JPH10322019A - Multilayered wiring board - Google Patents

Multilayered wiring board

Info

Publication number
JPH10322019A
JPH10322019A JP13350997A JP13350997A JPH10322019A JP H10322019 A JPH10322019 A JP H10322019A JP 13350997 A JP13350997 A JP 13350997A JP 13350997 A JP13350997 A JP 13350997A JP H10322019 A JPH10322019 A JP H10322019A
Authority
JP
Japan
Prior art keywords
organic resin
resin insulating
wiring conductor
film wiring
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13350997A
Other languages
Japanese (ja)
Inventor
Toyoji Hayashi
豊司 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP13350997A priority Critical patent/JPH10322019A/en
Publication of JPH10322019A publication Critical patent/JPH10322019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid the release of thin film wiring insulating layers from organic resin insulating layers, by a method wherein the organic resin insulating layers and the thin film wiring conductor layers formed of through holes are alternately laminated so that the thin film wiring conductor layers may be wrapped around upper and lower organic resin insulating layers to be firmly fixed. SOLUTION: Organic resin insulating layers 2 made of epoxy resin, etc., and thin film wiring conductor layers 3 are alternately laminated in multilayers to form a multilayered wiring part 4 on the surface of a substrate 1 made of oxide base ceramics, etc.. In such a constitution, throughholes 10 in aperture diameter of 0.02-1.0 mm are formed so that the parts of the organic resin insulating layer 2 positioned on the above part may extend into the through holes 10 to he integrated with the lower organic resin insulating layers 2, thereby enabling the thin film wiring conductor layers 3 to be firmly junctioned by completely wrapping around the organic resin insulating layers 2. Through these procedures, the thin film wiring conductor layers 3 will not be released from the organic resin insulating layers 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多層配線基板に関
し、より詳細には混成集積回路装置や半導体素子を収容
する半導体素子収納用パッケージ等に使用される多層配
線基板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer wiring board, and more particularly to a multilayer wiring board used for a hybrid integrated circuit device, a semiconductor element housing package for housing a semiconductor element, and the like.

【0002】[0002]

【従来の技術】従来、混成集積回路装置や半導体素子収
納用パッケージ等に使用される多層配線基板はその配線
導体がMo−Mn法等の厚膜形成技術によって形成され
ている。
2. Description of the Related Art Hitherto, a multilayer wiring board used in a hybrid integrated circuit device, a package for accommodating a semiconductor element, or the like, has its wiring conductor formed by a thick film forming technique such as the Mo-Mn method.

【0003】このMo−Mn法は通常、タングステン、
モリブデン、マンガン等の高融点金属粉末に有機溶剤、
溶媒を添加混合し、ペースト状となした金属ペーストを
生セラミック体の外表面にスクリーン印刷法により所定
パターンに印刷塗布し、次ぎにこれを複数枚積層すると
ともに還元雰囲気中で焼成し、高融点金属粉末と生セラ
ミック体とを焼結一体化させる方法である。
[0003] This Mo-Mn method is generally used for tungsten,
Organic solvents for high melting point metal powders such as molybdenum and manganese,
A solvent is added and mixed, and a paste-like metal paste is applied by printing on the outer surface of the green ceramic body in a predetermined pattern by a screen printing method. Then, a plurality of these layers are laminated and fired in a reducing atmosphere to obtain a high melting point. This is a method of sintering and integrating a metal powder and a green ceramic body.

【0004】なお、前記配線導体が形成されるセラミッ
ク体としては通常、酸化アルミニウム質焼結体やムライ
ト質焼結体等の酸化物系セラミックス、或いは表面に酸
化物膜を被着させた窒化アルミニウム質焼結体や炭化珪
素質焼結体等の非酸化物系セラミックスが使用される。
The ceramic body on which the wiring conductor is formed is usually an oxide ceramic such as an aluminum oxide sintered body or a mullite sintered body, or an aluminum nitride having an oxide film deposited on the surface. Non-oxide ceramics such as a porous sintered body and a silicon carbide sintered body are used.

【0005】しかしながら、このMo−Mn法を用いて
配線導体を形成した場合、配線導体は金属ペーストをス
クリーン印刷することにより形成されることから微細化
が困難で配線導体を高密度に形成することができないと
いう欠点を有していた。
However, when the wiring conductor is formed by using the Mo-Mn method, the wiring conductor is formed by screen-printing a metal paste. Had the drawback that it could not be done.

【0006】そこで上記欠点を解消するために配線導体
を従来の厚膜形成技術で形成するのに変えて微細化が可
能な薄膜形成技術を用いて高密度に形成した多層配線基
板が採用されるようになってきた。
In order to solve the above-mentioned drawbacks, a multilayer wiring board formed at a high density by using a thin film forming technique capable of miniaturization instead of forming a wiring conductor by a conventional thick film forming technique is employed. It has become.

