and 3 is a thin-film wiring conductor layer.

【0025】前記基板1はその上面に多数の有機樹脂絶
縁層2と薄膜配線導体層3を交互に多層に積層してなる
多層配線部4が配設されており、該多層配線部4を支持
する支持部材として作用する。
On the upper surface of the substrate 1, there is provided a multilayer wiring portion 4 in which a large number of organic resin insulating layers 2 and thin film wiring conductor layers 3 are alternately laminated in multiple layers, and the multilayer wiring portion 4 is supported. Act as a supporting member.

【0026】前記基板1は有機樹脂中に無機物粉末を含
有させて形成される絶縁層5と、銅箔をエッチング加工
により所定パターンに加工して形成される配線導体6と
を多層に積層するとともに上下に位置する配線導体6を
絶縁層5に設けたビアホール導体7を介して接続した構
造を有している。
The substrate 1 is formed by laminating an insulating layer 5 formed by incorporating an inorganic powder in an organic resin and a wiring conductor 6 formed by processing a copper foil into a predetermined pattern by etching. It has a structure in which upper and lower wiring conductors 6 are connected via via-hole conductors 7 provided in the insulating layer 5.

【0027】前記基板1の絶縁層5は、ポリフェニレン
エーテル樹脂、ビスマレイミドトリアジン樹脂、エポキ
シ樹脂、ポリイミド樹脂、ふっ素樹脂、フェノール樹脂
等の有機樹脂に、酸化珪素、窒化アルミニウム、炭化珪
素、チタン酸バリウム、チタン酸ストロンチウム、ゼオ
ライト、チタン酸カルシウム等の無機物粉末を添加含有
させて成り、無機物粉末の含有によって基板1の熱膨張
係数が後述する多層配線部4の熱膨張係数(約20〜3
0×10-6/℃)に近似した約20×10-6/℃とな
り、これによって基板1と多層配線部4の両者に熱が印
加されても両者間には両者の熱膨張係数の相違に起因す
る熱応力が発生することはなく、基板1に多層配線部4
を強固に接合させることができる。
The insulating layer 5 of the substrate 1 is made of an organic resin such as polyphenylene ether resin, bismaleimide triazine resin, epoxy resin, polyimide resin, fluororesin, phenol resin, silicon oxide, aluminum nitride, silicon carbide, barium titanate. , Strontium titanate, zeolite, calcium titanate, and the like, and the inorganic powder contains the inorganic powder so that the thermal expansion coefficient of the substrate 1 can be reduced by the thermal expansion coefficient of the multilayer wiring portion 4 described later (about 20 to 3).
0 × 10 −6 / ° C.), which is about 20 × 10 −6 / ° C., so that even if heat is applied to both the substrate 1 and the multilayer wiring portion 4, the difference in the thermal expansion coefficient between the two. No thermal stress is generated due to the
Can be firmly joined.

【0028】また前記基板1は絶縁層5がポリフェニレ
ンエーテル樹脂やビスマレイミドトリアジン樹脂等の靱
性に優れる有機樹脂中に無機物粉末を含有させることに
よって形成されているため基板1の機械的強度が強くな
り、その結果、基板1に外部より衝撃力が印加されても
基板1が容易に破損することもない。
In addition, since the insulating layer 5 of the substrate 1 is formed by including an inorganic powder in an organic resin having excellent toughness such as polyphenylene ether resin or bismaleimide triazine resin, the mechanical strength of the substrate 1 is increased. As a result, even when an impact force is applied to the substrate 1 from the outside, the substrate 1 is not easily damaged.

【0029】なお、前記有機樹脂中に無機物粉末を含有
させて形成される絶縁層5は、無機物粉末の量が60重
量%未満であると絶縁層5の熱膨張係数が多層配線部4
の熱膨張係数と大きく相違し、絶縁層5を多層に積層し
て形成される基板1と多層配線部4の両者に熱が印加さ
れると両者間に両者の熱膨張係数の相違に起因する大き
な熱応力が発生し、該熱応力によって基板1と多層配線
部4との間に剥離が発生してしまう危険性があり、また
95重量%を超えると添加含有される無機物粉末を有機
樹脂で強固に結合させることができず、所定形状の絶縁
層5を得ることが困難となる傾向にある。従って、前記
有機樹脂中に無機物粉末を含有させて形成される絶縁層
5は、無機物粉末の量を60重量%乃至95重量%の範
囲としておくことが好ましい。
When the amount of the inorganic powder is less than 60% by weight, the thermal expansion coefficient of the insulating layer 5 can be reduced in the insulating layer 5 formed by incorporating the inorganic powder into the organic resin.
When heat is applied to both the substrate 1 and the multilayer wiring portion 4 formed by laminating the insulating layers 5 in multiple layers, the difference is caused by the difference between the two. There is a risk that a large thermal stress is generated, and the thermal stress causes peeling between the substrate 1 and the multilayer wiring portion 4. When the content exceeds 95% by weight, the inorganic powder to be added is contained in an organic resin. It cannot be firmly bonded, and it tends to be difficult to obtain an insulating layer 5 having a predetermined shape. Therefore, it is preferable that the amount of the inorganic powder in the insulating layer 5 formed by including the inorganic powder in the organic resin is in the range of 60% by weight to 95% by weight.

