JPH11267968A - Polishing method of wafer and polishing machine used therefor - Google Patents

Polishing method of wafer and polishing machine used therefor

Info

Publication number
JPH11267968A
JPH11267968A JP9068098A JP9068098A JPH11267968A JP H11267968 A JPH11267968 A JP H11267968A JP 9068098 A JP9068098 A JP 9068098A JP 9068098 A JP9068098 A JP 9068098A JP H11267968 A JPH11267968 A JP H11267968A
Authority
JP
Japan
Prior art keywords
wafer
polishing
thickness
work table
polished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9068098A
Other languages
Japanese (ja)
Inventor
Kazuo Kobayashi
一雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okamoto Machine Tool Works Ltd
Original Assignee
Okamoto Machine Tool Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamoto Machine Tool Works Ltd filed Critical Okamoto Machine Tool Works Ltd
Priority to JP9068098A priority Critical patent/JPH11267968A/en
Publication of JPH11267968A publication Critical patent/JPH11267968A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture a wafer with a small fluctuation width in thickness and flat surface. SOLUTION: In this polishing method, the thickness T0 (μm) of a wafer is measured and the wafer is polished upto the thickness T1 (μm) of a set target wafer. At first, a polishing speed S (μm/min.) and a polishing time t1 (min.) are decided so as to be (T0 -T1 )>St1 and the wafer is polished at a polishing speed S for t1 hour and then the polished wafer thickness T1 (μm) is measured and again the wafer is polishing at the polishing speed of (T0 -T1 )/t1 (μm/min.) for the time of (T1 -Tf )t1 /(T0 -T1 ) and then the wafer with target thickness Tf (μm) is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ベアウエハ、デバ
イス付ウエハ、磁気ディスクウエハ等のウエハを研磨す
る方法及びそれに用いる研磨盤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for polishing a wafer such as a bare wafer, a wafer with devices, and a magnetic disk wafer, and a polishing machine used for the method.

【0002】[0002]

【従来の技術】ICの高集積化は、64Mbitから2
56Mbitへと移行しつつあり、更に21世紀初頭に
は1Gbitになることが予測されている。この様な高
集積化に対応するためデバイスの多層構造化が進み、デ
バイス表面の凹凸のため、露光時に焦点を合せることが
困難になりつつある。そのため、ウエハの8インチ、1
2インチから16インチへの拡径および薄肉化、ウエハ
の表面平坦度を1μmから、0.5μm、更には0.3
μm、0.2μmにもっていくことが要求されている
(「精密工学会誌」、Vol.62、No.4、199
6年、486−490頁)。このウエハの平坦化の要求
と共に、ウエハ間の厚さの均一性も要求されている。
2. Description of the Related Art High integration of ICs has been started from 64 Mbits to 2
It is shifting to 56 Mbit, and is expected to become 1 Gbit in the early 21st century. In order to cope with such a high integration, a multilayer structure of a device is progressing, and it is becoming difficult to focus at the time of exposure due to unevenness of the device surface. Therefore, 8 inches of the wafer, 1
Enlargement and thinning from 2 inches to 16 inches, wafer surface flatness from 1 μm to 0.5 μm, and even 0.3
μm and 0.2 μm ("Journal of the Japan Society for Precision Engineering", Vol. 62, No. 4, 199).
6 years, 486-490). Along with the demand for the flattening of the wafer, there is also a demand for uniformity of the thickness between the wafers.

【0003】従来、半導体ウエハの研磨方法としては、
図6に示すように回転軸20上に設けた作業テーブル2
1の上に研磨布(発泡ポリウレタンパッド、フェルトパ
ッド)22を載置し、この研磨布の上面に、ヘッド23
の吸着板24を介して取りつけた半導体ウエハ25を軸
26を定位置となるまでZ軸方向に下降させてウエハ2
5に当接し、ロータリージョイントにより回転可能に軸
26に取りつけられたヘッド23をモーター(図示して
ない)により軸26を作業テーブルの回転方向と逆方向
または同一方向に回転させて研磨布でウエハを研磨する
方法が行われている(「砥粒加工学会誌」、Vol.4
2、No.1、1998年1月号、18−21頁)。
Conventionally, as a method for polishing a semiconductor wafer,
The work table 2 provided on the rotating shaft 20 as shown in FIG.
1, a polishing cloth (foamed polyurethane pad, felt pad) 22 is placed, and a head 23 is placed on the upper surface of the polishing cloth.
The semiconductor wafer 25 mounted via the suction plate 24 is lowered in the Z-axis direction until the shaft 26 comes to a fixed position, and the wafer 2
5, the head 23 rotatably attached to the shaft 26 by a rotary joint is rotated by a motor (not shown) so that the shaft 26 is rotated in the opposite direction to or in the same direction as the rotation direction of the work table. Has been carried out ("Journal of the Japan Society for Abrasive Processing", Vol. 4).
2, No. 1, January 1998, pp. 18-21).

【0004】この研磨の際、必要によりウエハと研磨布
の間には、水、アルカリ性水溶液、酸性水溶液あるい
は、酸化アルミナ粉、ダイヤモンド粉もしくは酸化硅素
粉を水に分散させたスラリー状研磨剤が供給される(C
hemical Mechanical Polish
ing)。ウエハの研磨は、通常、ウエハの厚さT
0 (通常は300〜640μm前後)を測定し、目的と
するウエハの厚さTf となる研削(研磨も含む)量T0
−Tf(通常10〜20μm)を定め、一定時間t
1 (分)、一定の研削(研磨)速度S(μm/分)でウ
エハの荒削り(一次ポリシング)をする。(St1 =T
0 −Tf となるよう設定される。)。
In this polishing, water, an alkaline aqueous solution, an acidic aqueous solution, or a slurry-like abrasive in which alumina oxide powder, diamond powder, or silicon oxide powder is dispersed in water is supplied between the wafer and the polishing cloth, if necessary. (C
chemical Mechanical Polish
ing). The polishing of the wafer is usually carried out by polishing the thickness T of the wafer.
0 (usually around 300 to 640 μm), and a grinding (including polishing) amount T 0 that becomes a target wafer thickness T f.
−T f (usually 10 to 20 μm), and a certain time t
1 (minute), the wafer is roughly cut (primary polishing) at a constant grinding (polishing) speed S (μm / minute). (St 1 = T
0Tf is set. ).