【0007】かかる多層配線基板は、酸化アルミニウム
質焼結体等から成るセラミックスやガラス繊維を織り込
んだ布にエポキシ樹脂を含浸させて形成されるガラスエ
ポキシ樹脂等から成る絶縁基板と、該絶縁基板の上面に
スピンコート法及び熱硬化処理等によって形成されるエ
ポキシ樹脂からなる有機樹脂絶縁層と、銅やアルミニウ
ム等の金属をめっき法や蒸着法等の薄膜形成技術及びフ
ォトリソグラフィー技術を採用することによって形成さ
れる薄膜配線導体層とを交互に多層に積層させるととも
に上下に位置する薄膜配線導体層を有機樹脂絶縁層に設
けたスルーホールの内壁に被着させたスルーホール導体
を介して電気的に接続させた構造を有している。
Such a multilayer wiring board is composed of an insulating substrate made of glass epoxy resin or the like formed by impregnating a ceramic or glass fiber woven fabric made of aluminum oxide sintered body or the like with an epoxy resin, and an insulating substrate made of the same. By adopting an organic resin insulation layer made of epoxy resin formed on the upper surface by spin coating and thermosetting, and metal such as copper and aluminum by using thin film forming technology such as plating and vapor deposition and photolithography technology The thin-film wiring conductor layers to be formed are alternately laminated in multiple layers, and the upper and lower thin-film wiring conductor layers are electrically connected via the through-hole conductors attached to the inner walls of the through-holes provided in the organic resin insulating layer. It has a connected structure.

【0008】またこの多層配線基板においては、各有機
樹脂絶縁層に形成されているスルーホールがフォトリソ
グラフィー技術を採用することによって、具体的にはま
ず有機樹脂絶縁層上にレジスト材を塗布するとともにこ
れに露光、現像を施すことによって所定位置に所定形状
の窓部を形成し、次に前記レジスト材の窓部にエッチン
グ液を配し、レジスト材の窓部に位置する有機樹脂絶縁
層を除去して、有機樹脂絶縁層に穴(スルーホール)を
形成し、最後に前記ジレスト材を有機樹脂絶縁層より剥
離させ除去することによって形成されている。
In this multilayer wiring board, the through holes formed in each organic resin insulating layer employ photolithography technology. Specifically, first, a resist material is applied onto the organic resin insulating layer. Exposure and development are performed on this to form a window of a predetermined shape at a predetermined position, and then an etchant is disposed on the window of the resist material to remove the organic resin insulating layer located on the window of the resist material. Then, a hole (through hole) is formed in the organic resin insulating layer, and finally, the above-mentioned girest material is peeled off from the organic resin insulating layer and removed.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、この多
層配線基板は、エポキシ樹脂等からなる有機樹脂絶縁層
と銅やアルミニウム等の金属材料からなる薄膜配線導体
層との密着性が悪く、有機樹脂絶縁層や薄膜配線導体層
に外力が印加されると該外力によって有機樹脂絶縁層と
薄膜配線導体層間に剥離が容易に発生してしまい、多層
配線基板としての信頼性が劣化してしまうという欠点を
誘発した。特に、有機樹脂絶縁層間に薄膜配線導体層を
高密度に形成し、小型にして配線を極めて高密度に形成
することが要求される近時の多層配線基板においては上
記欠点が顕著なものとなってきた。
However, this multilayer wiring board has poor adhesion between an organic resin insulating layer made of an epoxy resin or the like and a thin film wiring conductor layer made of a metal material such as copper or aluminum. When an external force is applied to the layer or the thin-film wiring conductor layer, the external force easily causes peeling between the organic resin insulating layer and the thin-film wiring conductor layer, thereby deteriorating the reliability as a multilayer wiring board. Provoked. In particular, the above-mentioned drawbacks become remarkable in recent multilayer wiring boards in which a thin-film wiring conductor layer is formed at a high density between organic resin insulating layers, and it is required to miniaturize and form a wiring at an extremely high density. Have been.

【0010】本発明は上述の欠点に鑑み案出されたもの
で、その目的は有機樹脂絶縁層と薄膜配線導体層とを強
固に接合させた信頼性の高い多層配線基板を提供するこ
とにある。
The present invention has been devised in view of the above-mentioned drawbacks, and has as its object to provide a highly reliable multilayer wiring board in which an organic resin insulating layer and a thin-film wiring conductor layer are firmly joined. .

【0011】[0011]

【課題を解決するための手段】本発明は、基板上に、有
機樹脂絶縁層と薄膜配線導体層とを交互に積層するとと
もに上下に位置する薄膜配線導体層を各有機樹脂絶縁層
に設けたスルーホールの内壁に被着させたスルーホール
導体を介して接続してなる多層配線基板であって、前記
有機樹脂絶縁層間に配置されている薄膜配線導体層に貫
通孔を形成したことを特徴とするものである。
According to the present invention, an organic resin insulating layer and a thin film wiring conductor layer are alternately laminated on a substrate, and thin film wiring conductor layers positioned above and below are provided on each organic resin insulation layer. A multilayer wiring board connected via a through-hole conductor attached to an inner wall of the through-hole, wherein a through-hole is formed in a thin-film wiring conductor layer disposed between the organic resin insulating layers. Is what you do.

【0012】また本発明は、前記薄膜配線導体層に形成
した貫通孔の開口径を0.02mm乃至1.0mmとし
たことを特徴とするものである。
Further, the present invention is characterized in that an opening diameter of the through hole formed in the thin film wiring conductor layer is set to 0.02 mm to 1.0 mm.

