JPH10322026A - Multilayered wiring board - Google Patents

Multilayered wiring board

Info

Publication number
JPH10322026A
JPH10322026A JP13215497A JP13215497A JPH10322026A JP H10322026 A JPH10322026 A JP H10322026A JP 13215497 A JP13215497 A JP 13215497A JP 13215497 A JP13215497 A JP 13215497A JP H10322026 A JPH10322026 A JP H10322026A
Authority
JP
Japan
Prior art keywords
organic resin
wiring conductor
resin insulating
thin film
film wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13215497A
Other languages
Japanese (ja)
Inventor
Seiichi Takami
征一 高見
Yoshitomo Fujiwara
義友 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP13215497A priority Critical patent/JPH10322026A/en
Publication of JPH10322026A publication Critical patent/JPH10322026A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To specify the electric resistance value of thin film wiring conductor layers with a preferred resistance value, and also provide organic resin insulating layers interposing the thin film wiring conductor with the film junction having high reliability, by a method wherein the thickness of the thin film wiring conductor layers arranged between the organic resin insulating layers is specified to be within a specific range. SOLUTION: The thickness of respective thin film wiring conductor layers 3 when assumed not to exceed 3 μm is affected by the surface state of the organic resin insulating layers 2 to be notably dispersed. Resultantly, it becomes difficult to specify the electric resistance value of the thin film wiring conductor layers 3. Besides, when the organic resin insulating layers 2 to be arranged on the upper part are laminated in order to form the next organic resin insulating layer 2 on the organic resin insulating layer 2 whereon the thin film wiring conductor layer 3 in the thickness exceeding 10 μm is formed, a lot of air existent on the side face of the thin film wiring conductor layers 3 is adsorbed into the organic resin insulating layers 2 arranged on the upper part. Accordingly, it is mandatory to specify the thickness of the thin film wiring conductor layers 3 to be within the range of 3 μm-10 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多層配線基板に関
し、より詳細には混成集積回路装置や半導体素子を収容
する半導体素子収納用パッケージ等に使用される多層配
線基板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer wiring board, and more particularly to a multilayer wiring board used for a hybrid integrated circuit device, a semiconductor element housing package for housing a semiconductor element, and the like.

【0002】[0002]

【従来の技術】従来、混成集積回路装置や半導体素子収
納用パッケージ等に使用される多層配線基板はその配線
導体がMo−Mn法等の厚膜形成技術によって形成され
ている。
2. Description of the Related Art Hitherto, a multilayer wiring board used in a hybrid integrated circuit device, a package for accommodating a semiconductor element, or the like, has its wiring conductor formed by a thick film forming technique such as the Mo-Mn method.

【0003】このMo−Mn法は通常、タングステン、
モリブデン、マンガン等の高融点金属粉末に有機溶剤、
溶媒を添加混合し、ペースト状となした金属ペーストを
生セラミック体の外表面にスクリーン印刷法により所定
パターンに印刷塗布し、次ぎにこれを複数枚積層すると
ともに還元雰囲気中で焼成し、高融点金属粉末と生セラ
ミック体とを焼結一体化させる方法である。
[0003] This Mo-Mn method is generally used for tungsten,
Organic solvents for high melting point metal powders such as molybdenum and manganese,
A solvent is added and mixed, and a paste-like metal paste is applied by printing on the outer surface of the green ceramic body in a predetermined pattern by a screen printing method. Then, a plurality of these layers are laminated and fired in a reducing atmosphere to obtain a high melting point. This is a method of sintering and integrating a metal powder and a green ceramic body.

【0004】なお、前記配線導体が形成されるセラミッ
ク体としては通常、酸化アルミニウム質焼結体やムライ
ト質焼結体等の酸化物系セラミックス、或いは表面に酸
化物膜を被着させた窒化アルミニウム質焼結体や炭化珪
素質焼結体等の非酸化物系セラミックスが使用される。
The ceramic body on which the wiring conductor is formed is usually an oxide ceramic such as an aluminum oxide sintered body or a mullite sintered body, or an aluminum nitride having an oxide film deposited on the surface. Non-oxide ceramics such as a porous sintered body and a silicon carbide sintered body are used.

【0005】しかしながら、このMo−Mn法を用いて
配線導体を形成した場合、配線導体は金属ペーストをス
クリーン印刷することにより形成されることから微細化
が困難で配線導体を高密度に形成することができないと
いう欠点を有していた。
However, when the wiring conductor is formed by using the Mo-Mn method, the wiring conductor is formed by screen-printing a metal paste. Had the drawback that it could not be done.

【0006】そこで上記欠点を解消するために本願出願
人は先に特願平8−94433号において、配線導体を
従来の厚膜形成技術で形成するのに変えて微細化が可能
な薄膜形成技術を用いて高密度に形成した多層配線基板
を提案した。
In order to solve the above-mentioned drawbacks, the present applicant has previously disclosed in Japanese Patent Application No. 8-94433 a thin-film forming technique capable of miniaturization instead of forming a wiring conductor by a conventional thick-film forming technique. We proposed a multilayer wiring board formed with high density.