【0005】次いで、ウエハの厚さを測定し、ウエハは
仕上げポリシング(二次ポリシング)工程に移され、よ
り密な研磨布で研磨され、鏡面を有するウエハが得られ
厚さを測定し、規格品と規格外品に分けられる。荒削り
中のまたは荒削りされたウエハの厚みは、作業テーブル
21上の研磨布22の高さと、吸着パッド24に吸着さ
れているウエハ25の上面(ウエハの下面は研磨布に当
接している)の作業テーブル21からの高さを測定し、
両者の差を荒削りされたウエハの厚みとしている。
Then, the thickness of the wafer is measured, and the wafer is transferred to a finish polishing (secondary polishing) step, and is polished with a denser polishing cloth to obtain a wafer having a mirror surface. Products are classified into non-standard products and non-standard products. The thickness of the rough-cut or rough-cut wafer is determined by the height of the polishing pad 22 on the work table 21 and the upper surface of the wafer 25 adsorbed by the suction pad 24 (the lower surface of the wafer is in contact with the polishing pad). Measure the height from the work table 21,
The difference between the two is defined as the thickness of the roughly cut wafer.

【0006】しかしながら、研磨布は多数枚のウエハの
荒削り時のヘッドの押圧によりへっこんだ所が生じ、研
磨布の平らなところと段差が生じ、正確なウエハの厚さ
とは言えない。それ故、作業テーブル、チャック機構よ
り取り出したウエハの厚さを測定してみると、例えば3
00μmの厚さのウエハを研磨速度(S)0.8μm/
分で25分(t1 )間荒削りしたときの目標厚さ280
μmのウエハの厚さのバラツキは278〜284μmと
幅広い。
However, the polishing cloth has an indented portion due to the pressing of the head during rough cutting of a large number of wafers, and a level difference is generated between the flattened portion of the polishing cloth and the accurate thickness of the wafer. Therefore, when the thickness of the wafer taken out from the working table and the chuck mechanism is measured, for example, 3
Polishing rate (S) 0.8 μm /
Target thickness 280 when roughing for 25 minutes (t 1 )
The variation in the thickness of the wafer of μm is as wide as 278 to 284 μm.

【0007】[0007]

【発明が解決しようとする課題】本発明は、厚みのバラ
ツキ幅の小さいウエハを与えるウエハの研磨(研削)方
法および該方法に用いる研磨盤の提供を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a wafer polishing (grinding) method for providing a wafer having a small variation in thickness and a polishing disk used in the method.

【0008】[0008]

【課題を解決するための手段】本発明の1は、ウエハの
厚さT0 (μm)を測定し、設定された目標のウエハの
厚さTf (μm)迄ウエハを研磨する方法において、先
ず研磨速度S(μm/分)、研磨時間t1 (分)で(T
0 −Tf )>St1 となるように定めてウエハを研磨速
度S(μm/分)でt1 時間研磨し、次いで研磨された
ウエハの厚さT 1 (μm)を測定し、再びウエハを研磨
速度(T0 −T1 )/t1 (μm/分)で、(T1 −T
f )t1 /(T0 −T1 )の時間研磨して目標の厚さT
f (μm)のウエハを得ることを特徴とする、ウエハの
研磨方法を提供するものである。
SUMMARY OF THE INVENTION One aspect of the present invention is a method for manufacturing a wafer.
Thickness T0(Μm), and set the target wafer.
Thickness Tf(Μm)
Polishing speed S (μm / min), polishing time t1(Minutes) and (T
0-Tf)> St1Polishing speed
T in degrees S (μm / min)1Polished for hours, then polished
Wafer thickness T 1(Μm) and polishing the wafer again
Speed (T0-T1) / T1(Μm / min), (T1-T
f) T1/ (T0-T1) Polishing for the target thickness T
f(Μm) of the wafer,
A polishing method is provided.

【0009】本発明の2は、回転軸に軸承された作業テ
ーブル、該作業テーブルの上に載置された研磨布、該作
業テーブルを水平方向に移動可能な駆動機構、前記研磨
布の上方に離間して設けた回転軸に軸承したウエハのチ
ャック機構、前記チャック機構の側面に離間して設けた
ウエハの厚さ測定機器を有するウエハの研磨盤を提供す
るものである。
According to a second aspect of the present invention, there is provided a work table supported on a rotating shaft, a polishing cloth placed on the work table, a driving mechanism capable of moving the work table in a horizontal direction, and An object of the present invention is to provide a wafer chucking mechanism having a wafer chuck mechanism supported on a rotating shaft provided at a distance, and a wafer thickness measuring device provided at a side surface of the chuck mechanism at a distance.

【0010】[0010]

【作用】ウエハの荒削り(第1次ポリシング)の最終時
間に近い途中でウエハの厚みを測定し、予想した荒削り
速度Sを実際の荒削り速度に補正し、かつ、必要な研磨
時間に補正することにより、かつ、ウエハの厚みを直接
測定するので、研磨布の目詰り、摩耗によるウエハの肉
厚測定の影響を受けず、初期の荒削りで得られたウエハ
の厚さでも、何百回目の荒削りのウエハの厚さでも略同
等の厚さ幅のバラツキの小さいウエハ群が得られる。
The thickness of the wafer is measured in the middle of the final time of the rough cutting (first polishing) of the wafer, and the estimated roughing speed S is corrected to the actual roughing speed and the required polishing time is corrected. And the thickness of the wafer is measured directly, so it is not affected by the measurement of the thickness of the wafer due to clogging and abrasion of the polishing pad. A group of wafers having substantially the same thickness width and small variation can be obtained even with the above wafer thickness.

【0011】[0011]

【発明の実施の形態】以下、図面を用いて本発明を説明
する。図1は本発明の研磨盤1の平面図、図2は厚さ測
定機器の側面図、図3は厚さ測定機器の上面図、図4は
ウエハの厚みを測定している状態を示す部分断面図であ
る。図1、2、3および4において、1は研磨盤、2は
回転軸、2aは中空部、3は研磨布、4は作業テーブ
ル、4aは研磨布取付板、4bはチャンバー、5はウエ
ハ、6はチャック機構、7はヘッド、8は中空回転軸、
9は軸受、10は軸受、11はパイプ、12はエアシリ
ンダー、13は作業テーブルの移動台、14は肉厚測定
機器、14aと14bは端子、14cはエアシリンダ
ー、14dは支持軸、14e及び14fは接合部、14
gは接触子である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. 1 is a plan view of a polishing machine 1 of the present invention, FIG. 2 is a side view of a thickness measuring device, FIG. 3 is a top view of the thickness measuring device, and FIG. 4 is a portion showing a state in which the thickness of a wafer is being measured. It is sectional drawing. 1, 2, 3 and 4, 1 is a polishing machine, 2 is a rotating shaft, 2 a is a hollow part, 3 is a polishing cloth, 4 is a work table, 4 a is a polishing cloth mounting plate, 4 b is a chamber, 5 is a wafer, 6 is a chuck mechanism, 7 is a head, 8 is a hollow rotary shaft,
9 is a bearing, 10 is a bearing, 11 is a pipe, 12 is an air cylinder, 13 is a moving table of a work table, 14 is a thickness measuring device, 14a and 14b are terminals, 14c is an air cylinder, 14d is a support shaft, 14e and 14f is a joint, 14
g is a contact.