【0013】本発明の多層配線基板によれば、有機樹脂
絶縁層と薄膜配線導体層とを交互に積層するとともに有
機樹脂絶縁層間に配置される薄膜配線導体層に、例え
ば、開口径が0.02mm乃至1.0mmの貫通孔を形
成したことから薄膜配線導体層を間に挟んで上下に位置
する有機樹脂絶縁層は前記薄膜配線導体層に設けた貫通
孔を介して一体的となり、その結果、薄膜配線導体層は
上下に位置する有機樹脂絶縁層で完全に包まれて強固に
固着され、外力が印加されても有機樹脂絶縁層と薄膜配
線導体層との間に剥離を発生することはない。
According to the multilayer wiring board of the present invention, the organic resin insulating layers and the thin film wiring conductor layers are alternately laminated, and the thin film wiring conductor layer arranged between the organic resin insulating layers has, for example, an opening diameter of 0.1 mm. Since the through-holes of 02 mm to 1.0 mm were formed, the organic resin insulating layers located above and below the thin-film wiring conductor layer were integrated with each other through the through-holes provided in the thin-film wiring conductor layer. However, the thin-film wiring conductor layer is completely wrapped by the organic resin insulating layers located above and below and is firmly fixed, and even if an external force is applied, separation between the organic resin insulating layer and the thin-film wiring conductor layer does not occur. Absent.

【0014】また本発明によれば、基板上に薄膜形成技
術によって配線を形成したことから配線の微細化が可能
となり、配線を極めて高密度に形成することが可能とな
る。
Further, according to the present invention, since the wiring is formed on the substrate by the thin film forming technique, the wiring can be miniaturized, and the wiring can be formed at an extremely high density.

【0015】[0015]

【発明の実施の形態】次に、本発明を添付図面に基づき
詳細に説明する。図1は、本発明の多層配線基板の一実
施例を示し、1は絶縁性の基板、2は有機樹脂絶縁層、
3は薄膜配線導体層である。
Next, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows an embodiment of the multilayer wiring board of the present invention, wherein 1 is an insulating substrate, 2 is an organic resin insulating layer,
3 is a thin film wiring conductor layer.

【0016】前記基板1はその上面に有機樹脂絶縁層2
と薄膜配線導体層3とから成る多層配線部4が配設され
ており、該多層配線部4を支持する支持部材として作用
する。
The substrate 1 has an organic resin insulating layer 2 on its upper surface.
And a thin-film wiring conductor layer 3, and a multilayer wiring portion 4 is provided, and functions as a support member for supporting the multilayer wiring portion 4.

【0017】前記基板1は酸化アルミニウム質焼結体や
ムライト質焼結体等の酸化物系セラミックス、或いは表
面に酸化物膜を有する窒化アルミニウム質焼結体、炭化
珪素質焼結体等の非酸化物系セラミックス、更にはガラ
ス繊維を織り込んだ布にエポキシ樹脂を含浸させたガラ
スエポキシ樹脂等の電気絶縁材料で形成されており、例
えば、酸化アルミニウム質焼結体で形成されている場合
には、アルミナ、シリカ、カルシア、マグネシア等の原
料粉末に適当な有機溶剤、溶媒を添加混合して泥漿状と
なすとともにこれを従来周知のドクターブレード法やカ
レンダーロール法を採用することによってセラミックグ
リーンシート(セラミック生シート)を形成し、しかる
後、前記セラミックグリーンシートに適当な打ち抜き加
工を施し、所定形状となすとともに高温(約1600
℃)で焼成することによって、或いはアルミナ等の原料
粉末に適当な有機溶剤、溶媒を添加混合して原料粉末を
調整するとともに該原料粉末をプレス成形機によって所
定形状に成形し、最後に前記成形体を約1600℃の温
度で焼成することによって製作され、またガラスエポキ
シ樹脂から成る場合は、例えばガラス繊維を織り込んだ
布にエポキシ樹脂の前駆体を含浸させるとともに該エポ
キシ樹脂前駆体を所定の温度で熱硬化させることによっ
て製作される。
The substrate 1 is made of an oxide ceramic such as an aluminum oxide sintered body or a mullite sintered body, or a non-conductive body such as an aluminum nitride sintered body or a silicon carbide sintered body having an oxide film on the surface. Oxide ceramics, and further made of an electrically insulating material such as glass epoxy resin impregnated with epoxy resin in a cloth woven with glass fiber, for example, when formed of aluminum oxide sintered body , Alumina, silica, calcia, magnesia, etc., an appropriate organic solvent and a solvent are added and mixed to form a slurry, and the ceramic green sheet is formed by employing a conventionally known doctor blade method or calendar roll method. Ceramic green sheet), and after that, the ceramic green sheet is subjected to an appropriate punching process to obtain a predetermined shape. Hot together form (about 1600
C) or by mixing a raw material powder such as alumina with an appropriate organic solvent and solvent to adjust the raw material powder and form the raw material powder into a predetermined shape by a press molding machine. If the body is made by firing the body at a temperature of about 1600 ° C. and is made of glass epoxy resin, for example, a cloth woven with glass fiber is impregnated with the epoxy resin precursor and the epoxy resin precursor is heated to a predetermined temperature. It is manufactured by heat curing.