【0030】また前記有機樹脂中に無機物粉末を含有さ
せて形成される絶縁層5は、無機物粉末の粒径が0.0
5μm未満であると無機物粉末が凝集して有機樹脂中に
均一分散せず、その結果、絶縁層5の機械的強度が低下
するとともに絶縁層5を上下に多層に積層して形成され
る基板1の機械的強度も低下してしまい、また10μm
を超えると絶縁層5の表面に大きな凹凸が形成されると
ともに絶縁層5を上下に多層に積層して形成される基板
1の表面にも大きな凹凸が形成されてしまい、基板1の
表面に所望の多層配線部4を正確に形成するのが困難と
なる傾向にある。従って、前記有機樹脂中に無機物粉末
を含有させて形成される絶縁層5は、無機物粉末の粒径
を0.05μm乃至10μmの範囲としておくことが好
ましい。
The insulating layer 5 formed by incorporating the inorganic powder in the organic resin has a particle diameter of the inorganic powder of 0.0%.
When the thickness is less than 5 μm, the inorganic powder is agglomerated and does not uniformly disperse in the organic resin. As a result, the mechanical strength of the insulating layer 5 is reduced, and the substrate 1 is formed by laminating the insulating layer 5 vertically. Also reduced the mechanical strength of
If it exceeds, large irregularities are formed on the surface of the insulating layer 5 and large irregularities are also formed on the surface of the substrate 1 formed by laminating the insulating layers 5 in layers vertically, so that the desired surface There is a tendency that it is difficult to accurately form the multi-layer wiring portion 4. Therefore, it is preferable that the insulating layer 5 formed by including the inorganic powder in the organic resin has a particle diameter of the inorganic powder in the range of 0.05 μm to 10 μm.

【0031】更に前記基板1の配線導体6は所定パター
ンに加工された銅箔からなり、該配線導体6は後述する
多層配線部4の薄膜配線導体層3と電気的に接続し、薄
膜配線導体層3を外部電気回路に電気的に接続する、或
いは複数の薄膜配線導体層3同士を電気的に接続する作
用をなす。
Further, the wiring conductor 6 of the substrate 1 is made of a copper foil processed into a predetermined pattern, and the wiring conductor 6 is electrically connected to a thin film wiring conductor layer 3 of a multilayer wiring portion 4 described later. It functions to electrically connect the layer 3 to an external electric circuit or to electrically connect a plurality of thin film wiring conductor layers 3 to each other.

【0032】前記配線導体6はエッチング加工等によっ
て所定パターンとされた銅箔を前記絶縁層5の上面に被
着させておくことによって上下に多層に積層された絶縁
層5間および絶縁層5と配線導体6を交互に多層に積層
されて形成される基板1の表面に形成される。
The wiring conductor 6 is formed by attaching a copper foil having a predetermined pattern to the upper surface of the insulating layer 5 by etching or the like so that the upper and lower layers of the insulating layer 5 and the insulating layer 5 are separated from each other. The wiring conductors 6 are formed on the surface of the substrate 1 which is formed by alternately stacking the wiring conductors in multiple layers.

【0033】前記配線導体6は銅箔をエッチング加工す
ることによって形成されていることから配線導体6の線
幅は極めて細いものになすことができ、これによって配
線導体6を高密度に形成することが可能となる。
Since the wiring conductor 6 is formed by etching a copper foil, the line width of the wiring conductor 6 can be made extremely thin, thereby forming the wiring conductor 6 at a high density. Becomes possible.

【0034】前記配線導体6はまた基板1の多層配線部
4が被着される主面に導出するものの表面が中心線平均
粗さ(Ra)で0.1μm≦Ra≦10μmの適度な粗
さに粗されている。そのため基板1の表面に多層配線部
4を形成した場合、基板1上面の配線導体6と多層配線
部4の有機樹脂絶縁層2とはその接合面積が広くなって
接合強度が強いものとなり、外力印加によっても剥離を
発生することはなくなる。
The wiring conductor 6 is led out to the main surface of the substrate 1 on which the multilayer wiring portion 4 is to be adhered, but the surface has an appropriate center line average roughness (Ra) of 0.1 μm ≦ Ra ≦ 10 μm. It is rough. Therefore, when the multilayer wiring portion 4 is formed on the surface of the substrate 1, the bonding area between the wiring conductor 6 on the upper surface of the substrate 1 and the organic resin insulating layer 2 of the multilayer wiring portion 4 becomes large, and the bonding strength becomes strong. Separation does not occur even by the application.

【0035】なお、前記基板1の表面に露出する配線導
体6はその表面の粗さが中心線平均粗さ(Ra)でRa
<0.1μmとなると基板1上面の配線導体6と多層配
線部4の有機樹脂絶縁層2との接合強度が弱いものとな
り、また10μm<Raとなると配線導体6の厚みに大
きなバラツキを生じ、該配線導体6の導通抵抗のバラツ
キが極めて大きなものとなってしまう。。従って、前記
基板1の表面に露出する配線導体6はその表面の粗さが
中心線平均粗さ(Ra)で0.1μm≦Ra≦10μm
の範囲に特定され、好適には2μm≦Ra≦6μmの範
囲が良い。
The surface of the wiring conductor 6 exposed on the surface of the substrate 1 has a center line average roughness (Ra) of Ra.
If <0.1 μm, the bonding strength between the wiring conductor 6 on the upper surface of the substrate 1 and the organic resin insulating layer 2 of the multilayer wiring section 4 becomes weak, and if 10 μm <Ra, a large variation occurs in the thickness of the wiring conductor 6. The variation in the conduction resistance of the wiring conductor 6 becomes extremely large. . Accordingly, the surface of the wiring conductor 6 exposed on the surface of the substrate 1 has a center line average roughness (Ra) of 0.1 μm ≦ Ra ≦ 10 μm.
The range is preferably 2 μm ≦ Ra ≦ 6 μm.

【0036】また前記配線導体6は間に絶縁層5を挟ん
で上下に多層に配されており、間に絶縁層5を挟んで上
下に位置する各配線導体6は絶縁層5に設けたビアホー
ル導体7を介して電気的に接続されている。
The wiring conductors 6 are vertically arranged in multiple layers with the insulating layer 5 interposed therebetween. Each of the wiring conductors 6 positioned vertically with the insulating layer 5 interposed therebetween is a via hole provided in the insulating layer 5. They are electrically connected via conductors 7.