【0012】かかる研磨盤を用いてウエハ5を研磨する
には、ウエハをローディング側ハンドリングアーム17
aに取りつけた吸着パッドで吸着して仮受台上に移動
し、ウエハ5をチャック機構に吸着させる。
In order to polish the wafer 5 using such a polishing machine, the wafer is loaded on the loading side handling arm 17.
The wafer is sucked by the suction pad attached to a and moved onto the temporary receiving table, and the wafer 5 is sucked by the chuck mechanism.

【0013】ついでパイプ11を経由して図示していな
い真空ポンプで減圧(350〜700mmHg)して中
空回転軸8の中空部8aを減圧にし、これに続くヘッド
のチャンバー7aを減圧し、チャック機構6をウエハ5
上に下降させてチャック機構6の吸着パッドにウエハを
吸着させ、ウエハを作業テーブル4上に移動させ、ウエ
ハ5の厚みT0 を肉厚測定機器14で測定後、チャック
機構6を下降させてウエハ5を作業テーブル4上の回転
している研磨布3上に当接させ、エアシリンダー12に
よりウエハに定圧をかける。研磨布3は研磨布取付板4
aに接着剤で貼着されている。作業テーブル4の回転と
中空回転軸8の回転によりウエハの下面は研磨される。
その研磨(荒研削)の際、研磨されるウエハの厚みT0
(μm)と設定された目標のウエハの厚みTf (μm)
と研磨速度S(μm/分)がCPUのRAMに入力さ
れ、スピンドル回転軸8、作業テーブル4の回転軸2の
回転数が設定される。
Then, the pressure in the hollow portion 8a of the hollow rotary shaft 8 is reduced by reducing the pressure (350 to 700 mmHg) by a vacuum pump (not shown) through the pipe 11, and the pressure in the chamber 7a of the head is reduced. 6 to wafer 5
Is lowered on to adsorb wafer suction pad of the chuck mechanism 6, the wafer is moved onto the working table 4, and the thickness T 0 of the wafer 5 after the measurement at the wall thickness measuring instrument 14 lowers the chucking mechanism 6 The wafer 5 is brought into contact with the rotating polishing pad 3 on the work table 4, and a constant pressure is applied to the wafer by the air cylinder 12. The polishing cloth 3 is a polishing cloth mounting plate 4
a is attached with an adhesive. The lower surface of the wafer is polished by the rotation of the work table 4 and the rotation of the hollow rotary shaft 8.
During the polishing (rough grinding), the thickness T 0 of the wafer to be polished
(Μm) and the target wafer thickness T f (μm)
And the polishing speed S (μm / min) are input to the RAM of the CPU, and the number of rotations of the spindle rotating shaft 8 and the rotating shaft 2 of the work table 4 is set.

【0014】ここで研磨される時間t(分)は、ウエハ
5の研削量(肉厚)T0 −Tf (μm)を研削速度S
(μm/分)で割った値であり、従来は、そのS速度で
t分間研磨していた(設定はSt=T0 −Tf として行
われる)。しかし、この方法では、ウエハの厚みの振れ
幅が±4μmと大きいので、実際には、作業者が研磨途
中で何度も研磨を中止してウエハの厚みを測定し、研磨
速度を算出し、試行錯誤を繰り返し、ウエハの厚みの振
れ幅を±1μmに抑えているのが実情である。従って、
ポリシング時間にウエハの肉厚の測定、研磨の中断と数
回かかることから研磨加工時間が長く要すると共に、作
業者によって、ウエハの厚さの振れ幅が異なる欠点があ
った。
The polishing time t (minute) is determined by the grinding amount (wall thickness) T 0 -T f (μm) of the wafer 5 and the grinding speed S
(Μm / min). Conventionally, polishing was performed at that S speed for t minutes (setting is performed as St = T 0 −T f ). However, in this method, since the fluctuation width of the thickness of the wafer is as large as ± 4 μm, actually, the operator stops polishing many times during the polishing, measures the thickness of the wafer, calculates the polishing rate, The reality is that trial-and-error is repeated, and the fluctuation width of the thickness of the wafer is suppressed to ± 1 μm. Therefore,
Since the polishing time requires several measurements such as measurement of the thickness of the wafer and interruption of the polishing, the polishing process takes a long time, and the variation in the thickness of the wafer varies depending on the operator.

【0015】本発明では、この研磨速度Sでの荒削り時
間をt(分)の80〜99.9%の割合の時間t
1 (分)と、このt1 分間での研磨では目標の肉厚Tf
に達しない研削不十分の量(T1 −Tf )μmを、計測
された実際の研磨速度(T0 −T1)/t1 で行なう研
磨する時間t2 (分)に分けてウエハの荒削り(第1次
ポリシング)を行なう。t1 分後のウエハの厚みをT1
(μm)とすると、未研削分量(μm)は
In the present invention, the rough cutting time at the polishing rate S is set to a time t of 80 to 99.9% of t (minutes).
1 (minute) and the target thickness T f in polishing for t 1 minute.
Insufficient grinding amount (T 1 −T f ) μm that does not reach the maximum polishing speed (T 0 −T 1 ) / t 1 is divided into the polishing time t 2 (min) at the measured actual polishing rate (T 0 −T 1 ) / t 1 . Roughing (first polishing) is performed. The thickness of the wafer after t 1 minute is T 1
(Μm), the unground amount (μm) is

【0016】[0016]

【数1】(T1 −Tf ) … (1)(T 1 −T f ) (1)

【0017】実際の研磨速度(μm/分)は、The actual polishing rate (μm / min) is

【0018】[0018]

【数2】(T0 −T1 )/t1 … (2)(T 0 −T 1 ) / t 1 (2)

【0019】研削量(μm)Grinding amount (μm)

【数3】St1 =T0 −T1 … (3)## EQU3 ## St 1 = T 0 −T 1 (3)

【0020】となる。よって、未研削分量(T1
f )μmを、(2)式で示される実際の研磨速度で削
り切る時間t2 (分)は、
## EQU1 ## Therefore, the unground amount (T 1
The time t 2 (minutes) to remove T f ) μm at the actual polishing rate shown by the equation (2) is:

【0021】[0021]

【数4】 t2 =(T1 −Tf )t1 /(T0 −T1 ) … (4)T 2 = (T 1 −T f ) t 1 / (T 0 −T 1 ) (4)

【0022】と算出される。従って、一回目のt1 分間
荒削りした後のウエハの肉厚T1 (μm)を測定後CP
UよりROMに伝え、2回目の荒削りの条件を、(2)
式で示される実際の研磨速度(μm/分)で、研磨時間
2 (分)を、(4)式で示される値とするようCPU
のRAMから指示する。(2)式で示される研磨速度で
2 分間研磨後、チャック機構6を上昇させるか、作業
テーブル4を水平方向に移動して研磨布3よりウエハ5
を離すことによりウエハ5の荒削り(1次ポリシング)
を終了する。ついでウエハの肉厚T2 を測定する。
Is calculated. Therefore, after measuring the thickness T 1 (μm) of the wafer after the first t 1 minute
U sent to ROM and the condition of the second roughing was (2)
At the actual polishing rate (μm / min) shown by the equation, the CPU sets the polishing time t 2 (min) to the value shown by the equation (4).
From the RAM. After polishing for t 2 minutes at the polishing speed shown by the equation (2), the chuck mechanism 6 is raised or the work table 4 is moved in the horizontal direction to remove the wafer 5 from the polishing cloth 3.
Roughing of wafer 5 by releasing (primary polishing)
To end. Then measure the wall thickness T 2 of the wafer.