【0007】かかる多層配線基板は、酸化アルミニウム
質焼結体等から成るセラミックスやガラス繊維を織り込
んだガラス布にエポキシ樹脂を含浸させて形成されるガ
ラスエポキシ樹脂等から成る絶縁基板の上面にスピンコ
ート法及び熱硬化処理等によって形成されるエポキシ樹
脂からなる厚さ5μm乃至100μmの有機樹脂絶縁層
と、銅やアルミニウム等の金属をめっき法や蒸着法等の
薄膜形成技術及びフォトリソグラフィー技術を採用する
ことによって形成される厚さ1μm乃至40μmの薄膜
配線導体層とを交互に多層に積層させるとともに上下に
位置する薄膜配線導体層を有機樹脂絶縁層に設けたスル
ーホールの内壁に被着させたスルーホール導体を介して
電気的に接続させた構造を有している。
Such a multilayer wiring board is formed by spin coating an upper surface of an insulating substrate made of a glass epoxy resin or the like formed by impregnating a glass cloth woven with ceramics or glass fibers made of an aluminum oxide sintered body or the like with an epoxy resin. Adopt an organic resin insulating layer of 5 μm to 100 μm in thickness made of epoxy resin formed by a method and a thermosetting treatment, and a thin film forming technique such as a plating method and a vapor deposition method of a metal such as copper and aluminum, and a photolithography technique. A thin film wiring conductor layer having a thickness of 1 μm to 40 μm is alternately laminated in multiple layers, and a thin film wiring conductor layer positioned above and below is attached to the inner wall of a through hole provided in the organic resin insulating layer. It has a structure electrically connected via a hole conductor.

【0008】なお、この多層配線基板においては、各有
機樹脂絶縁層に形成されているスルーホールがフォトリ
ソグラフィー技術を採用することによって、具体的には
まず有機樹脂絶縁層上にレジスト材を塗布するとともに
これに露光、現像を施すことによって所定位置に所定形
状の窓部を形成し、次に前記レジスト材の窓部にエッチ
ング液を配し、レジスト材の窓部に位置する有機樹脂絶
縁層を除去して、有機樹脂絶縁層に穴(スルーホール)
を形成し、最後に前記ジレスト材を有機樹脂絶縁層より
剥離させ除去することによって形成されている。
In this multi-layer wiring board, the through holes formed in each organic resin insulating layer employ photolithography technology. Specifically, first, a resist material is applied on the organic resin insulating layer. Along with this, exposure and development are performed to form a window of a predetermined shape at a predetermined position, and then an etchant is disposed on the window of the resist material, and an organic resin insulating layer located on the window of the resist material is formed. Remove and make holes (through holes) in the organic resin insulation layer
Is formed, and finally the above-mentioned Gilest material is peeled off from the organic resin insulating layer and removed.

【0009】[0009]

【発明が解決しようとする課題】上述の多層配線基板
は、薄膜配線導体層の電気抵抗値を小さくして薄膜配線
導体層を電気信号が良好に伝達するようになすとともに
薄膜配線導体層を形成する際に発生する応力を小さくし
て有機樹脂絶縁層と薄膜配線導体層との接合を強固とす
るために薄膜配線導体層の厚みは1μm乃至40μmの
範囲としてある。
In the above-mentioned multilayer wiring board, the electric resistance of the thin film wiring conductor layer is reduced so that electric signals can be transmitted well through the thin film wiring conductor layer and the thin film wiring conductor layer is formed. The thickness of the thin-film wiring conductor layer is in the range of 1 μm to 40 μm in order to reduce the stress generated during the bonding and to strengthen the bonding between the organic resin insulating layer and the thin-film wiring conductor layer.

【0010】しかしながら、薄膜配線導体層の厚みを3
μm未満にしようとすると薄膜配線導体層の厚みが有機
樹脂絶縁層上面の表面状態の影響を受けて大きくバラツ
キ、その結果、薄膜配線導体層の電気抵抗値を所望する
値に制御するのが困難となる欠点を誘発し、また10μ
mを超えると上面に薄膜配線導体層が形成されている有
機樹脂絶縁層上に次の有機樹脂絶縁層を積層形成する
際、上部に配される有機樹脂絶縁層が薄膜配線導体層の
側面部に存在する空気を抱き込んでしまい、その結果、
上下に位置する有機樹脂絶縁層の接合強度が低下し、多
層配線基板としての信頼性が劣化してしまうという解決
すべき課題を誘発した。
However, the thickness of the thin-film wiring conductor layer is 3
If the thickness is less than μm, the thickness of the thin-film wiring conductor layer greatly varies under the influence of the surface condition of the upper surface of the organic resin insulating layer. As a result, it is difficult to control the electric resistance of the thin-film wiring conductor layer to a desired value. And 10μ
When the thickness exceeds m, when the next organic resin insulating layer is formed on the organic resin insulating layer on which the thin film wiring conductor layer is formed on the upper surface, the organic resin insulating layer disposed on the upper side is formed on the side surface of the thin film wiring conductor layer Embraces the air that exists in
The problem to be solved is that the bonding strength of the organic resin insulating layers located above and below is reduced, and the reliability as a multilayer wiring board is deteriorated.

