JP2001009716A - Wafer thickness measuring method - Google Patents

Wafer thickness measuring method

Info

Publication number
JP2001009716A
JP2001009716A JP17756499A JP17756499A JP2001009716A JP 2001009716 A JP2001009716 A JP 2001009716A JP 17756499 A JP17756499 A JP 17756499A JP 17756499 A JP17756499 A JP 17756499A JP 2001009716 A JP2001009716 A JP 2001009716A
Authority
JP
Japan
Prior art keywords
wafer
chuck
thickness
grinding
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17756499A
Other languages
Japanese (ja)
Inventor
Kazuo Kobayashi
一雄 小林
Saburo Sekida
三郎 関田
Yutaka Kayoda
裕 嘉陽田
Motoo Yoshida
元夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okamoto Machine Tool Works Ltd
Original Assignee
Okamoto Machine Tool Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamoto Machine Tool Works Ltd filed Critical Okamoto Machine Tool Works Ltd
Priority to JP17756499A priority Critical patent/JP2001009716A/en
Publication of JP2001009716A publication Critical patent/JP2001009716A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To avoid dispersion of wafer thickness posed by an axial inclination of chuck tables when the thickness of wafers being chucked is measured with two-point in-process gauges. SOLUTION: One pair of contacts 17a and 17b of a two-point in-process gauge 17 is first put in contact with the surface of a chuck 9 carrying no wafers W to measure levels Tc0 and Tw0, and the identification number of the contact 17a or 17b that provides the greater level, and the level difference (t) as a correction value given by |Tc0-Tw0| are stored in a controller. For the computations of the thickness of the ground wafer W from the difference between new levels Tci and Twi that, during or after a grinding operation, the pair of contacts 17a and 17b of the two-point in-process gauge 17 measures again when put in contact with the surfaces of the chuck 9 and wafer W, the level Tci or Twi the number-stored contact 17a or 17b that has shown the greater initial level measures is subjected to correction, which subtracts the correction value (t) from it, before used in the difference calculation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チャックにバキュ
−ム吸着されたウエハの厚みを研削加工中、または研削
加工後にバキュ−ム吸着した状態でウエハの表面とチャ
ックの表面とに2点式インプロセスゲ−ジの1対の接触
子を当てて測定された高さの差をウエハの厚みとして計
測する方法において、チャックの軸芯の傾きが原因とな
って生じる研削されたウエハの厚みのバラツキを解消で
きるウエハ研削時、または研削後のウエハの厚み測定方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-point system in which the thickness of a wafer vacuum-adsorbed to a chuck is applied to the surface of the wafer and the surface of the chuck in a state where the wafer is vacuum-adsorbed during or after the grinding. In a method of measuring a difference in height measured by applying a pair of contacts of an in-process gage as a thickness of a wafer, the thickness of the ground wafer caused by the inclination of the axis of the chuck is reduced. The present invention relates to a method of measuring the thickness of a wafer at the time of or after grinding the wafer, which can eliminate the variation.

【0002】[0002]

【従来の技術】ウエハを砥石で研削する際、目的とする
ウエハの厚みとなるように研削途中または/および研削
終了後にウエハの厚みが測定される。特開昭61−27
4876号公報は、複数等分した枠によって形成され、
薄物ウエハをチャック機構でバキュ−ム吸着して一定の
低速で回転、停止を繰返すロ−タリ−テ−ブルへ複数個
のウエハをチャックして自動研削する平面研削盤であっ
て、研削加工中、または加工後の半導体ウエハをバキュ
−ム吸着した状態で、該ウエハの上面とチャック上面と
を、一体となした2点式インプロセスゲ−ジを用いて計
測し、その高さの差をウエハの厚みとする厚み測定方法
を提案する。
2. Description of the Related Art When a wafer is ground with a grindstone, the thickness of the wafer is measured during or / and after the grinding so as to have a target wafer thickness. JP-A-61-27
No. 4876 is formed by a plurality of equally divided frames,
A surface grinding machine that chucks a plurality of wafers to a rotary table that repeatedly rotates and stops at a constant low speed by vacuum-sucking a thin wafer by a chuck mechanism and automatically grinds the wafer. Alternatively, in a state in which the processed semiconductor wafer is vacuum-adsorbed, the upper surface of the wafer and the upper surface of the chuck are measured using an integrated two-point in-process gage, and the difference in height is measured. A method for measuring the thickness of a wafer is proposed.