【0037】前記ビアホール導体7は上下に位置する配
線導体6を電気的に接続する作用をなし、導電性樹脂や
金属粉末を含有する導電性インク等からなり、これらを
絶縁層5に設けた貫通孔に充填することによって形成さ
れる。
The via-hole conductor 7 serves to electrically connect the wiring conductors 6 positioned above and below, and is made of a conductive ink or the like containing a conductive resin or metal powder. It is formed by filling holes.

【0038】前記絶縁層5と配線導体6を交互に多層に
積層して形成される基板1の具体的な製造方法として
は、図2に示すように、まず、図2(a)に示す如く、
ビアホール導体7を有する絶縁層5を作成する。前記ビ
アホール導体7を有する絶縁層5は、最初に絶縁層5に
貫通孔7aを形成する。この貫通孔7aは、例えば、レ
ーザー加工やマイクロドリルなどによって形成される。
そしてこの貫通孔7a内に、金属粉末を含有する導体ペ
ースト7を充填することによって形成される。
As a specific method of manufacturing the substrate 1 formed by alternately stacking the insulating layers 5 and the wiring conductors 6 in a multilayer, as shown in FIG. 2, first, as shown in FIG. ,
The insulating layer 5 having the via-hole conductor 7 is formed. The insulating layer 5 having the via-hole conductor 7 first forms a through hole 7a in the insulating layer 5. This through hole 7a is formed by, for example, laser processing, micro drilling, or the like.
The through hole 7a is formed by filling the conductive paste 7 containing the metal powder.

【0039】次に、図2(b)に示す如く、転写シート
12面に、絶縁層5表面に形成する配線導体6を形成す
る。この配線導体6は、転写シート12の表面に銅箔を
接着した後、この銅箔の表面にレジストを所定パターン
に塗布した後、エッチング処理及びレジスト除去を行う
ことによって形成される。
Next, as shown in FIG. 2B, a wiring conductor 6 to be formed on the surface of the insulating layer 5 is formed on the surface of the transfer sheet 12. The wiring conductor 6 is formed by bonding a copper foil to the surface of the transfer sheet 12, applying a resist on the surface of the copper foil in a predetermined pattern, and then performing an etching process and a resist removal.

【0040】そして次に図2(c)に示す如く、配線導
体6が形成された転写シート12を前記ビアホール導体
7を有する絶縁層5の表面に位置合わせして積層圧着
し、しかる後、転写シート12を剥がし、これによって
ビアホール導体7に電気的に接続された配線導体6を有
する絶縁層5を形成する。
Then, as shown in FIG. 2C, the transfer sheet 12 on which the wiring conductors 6 are formed is positioned on the surface of the insulating layer 5 having the via-hole conductors 7 and laminated and pressure-bonded. The sheet 12 is peeled off, thereby forming the insulating layer 5 having the wiring conductor 6 electrically connected to the via-hole conductor 7.

【0041】そして最後に図2(d)に示す如く、前記
ビアホール導体7に電気的に接続された配線導体6を有
する絶縁層5を複数枚、上下に積層することによって基
板1が形成される。
Finally, as shown in FIG. 2D, the substrate 1 is formed by vertically stacking a plurality of insulating layers 5 each having a wiring conductor 6 electrically connected to the via hole conductor 7. .

【0042】更に前記基板1はその上面に複数の有機樹
脂絶縁層2と薄膜配線導体層3とが交互に多層に積層さ
れて形成される多層配線部4が被着されており、該多層
配線部4を構成する有機樹脂絶縁層2は上下に位置する
薄膜配線導体層3の電気的絶縁を図る作用をなし、また
薄膜配線導体層3は電気信号を伝達するための伝達路と
して作用する。
Further, the substrate 1 has a multilayer wiring portion 4 formed by alternately laminating a plurality of organic resin insulating layers 2 and thin film wiring conductor layers 3 on the upper surface thereof. The organic resin insulating layer 2 constituting the portion 4 functions to electrically insulate the thin film wiring conductor layers 3 located above and below, and the thin film wiring conductor layer 3 functions as a transmission path for transmitting electric signals.

【0043】前記多層配線部4の有機樹脂絶縁層2は、
エポキシ樹脂、ビスマレイミドトリアジン樹脂、ポリフ
ェニレンエーテル樹脂、ふっ素樹脂等の有機樹脂から成
り、例えば、エポキシ樹脂からなる場合、ビスフェノー
ルA型エポキシ樹脂、ノボラック型エポキシ樹脂、グリ
シジルエステル型エポキシ樹脂等にアミン系硬化剤、イ
ミダゾール系硬化剤、酸無水物系硬化剤等の硬化剤を添
加混合してペースト状のエポキシ樹脂前駆体を得るとと
もに該エポキシ樹脂前駆体を基板1の上部にスピンコー
ト法により被着させ、しかる後、これを80℃〜200
℃の熱で0.5〜3時間熱処理し、熱硬化させることに
よって形成される。この場合、基板1の表面は平坦で、
かつ有機樹脂絶縁層2と同質の有機樹脂が露出している
ため有機樹脂絶縁層2と基板1とは極めて強固に接合
し、これによって基板1上に多層配線部4を強固に被着
させておくことができる。
The organic resin insulating layer 2 of the multilayer wiring section 4
It is made of an organic resin such as an epoxy resin, a bismaleimide triazine resin, a polyphenylene ether resin, and a fluororesin. For example, when it is made of an epoxy resin, it is amine-cured to a bisphenol A epoxy resin, a novolak epoxy resin, a glycidyl ester epoxy resin, or the like. And a curing agent such as an imidazole-based curing agent and an acid anhydride-based curing agent are added and mixed to obtain a paste-like epoxy resin precursor, and the epoxy resin precursor is applied to the upper portion of the substrate 1 by spin coating. After that, this is brought to 80 ° C. to 200 ° C.
It is formed by heat-treating with heat of 0.5 ° C. for 0.5 to 3 hours and heat curing. In this case, the surface of the substrate 1 is flat,
In addition, since the same organic resin as that of the organic resin insulating layer 2 is exposed, the organic resin insulating layer 2 and the substrate 1 are bonded very firmly, whereby the multilayer wiring portion 4 is firmly adhered on the substrate 1. I can put it.