【0018】また前記基板1には上下両面に貫通する孔
径が例えば、直径0.3mm〜0.5mmの貫通孔5が
形成されており、該貫通孔5の内壁には両端が基板1の
上下両面に導出する導電層6が被着されている。
The substrate 1 is formed with a through hole 5 having a diameter of, for example, 0.3 mm to 0.5 mm, which penetrates the upper and lower surfaces of the substrate 1. Conductive layers 6 leading to both sides are applied.

【0019】前記貫通孔5は後述する基板1の上面に形
成される多層配線部4の薄膜配線導体層3と外部電気回
路とを電気的に接続する、或いは基板1の上下両面に多
層配線部4を形成した場合には両面の多層配線部4の薄
膜配線導体層3同士を電気的に接続する導電層6を形成
するための形成孔として作用し、基板1にドリル孔あけ
加工法を施すことによって基板1の所定位置に所定形状
に形成される。
The through hole 5 electrically connects the thin-film wiring conductor layer 3 of the multilayer wiring portion 4 formed on the upper surface of the substrate 1 and an external electric circuit to be described later, or the multilayer wiring portion is formed on both upper and lower surfaces of the substrate 1. When the substrate 4 is formed, it acts as a forming hole for forming a conductive layer 6 for electrically connecting the thin film wiring conductor layers 3 of the multilayer wiring portion 4 on both surfaces, and the substrate 1 is subjected to a drilling method. Thus, a predetermined shape is formed at a predetermined position on the substrate 1.

【0020】更に前記貫通孔5の内壁及び基板1の上下
両面には導電層6が被着形成されており、該導電層6は
例えば、銅やニッケル等の金属材料からなり、従来周知
のめっき法及びエッチング加工技術を採用することによ
って貫通孔5の内壁に両端を基板1の上下両面に導出さ
せた状態で被着形成される。
Further, a conductive layer 6 is formed on the inner wall of the through hole 5 and the upper and lower surfaces of the substrate 1, and the conductive layer 6 is made of a metal material such as copper or nickel. By adopting the method and the etching technique, it is adhered to the inner wall of the through hole 5 with both ends being led out to the upper and lower surfaces of the substrate 1.

【0021】前記導電層6は基板1の上面に形成される
多層配線部4の薄膜配線導体層3を外部電気回路に電気
的に接続したり、基板1の上下両面に形成される各々の
多層配線部4の薄膜配線導体層3同士を電気的に接続す
る作用をなす。
The conductive layer 6 is used to electrically connect the thin-film wiring conductor layer 3 of the multilayer wiring portion 4 formed on the upper surface of the substrate 1 to an external electric circuit, or to form each of the multilayers formed on the upper and lower surfaces of the substrate 1. It functions to electrically connect the thin film wiring conductor layers 3 of the wiring portion 4 to each other.

【0022】また前記基板1に形成した貫通孔5はその
内部にエポキシ樹脂等からなる有機樹脂充填体7が充填
されており、該有機樹脂充填体7によって貫通孔5が完
全に埋められ、同時に有機樹脂充填体7の両端面が基板
1の上下両面に被着させた導電層6の面と同一平面とな
っている。
The through hole 5 formed in the substrate 1 is filled with an organic resin filler 7 made of epoxy resin or the like. The through hole 5 is completely filled with the organic resin filler 7, and Both end surfaces of the organic resin filler 7 are flush with the surface of the conductive layer 6 attached to the upper and lower surfaces of the substrate 1.

【0023】前記有機樹脂充填体7は基板1の上面及び
/又は下面に後述する有機樹脂絶縁層2と薄膜配線導体
層3とから成る多層配線部4を形成する際、多層配線部
4の有機樹脂絶縁層2と薄膜配線導体層3の平坦化を維
持する作用をなす。
The organic resin filler 7 is used to form a multilayer wiring portion 4 composed of an organic resin insulating layer 2 and a thin film wiring conductor layer 3 described later on the upper surface and / or lower surface of the substrate 1. It functions to maintain the flatness of the resin insulating layer 2 and the thin film wiring conductor layer 3.

【0024】なお、前記有機樹脂充填体7は基板1の貫
通孔5内にエポキシ樹脂等の前駆体を充填し、しかる
後、これに80〜200℃の温度を0.5〜3時間印加
し、完全に熱硬化させることによって基板1の貫通孔5
内に充填される。
The organic resin filler 7 fills the through hole 5 of the substrate 1 with a precursor such as an epoxy resin, and then is applied with a temperature of 80 to 200 ° C. for 0.5 to 3 hours. Is completely cured by heat so that the through holes 5 of the substrate 1 are formed.
Is filled in.

【0025】更に前記基板1はその上面に有機樹脂絶縁
層2と薄膜配線導体層3とが交互に多層に積層された多
層配線部4が形成されており、且つ薄膜配線導体層3の
一部は導電層6と電気的に接続している。
Further, on the upper surface of the substrate 1, a multilayer wiring portion 4 in which an organic resin insulating layer 2 and a thin film wiring conductor layer 3 are alternately laminated in a multilayer is formed, and a part of the thin film wiring conductor layer 3 is formed. Is electrically connected to the conductive layer 6.

【0026】前記多層配線部4を構成する有機樹脂絶縁
層2は上下に位置する薄膜配線導体層3の電気的絶縁を
図る作用をなし、薄膜配線導体層3は電気信号を伝達す
るための伝達路として作用する。
The organic resin insulating layer 2 constituting the multi-layer wiring section 4 functions to electrically insulate the thin film wiring conductor layer 3 located above and below, and the thin film wiring conductor layer 3 is used for transmitting electric signals. Acts as a road.