【0003】ウエハは通常、25枚単位でカセットに収
容され、次工程のエッチング工程、研磨工程に廻される
ので、出きる限りこの25枚のウエハの厚みは均一であ
った方がよく、1μmの振れ幅内であることが要求され
る。研削途中、ウエハの厚み(T1)を測定するのは、
研削状態の確認であるが、研削前のウエハの厚み
(T0)と研削時間(t1分)からそれまでの研削速度
(T o−T1)/t1)を算出し、目的とするウエハ厚み
(T)となる残りの研削時間を(T1−T)t1/(To
−T1)式より算出し、その時間だけ更に研削を行な
い、所望のウエハ厚みとする制御を行なうこともある。
2点式インプロセスゲ−ジを用いるウエハ厚み測定方法
は、研削中でもウエハの厚みを測定でき、所望の厚みを
2点式インプロセスゲ−ジが示したときに研削を終了さ
せればよく、必ずしも研削速度、残研削時間の制御を必
要としない利点を有する。
[0003] Wafers are usually stored in cassettes in units of 25 wafers.
And sent to the next etching and polishing process
Therefore, as far as possible, the thickness of these 25 wafers is uniform.
And it is required to be within 1μm
You. During grinding, the thickness of the wafer (T1) Is measured by
Confirmation of the grinding state, but the thickness of the wafer before grinding
(T0) And grinding time (t1Min) to the previous grinding speed
(T o-T1) / T1) And calculate the target wafer thickness
(T)1−T) t1/ (To
-T1) Is calculated from the formula, and grinding is performed
In some cases, control is performed to obtain a desired wafer thickness.
Wafer thickness measurement method using two-point in-process gage
Can measure the thickness of the wafer even during grinding, and
Grinding is terminated when the two-point in-process gauge indicates.
It is necessary to control the grinding speed and remaining grinding time.
Has advantages not required.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ウエハ
を吸着するチャックの軸芯が傾斜しているとき、特に複
数のウエハチャック機構を用いるときはその傾斜角も異
なっており、図4のa、b、c、に示すように軸芯の傾
斜角により測定されたウエハの厚みがばらつく。本発明
は、ウエハを吸着するチャックの軸芯が傾斜していよう
が、いなくても得られる研削ウエハの厚みのバラツキが
極めて小さいウエハが得られる、研削装置におけるウエ
ハの厚み測定方法を提供することを目的とする。
However, when the axis of the chuck for chucking the wafer is inclined, especially when a plurality of wafer chuck mechanisms are used, the inclination angles are also different. As shown in (c), the thickness of the wafer measured by the inclination angle of the axis varies. The present invention provides a method for measuring the thickness of a wafer in a grinding apparatus capable of obtaining a wafer having extremely small variation in the thickness of a ground wafer obtained even if the axis of a chuck for sucking the wafer is inclined. The purpose is to:

【0005】[0005]

【課題を解決するための手段】本発明は、チャックにバ
キュ−ム吸着されたウエハの厚みを研削加工中、または
研削加工後にバキュ−ム吸着した状態でウエハの表面と
チャックの表面とに2点式インプロセスゲ−ジの一対の
接触子を当てて測定された高さの差をウエハの厚みとし
て計測する方法において、先づウエハをチャックに吸着
させない状態で2点式インプロセスゲ−ジの接触子の一
対をチャックの表面に当てて高さ(Tc0、Tw0)を測定
し、その高さの大きい方の値を示した接触子の番号なら
びにその高さの差の値 t=|Tc0−Tw0|を補正値と
して制御装置に記憶させ、研削加工中、または研削加工
後にウエハの表面とチャックの表面とに2点式インプロ
セスゲ−ジの一対の接触子を当てて測定された高さ(T
ci、Twi)の両者の差(Twi−Tci)からウエハの厚み
を決める際、上記番号が記憶された大きい高さの値を示
した接触子が測定した高さ(TciまたはTwi)から補正
値のtを差し引いた高さをその接触子が測定した高さと
みなして研削されたウエハの厚みを計算することを特徴
とする、ウエハの厚み測定方法を提供するものである。
According to the present invention, the thickness of a wafer vacuum-adsorbed to a chuck is applied to the surface of the wafer and the surface of the chuck in a state where the wafer is vacuum-adsorbed during or after the grinding. In a method of measuring a difference in height measured by applying a pair of contacts of a point-type in-process gauge as a thickness of a wafer, a two-point in-process gauge without first adsorbing the wafer to a chuck. The height (T c0 , T w0 ) is measured by applying a pair of the contacts to the surface of the chuck, and the contact number indicating the larger value of the height and the value of the difference in height t = | T c0 −T w0 | is stored in the controller as a correction value, and a pair of contacts of a two-point in-process gage are applied to the surface of the wafer and the surface of the chuck during or after the grinding. Measured height (T
ci , Twi ), when determining the thickness of the wafer from the difference ( Twi - Tci ), the height ( Tci or Tci) measured by the contact having the higher number stored above and having the number stored above. The present invention provides a method of measuring the thickness of a wafer, characterized in that the height obtained by subtracting the correction value t from wi ) is regarded as the height measured by the contact and the thickness of the ground wafer is calculated.

【0006】ウエハ研削前に、ウエハをチャックに吸着
させない状態で2点式インプロセスゲ−ジの接触子の一
対をチャックの表面に当てて高さ(Tc0、Tw0)を測定
し、その高さの大きい方の値を示した接触子の番号なら
びにその高さの差の値 t=|Tc0−Tw0|を補正値と
して制御装置に記憶させ、このt厚み分を差し引いて補
正することにより、すなわち、チャックの軸芯の傾斜に
より生じる2点式インプロセスゲ−ジ測定の厚みtの誤
差を差し引いて Tc0=0、Tw0=0の状態を原点とす
る補正を行って研削されたウエハの厚みを算出しつつ研
削を行なう、または研削後の厚みを算出するので各ウエ
ハ間の厚みのバラツキは1.0μm以下と極めて小さい
なる。
Before grinding the wafer, a pair of contacts of a two-point in-process gage is applied to the surface of the chuck in a state where the wafer is not attracted to the chuck, and the height (T c0 , T w0 ) is measured. The control device stores the number of the contact indicating the larger value of the height and the value of the difference between the heights t = | Tc0 - Tw0 | as a correction value, and corrects by subtracting this t thickness. In other words, the difference between the thickness t of the two-point in-process gage measurement caused by the inclination of the axis of the chuck is subtracted, and the correction is performed with the state of T c0 = 0 and T w0 = 0 as the origin. Grinding is performed while calculating the thickness of the processed wafer, or the thickness after grinding is calculated, so that the thickness variation between the wafers is extremely small, 1.0 μm or less.