【0044】また前記多層配線部4の有機樹脂絶縁層2
はその各々の所定位置に最小径が有機樹脂絶縁層2の厚
みに対して約1.5倍程度のスルーホール8が形成され
ており、該スルーホール8は後述する有機樹脂絶縁層2
を介して上下に位置する薄膜配線導体層3の各々を電気
的に接続するスルーホール導体9を形成するための形成
孔として作用する。
The organic resin insulating layer 2 of the multilayer wiring section 4
Has a through hole 8 having a minimum diameter of about 1.5 times the thickness of the organic resin insulating layer 2 at each predetermined position.
, And acts as a forming hole for forming a through-hole conductor 9 for electrically connecting each of the thin-film wiring conductor layers 3 located above and below via.

【0045】前記有機樹脂絶縁層2に設けるスルーホー
ル8は有機樹脂絶縁層2に従来周知のフォトリソグラフ
イー技術を採用することによって、具体的には各有機樹
脂絶縁層2上にレジスト材を塗布するとともにこれに露
光、現像を施すことによって所定位置に所定形状の窓部
を形成し、次に前記レジスト材の窓部にエッチング液を
配し、レジスト材の窓部に位置する有機樹脂絶縁層2を
除去して、有機樹脂絶縁層2に穴(スルーホール)を形
成し、最後に前記レジスト材を有機樹脂絶縁層2上より
剥離させ除去することによって所定の径に形成される。
The through-holes 8 provided in the organic resin insulating layer 2 are formed by applying a well-known photolithography technique to the organic resin insulating layer 2, specifically, by applying a resist material on each organic resin insulating layer 2. A window having a predetermined shape is formed at a predetermined position by performing exposure and development thereon, and then an etchant is disposed at the window of the resist material, and an organic resin insulating layer positioned at the window of the resist material is formed. 2, a hole (through hole) is formed in the organic resin insulating layer 2, and finally, the resist material is peeled off from the organic resin insulating layer 2 and removed to form a predetermined diameter.

【0046】更に前記各有機樹脂絶縁層2の上面には所
定パターンの薄膜配線導体層3が、更に各有機樹脂絶縁
層2に設けたスルーホール8の内壁にはスルーホール導
体9が各々形成されており、スルーホール導体9によっ
て間に有機樹脂絶縁層2を挟んで上下に位置する各薄膜
配線導体層3の各々が電気的に接続されるようになって
いる。
Further, a thin-film wiring conductor layer 3 having a predetermined pattern is formed on the upper surface of each organic resin insulating layer 2, and a through-hole conductor 9 is formed on the inner wall of a through hole 8 provided in each organic resin insulating layer 2. Each of the thin film wiring conductor layers 3 located above and below the organic resin insulating layer 2 with the through-hole conductor 9 interposed therebetween is electrically connected.

【0047】前記各有機樹脂絶縁層2の上面及びスルー
ホール8の内壁に形成される薄膜配線導体層3及びスル
ーホール導体9は銅、ニッケル、金、アルミニウム等の
金属材料を無電解めっき法や蒸着法、スパッタリング法
等の薄膜形成技術及びフォトリソグラフイー技締を採用
することによって形成され、例えば、銅で形成されてい
る場合には、有機樹脂絶縁層2の上面及びスルーホール
8の内表面に、硫酸銅0.06モル/リットル、ホルマ
リン0.3モル/リットル、水酸化ナトリウム0.35
モル/リットル、エチレンジアミン四酢酸0.35モル
/リットルから成る無電解鋼めっき浴を用いて厚さ1μ
m乃至40μmの銅層を被着させ、しかる後、前記銅層
をフォトリソグラフイー技術を採用することにより所定
パターンに加工することによって各有機樹脂絶縁層2
間、及びスルーホール8内壁に形成される。この場合、
薄膜配線導体層3及びスルーホール導体9は薄膜形成技
術により形成されることから配線の微細化が可能であ
り、これによって薄膜配線導体層3を極めて高密度に形
成することが可能となる。
The thin-film wiring conductor layer 3 and the through-hole conductor 9 formed on the upper surface of each organic resin insulating layer 2 and the inner wall of the through-hole 8 are made of a metal material such as copper, nickel, gold, and aluminum by electroless plating. It is formed by employing a thin film forming technique such as a vapor deposition method and a sputtering method and a photolithographic technique. For example, in the case of being formed of copper, the upper surface of the organic resin insulating layer 2 and the inner surface of the through hole 8 are formed. 0.06 mol / l copper sulfate, 0.3 mol / l formalin, 0.35 sodium hydroxide
Mol / l, an electroless steel plating bath consisting of 0.35 mol / l of ethylenediaminetetraacetic acid and a thickness of 1 μm.
Each of the organic resin insulating layers 2 is formed by depositing a copper layer having a thickness of 40 μm to 40 μm, and thereafter processing the copper layer into a predetermined pattern by employing photolithography technology.
The gap is formed on the inner wall of the through hole 8. in this case,
Since the thin-film wiring conductor layer 3 and the through-hole conductor 9 are formed by a thin-film forming technique, the wiring can be miniaturized, thereby making it possible to form the thin-film wiring conductor layer 3 at an extremely high density.