【0023】ウエハ5は次いで別の密な研磨布上に当接
され、仕上げポリシングが研磨量0.01〜0.5μ
m、好ましくは0.1〜0.3μmで行われる。ウエハ
5の肉厚T1 ,T2 の測定は、図1に示される研磨盤1
において、S速度でt1 分間のウエハ5の荒削り後、作
業テーブル4を右方向にレール上を移動させ、肉厚測定
機器14を移動台13で右方向に移動させ、肉厚測定機
器14のエアシリンダー14cを作動して受け部14f
をロッド14hで押すことにより支持軸14dを斜めに
押し上げることにより端子14aの接触子14gをウエ
ハ5の下面に、端子14bの接触子14g′をヘッド7
または吸着パッド6′の下面に当接し、両者の高さの差
をウエハの厚みT1 とし、これをCPUのROMに伝え
る(図5参照)。
The wafer 5 is then brought into contact with another dense polishing cloth, and the final polishing is performed with a polishing amount of 0.01 to 0.5 μm.
m, preferably 0.1 to 0.3 μm. The measurement of the thicknesses T 1 and T 2 of the wafer 5 is performed by using the polishing machine 1 shown in FIG.
After the rough cutting of the wafer 5 for t 1 minute at the S speed, the work table 4 is moved rightward on the rails, the thickness measuring device 14 is moved rightward on the moving table 13, and the thickness measuring device 14 Activate the air cylinder 14c to operate the receiving portion 14f.
The contact 14g of the terminal 14a is placed on the lower surface of the wafer 5, and the contact 14g 'of the terminal 14b is placed on the head 7 by pushing the support shaft 14d obliquely by pushing the rod 14h with the rod 14h.
Or the lower surface of the suction pad 6 'abuts the difference between the height and the thickness T 1 of the wafer, convey it to the ROM of the CPU (see FIG. 5).

【0024】次いで、肉厚測定機器14を移動台13に
より左方向に移動してウエハ、チャック機構より離すと
共に作業テーブル4も左方向に移動し、再びウエハと研
磨布を当接させ、両者の回転により研磨を、(2)式で
表される研磨速度で(4)式で示されるt2 分間行い、
2 分後、作業テーブル4を右方向に移動して荒削り
(一次ポリシング)を終了する。次いでウエハ5の厚み
2 を同様にして測定する。荒削りされたウエハ5は、
仕上げポリシング工程に移送され、より密な研磨布をも
って0.01〜0.5μm程度の研削が行われる。
Next, the thickness measuring device 14 is moved to the left by the moving table 13 to separate it from the wafer and the chuck mechanism, and the work table 4 is also moved to the left to bring the wafer and the polishing cloth into contact again. Polishing by rotation is performed at a polishing rate represented by the equation (2) for t 2 minutes represented by the equation (4),
After t 2 minutes, the work table 4 is moved rightward to complete the rough cutting (primary polishing). Then measuring the thickness T 2 of the wafer 5 in the same manner. The roughly cut wafer 5 is
The wafer is transferred to the finish polishing step, and is ground to about 0.01 to 0.5 μm with a denser polishing cloth.

【0025】次いで、仕上げポリシングされたウエハの
厚みT3 が測定され、チャック機構よりウエハは別の仮
受台に移され、更にアームでカセット内に収納される。
チャック機構は、新たに肉厚T0 ′(μm)の測定され
たウエハを吸着すると、先の(2)式で計算した研磨速
度をS′(μm/分)としてRAMに入力し直し、研削
量(T0 ′−Tf )および研磨時間tを(T0 ′−
f )/S′と算出して、1回目の荒削り時間t
1 (分)をtの80〜99.9%(通常は先の荒削りと
同じ割合)に設定してRAMに入力し、t1 分ウエハの
荒削りが行われる。
Next, the thickness T 3 of the finish-polished wafer is measured, and the wafer is transferred to another temporary receiving table by the chuck mechanism, and is further housed in a cassette by an arm.
When the chuck mechanism newly sucks a wafer having a measured thickness T 0 ′ (μm), the chucking rate is input to the RAM as S ′ (μm / min) using the polishing rate calculated by the above equation (2), and the grinding is performed. The amount (T 0 ′ −T f ) and the polishing time t are defined as (T 0 ′ −
T f ) / S ′ to calculate the first roughing time t
1 (min) 80 to 99.9% of the t (usually the same rate as the previous roughing) input to RAM is set to, roughing t 1 minute wafer is performed.

【0026】以下、前記したようにウエハの厚みT1
が測定され、2回目の研磨速度、研磨時間t2
(T1 ′−Tf )t1 /(T0 ′−T1 ′)が設定さ
れ、(2)式で計算された研磨速度でt2 分間2回目の
研削が行われる。以下、新しいウエハが供給されても同
じ方法でウエハの荒削りポリシング、仕上げポリシング
を行なう。
Hereinafter, as described above, the thickness T 1 ′ of the wafer
Was measured, and the second polishing rate and polishing time t 2 =
(T 1 ′ −T f ) t 1 / (T 0 ′ −T 1 ′) is set, and the second grinding is performed for t 2 minutes at the polishing rate calculated by the equation (2). Hereinafter, even when a new wafer is supplied, rough polishing and finish polishing of the wafer are performed in the same manner.

【0027】このウエハの研磨方法において、研磨布の
上面に、従来のCMP(Chemical Machi
nary Polishing)方法と同じく、水、苛
性ソーダ水溶液、トリメチルテトラミン水溶液、塩酸水
溶液、酸化硅素粉やダイヤモンド結晶粉、ガラス粉を水
に分散したスラリー状研磨剤を供給して研磨を行っても
よい。又、ウエハの冷却上、そのようにするのが好まし
い。
In this wafer polishing method, a conventional CMP (Chemical Machi) is placed on the upper surface of the polishing cloth.
As in the case of the (nary polishing) method, polishing may be performed by supplying water, an aqueous solution of caustic soda, an aqueous solution of trimethyltetramine, an aqueous solution of hydrochloric acid, a slurry in which silicon oxide powder, diamond crystal powder, or glass powder is dispersed in water. Further, it is preferable to do so in cooling the wafer.