【0007】[0007]

【発明の実施の形態】以下、図面を用いて本発明方法を
説明する。図1は、研削装置の1例を示す上面図で、粗
研削ゾ−ンと仕上研削ゾ−ンを備える。図2は上記研削
装置のインデックスタ−ンテ−ブル部分での断面図、図
3はウエハ厚みを2点式インプロセスゲ−ジを用いて測
定している状態を説明する正面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention will be described below with reference to the drawings. FIG. 1 is a top view showing one example of a grinding apparatus, which includes a rough grinding zone and a finish grinding zone. FIG. 2 is a cross-sectional view of an index turntable portion of the grinding apparatus, and FIG. 3 is a front view for explaining a state in which a wafer thickness is measured using a two-point in-process gage.

【0008】図1および図2に示す研削装置において、
1は研削装置、2は後述する基台3の面と同一面の高さ
の位置にある置台上に載せられたウエハロ−ディング用
カセット、2'はウエハアンロ−ディング用カセット、
3は基台、4は床、5はロボット、5aは基台より立設
した枠体、6はウエハ仮置台、7はウエハ洗浄機構、
8、8は搬送パッド、8a,8'aは吸着パッド、8
b,8'bは柄、8c,8'cは軸、9は基台の中央部を
刳り抜いた箇所に設けたインデックスタ−ンテ−ブル、
s1はウエハロ−ディング/ウエハアンロ−ディングゾ
−ン、s2は粗研削ゾ−ン、s3は仕上研削ゾ−ン、9
a,9b,9cはチャック機構、10a,10bは基台
より立設した壁、11は粗研削砥石、11aは第1スピ
ンドル軸、12は仕上砥石、12aは第2スピンドル
軸、13はチャック洗浄機構、14はセラミック製チャ
ッククリ−ナ、15は研磨機構、15aはチャック機
構、15cは洗浄液供給機構、15dは空気供給ノズ
ル、16は砥石開始点位置決め機構、17,17は2点
式インプロセスゲ−ジ、17aはチャック上面接触子、
17bはウエハ上面接触子である。
In the grinding apparatus shown in FIGS. 1 and 2,
1 is a grinding device, 2 is a wafer loading cassette placed on a mounting table located at the same height as a surface of a base 3 described later, 2 'is a wafer unloading cassette,
3 is a base, 4 is a floor, 5 is a robot, 5a is a frame standing upright from the base, 6 is a temporary wafer mounting table, 7 is a wafer cleaning mechanism,
8, 8 are transport pads, 8a and 8'a are suction pads, 8
b and 8'b are handles, 8c and 8'c are shafts, 9 is an index table provided at a location where the center of the base is hollowed out,
s1 is a wafer loading / wafer unloading zone, s2 is a rough grinding zone, s3 is a finish grinding zone, 9
Reference numerals a, 9b and 9c denote chuck mechanisms, 10a and 10b are walls erected from a base, 11 is a coarse grinding wheel, 11a is a first spindle shaft, 12 is a finishing wheel, 12a is a second spindle shaft, and 13 is chuck cleaning. Mechanism, 14 is a ceramic chuck cleaner, 15 is a polishing mechanism, 15a is a chuck mechanism, 15c is a cleaning liquid supply mechanism, 15d is an air supply nozzle, 16 is a grindstone start point positioning mechanism, and 17 and 17 are two-point in-process. Gage, 17a is a chuck top contact,
17b is a wafer upper surface contact.

【0009】図3において、aはウエハを吸着しない状
態のチャック上面に2点式インプロセスゲ−ジの接触子
を当てて高さの差を測定している図、bは研削途中、t
1分経過後にウエハを吸着しているチャック上面とウエ
ハ上面に2点式インプロセスゲ−ジの接触子を当てて高
さの差を測定している図、cは研削終了後にウエハを吸
着しているチャック上面とウエハ上面に2点式インプロ
セスゲ−ジの接触子を当てて高さの差を測定している図
である。図中、wはウエハ、9はチャック機構のポ−ラ
スセラミック板、11は砥石、17は2点式インプロセ
スゲ−ジ、17aはチャック上面接触子、17bはウエ
ハ上面接触子、17cと17dは接合部、17e、17
fは端子、17gはエアシリンダ、17hは支持軸であ
る。
In FIG. 3, a is a diagram in which a difference in height is measured by applying a contact of a two-point in-process gage to the upper surface of the chuck in a state in which the wafer is not sucked, and b is a diagram showing the t during grinding.
FIG. 3C shows a two-point in-process gage contact applied to the upper surface of the chuck and the upper surface of the wafer, which hold the wafer after one minute, to measure the height difference. FIG. 9 is a diagram showing a measurement of a height difference between the upper surface of the chuck and the upper surface of the wafer, which are brought into contact with a contact of a two-point in-process gage. In the drawing, w is a wafer, 9 is a porous ceramic plate of a chuck mechanism, 11 is a grindstone, 17 is a two-point in-process gage, 17a is a chuck top contact, 17b is a wafer top contact, 17c and 17d. Is the joint, 17e, 17
f is a terminal, 17g is an air cylinder, and 17h is a support shaft.