【0011】本発明は上述の欠点に鑑み案出されたもの
で、その目的は薄膜配線導体層を所望する電気抵抗値と
し、かつ上下に位置する有機樹脂絶縁層間の接合を強固
とした信頼性の高い多層配線基板を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks, and has as its object to provide a thin-film wiring conductor layer having a desired electric resistance value and a reliable connection between organic resin insulating layers located above and below. To provide a multi-layer wiring board with high performance.

【0012】[0012]

【課題を解決するための手段】本発明は、基板上に、有
機樹脂絶縁層と薄膜配線導体層とを交互に積層するとと
もに上下に位置する薄膜配線導体層を各有機樹脂絶縁層
に設けたスルーホールの内壁に被着させたスルーホール
導体を介して接続してなる多層配線基板であって、前記
有機樹脂絶縁層間に配置されている薄膜配線導体層の厚
みが3μm乃至10μmであることを特徴とするもので
ある。
According to the present invention, an organic resin insulating layer and a thin film wiring conductor layer are alternately laminated on a substrate, and thin film wiring conductor layers positioned above and below are provided on each organic resin insulation layer. A multilayer wiring board connected via a through-hole conductor attached to an inner wall of a through-hole, wherein a thickness of a thin-film wiring conductor layer disposed between the organic resin insulating layers is 3 μm to 10 μm. It is a feature.

【0013】本発明の多層配線基板によれば、基板上に
薄膜形成技術によって配線を形成したことから配線の微
細化が可能となり、配線を極めて高密度に形成すること
が可能となる。
According to the multilayer wiring board of the present invention, since the wiring is formed on the substrate by the thin film forming technique, the wiring can be miniaturized, and the wiring can be formed at an extremely high density.

【0014】また本発明の多層配線基板によれば、薄膜
配線導体層の厚みを3μm乃至10μmとしたことから
薄膜配線導体層は有機樹脂絶縁層上面の表面状態の影響
を大きく受けることはなく略均等となすことができ、こ
れによって薄膜配線導体層の電気抵抗値を所定の値とな
すことができるとともに、薄膜配線導体層が形成されて
いる有機樹脂絶縁層上に次の有機樹脂絶縁層を積層形成
する際、上部に配される有機樹脂絶縁層が薄膜配線導体
層の側面部に存在する空気を多量に抱き込んで上下に位
置する有機樹脂絶縁層の接合強度が大きく低下すること
も殆どなく、これによって多層配線基板としての信頼性
を高いものとなすことができる。
Further, according to the multilayer wiring board of the present invention, since the thickness of the thin-film wiring conductor layer is set to 3 μm to 10 μm, the thin-film wiring conductor layer is not largely affected by the surface condition of the upper surface of the organic resin insulating layer and is substantially not affected. It is possible to make the electric resistance value of the thin film wiring conductor layer a predetermined value, and to form the next organic resin insulation layer on the organic resin insulation layer on which the thin film wiring conductor layer is formed. At the time of lamination formation, the organic resin insulating layer disposed on the upper side embraces a large amount of air existing on the side surface of the thin film wiring conductor layer, and the bonding strength of the organic resin insulating layer positioned above and below is largely reduced in most cases. However, this makes it possible to increase the reliability of the multilayer wiring board.

【0015】[0015]

【発明の実施の形態】次に、本発明を添付図面に基づき
詳細に説明する。図1は、本発明の多層配線基板の一実
施例を示し、1は絶縁性の基板、2は有機樹脂絶縁層、
3は薄膜配線導体である。
Next, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows an embodiment of the multilayer wiring board of the present invention, wherein 1 is an insulating substrate, 2 is an organic resin insulating layer,
3 is a thin film wiring conductor.

【0016】前記基板1はその上面に有機樹脂絶縁層2
と薄膜配線導体3とから成る多層配線部4が配設されて
おり、該多層配線部4を支持する支持部材として作用す
る。
The substrate 1 has an organic resin insulating layer 2 on its upper surface.
And a thin-film wiring conductor 3, which serves as a support member for supporting the multi-layer wiring portion 4.