【0027】前記多層配線部4の有機樹脂絶縁層2はエ
ポキシ樹脂から成り、例えば、ビスフェノールA型エポ
キシ樹脂、ノボラック型エポキシ樹脂、グリシジルエス
テル型エポキシ樹脂等にアミン系硬化剤、イミダゾール
系硬化剤、酸無水物系硬化剤等の硬化剤を添加混合して
ペースト状のエポキシ樹脂前駆体を得るとともに該エポ
キシ樹脂前駆体を基板1の上部にスピンコート法により
被着させ、しかる後、これを約80℃〜200℃の熱で
0.5乃至3時間熱処理し、熱硬化させることによって
形成される。
The organic resin insulating layer 2 of the multilayer wiring section 4 is made of an epoxy resin. For example, bisphenol A type epoxy resin, novolak type epoxy resin, glycidyl ester type epoxy resin, etc. A curing agent such as an acid anhydride-based curing agent is added and mixed to obtain a paste-like epoxy resin precursor, and the epoxy resin precursor is applied to the upper portion of the substrate 1 by a spin coating method. It is formed by heat-treating with heat of 80 ° C. to 200 ° C. for 0.5 to 3 hours and heat curing.

【0028】また前記有機樹脂絶縁層2はその各々の所
定位置に最小径が有機樹脂絶縁層2の厚みに対して約
1.5倍程度のスルーホール8が形成されており、該ス
ルーホール8は後述する有機樹脂絶縁層2を挟んで上下
に位置する薄膜配線導体層3の各々を電気的に接続する
スルーホール導体9を形成するための形成孔として作用
する。
The organic resin insulating layer 2 has a through hole 8 at a predetermined position, the minimum diameter of which is about 1.5 times the thickness of the organic resin insulating layer 2. Serves as a forming hole for forming a through-hole conductor 9 for electrically connecting each of the thin film wiring conductor layers 3 positioned above and below the organic resin insulating layer 2 described later.

【0029】前記有機樹脂絶縁層2に設けるスルーホー
ル8は例えば、フォトリソグラフイー技術、具体的には
有機樹脂絶縁層2上にレジスト材を塗布するとともにこ
れに露光、現像を施すことによって所定位置に所定形状
の窓部を形成し、次に前記レジスト材の窓部にエッチン
グ液を配し、レジスト材の窓部に位置する有機樹脂絶縁
層2を除去して、有機樹脂絶縁層2に穴(スルーホー
ル)を形成し、最後に前記レジスト材を有機樹脂絶縁層
2上より剥離させ除去することによって行われる。
The through hole 8 provided in the organic resin insulating layer 2 is formed at a predetermined position by, for example, photolithography, specifically, by applying a resist material on the organic resin insulating layer 2 and exposing and developing the resist material. Then, a window having a predetermined shape is formed, and then an etchant is disposed on the window of the resist material, the organic resin insulating layer 2 located on the window of the resist material is removed, and a hole is formed in the organic resin insulating layer 2. (Through holes), and finally, the resist material is peeled off from the organic resin insulating layer 2 and removed.

【0030】更に前記各有機樹脂絶縁層2の上面には所
定パターンの薄膜配線導体層3が、また各有機樹脂絶縁
層2に設けたスルーホール8の内壁にはスルーホール導
体9が各々配設されており、スルーホール導体9によっ
て間に有機樹脂絶縁層2を挟んで上下に位置する各薄膜
配線導体層3の各々が電気的に接続されるようになって
いる。
Further, a thin-film wiring conductor layer 3 having a predetermined pattern is provided on the upper surface of each organic resin insulating layer 2, and a through-hole conductor 9 is provided on an inner wall of a through hole 8 provided in each organic resin insulating layer 2. Each of the thin-film wiring conductor layers 3 located above and below the organic resin insulating layer 2 with the through-hole conductor 9 therebetween is electrically connected.

【0031】前記各有機樹脂絶縁層2の上面及びスルー
ホール8内に配設される薄膜配線導体層3及びスルーホ
ール導体9は銅、ニッケル、金、アルミニウム等の金属
材料を無電解めっき法や蒸着法、スパッタリング法等の
薄膜形成技術及びエッチング加工技術を採用することに
よって形成され、例えば銅で形成されている場合には、
有機樹脂絶縁層2の上面及びスルーホール8の内壁面に
硫酸銅0.06モル/リットル、ホルマリン0.3モル
/リットル、水酸化ナトリウム0.35モル/リット
ル、エチレンジアミン四酢酸0.35モル/リットルか
らなる無電解銅めっき浴を用いて厚さ1μm乃至40μ
mの銅層を被着させ、しかる後、前記銅層をエッチング
加工技術を採用することにより所定パターンに加工する
ことによって各有機樹脂絶縁層2間及び各有機樹脂絶縁
層2のスルーホール8内壁に配設される。この場合、薄
膜配線導体層3は薄膜形成技術により形成されることか
ら配線の微細化が可能であり、これによって薄膜配線導
体層3を極めて高密度に形成することが可能となる。
The thin-film wiring conductor layer 3 and the through-hole conductor 9 provided in the upper surface of each of the organic resin insulating layers 2 and in the through-holes 8 are made of a metal material such as copper, nickel, gold, or aluminum by electroless plating. It is formed by employing a thin film forming technique such as a vapor deposition method and a sputtering method and an etching processing technique.
0.06 mol / l of copper sulfate, 0.3 mol / l of formalin, 0.35 mol / l of sodium hydroxide, 0.35 mol / l of ethylenediaminetetraacetic acid are formed on the upper surface of the organic resin insulating layer 2 and the inner wall surface of the through hole 8. 1 µm to 40 µm using a 1 liter electroless copper plating bath
m, and thereafter, the copper layer is processed into a predetermined pattern by employing an etching technique, thereby forming an inner wall between the organic resin insulating layers 2 and between the organic resin insulating layers 2. It is arranged in. In this case, since the thin-film wiring conductor layer 3 is formed by a thin-film forming technique, the wiring can be miniaturized, thereby making it possible to form the thin-film wiring conductor layer 3 at an extremely high density.