【0048】なお、前記有機樹脂絶縁層2と薄膜配線導
体層3とを交互に多層に積層して形成される多層配線部
4は各有機樹脂絶縁層2の上面を中心線平均粗さ(R
a)で0.05μm≦Ra≦5μmの粗面としておくと
有機樹脂絶縁層2と薄膜配線導体層3との接合及び上下
に位置する有機樹脂絶縁層2同士の接合を強固となすこ
とができる。従って、前記多層配線部4の各有機樹脂絶
縁層2はその上面をエッチング加工法等によって粗し、
中心線平均粗さ(Ra)で0.05μm≦Ra≦5μm
の粗面としておくことが好ましい。
The multilayer wiring portion 4 formed by alternately laminating the organic resin insulating layers 2 and the thin film wiring conductor layers 3 in a multilayer structure has a center line average roughness (R
By setting a rough surface of 0.05 μm ≦ Ra ≦ 5 μm in a), the bonding between the organic resin insulating layer 2 and the thin-film wiring conductor layer 3 and the bonding between the organic resin insulating layers 2 located above and below can be made strong. . Therefore, the upper surface of each organic resin insulating layer 2 of the multilayer wiring portion 4 is roughened by an etching method or the like,
Center line average roughness (Ra): 0.05 μm ≦ Ra ≦ 5 μm
It is preferable to make the surface rough.

【0049】また前記有機樹脂絶縁層2はその表面の
2.5mmの長さにおける凹凸の高さ(Pc)のカウン
ト値を、1μm≦Pc≦10μmが500個以上、0.
1μm≦Pc≦1μmが2500個以上、0.01μm
≦Pc≦0.1μmが12500個以上としておくと有
機樹脂絶縁層2と薄膜配線導体層3との接合及び上下に
位置する有機樹脂絶縁層2同士の接合がより強固とな
る。従って、前記有機樹脂絶縁層2はその表面の2.5
mmの長さにおける凹凸の高さ(Pc)のカウント値
を、1μm≦Pc≦10μmが500個以上、0.1μ
m≦Pc≦1μmが2500個以上、0.01μm≦P
c≦0.1μmが12500個以上としておくとことが
好ましい。
The count value of the height (Pc) of the unevenness at a length of 2.5 mm on the surface of the organic resin insulating layer 2 is 500 or more for 1 μm ≦ Pc ≦ 10 μm.
2500 μm of 1 μm ≦ Pc ≦ 1 μm, 0.01 μm
If ≦ Pc ≦ 0.1 μm is set to 12,500 or more, the bonding between the organic resin insulating layer 2 and the thin-film wiring conductor layer 3 and the bonding between the organic resin insulating layers 2 located above and below become stronger. Therefore, the organic resin insulating layer 2 has a thickness of 2.5
The count value of the height (Pc) of the unevenness in the length of mm is 1 μm ≦ Pc ≦ 10 μm.
2500 or more m ≦ Pc ≦ 1 μm, 0.01 μm ≦ P
It is preferable that c ≦ 0.1 μm is set to 12,500 or more.

【0050】前記有機樹脂絶縁層2上面の中心線平均粗
さ(Ra)及び2.5mmの長さにおける凹凸の高さ
(Pc)のカウント値は、有機樹脂絶縁層2の表面を原
子間力顕微鏡(Digital Instruments Inc.製のDimensio
n 3000-Nano Scope III)で50μm角の対角(70μ
m)に走査させてその表面状態を検査測定し、その測定
結果より各々の数値を出した。
The count value of the center line average roughness (Ra) of the upper surface of the organic resin insulating layer 2 and the height of the unevenness (Pc) at a length of 2.5 mm are obtained by measuring the surface of the organic resin insulating layer 2 with an atomic force. Microscope (Dimensio manufactured by Digital Instruments Inc.
n 3000-Nano Scope III)
m), the surface condition was inspected and measured, and each numerical value was obtained from the measurement result.

【0051】また前記中心線平均粗さ(Ra)が0.0
5μm≦Ra≦5μm、2.5mmの長さにおける凹凸
の高さ(Pc)のカウント値が、1μm≦Pc≦10μ
mが500個以上、0.1μm≦Pc≦1μmが250
0個以上、0.01μm≦Pc≦0.1μmが1250
0個以上の有機樹脂絶縁層2は、該有機樹脂絶縁層2の
上面にCHF3 、CF4 、Ar等のガスを吹きつけリア
クティブイオンエッチング処理をすることによって表面
が所定の粗さに粗される。
The center line average roughness (Ra) is 0.0
5 μm ≦ Ra ≦ 5 μm, the count value of the height of unevenness (Pc) at a length of 2.5 mm is 1 μm ≦ Pc ≦ 10 μm
m is 500 or more, and 0.1 μm ≦ Pc ≦ 1 μm is 250
0 or more, 0.01 μm ≦ Pc ≦ 0.1 μm is 1250
Zero or more organic resin insulating layers 2 are subjected to a reactive ion etching process by blowing a gas such as CHF 3 , CF 4 , Ar, etc. onto the upper surface of the organic resin insulating layers 2, whereby the surface is roughened to a predetermined roughness. Is done.