【0017】前記基板1は酸化アルミニウム質焼結体や
ムライト質焼結体等の酸化物系セラミックス、或いは表
面に酸化物膜を有する窒化アルミニウム質焼結体、炭化
珪素質焼結体等の非酸化物系セラミックス、更にはガラ
ス繊維を織り込んだ布にエポキシ樹脂を含浸させたガラ
スエポキシ樹脂等の電気絶縁材料で形成されており、例
えば、酸化アルミニウム質焼結体で形成されている場合
には、アルミナ、シリカ、カルシア、マグネシア等の原
料粉末に適当な有機溶剤、溶媒を添加混合して泥漿状と
なすとともにこれを従来周知のドクターブレード法やカ
レンダーロール法を採用することによってセラミックグ
リーンシート(セラミック生シート)を形成し、しかる
後、前記セラミックグリーンシートに適当な打ち抜き加
工を施し、所定形状となすとともに高温(約1600
℃)で焼成することによって、或いはアルミナ等の原料
粉末に適当な有機溶剤、溶媒を添加混合して原料粉末を
調整するとともに該原料粉末をプレス成形機によって所
定形状に成形し、最後に前記成形体を約1600℃の温
度で焼成することによって製作され、またガラスエポキ
シ樹脂から成る場合は、例えばガラス繊維を織り込んだ
布にエポキシ樹脂の前駆体を含浸させるとともに該エポ
キシ樹脂前駆体を所定の温度で熱硬化させることによっ
て製作される。
The substrate 1 is made of an oxide ceramic such as an aluminum oxide sintered body or a mullite sintered body, or a non-conductive body such as an aluminum nitride sintered body or a silicon carbide sintered body having an oxide film on the surface. Oxide ceramics, and further made of an electrically insulating material such as glass epoxy resin impregnated with epoxy resin in a cloth woven with glass fiber, for example, when formed of aluminum oxide sintered body , Alumina, silica, calcia, magnesia, etc., an appropriate organic solvent and a solvent are added and mixed to form a slurry, and the ceramic green sheet is formed by employing a conventionally known doctor blade method or calendar roll method. Ceramic green sheet), and after that, the ceramic green sheet is subjected to an appropriate punching process to obtain a predetermined shape. Hot together form (about 1600
C) or by mixing a raw material powder such as alumina with an appropriate organic solvent and solvent to adjust the raw material powder and form the raw material powder into a predetermined shape by a press molding machine. If the body is made by firing the body at a temperature of about 1600 ° C. and is made of glass epoxy resin, for example, a cloth woven with glass fiber is impregnated with the epoxy resin precursor and the epoxy resin precursor is heated to a predetermined temperature. It is manufactured by heat curing.

【0018】また前記基板1には上下両面に貫通する孔
径が例えば、直径0.3mm〜0.5mmの貫通孔5が
形成されており、該貫通孔5の内壁には両端が基板1の
上下両面に導出する導電層6が被着されている。
The substrate 1 is formed with a through hole 5 having a diameter of, for example, 0.3 mm to 0.5 mm, which penetrates the upper and lower surfaces of the substrate 1. Conductive layers 6 leading to both sides are applied.

【0019】前記貫通孔5は後述する基板1の上面に形
成される多層配線部4の薄膜配線導体層3と外部電気回
路とを電気的に接続する、或いは基板1の上下両面に多
層配線部4を形成した場合には両面の多層配線部4の薄
膜配線導体層3同士を電気的に接続する導電層6を形成
するための形成孔として作用し、基板1にドリル孔あけ
加工法を施すことによって基板1の所定位置に所定形状
に形成される。
The through hole 5 electrically connects the thin-film wiring conductor layer 3 of the multilayer wiring portion 4 formed on the upper surface of the substrate 1 and an external electric circuit to be described later, or the multilayer wiring portion is formed on both upper and lower surfaces of the substrate 1. When the substrate 4 is formed, it acts as a forming hole for forming a conductive layer 6 for electrically connecting the thin film wiring conductor layers 3 of the multilayer wiring portion 4 on both surfaces, and the substrate 1 is subjected to a drilling method. Thus, a predetermined shape is formed at a predetermined position on the substrate 1.

【0020】更に前記貫通孔5の内壁及び基板1の上下
両面には導電層6が被着形成されており、該導電層6は
例えば、銅やニッケル等の金属材料からなり、従来周知
のめっき法及びエッチング加工技術を採用することによ
って貫通孔5の内壁に両端を基板1の上下両面に導出さ
せた状態で被着形成される。
Further, a conductive layer 6 is formed on the inner wall of the through hole 5 and the upper and lower surfaces of the substrate 1, and the conductive layer 6 is made of a metal material such as copper or nickel. By adopting the method and the etching technique, it is adhered to the inner wall of the through hole 5 with both ends being led out to the upper and lower surfaces of the substrate 1.

【0021】前記導電層6は基板1の上面に形成される
多層配線部4の薄膜配線導体層3を外部電気回路に電気
的に接続したり、基板1の上下両面に形成される各々の
多層配線部4の薄膜配線導体層3同士を電気的に接続す
る作用をなす。
The conductive layer 6 is used to electrically connect the thin-film wiring conductor layer 3 of the multilayer wiring portion 4 formed on the upper surface of the substrate 1 to an external electric circuit, or to form each of the multilayers formed on the upper and lower surfaces of the substrate 1. It functions to electrically connect the thin film wiring conductor layers 3 of the wiring portion 4 to each other.

【0022】また前記基板1に形成した貫通孔5はその
内部にエポキシ樹脂等からなる有機樹脂充填体7が充填
されており、該有機樹脂充填体7によって貫通孔5が完
全に埋められ、同時に有機樹脂充填体7の両端面が基板
1の上下両面に被着させた導電層6の面と同一平面とな
っている。
The through hole 5 formed in the substrate 1 is filled with an organic resin filler 7 made of epoxy resin or the like. The through hole 5 is completely filled with the organic resin filler 7, and Both end surfaces of the organic resin filler 7 are flush with the surface of the conductive layer 6 attached to the upper and lower surfaces of the substrate 1.