【0010】図3aにおいて、厚みT0のウエハを吸着
しない状態のチャック9の上面に2点式インプロセスゲ
−ジの接触子17a,17bを当てて高さ(Tc0
w0)を測定し、その高さの大きい方の値を示した接触
子の番号(ここでは接触子17b側と仮定する。)なら
びにその高さの差の値 t=|Tc0−Tw0|を補正値と
して制御装置CPUに記憶させる。
[0010] In Figure 3a, the upper surface in two-point-process gain of the chuck 9 in a state in which does not adsorb the wafer thickness T 0 - height against the contact 17a of the di- and 17b (T c0,
T w0 ) was measured, and the number of the contact that showed the larger value of the height (here, the contact 17b side is assumed) and the value of the difference in height t = | T c0 −T w0 Is stored in the control device CPU as a correction value.

【0011】図3bにおいて、ウエハをチャックに吸着
させ、研削加工前にウエハの表面とチャックの表面とに
2点式インプロセスゲ−ジの一対の接触子を当てて測定
された両者の高さ(Tc、Tw)の値がCPUに送信さ
れ、CPU演算部ではこの値から研削前のウエハの厚み
0をT0=(Tw−t)−Tcと算出する。ついで、t1
分間研削加工後にウエハの表面とチャックの表面とに2
点式インプロセスゲ−ジの1対の接触子を当てて測定さ
れた両者の高さ(Tc1、Tw1)の値がCPUに送信さ
れ、CPU演算部では、この値から研削中のウエハの厚
みを決める際、上記番号が記憶された大きい高さの値を
示した接触子(前述のようにここでは接触子17b側と
仮定した。)が測定した高さ(Tw1)から補正値のtを
差し引いた高さをその接触子が測定した高さとみなし
て、研削されたウエハ厚みT1=(Tw1−t)−Tc1
算出する。また、残りの研削時間t2を求めたいとき
は、t1分間の研削速度を (T0−T1)/t1 と算出
し、残りの研削時間t2を目標とするウエハ厚みTから t2=(T1−T)t1/(T0−T1) と演算部で算出し、更にt2分間研削することをCPU
は研削装置1に伝達する。
In FIG. 3b, the height of the wafer is measured by applying a pair of contacts of a two-point in-process gage to the surface of the wafer and the surface of the chuck before grinding, by adsorbing the wafer to the chuck. (T c, T w) value of is sent to the CPU, the CPU calculating unit calculates the thickness T 0 of the grinding prior to the wafer from the value T 0 = a (T w -t) -T c. Then t 1
2 minutes after grinding for 2 minutes
The values of the heights (T c1 , T w1 ) measured by applying a pair of contacts of the point-type in-process gage to the CPU are transmitted to the CPU. When the thickness of the contact is determined, the correction value is obtained from the height (T w1 ) measured by the contact having the large number stored therein and indicating the value of the large height (the contact 17b is assumed here as described above). Is deemed to be the height measured by the contact, and the thickness T 1 of the ground wafer is calculated as T 1 = (T w1 −t) −T c1 . To obtain the remaining grinding time t 2 , the grinding speed for t 1 minute is calculated as (T 0 −T 1 ) / t 1, and the remaining grinding time t 2 is calculated from the target wafer thickness T to t t. 2 = (T 1 −T) t 1 / (T 0 −T 1 ) is calculated by the calculation unit, and further grinding for t 2 minutes is performed by the CPU.
Is transmitted to the grinding device 1.

【0012】図3cにおいて、更に残りのt2分間の研
削加工し、研削を終了させた際のウエハの表面とチャッ
クの表面とに2点式インプロセスゲ−ジの1対の接触子
を当てて測定された両者の高さ(Tc2、Tw2)の値がC
PUに送信され、CPU演算部では、この値から研削終
了のウエハの厚みをT2=(Tw2−t)−Tc2と算出
し、記憶する。研削速度と残研削時間からの制御を行な
わないときは、図3bの測定状態を図3でも継続して行
ない、(Tw2−t)−Tc2の値が目標としたウエハの厚
みT2となったときに研削を終了させる。
In FIG. 3c, a pair of contacts of a two-point in-process gage are applied to the surface of the wafer and the surface of the chuck when the grinding is completed for the remaining t 2 minutes and the grinding is completed. Of the heights (T c2 , T w2 ) measured by
The data is transmitted to the PU, and the CPU calculation unit calculates the thickness of the wafer after grinding from this value as T 2 = (T w2 −t) −T c2 and stores it. When the control based on the grinding speed and the remaining grinding time is not performed, the measurement state of FIG. 3B is continuously performed in FIG. 3, and the value of (T w2 −t) −T c2 is set to the target wafer thickness T 2 . The grinding is terminated when it becomes.