【0028】回転軸8はモーターにより10〜500r
pm、好ましくは50〜200rpmの回転数で回転さ
せる。作業テーブル4の回転軸2はモーターにより10
〜500rpm、好ましくは50〜200rpmの回転
数で回転させる。作業テーブルの回転軸2と回転軸8の
回転方向は、正逆いずれの方向でもよいが、逆方向回転
の方がより平坦なウエハが得られるので好ましい。
The rotating shaft 8 is driven by a motor for 10 to 500 r.
pm, preferably at a rotation speed of 50 to 200 rpm. The rotating shaft 2 of the work table 4 is driven by a motor for 10
It is rotated at a rotation speed of 500500 rpm, preferably 50-200 rpm. The rotation direction of the rotation shaft 2 and the rotation shaft 8 of the work table may be either forward or reverse, but rotation in the reverse direction is preferable because a flatter wafer can be obtained.

【0029】ウエハ5にかかる研磨布3の圧力は、5〜
1,000g/cm2 、好ましくは20〜800g/c
2 である。回転軸の回転数は、ウエハの研磨の状態に
より段階的に階段上り状に変更してもよい。例えば、
0.5〜1μmの平坦度のときは圧を50〜200g/
cm2、回転軸2の回転数を20〜200rpm、回転
軸8の回転数を30〜200rpm、0.3〜0.4μ
mの平坦度のときは圧300〜800g/cm2 、回転
軸2の回転数30〜200rpm、回転軸8の回転数5
0〜200rpm、0.05〜0.2μmの平坦度のと
きは、圧500〜1,000g/cm2 、回転軸2の回
転数50〜200rpm、回転軸8の回転数50〜20
0rpmとする。
The pressure of the polishing pad 3 applied to the wafer 5 is 5 to 5.
1,000 g / cm 2 , preferably 20 to 800 g / c
m 2 . The number of rotations of the rotating shaft may be changed stepwise in a stepwise manner depending on the polishing state of the wafer. For example,
When the flatness is 0.5 to 1 μm, the pressure is 50 to 200 g /
cm 2 , the rotation speed of the rotation shaft 2 is 20 to 200 rpm, the rotation speed of the rotation shaft 8 is 30 to 200 rpm, 0.3 to 0.4 μm.
m, the pressure is 300 to 800 g / cm 2 , the number of rotations of the rotating shaft 2 is 30 to 200 rpm, and the number of rotations of the rotating shaft 8 is 5
When the flatness is 0 to 200 rpm and 0.05 to 0.2 μm, the pressure is 500 to 1,000 g / cm 2 , the number of rotations of the rotating shaft 2 is 50 to 200 rpm, and the number of rotations of the rotating shaft 8 is 50 to 20.
0 rpm.

【0030】吸着パッド6′、研磨布上載台4aの材料
としては、アルミナ板、ステンレス板等の金属板、ポリ
塩化ビニル樹脂板やアルミニウム板等が使用される。こ
の吸着パッドは曲げ強度が20,000kg/cm2
上、好ましくは40,000kg/cm2 以上と剛性の
高いものを素材とする。
As the material of the suction pad 6 'and the polishing pad 4a, a metal plate such as an alumina plate or a stainless steel plate, a polyvinyl chloride resin plate or an aluminum plate is used. This suction pad is made of a material having a high rigidity of a bending strength of 20,000 kg / cm 2 or more, preferably 40,000 kg / cm 2 or more.

【0031】研磨布5は、発泡ポリウレタンシート、フ
ェルト等が利用される。仕上げポリシング(二次ポリシ
ング)用の研磨布は荒削りポリシング(1次ポリシン
グ)用の研磨布より、より滑らかで平滑なものが使用さ
れる。図5は、複数のウエハを同時に荒削りポリシン
グ、仕上げポリシングできる別の態様を示す研磨盤1の
上面図である。
As the polishing cloth 5, a foamed polyurethane sheet, felt or the like is used. A polishing cloth for finish polishing (secondary polishing) is smoother and smoother than a polishing cloth for rough polishing (primary polishing). FIG. 5 is a top view of the polishing machine 1 showing another mode in which a plurality of wafers can be simultaneously rough-polished and finish-polished.

【0032】図中、4は荒削りポリシング用作業テーブ
ル、4′は仕上げポリシング用作業テーブル、4b,
4′bは研磨布表面修正装置、5はウエハ、6は5個の
吸着パッドを備えるチャック機構、14は肉厚測定機
器、15は複数のチャック機構、6,6を取り付けてい
るインデックステーブルで軸15aを右方向に間欠的に
回動可能となっている。16はチャック機構6をインデ
ックステーブル15aに回転可能に取り付けている取付
部材、17はウエハローディング用ロボット、17aは
アームである。18,18はウエハ収納カセット、19
は回動可能なウエハの仮受台である。
In the drawing, 4 is a work table for rough polishing, 4 'is a work table for finish polishing, 4b,
4'b is a polishing cloth surface correcting device, 5 is a wafer, 6 is a chuck mechanism having five suction pads, 14 is a thickness measuring device, 15 is a plurality of chuck mechanisms, and an index table to which 6, 6 are attached. The shaft 15a is intermittently rotatable rightward. Reference numeral 16 denotes an attachment member for rotatably attaching the chuck mechanism 6 to the index table 15a, reference numeral 17 denotes a wafer loading robot, and reference numeral 17a denotes an arm. 18 and 18 are wafer storage cassettes, 19
Is a rotatable wafer temporary receiving table.

【0033】仮受台19にローディング用ロボットによ
りウエハを載置し、インデックステーブル15を右方向
に120度回動させ、チャック機構6を仮受台19上に
位置させる。ついでチャック機構6をエアシリンダー1
2により下降させ(又は仮受台を上昇させ)、回転軸8
内を減圧し、ウエハをチャック機構6の吸着パッド6′
に吸着させる。ついで、チャック機構を上昇(又は仮受
台を下降)させた後、インデックステーブル15を12
0度右方向に回動し、作業テーブル4上に移動させる。
肉厚測定機器14によりウエハの厚みT0 を測定する。
The wafer is placed on the temporary receiving table 19 by the loading robot, the index table 15 is rotated rightward by 120 degrees, and the chuck mechanism 6 is positioned on the temporary receiving table 19. Next, the chuck mechanism 6 is connected to the air cylinder 1.
2 (or raise the temporary support) and rotate the shaft 8
The inside of the chuck mechanism 6 is depressurized, and the wafer is sucked by the suction pad 6 ′ of the chuck mechanism 6.
To be absorbed. Then, after raising the chuck mechanism (or lowering the temporary support), the index table 15 is
It rotates rightward by 0 degrees and moves on the work table 4.
The thickness T 0 of the wafer is measured by the thickness measuring device 14.