【0023】前記有機樹脂充填体7は基板1の上面及び
/又は下面に後述する有機樹脂絶縁層2と薄膜配線導体
層3とから成る多層配線部4を形成する際、多層配線部
4の有機樹脂絶縁層2と薄膜配線導体層3の平坦化を維
持する作用をなす。
The organic resin filler 7 is used to form a multilayer wiring portion 4 composed of an organic resin insulating layer 2 and a thin film wiring conductor layer 3 described later on the upper surface and / or lower surface of the substrate 1. It functions to maintain the flatness of the resin insulating layer 2 and the thin film wiring conductor layer 3.

【0024】なお、前記有機樹脂充填体7は基板1の貫
通孔5内にエポキシ樹脂等の前駆体を充填し、しかる
後、これに80〜200℃の温度を0.5〜3時間印加
し、完全に熱硬化させることによって基板1の貫通孔5
内に充填される。
The organic resin filler 7 fills the through hole 5 of the substrate 1 with a precursor such as an epoxy resin, and then is applied with a temperature of 80 to 200 ° C. for 0.5 to 3 hours. Is completely cured by heat so that the through holes 5 of the substrate 1 are formed.
Is filled in.

【0025】更に前記基板1はその上面に有機樹脂絶繚
層2と薄膜配線導体層3とが交互に多層に積層された多
層配線部4が形成されており、且つ薄膜配線導体層3の
一部は導電層6と電気的に接続している。
Further, the substrate 1 is provided on its upper surface with a multilayer wiring portion 4 in which an organic resin clear layer 2 and a thin film wiring conductor layer 3 are alternately laminated in multiple layers. The part is electrically connected to the conductive layer 6.

【0026】前記多層配線部4を構成する有機樹脂絶縁
層2は上下に位置する薄膜配線導体層3の電気的絶縁を
図る作用をなし、薄膜配線導体層3は電気信号を伝達す
るための伝達路として作用する。
The organic resin insulating layer 2 constituting the multi-layer wiring section 4 functions to electrically insulate the thin film wiring conductor layer 3 located above and below, and the thin film wiring conductor layer 3 is used for transmitting electric signals. Acts as a road.

【0027】前記多層配線部4の有機樹脂絶縁層2はエ
ポキシ樹脂から成り、例えば、ビスフェノールA型エポ
キシ樹脂、ノボラック型エポキシ樹脂、グリシジルエス
テル型エポキシ樹脂等にアミン系硬化剤、イミダゾール
糸硬化剤、酸無水物系硬化剤等の硬化剤を添加混合して
ペースト状のエポキシ樹脂前駆体を得るとともに該エポ
キシ樹脂前駆体を基板1の上部にスピンコート法により
被着させ、しかる後、これを約80℃〜200℃の熱で
0.5乃至3時間熱処理し、熱硬化させることによって
形成される。
The organic resin insulating layer 2 of the multilayer wiring section 4 is made of an epoxy resin. For example, bisphenol A type epoxy resin, novolak type epoxy resin, glycidyl ester type epoxy resin, etc. A curing agent such as an acid anhydride-based curing agent is added and mixed to obtain a paste-like epoxy resin precursor, and the epoxy resin precursor is applied to the upper portion of the substrate 1 by a spin coating method. It is formed by heat-treating with heat of 80 ° C. to 200 ° C. for 0.5 to 3 hours and heat curing.

【0028】また前記有機樹脂絶縁層2はその各々の所
定位置に最小径が有機樹脂絶縁層2の厚みに対して約
1.5倍程度のスルーホール8が形成されており、該ス
ルーホール8は後述する有機樹脂絶縁層2を挟んで上下
に位置する薄膜配線導体層3の各々を電気的に接続する
スルーホール導体9を形成するための形成孔として作用
する。
The organic resin insulating layer 2 has a through hole 8 at a predetermined position, the minimum diameter of which is about 1.5 times the thickness of the organic resin insulating layer 2. Serves as a forming hole for forming a through-hole conductor 9 for electrically connecting each of the thin film wiring conductor layers 3 positioned above and below the organic resin insulating layer 2 described later.

【0029】前記有機樹脂絶縁層2に設けるスルーホー
ル8は例えば、フォトリソグラフイー技術、具体的には
有機樹脂絶縁層2上にレジスト材を塗布するとともにこ
れに露光、現像を施すことによって所定位置に所定形状
の窓部を形成し、次に前記レジスト材の窓部にエッチン
グ液を配し、レジスト材の窓部に位置する有機樹脂絶縁
層2を除去して、有機樹脂絶縁層2に穴(スルーホー
ル)を形成し、最後に前記レジスト材を有機樹脂絶縁層
2上より剥離させ除去することによって行われる。
The through hole 8 provided in the organic resin insulating layer 2 is formed at a predetermined position by, for example, photolithography, specifically, by applying a resist material on the organic resin insulating layer 2 and exposing and developing the resist material. Then, a window having a predetermined shape is formed, and then an etchant is disposed on the window of the resist material, the organic resin insulating layer 2 located on the window of the resist material is removed, and a hole is formed in the organic resin insulating layer 2. (Through holes), and finally, the resist material is peeled off from the organic resin insulating layer 2 and removed.