【0052】更に前記有機樹脂絶縁層2はその各々の厚
みが100μmを超えると有機樹脂絶縁層2にフォトリ
ソグラフイー技術を採用することによってスルーホール
8を形成する際、エッチング加工時間が長くなってスル
ーホール8を所望する鮮明な形状に形成するのが困難と
なり、また5μm未満となると有機樹脂絶縁層2の上面
に上下に位置する有機樹脂絶縁層2の接合強度を上げる
ための粗面加工を施す際、有機樹脂絶縁層2に不要な穴
が形成され上下に位置する薄膜配線導体層3に不要な電
気的短絡を招来してしまう危険性がある。従って、前記
有機樹脂絶縁層2はその各々の厚みを5μm〜100μ
mの範囲としておくことが好ましい。
Further, when the thickness of each of the organic resin insulating layers 2 exceeds 100 μm, the etching processing time becomes longer when the through holes 8 are formed by employing photolithography technology in the organic resin insulating layers 2. It is difficult to form the through hole 8 into a desired clear shape, and if the thickness is less than 5 μm, rough surface processing for increasing the bonding strength of the organic resin insulating layer 2 located above and below the organic resin insulating layer 2 is performed. At the time of application, there is a risk that an unnecessary hole is formed in the organic resin insulating layer 2 and an unnecessary electric short circuit is caused in the thin film wiring conductor layer 3 located above and below. Accordingly, the organic resin insulating layer 2 has a thickness of 5 μm to 100 μm.
It is preferable to set the range of m.

【0053】また更に前記多層配線部4の各薄膜配線導
体層3はその厚みが1μm未満であると各薄膜配線導体
層3の電気抵抗値が大きなものとなって各薄膜配線導体
層3に所定の電気信号を伝達させることが困難となり、
また40μmを超えると薄膜配線導体層3を有機樹脂絶
縁層2に被着させる際に薄膜配線導体層3の内部に大き
な応力が発生内在し、該大きな内在応力によって薄膜配
線導体層3が有機樹脂絶縁層2から剥離し易いものとな
る。従って、前記多層配線部4の各薄膜配線導体層3の
厚みは1μm〜40μmの範囲としておくことが好まし
い。
Further, when the thickness of each thin-film wiring conductor layer 3 of the multilayer wiring portion 4 is less than 1 μm, the electric resistance of each thin-film wiring conductor layer 3 becomes large, and a predetermined value is applied to each thin-film wiring conductor layer 3. It is difficult to transmit the electric signal of
When the thickness exceeds 40 μm, a large stress is generated inside the thin-film wiring conductor layer 3 when the thin-film wiring conductor layer 3 is adhered to the organic resin insulating layer 2, and the large intrinsic stress causes the thin-film wiring conductor layer 3 to form an organic resin. It becomes easy to peel off from the insulating layer 2. Therefore, it is preferable that the thickness of each thin-film wiring conductor layer 3 of the multilayer wiring portion 4 be in the range of 1 μm to 40 μm.

【0054】前記有機樹脂絶縁層2と薄膜配線導体層3
とを交互に多層に積層して形成される多層配線部4は更
に、最上層の有機樹脂絶縁層2に薄膜配線導体層3と電
気的に接続しているボンディングパッド10が形成され
ており、該ボンディングパッド10は半導体素子や容量
素子、抵抗器等の電子部品Aの電極を薄膜配線導体層3
に電気的に接続させる作用をなす。
The organic resin insulating layer 2 and the thin-film wiring conductor layer 3
And a multi-layer wiring portion 4 formed by alternately laminating the bonding pads 10 on the uppermost organic resin insulating layer 2, and further, a bonding pad 10 electrically connected to the thin film wiring conductor layer 3 is formed. The bonding pad 10 is used to connect the electrodes of the electronic component A such as a semiconductor element, a capacitance element and a resistor to the thin film wiring conductor layer 3.
To electrically connect to the

【0055】前記ボンディングパッド10は例えば、直
径が200〜500μmの円形状をなしており、該ボン
ディングパッド10に半導体素子や容量素子等の電子部
品Aの電極をロウ材を介して接続させれば、半導体素子
や容量素子等の電子部品Aの電極は薄膜配線導体層3に
電気的に接続されることとなる。
The bonding pad 10 has, for example, a circular shape with a diameter of 200 to 500 μm. If the electrode of an electronic component A such as a semiconductor element or a capacitor is connected to the bonding pad 10 via a brazing material, The electrodes of the electronic component A such as a semiconductor element and a capacitance element are electrically connected to the thin-film wiring conductor layer 3.

【0056】前記ボンディングパッド10は薄膜配線導
体層3と同じ金属材料、具体的には銅、ニッケル、金、
アルミニウム等の金属材料から成り、最上層の有機樹脂
絶縁層2上に薄膜配線導体層3を形成する際に同時に前
記薄膜配線導体層3と電気的接続をもって形成される。
The bonding pad 10 is made of the same metal material as the thin film wiring conductor layer 3, specifically, copper, nickel, gold,
It is made of a metal material such as aluminum, and is formed at the same time as the thin-film wiring conductor layer 3 is formed on the uppermost organic resin insulating layer 2 so as to be electrically connected to the thin-film wiring conductor layer 3.

【0057】かくして上述の多層配線基板によれば、最
上層の有機樹脂絶縁層2に設けたボンディングパッド1
0に半導体素子や容量素子等の電子部品Aの電極を半田
等から成るロウ材を介して接続させ、電子部品Aの電極
をボンディングパッド10を介して薄膜配線導体層3に
電気的に接続させることによって半導体装置や混成集積
回路装置となり、薄膜配線導体層3の一部を外部電気回
路に接続すれば前記電子部品Aは外部電気回路に接続さ
れることとなる。
Thus, according to the above-described multilayer wiring board, the bonding pad 1 provided on the uppermost organic resin insulating layer 2
0, the electrodes of the electronic component A such as a semiconductor element and a capacitance element are connected via a brazing material made of solder or the like, and the electrodes of the electronic component A are electrically connected to the thin film wiring conductor layer 3 via the bonding pads 10. As a result, a semiconductor device or a hybrid integrated circuit device is obtained. If a part of the thin film wiring conductor layer 3 is connected to an external electric circuit, the electronic component A is connected to the external electric circuit.