【0034】チャック機構6を回転軸8を回転させなが
ら下降させ作業テーブル4に載置されている研磨布に当
接させ、エアシリンダー12により一定圧をウエハにか
ける。それぞれの回転軸2,8の回転により荒削りポリ
シングが行われる。t1 分の荒削りポリシングが終った
ら作業テーブル4を左方向に移動し、インデックステー
ブル15上に備えられた肉厚測定機器14の端子14
a,14b上の接触子14g,14gにウエハの下面と
チャック機構のヘッドの下面を当接させてウエハの厚み
(T1 )を測定する。
The chuck mechanism 6 is lowered while rotating the rotary shaft 8 to make contact with the polishing cloth placed on the work table 4, and a constant pressure is applied to the wafer by the air cylinder 12. Roughing polishing is performed by the rotation of the respective rotating shafts 2 and 8. When the rough polishing for t 1 is completed, the work table 4 is moved to the left, and the terminal 14 of the thickness measuring device 14 provided on the index table 15 is moved.
The lower surface of the wafer and the lower surface of the head of the chuck mechanism are brought into contact with the contacts 14g, 14g on a, 14b to measure the thickness (T 1 ) of the wafer.

【0035】厚みT1 を測定したら作業テーブル4を移
送装置4bにより右方向に移動し、ウエハの荒削りポリ
シングを再開し、(2)式で示される研磨速度(T0
1)/t1 で設定されたt2 の時間、研磨する。t2
分後、再び作業テーブルを左方向に移動し、ウエハの厚
みT2 を測定する。ついで、作業テーブルを右方向に戻
した後、インデックステーブル15を120度右方向に
回動させ、荒削りポリシングされたウエハをより密な研
磨布を載置する作業テーブル4′上にチャック機構6ご
と移動させる。
After measuring the thickness T 1 , the work table 4 is moved rightward by the transfer device 4b to resume the rough polishing and polishing of the wafer, and the polishing rate (T 0
T 1) / t time set t 2 in 1, polished. t 2
After the separation, the working table moves to the left again, measures the thickness T 2 of the wafer. Then, after returning the work table to the right direction, the index table 15 is rotated to the right by 120 degrees, and the rough-polished wafer is placed together with the chuck mechanism 6 on the work table 4 'on which a denser polishing cloth is placed. Move.

【0036】ついでチャック機構を下降させ、研磨布に
当接させ、一定圧力をエアシリンダー12でウエハにか
けながら回転軸2,8の回転を利用し、仕上げポリシン
グを行なう。仕上げポリシング終了後、移送装置4′b
を作動して右方向に作業テーブル4′を移動し、肉厚測
定機器14によりポリシングされたウエハの肉厚T3
測定したら、作業テーブル4′を左方向に移動する。チ
ャック機構6を上昇したらインデックステーブル15を
右方向に120度回動し、ついでロボットアーム17
a,17bで仕上げポリシングされたウエハ5,5,・
・・を把持し、収納カセット18,18に研磨されたウ
エハ5,5を収納する。
Next, the chuck mechanism is lowered, brought into contact with the polishing cloth, and the polishing is performed by utilizing the rotation of the rotating shafts 2 and 8 while applying a constant pressure to the wafer by the air cylinder 12. After finishing polishing, the transfer device 4'b
The operating work table 4 in the right direction 'moves, after measuring the thickness T 3 of the wafer which has been polished by the thickness measuring device 14, work table 4' to move to the left. When the chuck mechanism 6 is raised, the index table 15 is rotated rightward by 120 degrees, and then the robot arm 17 is rotated.
a, wafers 5, 5,.
.. Are held, and the polished wafers 5, 5 are stored in the storage cassettes 18, 18.

【0037】[0037]

【実施例】実施例1 図1に示す研磨盤1を用い、中空回転軸8を700mm
Hgに減圧し、仮受台上の5インチ径のシリコンウエハ
を吸着し、ウエハの肉厚T0 を測定した(300μ
m)。
EXAMPLE 1 Using the polishing machine 1 shown in FIG.
The pressure was reduced to Hg, a 5-inch diameter silicon wafer on the temporary receiving table was adsorbed, and the thickness T 0 of the wafer was measured (300 μm).
m).

【0038】目的とするウエハの最終肉厚(Tf )は2
84μmであるので研削量(T0 −Tf )は16μmと
計算される。研磨速度Sを0.8μm/分とすると理論
的な研磨時間t(T0 −Tf )/Sは20分と算出され
る。よって、RAMには、最初の研磨時間をtの0.9
0倍(9割)の9分と設定し、1回目の研削終了時のウ
エハの厚みをT1 μmとし、2回目の研磨速度を(T0
−T1 )/t1 μm/分、研磨時間t2 を(4)式の
(T1 −Tf )t1 /(T0 −T1 )に設定する。
The final thickness (T f ) of the target wafer is 2
Since it is 84 μm, the grinding amount (T 0 −T f ) is calculated to be 16 μm. If the polishing rate S is 0.8 μm / min, the theoretical polishing time t (T 0 −T f ) / S is calculated to be 20 minutes. Therefore, the first polishing time is set to 0.9 in the RAM.
The time of the first polishing was set to T 1 μm, and the second polishing rate was set to (T 0
−T 1 ) / t 1 μm / min, and the polishing time t 2 are set to (T 1 −T f ) t 1 / (T 0 −T 1 ) in equation (4).

【0039】ウエハ5を吸着した上部チャック機構6を
作業テーブル4上の研磨布3の上に移動し、下降してウ
エハを研磨布に押し当て、回転軸2を右方向に回転数6
0rpm、回転軸8を左方向に回転数80rpm、ウエ
ハへの研磨布の圧力500g/cm2 、加工速度(S)
0.8μm/分で研磨布の上面に水を時々加えながら1
8分間研磨し、ついで作業テーブル4を右方向に移動
後、肉厚測定機器14によりウエハ5の厚みT1 (28
6μm)を測定し、これをROMに伝え、(2)式、
(4)式に従って、残りの第2回目の研磨速度(14/
18)μm/分、研磨時間t2 (2×18/14)分を
ROMで算出し、肉厚測定機器14を左方向に後退させ
ると共に作業テーブル4を左方向に移動し、ウエハを研
磨布に当接させてt2 分間研磨を行った。
The upper chuck mechanism 6 holding the wafer 5 is moved onto the polishing cloth 3 on the work table 4 and descends to press the wafer against the polishing cloth.
0 rpm, the number of rotations of the rotating shaft 8 to the left is 80 rpm, the pressure of the polishing cloth on the wafer is 500 g / cm 2 , and the processing speed (S)
While occasionally adding water to the upper surface of the polishing cloth at 0.8 μm / min, 1
After polishing for 8 minutes, and then moving the work table 4 rightward, the thickness T 1 (28
6 μm), which is transmitted to the ROM, and the equation (2)
According to equation (4), the remaining second polishing rate (14 /
18) The μm / min and the polishing time t 2 (2 × 18/14) are calculated by the ROM, the thickness measuring device 14 is retracted to the left, the work table 4 is moved to the left, and the wafer is put on the polishing cloth. And polished for t 2 minutes.