【0030】更に前記各有機樹脂絶縁層2の上面には所
定パターンの薄膜配線導体層3が、また各有機樹脂絶縁
層2に設けたスルーホール8の内壁にはスルーホール導
体9が各々配設されており、スルーホール導体9によっ
て間に有機樹脂絶縁層2を挟んで上下に位置する各薄膜
配線導体層3の各々が電気的に接続されるようになって
いる。
Further, a thin-film wiring conductor layer 3 having a predetermined pattern is provided on the upper surface of each organic resin insulating layer 2, and a through-hole conductor 9 is provided on an inner wall of a through hole 8 provided in each organic resin insulating layer 2. Each of the thin-film wiring conductor layers 3 located above and below the organic resin insulating layer 2 with the through-hole conductor 9 therebetween is electrically connected.

【0031】前記各有機樹脂絶縁層2の上面及びスルー
ホール8内に配設される薄膜配線導体層3及びスルーホ
ール導体9は銅、ニッケル、金、アルミニウム等の金属
材料を無電解めっき法や蒸着法、スパッタリング法等の
薄膜形成技術及びエッチング加工技術を採用することに
よって形成され、例えば銅で形成されている場合には、
有機樹脂絶縁層2の上面及びスルーホール8の内壁面に
硫酸銅0.06モル/リットル、ホルマリン0.3モル
/リットル、水酸化ナトリウム0.35モル/リット
ル、エチレンジアミン四酢酸0.35モル/リットルか
らなる無電解銅メッキ浴を用いて厚さ1μm乃至40μ
mの銅層を被着させ、しかる後、前記銅層をエッチング
加工技術を採用することにより所定パターンに加工する
ことによって各有機樹脂絶縁層2間及び各有機樹脂絶縁
層2のスルーホール8内壁に配設される。この場合、薄
膜配線導体層3は薄膜形成技術により形成されることか
ら配線の微細化が可能であり、これによって薄膜配線導
体層3を極めて高密度に形成することが可能となる。
The thin-film wiring conductor layer 3 and the through-hole conductor 9 provided in the upper surface of each of the organic resin insulating layers 2 and in the through-holes 8 are made of a metal material such as copper, nickel, gold, or aluminum by electroless plating. It is formed by employing a thin film forming technique such as a vapor deposition method and a sputtering method and an etching processing technique.
0.06 mol / l of copper sulfate, 0.3 mol / l of formalin, 0.35 mol / l of sodium hydroxide, 0.35 mol / l of ethylenediaminetetraacetic acid are formed on the upper surface of the organic resin insulating layer 2 and the inner wall surface of the through hole 8. 1 µm to 40 µm using a 1 liter electroless copper plating bath
m, and thereafter, the copper layer is processed into a predetermined pattern by employing an etching technique, thereby forming an inner wall between the organic resin insulating layers 2 and between the organic resin insulating layers 2. It is arranged in. In this case, since the thin-film wiring conductor layer 3 is formed by a thin-film forming technique, the wiring can be miniaturized, thereby making it possible to form the thin-film wiring conductor layer 3 at an extremely high density.

【0032】前記多層配線部4は各有機樹脂絶縁層2の
厚みが100μmを超えると有機樹脂絶縁層2にフォト
リソグラフイー技術を採用することによってスルーホー
ル8を形成する際、エッチングの加工時間が長くなって
スルーホール8を所望する鮮明な形状に形成するのが困
難となり、また5μm未満となると有機樹脂絶縁層2の
上面に上下に位置する有機樹脂絶縁層2の接合強度を上
げるための粗面加工を施す際、有機樹脂絶縁層2に不要
な穴が形成され上下に位置する薄膜配線導体層3に不要
な電気的短絡を招来してしまう危険性がある。従って、
前記有機樹脂絶縁層2はその各々の厚みを5μm乃至1
00μmの範囲としておくことが好ましい。
When the thickness of each organic resin insulating layer 2 exceeds 100 μm, the multi-layer wiring portion 4 employs photolithography technology in the organic resin insulating layer 2 to form a through hole 8, so that the etching processing time is reduced. When the length is longer, it is difficult to form the through hole 8 into a desired sharp shape. When the thickness is less than 5 μm, the roughness for increasing the bonding strength of the organic resin insulating layer 2 located above and below the upper surface of the organic resin insulating layer 2 is increased. When performing surface processing, there is a risk that unnecessary holes may be formed in the organic resin insulating layer 2 and unnecessary electrical short circuits may occur in the thin film wiring conductor layers 3 located above and below. Therefore,
The organic resin insulating layer 2 has a thickness of 5 μm to 1 μm.
It is preferable that the thickness be in the range of 00 μm.