【0058】なお、本発明は上述の実施例に限定される
ものではなく、本発明の要旨を逸脱しない範囲であれば
種々の変更は可能であり、例えば上述の実施例において
は基板1の上面側のみに複数の有機樹脂絶縁層2と複数
の薄膜配線導体層3とを交互に積層して形成される多層
配線部4を被着させたが、該多層配線部4を基板1の下
面側のみに設けても、上下の両面に設けてもよい。
It should be noted that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. A multilayer wiring portion 4 formed by alternately laminating a plurality of organic resin insulating layers 2 and a plurality of thin film wiring conductor layers 3 is applied only on the side of the substrate 1. It may be provided only on the upper and lower surfaces.

【0059】また上述の実施例においては基板1の有機
樹脂を熱硬化性のエポキシ樹脂等で形成したが、これを
光硬化性の樹脂で形成してもよい。この場合、基板1の
有機樹脂は光照射によって固化し、焼成工程を伴わない
ことから焼成に伴う不均一な焼成収縮によって反りや寸
法ばらつきが発生することはなく、その結果、基板1は
その表面が平坦な所定寸法となり、基板1の表面に有機
樹脂絶縁層2と薄膜配線導体層3とから成る多層配線部
4を正確に形成することが可能となる。
In the above embodiment, the organic resin of the substrate 1 is made of a thermosetting epoxy resin or the like, but it may be made of a photocurable resin. In this case, since the organic resin of the substrate 1 is solidified by light irradiation and does not involve a firing step, there is no warpage or dimensional variation due to uneven firing shrinkage due to firing, and as a result, the substrate 1 has its surface Has a flat predetermined dimension, and it is possible to accurately form the multilayer wiring portion 4 including the organic resin insulating layer 2 and the thin film wiring conductor layer 3 on the surface of the substrate 1.

【0060】[0060]

【発明の効果】本発明の多層配線基板によれば、有機樹
脂絶縁層と薄膜配線導体層とから成る多層配線部が被着
される基板を有機樹脂中に無機物粉末を例えば、60重
量%乃至95重量%含有させて形成したことから基板の
熱膨張係数が有機樹脂絶縁層の熱膨張係数に近似し、そ
の結果、基板と有機樹脂絶縁層に熱が印加されても両者
間には両者の熱膨張係数の相違に起因する応力が発生す
ることはなく両者を極めて強固に接合させることができ
る。
According to the multilayer wiring board of the present invention, the substrate on which the multilayer wiring portion composed of the organic resin insulating layer and the thin-film wiring conductor layer is to be adhered is made of, for example, 60% by weight or less of inorganic powder in the organic resin. The thermal expansion coefficient of the substrate is close to the thermal expansion coefficient of the organic resin insulating layer because the substrate is formed so as to contain 95% by weight. There is no generation of stress due to the difference in the coefficient of thermal expansion, and the two can be joined very firmly.

【0061】また本発明の多層配線基板によれば、基板
を靱性に優れる有機樹脂中に無機物粉末を含有させるこ
とによって形成したことから基板の機械的強度が強くな
り、外部より衝撃力が印加されても容易に破損すること
はない。
Further, according to the multilayer wiring board of the present invention, since the board is formed by incorporating an inorganic powder in an organic resin having excellent toughness, the mechanical strength of the board is increased, and an impact force is applied from the outside. It will not be easily damaged.

【0062】また更に本発明の多層配線基板によれば、
基板は有機樹脂中に無機物粉末を含有させることによっ
て形成され、有機樹脂は熱硬化もしくは光硬化によって
固化し、焼成工程を伴わないことから焼成に伴う不均一
な焼成収縮によって反りや寸法ばらつきを発生すること
もなく、その結果、基板はその表面を平坦とした所定寸
法となし、基板の表面に有機樹脂絶縁層と薄膜配線導体
層とを正確に形成することが可能となる。
Further, according to the multilayer wiring board of the present invention,
The substrate is formed by incorporating inorganic powder into the organic resin.The organic resin solidifies by thermosetting or photocuring, and because it does not involve a firing step, warpage and dimensional variations occur due to uneven firing shrinkage accompanying firing. As a result, as a result, the substrate has a predetermined size with its surface flat, and the organic resin insulating layer and the thin-film wiring conductor layer can be accurately formed on the substrate surface.

【0063】また本発明の多層配線基板によれば、基板
に配設される配線導体をエッチング加工等によって所定
パターンに加工された銅箔を使用し、かつ多層配線部の
薄膜配線導体層を薄膜形成技術を採用することによって
形成したことから全ての配線を微細化することができ、
これによって配線を極めて高密度に形成することが可能
となる。
Further, according to the multilayer wiring board of the present invention, the wiring conductor provided on the substrate is made of a copper foil processed into a predetermined pattern by etching or the like, and the thin film wiring conductor layer of the multilayer wiring portion is formed of a thin film. All wiring can be miniaturized because it is formed by adopting the forming technology,
As a result, it is possible to form the wiring with extremely high density.

【0064】また本発明の多層配線基板によれば、基板
上面に配設される銅箔から成る配線導体の表面粗さを中
心線平均粗さ(Ra)で0.1μm≦Ra≦10μmの
範囲とし、適度に粗したことから基板上に多層配線部を
形成した際、基板上面の配線導体と多層配線部の有機樹
脂絶縁層とはその接合面積が広くなって接合強度が強い
ものとなり、外力印加によっても剥離を発生することは
ない。
Further, according to the multilayer wiring board of the present invention, the surface roughness of the wiring conductor made of copper foil disposed on the upper surface of the substrate is set to a center line average roughness (Ra) in a range of 0.1 μm ≦ Ra ≦ 10 μm. When a multilayer wiring portion is formed on a substrate because of moderate roughness, the bonding area between the wiring conductor on the upper surface of the substrate and the organic resin insulating layer of the multilayer wiring portion becomes large, and the bonding strength becomes strong. No delamination occurs even when applied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の多層配線基板の一実施例を示す断面図
である。
FIG. 1 is a sectional view showing one embodiment of a multilayer wiring board of the present invention.