【0032】なお、前記有機樹脂絶縁層2と薄膜配線導
体層3とを交互に多層に積層して形成される多層配線部
4は基板1に設けた貫通孔5が有機樹脂充填体7で完全
に埋められていることから基板1の上面に有機樹脂絶縁
層2を形成しても該有機樹脂絶縁層2はその平坦化が維
持され、各有機樹脂絶縁層2上に形成される薄膜配線導
体層3に断線等が発生するのを有効に防止することが可
能となる。
The multilayer wiring portion 4 formed by alternately laminating the organic resin insulating layer 2 and the thin film wiring conductor layer 3 in multiple layers has a through hole 5 provided in the substrate 1 completely filled with an organic resin filler 7. Even when the organic resin insulating layer 2 is formed on the upper surface of the substrate 1, the organic resin insulating layer 2 is kept flat, and the thin film wiring conductor formed on each organic resin insulating layer 2 is formed. It is possible to effectively prevent occurrence of disconnection or the like in the layer 3.

【0033】また前記多層配線部4は各有機樹脂絶縁層
2の厚みが100μmを超えると有機樹脂絶縁層2にフ
ォトリソグラフイー技術を採用することによってスルー
ホール8を形成する際、エッチングの加工時間が長くな
ってスルーホール8を所望する鮮明な形状に形成するの
が困難となり、また5μm未満となると有機樹脂絶縁層
2の上面に上下に位置する有機樹脂絶縁層2の接合強度
を上げるための粗面加工を施す際、有機樹脂絶縁層2に
不要な穴が形成され上下に位置する薄膜配線導体層3に
不要な電気的短絡を招来してしまう危険性がある。従っ
て、前記有機樹脂絶縁層2はその各々の厚みを5μm乃
至100μmの範囲としておくことが好ましい。
When the thickness of each organic resin insulating layer 2 exceeds 100 μm, the multilayer wiring portion 4 employs photolithography technology in the organic resin insulating layer 2 to form a through-hole 8 by using etching time. Becomes longer, making it difficult to form the through hole 8 into a desired sharp shape. If the thickness is less than 5 μm, the bonding strength of the organic resin insulating layer 2 located above and below the organic resin insulating layer 2 is increased. When roughening is performed, there is a risk that unnecessary holes are formed in the organic resin insulating layer 2 and unnecessary electrical short circuits are caused in the thin film wiring conductor layers 3 located above and below. Therefore, it is preferable that the thickness of each of the organic resin insulating layers 2 is in the range of 5 μm to 100 μm.

【0034】更に前記多層配線部4の各薄膜配線導体層
3はその厚みが1μm未満となると各薄膜配線導体層3
の電気抵抗が大きなものとなって各薄膜配線導体層3に
所定の電気信号を伝達させることが困難なものとなり、
また40μmを越えると薄膜配線導体層3を有機樹脂絶
縁層2に被着させる際、薄膜配線導体層3内に大きな応
力が内在し、該内在応力によって薄膜配線導体層3が有
機樹脂絶縁層2より剥離し易いものとなる。従って、前
記多層配線部4の各薄膜配線導体層3の厚みは1μm乃
至40μmの範囲としておくことが好ましい。
Further, when the thickness of each thin film wiring conductor layer 3 of the multilayer wiring portion 4 becomes less than 1 μm, each thin film wiring conductor layer 3 becomes thin.
Has a large electric resistance, and it is difficult to transmit a predetermined electric signal to each thin-film wiring conductor layer 3,
If the thickness exceeds 40 μm, when the thin film wiring conductor layer 3 is applied to the organic resin insulating layer 2, a large stress is present in the thin film wiring conductor layer 3. It is easier to peel off. Therefore, it is preferable that the thickness of each thin-film wiring conductor layer 3 of the multilayer wiring portion 4 be in the range of 1 μm to 40 μm.