【0013】かかる研削装置1を用いてウエハを研削す
るには、次のように行なわれる。なお、例中の仕上研削
されたウエハの目標厚みはTμmとし、仕上研削による
研削量は10から30μmを目安とする(よって、粗研
削終了時のウエハ厚みの目標値はT2から10乃至30
μmを差し引いた値である。)。先づ、ウエハをチャッ
クに吸着させない状態で2点式インプロセスゲ−ジ17
の接触子の1対17a、17bを各チャック9a、9
b、9cの表面に当てて各チャックの高さ(Tc0
w0)を測定し、チャック番号、そのチャック番号にお
いて前記高さの大きい方の値を示した接触子の番号(1
7aまたは17b)ならびにその高さの差の値 t=|
c0−Tw0|を各々のチャックの補正値として制御装置
に記憶させる。以下、次の(1)から(7)の工程を経
る。なお、説明を容易とするため、各チャック機構9
a、9b、9cにおいていずれも接触子17bが高い値
の高さを示し、かつ、高さの差もいずれもtであったと
想定して説明する。
The grinding of a wafer using the grinding apparatus 1 is performed as follows. Note that the target thickness of the finish-ground wafer in the example is T μm, and the amount of grinding by finish grinding is about 10 to 30 μm (therefore, the target value of the wafer thickness at the end of rough grinding is 10 to 30 μm from T 2).
This is a value obtained by subtracting μm. ). First, the two-point in-process gage 17 is held in a state where the wafer is not attracted to the chuck.
The pair of contacts 17a, 17b of each of the chucks 9a, 9
b, the height of each chuck against the surface of 9c (T c0 ,
T w0 ) was measured, and the number of the contact (1) indicating the chuck number and the larger value of the height at the chuck number
7a or 17b) and the height difference value t = |
T c0 −T w0 | is stored in the controller as a correction value for each chuck. Hereinafter, the following steps (1) to (7) are performed. In addition, in order to facilitate explanation, each chuck mechanism 9
The description will be made on the assumption that the contact 17b has a high value in each of a, 9b, and 9c, and that the difference between the heights is t.

【0014】(1)吸着ア−ム5b,5cが下側となる
ように吊した多関節型ロボット5の吸着ア−ム5cにウ
エハロ−ディング用カセット2よりウエハwを吸着さ
せ、これを仮置台3上に載せる。
(1) The wafer w is sucked from the wafer loading cassette 2 to the suction arm 5c of the articulated robot 5 suspended so that the suction arms 5b and 5c are on the lower side. Place on table 3.

【0015】(2)インデックスタ−ンテ−ブル9を
120度回転させ、ついで仮置台上のウエハを搬送パ
ッド8に吸着させ、搬送パッドを回動させてウエハをイ
ンデックスタ−ンテ−ブルのウエハロ−ディング/ウエ
ハアンロ−ディングゾ−ンs1のチャック機構aに移送
し、その間に前記多関節型ロボット5の吸着ア−ムに
ウエハロ−ディング用カセットよりウエハを吸着させ、
これを仮置台上に載せる。
(2) The index turntable 9 is rotated by 120 degrees, the wafer on the temporary table is attracted to the transfer pad 8, and the transfer pad is rotated to turn the wafer into an index turntable. The wafer is transferred to the chuck mechanism a of the loading / wafer unloading zone s1, during which the wafer is sucked from the wafer loading cassette to the suction arm of the articulated robot 5.
This is placed on a temporary table.

【0016】(3)インデックスタ−ンテ−ブル9を
120度回転させてチャック機構aを粗研削ゾ−ンs2
に移動し、チャック機構bをウエハロ−ディング/ウエ
ハアンロ−ディングゾ−ンs1に移動させた後、粗研
削ゾ−ンs2において、2点式インプロセスゲ−ジ17
の接触子の一方17aをチャック9aの表面に当てて高
さ(Tci)を測定、接触子の他方17bをウエハ上面に
当てて高さ(Twi)を測定し、その値を電気信号として
制御装置CPUのRAMに送信する。制御装置CPUの
演算部で研削前のウエハの厚み(T0)を次式で算出
し、制御装置に記憶させる。 T0=(Twi−t)−Tci ついで、第1番目のスピンドル軸10aを下降させて砥
石11をウエハに押圧し、チャック機構aおよび第1ス
ピンドル軸を回転させつつウエハの粗研削を行い、その
間、2点式インプロセスゲ−ジ17の接触子の一方17
aをチャック9aの表面に当てて高さ(T'ci)を測
定、接触子の他方17bをウエハ上面に当てて高さ
(T'wi)を測定しつつ、その値を電気信号として制御
装置CPUのRAMに送信する。制御装置CPUの演算
部で研削されているウエハの厚み(T1)を式 T1
(T'wi−t)−T'ciで常時算出する。研削速度のソフ
トが繰り込まれているときは、研削速度を 式 (T0−T1)/t から算出し、さらに残りの研削時間t2が(T1−T+1
0)t1/(T0−T1)と算出する。更に2点式インプ
ロセスゲ−ジ17の接触子の一方17aをチャック9a
の表面に当てて高さ(T''ci)を測定、接触子の他方1
7bをウエハ上面に当てて高さ(T''wi)を測定しつ
つ、研削が続行されて(理論上はt2分間)、研削され
たウエハの厚みが、式(T''wi−t)−T''ciで算出さ
れて所望の厚みT2となったら、第1番目のスピンドル
軸を上昇させて粗研削を終了する。
(3) The index turntable 9 is rotated by 120 degrees to set the chuck mechanism a to a coarse grinding zone s2.
After the chuck mechanism b is moved to the wafer loading / wafer unloading zone s1, the two-point in-process gauge 17 is moved to the rough grinding zone s2.
One contact 17a is applied to the surface of the chuck 9a to measure the height (T ci ), and the other contact 17b is applied to the upper surface of the wafer to measure the height (T wi ), and the value is used as an electric signal. The data is transmitted to the RAM of the control device CPU. The arithmetic unit of the control device CPU calculates the thickness (T 0 ) of the wafer before grinding by the following equation and stores the thickness in the control device. T 0 = (T wi −t) −T ci Then, the first spindle 10 a is lowered to press the grindstone 11 against the wafer, and the rough grinding of the wafer is performed while rotating the chuck mechanism a and the first spindle. During that time, one of the contacts 17 of the two-point in-process gage 17
a is applied to the surface of the chuck 9a to measure the height (T ' ci ), the other contact 17b is applied to the upper surface of the wafer to measure the height (T' wi ), and the value is used as an electrical signal to control the controller. Send to CPU RAM. The thickness (T 1 ) of the wafer ground by the calculation unit of the control unit CPU is expressed by the following equation: T 1 =
Constantly calculated by (T 'wi -t) -T' ci. When the software of the grinding speed is included, the grinding speed is calculated from the formula (T 0 −T 1 ) / t, and the remaining grinding time t 2 is calculated as (T 1 −T + 1).
0) Calculate as t 1 / (T 0 −T 1 ). Further, one contact 17a of the two-point in-process gage 17 is attached to the chuck 9a.
Measure the height (T '' ci ) against the surface of the
7b is applied to the upper surface of the wafer to measure the height (T ″ wi ), and the grinding is continued (theoretically, t 2 minutes), and the thickness of the ground wafer is calculated by the formula (T ″ wi −t). ) -T '' After ci at being calculated a desired thickness T 2, and ends the rough grinding by increasing the 1st spindle axis.