【0040】ついで作業テーブルと肉厚測定機器を右方
向に移動し、ウエハの肉厚T2 を測定したところ、28
4.1μmであった。ついでチャック機構6をより密な
研磨布を載置している作業テーブル上に移し、下降させ
てウエハと上面に水が供給されている研磨布を当接し、
仕上げポリシングを行った。仕上げポリシング終了後、
ウエハの厚みT3 を測定したところ、284.05μm
であった。
Next, the work table and the thickness measuring instrument were moved rightward to measure the thickness T 2 of the wafer.
It was 4.1 μm. Then, the chuck mechanism 6 is moved onto a work table on which a denser polishing cloth is placed, and is lowered to abut the wafer and the polishing cloth supplied with water on the upper surface,
Finish polishing was performed. After finishing polishing,
The thickness T 3 of the wafer was measured, 284.05μm
Met.

【0041】ウエハを仮受台上に移し、中空回転軸8の
減圧を大気に戻すことにより、ウエハは仮受台に収めら
れる。研磨されたウエハの触針式粗さ計測定の粗さ(R
max )は一次ポリシング30nm、仕上げポリシング2
nmであった。
The wafer is transferred onto the temporary receiving table, and the reduced pressure of the hollow rotary shaft 8 is returned to the atmosphere, whereby the wafer is placed in the temporary receiving table. The roughness (R
max) is primary polishing 30 nm, finish polishing 2
nm.

【0042】次いで、2段階目の新しいウエハ(厚みT
0 ′)をチャック機構で吸着し、先の(2)式で計算さ
れた加工速度(T0 −Tf )/(t1 +t2 )を荒削り
ポリシング時の第1回目の加工速度(S′)とし、
(1)式より計算される理論的な加工時間tを計算した
後、その0.9tの値を1回目の研磨時間として設定
し、以下前工程と同じく荒削りポリシングを行った。ウ
エハ100枚の荒削りポリシングされた厚み(T2 )の
分布は、284.0±0.1μmであった。
Next, a new wafer (thickness T
0 ′) is adsorbed by the chuck mechanism, and the processing speed (T 0 −T f ) / (t 1 + t 2 ) calculated by the above equation (2) is reduced to the first processing speed (S ′) during rough cutting and polishing. )age,
After calculating the theoretical processing time t calculated from the equation (1), the value of 0.9 t was set as the first polishing time, and rough polishing was performed in the same manner as in the previous step. The distribution of the thickness (T 2 ) of 100 wafers that were roughly cut and polished was 284.0 ± 0.1 μm.

【0043】比較例1 実施例1において、荒削りポリシング時の加工時間を2
度に分けずに、(T0−Tf )/Sの加工時間(20分
間)の1回で荒削りするように設定してウエハの研磨を
行う他は同様にしてポリシングされたウエハを得た。1
00枚の荒削りポリシングされたウエハの肉厚の分布
は、284.0±1μmであった。
Comparative Example 1 In Example 1, the processing time during rough polishing was 2 hours.
A polished wafer was obtained in the same manner as above except that the wafer was polished by setting it so that it was rough-cut once in a processing time of (T 0 −T f ) / S (20 minutes). . 1
The thickness distribution of the 00 rough-polished wafers was 284.0 ± 1 μm.

【0044】[0044]

【発明の効果】本発明によれば、ポリシングされたウエ
ハ群の厚みは安定しており、その振れ幅が小さく、か
つ、より平坦性に優れたポリシングされたウエハを得る
ことができる。また、作業者が何度もウエハの肉厚を測
定し、研磨速度、研磨時間を設定することはないので研
磨時間を短縮できる。
According to the present invention, it is possible to obtain a polished wafer having a stable thickness, a small fluctuation width, and more excellent flatness. Further, since the operator does not need to measure the thickness of the wafer many times and set the polishing speed and the polishing time, the polishing time can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の平面研磨盤の一部を切り欠いた平面図
である。
FIG. 1 is a plan view in which a part of a plane polishing machine of the present invention is cut away.

【図2】肉厚測定機器の側面図である。FIG. 2 is a side view of a thickness measuring instrument.

【図3】肉厚測定機器の上面図である。FIG. 3 is a top view of the thickness measuring instrument.

【図4】ウエハの厚みを測定している状態を示す部分断
面図である。
FIG. 4 is a partial cross-sectional view showing a state where the thickness of a wafer is being measured.

【図5】本発明の別の形態を示す研磨盤の上面図であ
る。
FIG. 5 is a top view of a polishing machine showing another embodiment of the present invention.

【図6】従来の平面研磨盤の一部を切り欠いた平面図で
ある。
FIG. 6 is a plan view in which a part of a conventional flat polishing machine is cut away.

【符号の説明】[Explanation of symbols]

1 研磨盤 2 回転軸 3 研磨布 4 作業テーブル 5 ウエハ 6 チャック機構 6′ 吸着パッド 7 ヘッド 8 中空回転軸 12 エアーシリンダー 14 肉厚測定機器 DESCRIPTION OF SYMBOLS 1 Polishing machine 2 Rotating shaft 3 Polishing cloth 4 Work table 5 Wafer 6 Chuck mechanism 6 'Suction pad 7 Head 8 Hollow rotating shaft 12 Air cylinder 14 Wall thickness measuring device