【0035】また更に前記薄膜配線導体層3はその一部
に貫通孔10が設けられており、該貫通孔10はその内
部に上部に位置する有機樹脂絶縁層2の一部が入り込ん
で下部の有機樹脂絶縁層2と一体化し、これによって薄
膜配線導体層3は上下に位置する有機樹脂絶縁層2で完
全に包まれて薄膜配線導体層3と有機樹脂絶縁層2とは
強固に接合し、薄膜配線導体層3や有機樹脂絶縁層2に
外力が印加されても有機樹脂絶縁層2と薄膜配線導体層
3との間には剥離を発生することはない。
Further, the thin-film wiring conductor layer 3 is provided with a through-hole 10 in a part thereof, and the through-hole 10 has a part of the organic resin insulating layer 2 located in the upper part penetrating therein. The thin film wiring conductor layer 3 is completely wrapped by the organic resin insulation layers 2 positioned above and below, whereby the thin film wiring conductor layer 3 and the organic resin insulation layer 2 are firmly joined together. Even if an external force is applied to the thin-film wiring conductor layer 3 or the organic resin insulation layer 2, no separation occurs between the organic resin insulation layer 2 and the thin-film wiring conductor layer 3.

【0036】前記薄膜配線導体層3に形成する貫通孔1
0はその開口径が0.02mm未満であると貫通孔10
内に有機樹脂絶縁層2の一部が入り込みにくくなり、ま
た1.0mmを超えると薄膜配線導体層3の電気抵抗値
が不要に高くなって電気信号の伝搬に悪影響を与える危
険性がある。従って、前記薄膜配線導体層3に形成する
貫通孔10はその開口径を0.02mm乃至1.0mm
の範囲としておくことが好ましい。
The through hole 1 formed in the thin film wiring conductor layer 3
0 means that if the opening diameter is less than 0.02 mm,
If the thickness exceeds 1.0 mm, the electric resistance of the thin-film wiring conductor layer 3 becomes unnecessarily high, which may adversely affect the propagation of electric signals. Therefore, the through hole 10 formed in the thin film wiring conductor layer 3 has an opening diameter of 0.02 mm to 1.0 mm.
Is preferably set in the range.

【0037】前記薄膜配線導体層3に形成する貫通孔1
0は、下部に位置する有機樹脂絶縁層2上に無電解めっ
き法や蒸着法、スパッタリング法等の薄膜形成技術及び
エッチング加工技術を採用することによって薄膜配線導
体層3を形成する際、エッチングのマスクを所定の形状
としておくことによって薄膜配線導体3の所定位置に所
定形状に形成される。
The through hole 1 formed in the thin film wiring conductor layer 3
0 indicates that etching is performed when the thin film wiring conductor layer 3 is formed on the organic resin insulating layer 2 located below by employing a thin film forming technique such as an electroless plating method, a vapor deposition method, or a sputtering method and an etching processing technique. By forming the mask in a predetermined shape, the thin film wiring conductor 3 is formed in a predetermined shape at a predetermined position.

【0038】また前記薄膜配線導体層3に形成する貫通
孔10は、薄膜配線導体層3の形成密度が高く、上下に
位置する有機樹脂絶縁層2の接触面積が狭い領域におい
ては数多く形成し、薄膜配線導体層3の形成密度が低
く、上下に位置する有機樹脂絶縁層2の接触面積が広い
領域においては少なく形成される。
The through-holes 10 formed in the thin-film wiring conductor layer 3 are formed in a large number in a region where the thin-film wiring conductor layer 3 is formed at a high density and the contact area between the organic resin insulating layers 2 located above and below is small. The thin film wiring conductor layer 3 has a low formation density and is formed less in a region where the contact area between the organic resin insulating layers 2 located above and below is large.

【0039】かくして本発明の多層配線基板によれば、
基板1の上面に被着させた多層配線部4上に半導体素子
等の能動部品や容量素子、抵抗器等の受動部品を実装さ
せることによって半導体装置や混成集積回路装置とな
り、基板1の下面に被着されている導電層6を外部電気
回路に接続すれば半導体装置や混成集積回路装置は外部
電気回路に電気的に接続されることとなる。
Thus, according to the multilayer wiring board of the present invention,
Active components such as semiconductor elements and passive components such as capacitors and resistors are mounted on the multilayer wiring portion 4 attached to the upper surface of the substrate 1 to form a semiconductor device or a hybrid integrated circuit device. If the applied conductive layer 6 is connected to an external electric circuit, the semiconductor device and the hybrid integrated circuit device are electrically connected to the external electric circuit.

【0040】なお、本発明は上述の実施例に限定される
ものではなく、本発明の要旨を逸脱しない範囲であれば
種々の変更は可能であり、例えば、上述の実施例におい
ては基板1の上面のみに有機樹脂絶縁層2と薄膜配線導
体層3とから成る多層配線部4を設けたが、多層配線部
4を基板1の下面側のみに設けても、上下の両面に設け
てもよい。
It should be noted that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. Although the multilayer wiring portion 4 including the organic resin insulating layer 2 and the thin film wiring conductor layer 3 is provided only on the upper surface, the multilayer wiring portion 4 may be provided only on the lower surface side of the substrate 1 or on both upper and lower surfaces. .