【図2】(a)〜(d)は図1に示す多層配線基板の製
造方法を説明するための各工程毎の断面図である。
2 (a) to 2 (d) are cross-sectional views for explaining respective steps of a method for manufacturing the multilayer wiring board shown in FIG.

【符号の説明】[Explanation of symbols]

1・・・基板 2・・・有機樹脂絶縁層 3・・・薄膜配線導体層 4・・・多層配線部 5・・・絶縁層 6・・・配線導体 7・・・ビアホール導体 9・・・スルーホール導体 A・・・電子部品 DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Organic resin insulating layer 3 ... Thin film wiring conductor layer 4 ... Multilayer wiring part 5 ... Insulating layer 6 ... Wiring conductor 7 ... Via-hole conductor 9 ... Through-hole conductor A: Electronic components

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板と、該基板の少なくとも一主面に被着
され、複数の有機樹脂絶縁層と薄膜配線導体層とを交互
に積層するとともに上下に位置する薄膜配線導体層を有
機樹脂絶縁層に設けたスルーホール導体を介して電気的
に接続した多層配線部とから成る多層配線基板であっ
て、前記基板は有機樹脂中に無機物粉末を含有させて形
成されており、かつ少なくとも前記多層配線部が被着さ
れる主面に前記薄膜配線導体層と電気的に接続され、表
面粗さが中心線平均粗さ(Ra)で0.1μm≦Ra≦
10μmである銅箔により形成された配線導体が被着さ
れていることを特徴とする多層配線基板。
1. A substrate and a plurality of organic resin insulating layers and a thin film wiring conductor layer which are attached to at least one main surface of the substrate and are alternately laminated, and the upper and lower thin film wiring conductor layers are organic resin insulation layers. A multilayer wiring board comprising a multilayer wiring portion electrically connected via a through-hole conductor provided in a layer, wherein the substrate is formed by incorporating an inorganic powder in an organic resin, and at least the multilayer The thin film wiring conductor layer is electrically connected to the main surface on which the wiring portion is attached, and has a surface roughness of 0.1 μm ≦ Ra ≦ in terms of center line average roughness (Ra).
A multilayer wiring board, on which a wiring conductor formed of a copper foil having a thickness of 10 μm is adhered.
【請求項2】前記無機物粉末の粒径が0.05μm乃至
10μmであることを特徴とする請求項1記載の多層配
線基板。
2. The multilayer wiring board according to claim 1, wherein said inorganic powder has a particle size of 0.05 μm to 10 μm.
【請求項3】前記無機物粉末の含有量が60重量%乃至
95重量%であることを特徴とする請求項1記載の多層
配線基板。
3. The multilayer wiring board according to claim 1, wherein the content of said inorganic powder is 60% by weight to 95% by weight.
JP9181094A 1997-07-07 1997-07-07 Multilayered wiring board Pending JPH1126939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9181094A JPH1126939A (en) 1997-07-07 1997-07-07 Multilayered wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9181094A JPH1126939A (en) 1997-07-07 1997-07-07 Multilayered wiring board

Publications (1)

Publication Number Publication Date
JPH1126939A true JPH1126939A (en) 1999-01-29

Family

ID=16094734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9181094A Pending JPH1126939A (en) 1997-07-07 1997-07-07 Multilayered wiring board

Country Status (1)

Country Link
JP (1) JPH1126939A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7486006B2 (en) 2004-12-23 2009-02-03 Avago Technologies Wireless Ip (Singapore) Pte. Ltd Piezoelectric resonator having improved temperature compensation and method for manufacturing same
JP2009111358A (en) * 2007-10-12 2009-05-21 Shinko Electric Ind Co Ltd Wiring board
JP2015191968A (en) * 2014-03-27 2015-11-02 新光電気工業株式会社 wiring board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7486006B2 (en) 2004-12-23 2009-02-03 Avago Technologies Wireless Ip (Singapore) Pte. Ltd Piezoelectric resonator having improved temperature compensation and method for manufacturing same
JP2009111358A (en) * 2007-10-12 2009-05-21 Shinko Electric Ind Co Ltd Wiring board
JP2015191968A (en) * 2014-03-27 2015-11-02 新光電気工業株式会社 wiring board

Similar Documents

Publication Publication Date Title
JPH09326556A (en) Multilayer wiring board and manufacture thereof
JPH09312472A (en) Multilayer wiring board and its manufacturing method
JP3071723B2 (en) Method for manufacturing multilayer wiring board
JPH1126939A (en) Multilayered wiring board
JPH1093246A (en) Multilayer wiring board
JPH10340978A (en) Mounting structure for electronic component onto wiring board
JPH10215042A (en) Multilayer wiring board
JPH114079A (en) Multilayered wiring board
JPH114080A (en) Multilayered wiring board
JP3659441B2 (en) Wiring board
JPH1013036A (en) Multilayer wiring board
JPH10322030A (en) Multilayered wiring board
JPH10322026A (en) Multilayered wiring board
JPH1093248A (en) Multilayer wiring board
JPH1041632A (en) Multilayer wiring board
JPH11233679A (en) Multilayer wiring board
JPH10163634A (en) Multilayer wiring board
JPH10322032A (en) Manufacture of multilayered wiring board
JPH1027968A (en) Multilayer wiring board
JPH11233909A (en) Wiring board
JPH10341082A (en) Multilayered wiring board
JPH10150266A (en) Multilayer interconnection board
JPH10322029A (en) Multilayered wiring board
JPH1197848A (en) Multilayered wiring board
JPH11150370A (en) Multilayer wiring board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050809