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ウエハの厚さT0 (μm)を測定し、設
定された目標のウエハの厚さTf (μm)迄ウエハを研
磨する方法において、先ず研磨速度S(μm/分)、研
磨時間t1 (分)で(T0 −Tf )>St1 となるよう
に定めてウエハを研磨速度S(μm/分)でt1 時間研
磨し、次いで研磨されたウエハの厚さT1 (μm)を測
定し、再びウエハを研磨速度(T0 −T1 )/t1 で、
(T1−Tf )t1 /(T0 −T1 )の時間研磨して目
標の厚さTf (μm)のウエハを得ることを特徴とす
る、ウエハの研磨方法。
In a method of measuring a wafer thickness T 0 (μm) and polishing the wafer to a set target wafer thickness T f (μm), first, a polishing rate S (μm / min), The polishing time t 1 (min) is set so that (T 0 −T f )> St 1, and the wafer is polished at the polishing rate S (μm / min) for t 1 hour, and then the thickness T of the polished wafer 1 (μm), and the wafer was again polished at a polishing rate (T 0 −T 1 ) / t 1 .
A method for polishing a wafer, characterized in that a wafer having a target thickness Tf (μm) is obtained by polishing for a time of (T 1 −T f ) t 1 / (T 0 −T 1 ).
【請求項2】 St1 /(T0 −Tf )の値が0.8以
上で0.99以下であることを特徴とする請求項1に記
載のウエハの研磨方法。
2. The wafer polishing method according to claim 1, wherein the value of St 1 / (T 0 −T f ) is 0.8 or more and 0.99 or less.
【請求項3】 回転軸に軸承された作業テーブル、該作
業テーブルの上に載置された研磨布、該作業テーブルを
水平方向に移動可能な駆動機構、前記研磨布の上方に離
間して設けた回転軸に軸承したウエハのチャック機構、
前記チャック機構の側面に離間して設けたウエハの厚さ
測定機器を有するウエハの研磨盤。
3. A work table supported on a rotary shaft, a polishing cloth placed on the work table, a drive mechanism capable of moving the work table in a horizontal direction, and a space above the polishing cloth. Chuck mechanism for the wafer,
A wafer polishing machine having a wafer thickness measuring device provided separately on a side surface of the chuck mechanism.
【請求項4】 ウエハのチャック機構は、回転可能な中
空回転軸に軸承された剛体の吸着パッドをヘッド内に収
容したものである、請求項3に記載のウエハの研磨盤。
4. The wafer polishing machine according to claim 3, wherein the wafer chuck mechanism accommodates a rigid suction pad supported on a rotatable hollow rotary shaft in a head.
【請求項5】 ウエハの厚さ測定機器は、2端子式厚さ
測定装置で、一端子は、チャック機構のウエハを吸着し
ている吸着パッド下面、又は吸着パッドを収納している
ヘッドの下面に当接し、他方の端子は吸着パッドに吸着
されているウエハの下面に当接して両者の高さの差によ
りウエハの厚さを算出するものである、請求項4に記載
のウエハの研磨盤。
5. A wafer thickness measuring device is a two-terminal type thickness measuring device, one terminal of which is a lower surface of a suction pad of a chuck mechanism for sucking a wafer or a lower surface of a head containing a suction pad. 5. The wafer polishing machine according to claim 4, wherein the other terminal abuts on the lower surface of the wafer sucked by the suction pad and calculates the thickness of the wafer based on a difference in height between the two terminals. .
JP9068098A 1998-03-20 1998-03-20 Polishing method of wafer and polishing machine used therefor Pending JPH11267968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9068098A JPH11267968A (en) 1998-03-20 1998-03-20 Polishing method of wafer and polishing machine used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9068098A JPH11267968A (en) 1998-03-20 1998-03-20 Polishing method of wafer and polishing machine used therefor

Publications (1)

Publication Number Publication Date
JPH11267968A true JPH11267968A (en) 1999-10-05

Family

ID=14005262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9068098A Pending JPH11267968A (en) 1998-03-20 1998-03-20 Polishing method of wafer and polishing machine used therefor

Country Status (1)

Country Link
JP (1) JPH11267968A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045834A (en) * 2001-08-02 2003-02-14 Nec Corp Method of correcting process time of semiconductor manufacturing apparatus
JP2004063848A (en) * 2002-07-30 2004-02-26 Lapmaster Sft Corp Device for polishing semiconductor wafer
JP2004063849A (en) * 2002-07-30 2004-02-26 Lapmaster Sft Corp Method of polishing semiconductor wafer
JP2006024694A (en) * 2004-07-07 2006-01-26 Dainippon Screen Mfg Co Ltd Method and apparatus for polishing substrate
KR20150066685A (en) * 2013-12-09 2015-06-17 주식회사 케이씨텍 Chemical mechanical polishing method and apparatus
JP2018027592A (en) * 2016-08-18 2018-02-22 株式会社ディスコ Grinding device and processing device
JP2018122368A (en) * 2017-01-30 2018-08-09 株式会社東京精密 Grinding device
KR20190009682A (en) * 2017-07-19 2019-01-29 인세미텍 주식회사 An method for controlling grinding apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045834A (en) * 2001-08-02 2003-02-14 Nec Corp Method of correcting process time of semiconductor manufacturing apparatus
JP2004063848A (en) * 2002-07-30 2004-02-26 Lapmaster Sft Corp Device for polishing semiconductor wafer
JP2004063849A (en) * 2002-07-30 2004-02-26 Lapmaster Sft Corp Method of polishing semiconductor wafer
JP2006024694A (en) * 2004-07-07 2006-01-26 Dainippon Screen Mfg Co Ltd Method and apparatus for polishing substrate
KR20150066685A (en) * 2013-12-09 2015-06-17 주식회사 케이씨텍 Chemical mechanical polishing method and apparatus
JP2018027592A (en) * 2016-08-18 2018-02-22 株式会社ディスコ Grinding device and processing device
JP2018122368A (en) * 2017-01-30 2018-08-09 株式会社東京精密 Grinding device
US10507561B2 (en) 2017-01-30 2019-12-17 Tokyo Seimitsu Co., Ltd Grinding apparatus
KR20190009682A (en) * 2017-07-19 2019-01-29 인세미텍 주식회사 An method for controlling grinding apparatus

Similar Documents

Publication Publication Date Title
JP4838614B2 (en) Semiconductor substrate planarization apparatus and planarization method
KR101700964B1 (en) Planarization apparatus and method for semiconductor substrate
KR100818683B1 (en) Mirror chamfered wafer, mirror chamfering polishing cloth, and mirror chamfering polishing machine and method
JP2000141215A (en) Flattening grinding device and its method
US5620357A (en) Polishing method and apparatus for automatic reduction of wafer taper in single-wafer polishing
JP2009038267A (en) Substrate backside grinding apparatus and backside grinding method
JP4259048B2 (en) Conditioner lifetime determination method, conditioner determination method using the same, polishing apparatus, and semiconductor device manufacturing method
JPH11267968A (en) Polishing method of wafer and polishing machine used therefor
JP5037974B2 (en) Monitoring device and monitoring method for semiconductor substrate in polishing stage
JP2009285738A (en) Flattening device and flattening method for semiconductor substrate
JP4487353B2 (en) Polishing apparatus and polishing method
JP2011124249A (en) Processing device and method for flattening semiconductor substrate
JPH10166259A (en) Sapphire substrate grinding and polishing method and device
JP2001009716A (en) Wafer thickness measuring method
US6221773B1 (en) Method for working semiconductor wafer
WO1999000831A1 (en) Method of manufacturing semiconductor devices
JP2001308049A (en) Method of compensating shifting velocity of a processing means in processing of board
JP2001138230A (en) Method for grinding face side and reverse side of substrate, and grinding apparatus used therefor
JP3007678B2 (en) Polishing apparatus and polishing method
JP2011155095A (en) Apparatus for flattening semiconductor substrate, and temporary displacement surface plate used for the same
JP4754870B2 (en) Polishing equipment
JP3399180B2 (en) Wafer chamfer finish processing method and processing device
JP7243996B1 (en) Semiconductor crystal wafer manufacturing apparatus and manufacturing method
JPH08107093A (en) Working method for semiconductor substrate
JPH0738381B2 (en) Wafer polishing machine