【0017】この間に仮置台3上のウエハを搬送パッ
ド8でインデックスタ−ンテ−ブル9のウエハロ−ディ
ング/ウエハアンロ−ディングゾ−ンs1のチャック機
構bに移送するとともに、多関節型ロボット5を用い
てウエハロ−ディング用カセット2内のウエハを仮置台
3の上に載せる。
In the meantime, the wafer on the temporary table 3 is transferred to the chuck mechanism b of the wafer loading / unloading zone s1 of the index table 9 by the transfer pad 8, and the multi-joint robot 5 is used. Then, the wafer in the wafer loading cassette 2 is placed on the temporary table 3.

【0018】(4)インデックスタ−ンテ−ブル9を
120度回転させて仕上研削ゾ−ンs3にチャック機構
aを移動、チャック機構bを粗研削ゾ−ンs2に移動、
チャック機構cをウエハロ−ディング/ウエハアンロ−
ディングゾ−ンs1に移動させた後、第2番目のスピ
ンドル10b軸を下降させて砥石12をウエハに押圧
し、チャック機構aおよびスピンドル軸を回転させてウ
エハの仕上研削を行い、ついで、第2番目のスピンドル
軸を上昇させ、仕上研削を終了させる。この仕上研削の
際にも仕上研削途中2点式インプロセスゲ−ジを用いて
チャックの高さとウエハの高さを測定しつつ、補正値t
を考慮したウエハの厚みを算出し、目的の仕上研削厚み
Tμmとなったら仕上研削を終了させる。(以下の工程
においても同じである。) この間に第1番目のスピンドル軸10aを下降させて
砥石11をウエハに押圧し、チャック機構bおよびスピ
ンドル軸を回転させてウエハの粗研削を行い、ついで、
第1番目のスピンドル軸を上昇させる。この粗研削の際
にも前述したように粗研削途中インプロセスゲ−ジを用
いてチャックの高さとウエハの高さを測定し、補正値t
を考慮したウエハの厚みを算出する。(以下の工程にお
いても同じである。) 一方仮置台3上のウエハを左側の搬送パッド8でイン
デックスタ−ンテ−ブルのウエハロ−ディング/ウエハ
アンロ−ディングゾ−ンs1のチャック機構cに移送す
るとともに、多関節型ロボット5を用いてウエハロ−
ディング用カセット2内のウエハを仮置台3の上に載せ
る。
(4) The index turntable 9 is rotated by 120 degrees to move the chuck mechanism a to the finishing grinding zone s3, and to move the chuck mechanism b to the coarse grinding zone s2.
Wafer loading / wafer unloading with chuck mechanism c
After moving to the loading zone s1, the shaft of the second spindle 10b is lowered to press the grindstone 12 against the wafer, and the chuck mechanism a and the spindle shaft are rotated to finish grind the wafer. Raise the second spindle to finish grinding. During the finish grinding, the height of the chuck and the height of the wafer are measured using a two-point in-process gauge during the finish grinding, and the correction value t is measured.
Is calculated in consideration of the above, and when the desired finish grinding thickness T μm is reached, finish grinding is finished. (The same applies to the following steps.) During this time, the first spindle 10a is lowered to press the grindstone 11 against the wafer, and the chuck mechanism b and the spindle are rotated to roughly grind the wafer. ,
Raise the first spindle shaft. In this rough grinding, the height of the chuck and the height of the wafer are measured using the in-process gauge during the rough grinding as described above, and the correction value t is set.
Is calculated in consideration of the above. (The same applies to the following steps.) On the other hand, the wafer on the temporary table 3 is transferred to the chuck mechanism c of the wafer loading / wafer unloading zone s1 of the index turntable by the transport pad 8 on the left side. , Using an articulated robot 5
The wafer in the loading cassette 2 is placed on the temporary table 3.