【0041】[0041]

【発明の効果】本発明の多層配線基板によれば、有機樹
脂絶縁層と薄膜配線導体層とを交互に積層するとともに
有機樹脂絶縁層間に配置される薄膜配線導体層に貫通孔
を形成したことから薄膜配線導体層を間に挟んで上下に
位置する有機樹脂絶縁層は前記薄膜配線導体層に設けた
貫通孔を介して一体的となり、その結果、薄膜配線導体
層は上下に位置する有機樹脂絶縁層で完全に包まれて強
固に固着され、外力が印加されても有機樹脂絶縁層と薄
膜配線導体層との間に剥離を発生することはない。
According to the multilayer wiring board of the present invention, an organic resin insulating layer and a thin film wiring conductor layer are alternately laminated, and a through hole is formed in the thin film wiring conductor layer disposed between the organic resin insulating layers. The organic resin insulating layers located vertically above and below the thin-film wiring conductor layer are integrated through the through holes provided in the thin-film wiring conductor layer, and as a result, the thin-film wiring conductor layers are positioned above and below the organic resin layer. It is completely wrapped and firmly fixed by the insulating layer, and does not cause separation between the organic resin insulating layer and the thin-film wiring conductor layer even when an external force is applied.

【0042】また本発明によれば、基板上に薄膜形成技
術によって配線を形成したことから配線の微細化が可能
となり、配線を極めて高密度に形成することが可能とな
る。
Further, according to the present invention, since the wiring is formed on the substrate by the thin film forming technique, the wiring can be miniaturized, and the wiring can be formed at an extremely high density.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の多層配線基板の一実施例を示す断面図
である。
FIG. 1 is a sectional view showing one embodiment of a multilayer wiring board of the present invention.

【符号の説明】[Explanation of symbols]

1・・・基板 2・・・有機樹脂絶縁層 3・・・薄膜配線導体 4・・・多層配線部 8・・・スルーホール 9・・・スルーホール導体 10・・貫通孔 DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Organic resin insulating layer 3 ... Thin film wiring conductor 4 ... Multilayer wiring part 8 ... Through-hole 9 ... Through-hole conductor 10 ... Through-hole

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】基板上に、有機樹脂絶縁層と薄膜配線導体
層とを交互に積層するとともに上下に位置する薄膜配線
導体層を各有機樹脂絶縁層に設けたスルーホールの内壁
に被着させたスルーホール導体を介して接続してなる多
層配線基板であって、前記有機樹脂絶縁層間に配置され
ている薄膜配線導体層に貫通孔を形成したことを特徴と
する多層配線基板。
An organic resin insulating layer and a thin film wiring conductor layer are alternately laminated on a substrate, and thin film wiring conductor layers located above and below are adhered to inner walls of through holes provided in each organic resin insulation layer. A multilayer wiring board connected through a through-hole conductor, wherein a through-hole is formed in a thin-film wiring conductor layer disposed between the organic resin insulating layers.
【請求項2】前記薄膜配線導体層に形成した貫通孔の開
口径が0.02mm乃至1.0mmであることを特徴と
する請求項1に記載の多層配線基板。
2. The multilayer wiring board according to claim 1, wherein an opening diameter of the through hole formed in the thin-film wiring conductor layer is 0.02 mm to 1.0 mm.
JP13350997A 1997-05-23 1997-05-23 Multilayered wiring board Pending JPH10322019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13350997A JPH10322019A (en) 1997-05-23 1997-05-23 Multilayered wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13350997A JPH10322019A (en) 1997-05-23 1997-05-23 Multilayered wiring board

Publications (1)

Publication Number Publication Date
JPH10322019A true JPH10322019A (en) 1998-12-04

Family

ID=15106448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13350997A Pending JPH10322019A (en) 1997-05-23 1997-05-23 Multilayered wiring board

Country Status (1)

Country Link
JP (1) JPH10322019A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7423475B2 (en) 2003-08-28 2008-09-09 Texas Instruments Incorporated Providing optimal supply voltage to integrated circuits

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7423475B2 (en) 2003-08-28 2008-09-09 Texas Instruments Incorporated Providing optimal supply voltage to integrated circuits

Similar Documents

Publication Publication Date Title
JPH09326556A (en) Multilayer wiring board and manufacture thereof
JPH09312472A (en) Multilayer wiring board and its manufacturing method
JP3071723B2 (en) Method for manufacturing multilayer wiring board
JPH10322026A (en) Multilayered wiring board
JPH10322019A (en) Multilayered wiring board
JPH10340978A (en) Mounting structure for electronic component onto wiring board
JPH1041632A (en) Multilayer wiring board
JPH10215042A (en) Multilayer wiring board
JPH10163634A (en) Multilayer wiring board
JPH11150370A (en) Multilayer wiring board
JPH09312479A (en) Multi-layer circuit board
JPH1027968A (en) Multilayer wiring board
JPH10326966A (en) Multilayered wiring board
JPH10150266A (en) Multilayer interconnection board
JPH1126939A (en) Multilayered wiring board
JPH1013019A (en) Method for manufacturing multilayer wiring board
JPH114080A (en) Multilayered wiring board
JPH1013030A (en) Multilayer wiring board
JPH11233679A (en) Multilayer wiring board
JPH10322030A (en) Multilayered wiring board
JPH11186434A (en) Multi-layer wiring substrate
JPH10335817A (en) Multilayered wiring board
JPH11233939A (en) Manufacture of multilayer wiring board
JPH10150267A (en) Multilayer interconnection board
JPH10341082A (en) Multilayered wiring board

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040714

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Effective date: 20041022

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20050405

Free format text: JAPANESE INTERMEDIATE CODE: A02