【0033】また前記多層配線部4の各薄膜配線導体層
3はその厚みを3μm未満とすると薄膜配線導体層3が
有機樹脂絶縁層2上面の表面状態の影響を受けて厚みが
大きくバラツキ、その結果、薄膜配線導体層3の電気抵
抗値を所望する値にするのが困難となり、また10μm
を超えると上面に薄膜配線導体層3が形成されている有
機樹脂絶縁層2上に次の有機樹脂絶縁層2を積層形成す
る際、上部に配される有機樹脂絶縁層2が薄膜配線導体
層3の側面部に存在する空気を多量に抱き込んでしま
い、その結果、上下に位置する有機樹脂絶縁層2の接合
強度が低下し、多層配線基板としての信頼性が劣化して
しまう。従って、前記多層配線部4の各薄膜配線導体3
は、薄膜配線導体層3を電気信号が良好に伝達し得る小
さな所定値とし、且つ上下に位置する有機樹脂絶縁層間
の接合を強固として多層配線基板の信頼性を高いものと
するにはその厚みを3μm乃至10μmの範囲としてお
く必要がある。
If the thickness of each thin-film wiring conductor layer 3 of the multilayer wiring portion 4 is less than 3 μm, the thickness of the thin-film wiring conductor layer 3 is greatly varied under the influence of the surface condition of the upper surface of the organic resin insulating layer 2. As a result, it is difficult to set the electric resistance value of the thin film wiring conductor layer 3 to a desired value, and
Is exceeded, when the next organic resin insulating layer 2 is laminated on the organic resin insulating layer 2 on which the thin film wiring conductor layer 3 is formed on the upper surface, the organic resin insulating layer 2 disposed above is 3 embraces a large amount of air existing on the side surface, and as a result, the bonding strength of the organic resin insulating layers 2 located above and below is reduced, and the reliability as a multilayer wiring board is deteriorated. Therefore, each thin-film wiring conductor 3 of the multilayer wiring portion 4
In order to increase the reliability of the multilayer wiring board by setting the thin film wiring conductor layer 3 to a small predetermined value at which electric signals can be transmitted satisfactorily and making the bonding between the organic resin insulating layers located above and below strong, Must be in the range of 3 μm to 10 μm.

【0034】なお、前記有機樹脂絶縁層2と薄膜配線導
体層3とを交互に多層に積層して形成される多層配線部
4は基板1に設けた貫通孔5が有機樹脂充填体7で完全
に埋められていることから基板1の上面に有機樹脂絶縁
層2を形成しても該有機樹脂絶縁層2はその平坦化が維
持され、各有機樹脂絶縁層2上に形成される薄膜配線導
体層3に断線等が発生するのを有効に防止することが可
能となる。
The multilayer wiring portion 4 formed by alternately laminating the organic resin insulating layer 2 and the thin film wiring conductor layer 3 in a multilayer structure has a through hole 5 formed in the substrate 1 completely filled with an organic resin filler 7. Even when the organic resin insulating layer 2 is formed on the upper surface of the substrate 1, the organic resin insulating layer 2 is kept flat, and the thin film wiring conductor formed on each organic resin insulating layer 2 is formed. It is possible to effectively prevent occurrence of disconnection or the like in the layer 3.

【0035】かくして本発明の多層配線基板によれば、
基板1の上面に被着させた多層配線部4上に半導体素子
等の能動部品や容量素子、抵抗器等の受動部品を実装さ
せることによって半導体装置や混成集積回路装置とな
り、基板1の下面に被着されている導電層6を外部電気
回路に接続すれば半導体装置や混成集積回路装置が外部
電気回路に電気的に接続されることとなる。
Thus, according to the multilayer wiring board of the present invention,
Active components such as semiconductor elements and passive components such as capacitors and resistors are mounted on the multilayer wiring portion 4 attached to the upper surface of the substrate 1 to form a semiconductor device or a hybrid integrated circuit device. If the applied conductive layer 6 is connected to an external electric circuit, the semiconductor device or the hybrid integrated circuit device will be electrically connected to the external electric circuit.

【0036】なお、本発明は上述の実施例に限定される
ものではなく、本発明の要旨を逸脱しない範囲であれば
種々の変更は可能であり、例えば、上述の実施例におい
ては基板1の上面のみに有機樹脂絶縁層2と薄膜配線導
体3とから成る多層配線部4を設けたが、多層配線部4
を基板1の下面側のみに設けても、上下の両面に設けて
もよい。
It should be noted that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. The multi-layer wiring section 4 composed of the organic resin insulating layer 2 and the thin film wiring conductor 3 is provided only on the upper surface.
May be provided only on the lower surface side of the substrate 1 or on both upper and lower surfaces.

【0037】[0037]

【発明の効果】本発明の多層配線基板によれば、基板上
に薄膜形成技術によって配線を形成したことから配線の
微細化が可能となり、配線を極めて高密度に形成するこ
とが可能となる。
According to the multilayer wiring board of the present invention, since the wiring is formed on the substrate by the thin film forming technique, the wiring can be miniaturized and the wiring can be formed at an extremely high density.