【0019】(5)インデックスタ−ンテ−ブル9を
120度回転させてチャック機構aをウエハロ−ディン
グ/ウエハアンロ−ディングゾ−ンs1に、チャック機
構bを仕上研削ゾ−ンs3ならびにチャック機構cを粗
研削ゾ−ンs2に移動し、右側の搬送パッド8で仕上
研削されたウエハを洗浄機構に移送し、該ウエハを洗浄
した後、多関節型ロボット5を右側に移動させて該ロボ
ットのア−ムに仕上研削および洗浄されたウエハを吸着
させ、これを研磨盤15のチャック機構15aに載せ、
研磨パッド15bをウエハ面に押圧し、チャック機構、
研磨パッドを回転させて研磨を行い、研磨されたウエハ
の表面を洗浄機構15cより噴射される洗浄液で洗浄、
ついで空気供給ノズル15dより空気を吹き付けて乾燥
後、多関節型ロボット5の吸着ア−ムにウエハを吸着さ
せ、右側のアンロ−ディング用カセット2内に収納し、
ついで、左側の搬送パッド8を回動させて仮置台3上
のウエハをインデックスタ−ンテ−ブルのウエハロ−デ
ィング/ウエハアンロ−ディングゾ−ンのチャック機構
aに移送し、一方、前記多関節型ロボットを左側に移
動させ、多関節型ロボットの吸着ア−ムにウエハロ−デ
ィング用カセットよりウエハを吸着させ、これを仮置台
上に載せ、その間に第2番目のスピンドル軸を下降さ
せて砥石をウエハに押圧し、チャック機構bおよびスピ
ンドル軸を回転させてウエハの仕上研削を行い、つい
で、第2番目のスピンドル軸を上昇させ、また、第1
番目のスピンドル軸を下降させて砥石をウエハに押圧
し、チャック機構cおよびスピンドル軸を回転させてウ
エハの粗研削を行い、ついで、第1番目のスピンドル軸
を上昇させる。
(5) By rotating the index turntable 9 by 120 degrees, the chuck mechanism a is used for the wafer loading / wafer unloading zone s1, the chuck mechanism b is used for the finish grinding zone s3 and the chuck mechanism c. After moving to the coarse grinding zone s2, the wafer finished and ground by the transport pad 8 on the right side is transferred to the cleaning mechanism, and the wafer is cleaned. The wafer that has been subjected to finish grinding and washing is adsorbed to the chuck and placed on the chuck mechanism 15a of the polishing machine 15,
The polishing pad 15b is pressed against the wafer surface, and a chuck mechanism,
The polishing is performed by rotating the polishing pad, and the surface of the polished wafer is cleaned with a cleaning liquid sprayed from the cleaning mechanism 15c.
Then, air is blown from the air supply nozzle 15d to dry the wafer, and the wafer is sucked by the suction arm of the articulated robot 5 and stored in the unloading cassette 2 on the right side.
Then, the transfer pad 8 on the left side is rotated to transfer the wafer on the temporary mounting table 3 to the chuck mechanism a of the wafer loading / unloading zone of the index turntable. Is moved to the left, the wafer is sucked from the wafer loading cassette to the suction arm of the articulated robot, and the wafer is placed on the temporary table. During this time, the second spindle shaft is lowered to move the grindstone to the wafer. To finish grinding the wafer by rotating the chuck mechanism b and the spindle shaft, then raise the second spindle shaft, and
The second spindle is lowered to press the grindstone against the wafer, the chuck mechanism c and the spindle are rotated to roughly grind the wafer, and then the first spindle is raised.

【0020】(6)インデックスタ−ンテ−ブルを1
20度回転させてチャック機構bをウエハロ−ディング
/ウエハアンロ−ディングゾ−ンに、チャック機構cを
仕上研削ゾ−ンにならびにチャック機構aを粗研削ゾ−
ンに移動し、搬送パッドで仕上研削されたウエハを洗
浄機構に移送し、該ウエハを洗浄した後、多関節型ロボ
ットを右側に移動させて該ロボットのア−ムに仕上研削
および洗浄されたウエハを吸着させ、これを研磨盤のチ
ャック機構に載せ、研磨パッドをウエハ面に押圧し、チ
ャック機構、研磨パッドを回転させて研磨を行い、研磨
されたウエハの表面を洗浄、乾燥後、多関節型ロボット
の吸着ア−ムにウエハを吸着させ、アンロ−ディング用
カセット内に収納し、ついで、搬送パッドを回動させ
て仮置台上のウエハをインデックスタ−ンテ−ブルのウ
エハロ−ディング/ウエハアンロ−ディングゾ−ンのチ
ャック機構bに移送し、一方、前記多関節型ロボット
を左側に移動させ、多関節型ロボットの吸着ア−ムにウ
エハロ−ディング用カセットよりウエハを吸着させ、こ
れを仮置台上に載せ、その間に第2番目のスピンドル
軸を下降させて砥石をウエハに押圧し、チャック機構c
およびスピンドル軸を回転させてウエハの仕上研削を行
い、ついで、第2番目のスピンドル軸を上昇させ、ま
た、第1番目のスピンドル軸を下降させて砥石をウエ
ハに押圧し、チャック機構aおよびスピンドル軸を回転
させてウエハの粗研削を行い、ついで、第1番目のスピ
ンドル軸を上昇させる。
(6) The index turntable is set to 1
The chuck mechanism b is rotated by 20 degrees, the chuck mechanism b is used as a wafer loading / wafer unloading zone, the chuck mechanism c is used as a finish grinding zone, and the chuck mechanism a is used as a rough grinding zone.
Then, the wafer, which has been finish-ground by the transfer pad, is transferred to the cleaning mechanism, and the wafer is cleaned. After that, the articulated robot is moved to the right to finish-grind and clean the arm of the robot. The wafer is sucked, placed on the chuck mechanism of the polishing machine, the polishing pad is pressed against the wafer surface, the chuck mechanism and the polishing pad are rotated to perform polishing, and the polished wafer surface is washed, dried, and dried. The wafer is sucked by the suction arm of the articulated robot and stored in an unloading cassette. Then, the wafer on the temporary mounting table is rotated by rotating a transfer pad to load the wafer on an index table. The robot is transferred to a chuck mechanism b of a wafer unloading zone, while the articulated robot is moved to the left, and a wafer loading cassette is attached to a suction arm of the articulated robot. The Toyori wafer is adsorbed, placed it on the provisional table, it presses the first second grindstone lowers the spindle axis to the wafer during chucking mechanism c
Then, the finish grinding of the wafer is performed by rotating the spindle shaft, then the second spindle shaft is raised, and the first spindle shaft is lowered to press the grindstone against the wafer, and the chuck mechanism a and the spindle The shaft is rotated to roughly grind the wafer, and then the first spindle shaft is raised.