【0038】また本発明の多層配線基板によれば、薄膜
配線導体層の厚みを3μm乃至10μmの厚みとしたこ
とから薄膜配線導体層は有機樹脂絶縁層上面の表面状態
の影響を大きく受けることなく略均等となすことがで
き、これによって薄膜配線導体層の電気抵抗値を所定の
値となすことができるとともに、薄膜配線導体層が形成
されている有機樹脂絶縁層上に次の有機樹脂絶縁層を積
層形成する際、上部に配される有機樹脂絶縁層が薄膜配
線導体層の側面部に存在する空気を多量に抱き込んで上
下に位置する有機樹脂絶縁層の接合強度が大きく低下す
ることも殆どなく、これによって多層配線基板としての
信頼性を高いものとなすことができる。
Further, according to the multilayer wiring board of the present invention, since the thickness of the thin film wiring conductor layer is 3 μm to 10 μm, the thin film wiring conductor layer is not greatly affected by the surface condition of the upper surface of the organic resin insulating layer. The electric resistance of the thin-film wiring conductor layer can be made a predetermined value, and the next organic resin insulation layer can be formed on the organic resin insulation layer on which the thin-film wiring conductor layer is formed. When laminating, the organic resin insulating layer disposed on the upper part embraces a large amount of air existing on the side surface of the thin film wiring conductor layer, and the bonding strength of the organic resin insulating layer located above and below may be greatly reduced. Almost no, so that the reliability as a multilayer wiring board can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の多層配線基板の一実施例を示す断面図
である。
FIG. 1 is a sectional view showing one embodiment of a multilayer wiring board of the present invention.

【符号の説明】[Explanation of symbols]

1・・・基板 2・・・有機樹脂絶縁層 3・・・薄膜配線導体 4・・・多層配線部 8・・・スルーホール 9・・・スルーホール導体 DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Organic resin insulating layer 3 ... Thin film wiring conductor 4 ... Multilayer wiring part 8 ... Through hole 9 ... Through hole conductor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板上に、有機樹脂絶縁層と薄膜配線導体
層とを交互に積層するとともに上下に位置する薄膜配線
導体層を各有機樹脂絶縁層に設けたスルーホールの内壁
に被着させたスルーホール導体を介して接続してなる多
層配線基板であって、前記有機樹脂絶縁層間に配置され
ている薄膜配線導体層の厚みが3μm乃至10μmであ
ることを特徴とする多層配線基板。
An organic resin insulating layer and a thin film wiring conductor layer are alternately laminated on a substrate, and thin film wiring conductor layers located above and below are adhered to inner walls of through holes provided in each organic resin insulation layer. A multilayer wiring board connected via a through-hole conductor, wherein a thickness of a thin-film wiring conductor layer disposed between the organic resin insulating layers is 3 μm to 10 μm.
JP13215497A 1997-05-22 1997-05-22 Multilayered wiring board Pending JPH10322026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13215497A JPH10322026A (en) 1997-05-22 1997-05-22 Multilayered wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13215497A JPH10322026A (en) 1997-05-22 1997-05-22 Multilayered wiring board

Publications (1)

Publication Number Publication Date
JPH10322026A true JPH10322026A (en) 1998-12-04

Family

ID=15074632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13215497A Pending JPH10322026A (en) 1997-05-22 1997-05-22 Multilayered wiring board

Country Status (1)

Country Link
JP (1) JPH10322026A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208773A (en) * 1999-11-18 2001-08-03 Ibiden Co Ltd Inspecting apparatus and probe card
JP2003203954A (en) * 1999-11-18 2003-07-18 Ibiden Co Ltd Inspection apparatus and probe card
JP2011029522A (en) * 2009-07-29 2011-02-10 Kyocera Corp Multilayer wiring board
WO2016189577A1 (en) * 2015-05-22 2016-12-01 富士機械製造株式会社 Wiring forming method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208773A (en) * 1999-11-18 2001-08-03 Ibiden Co Ltd Inspecting apparatus and probe card
JP2003203954A (en) * 1999-11-18 2003-07-18 Ibiden Co Ltd Inspection apparatus and probe card
JP2011029522A (en) * 2009-07-29 2011-02-10 Kyocera Corp Multilayer wiring board
WO2016189577A1 (en) * 2015-05-22 2016-12-01 富士機械製造株式会社 Wiring forming method

Similar Documents

Publication Publication Date Title
JPH09326556A (en) Multilayer wiring board and manufacture thereof
JPH09312472A (en) Multilayer wiring board and its manufacturing method
JP3071723B2 (en) Method for manufacturing multilayer wiring board
JPH10322026A (en) Multilayered wiring board
JPH10340978A (en) Mounting structure for electronic component onto wiring board
JPH10322019A (en) Multilayered wiring board
JPH1027968A (en) Multilayer wiring board
JPH10215042A (en) Multilayer wiring board
JPH114080A (en) Multilayered wiring board
JPH1041632A (en) Multilayer wiring board
JPH11150370A (en) Multilayer wiring board
JPH10163634A (en) Multilayer wiring board
JPH09312479A (en) Multi-layer circuit board
JPH11233909A (en) Wiring board
JPH1126939A (en) Multilayered wiring board
JPH10150266A (en) Multilayer interconnection board
JPH10322030A (en) Multilayered wiring board
JPH11233679A (en) Multilayer wiring board
JPH10322032A (en) Manufacture of multilayered wiring board
JPH1197852A (en) Multilayered wiring board
JPH10341082A (en) Multilayered wiring board
JPH11233939A (en) Manufacture of multilayer wiring board
JPH1013030A (en) Multilayer wiring board
JPH1197847A (en) Multilayered wiring board
JPH118470A (en) Multilevel interconnection board