【0021】(7)インデックスタ−ンテ−ブルを1
20度回転させてチャック機構cをウエハロ−ディング
/ウエハアンロ−ディングゾ−ンに、チャック機構aを
仕上研削ゾ−ンにならびにチャック機構bを粗研削ゾ−
ンに移動し、搬送パッドで仕上研削されたウエハを洗
浄機構に移送し、該ウエハを洗浄した後、多関節型ロボ
ットを右側に移動させて該ロボットのア−ムに仕上研削
および洗浄されたウエハを吸着させ、これをアンロ−デ
ィング用カセット内に収納し、ついで、搬送パッドを
回動させて仮置台上のウエハをインデックスタ−ンテ−
ブルのウエハロ−ディング/ウエハアンロ−ディングゾ
−ンのチャック機構cに移送し、一方、前記多関節型
ロボットを左側に移動させ、多関節型ロボットの吸着ア
−ムにウエハロ−ディング用カセットよりウエハを吸着
させ、これを仮置台上に載せ、その間に第2番目のス
ピンドル軸を下降させて砥石をウエハに押圧し、チャッ
ク機構aおよびスピンドル軸を回転させてウエハの仕上
研削を行い、ついで、第2番目のスピンドル軸を上昇さ
せ、また、第1番目のスピンドル軸を下降させて砥石
をウエハに押圧し、チャック機構bおよびスピンドル軸
を回転させてウエハの粗研削を行い、ついで、第1番目
のスピンドル軸を上昇させる。
(7) The index turntable is set to 1
By rotating the chuck mechanism 20 degrees, the chuck mechanism c becomes a wafer loading / wafer unloading zone, the chuck mechanism a becomes a finish grinding zone, and the chuck mechanism b becomes a rough grinding zone.
Then, the wafer, which has been finish-ground by the transfer pad, is transferred to the cleaning mechanism, and the wafer is cleaned. After that, the articulated robot is moved to the right to finish-grind and clean the arm of the robot. The wafer is sucked and stored in a cassette for unloading, and then the wafer on the temporary table is index-turned by rotating the transfer pad.
To the chuck mechanism c of the wafer loading / wafer unloading zone. On the other hand, the articulated robot is moved to the left, and the wafer is transferred from the wafer loading cassette to the suction arm of the articulated robot. The wafer is placed on a temporary mounting table, during which the second spindle shaft is lowered to press the whetstone against the wafer, and the chuck mechanism a and the spindle shaft are rotated to finish grind the wafer. The second spindle shaft is raised, and the first spindle shaft is lowered to press the grindstone against the wafer, and the chuck mechanism b and the spindle shaft are rotated to roughly grind the wafer. Raise the spindle axis.

【0022】(8)以下、インデックスタ−ンテ−ブル
の回動と、粗研削ウエハの仕上研削、洗浄、ウエハの研
磨、研磨されたウエハのアンロ−ディング用カセット内
の収納、新たなウエハのウエハロ−ディング/ウエハア
ンロ−ディングゾ−ンのチャック機構への移送、ウエハ
の粗研削の前記(5)から(7)の工程を繰り返す。
(8) Hereafter, rotation of the index turntable, finish grinding and cleaning of the coarsely ground wafer, polishing of the wafer, storage of the polished wafer in a cassette for unloading, and loading of a new wafer The steps (5) to (7) of the wafer loading / unloading zone transfer to the chuck mechanism and the rough grinding of the wafer are repeated.

【0023】研磨盤によるウエハ研削面の破砕傷の消滅
のための研摩工程が必要でないときは、洗浄機構7で洗
浄・乾燥されたウエハを多関節型ロボット5でアンロ−
ディング用カセット2内に搬送し、収納する。
When a polishing process for eliminating crushing scratches on the wafer grinding surface by the polishing machine is not necessary, the wafer cleaned and dried by the cleaning mechanism 7 is unloaded by the articulated robot 5.
It is transported and stored in the loading cassette 2.

【0024】[0024]

【発明の効果】本発明によれば、2点式インプロセスゲ
−ジの接触子の1方をチャックの表面に当てて高さを測
定、かつ、他方の接触子をウエハ上面に当てて高さを測
定し、その高さの差から研削されたウエハの厚みをチャ
ックの軸芯の傾斜による厚み補正値を考慮して算出する
ので、研削水の温度変化による影響、各チャック機構の
テ−ブルの上下変動の影響、チャックの軸芯の傾斜によ
る影響を受けることなく、研削加工された各ウエハの厚
みの振れ幅は、200μm径のシリコンウエハで0.5
μm以下、300μm径のシリコンウエハで0.8μm
以下と小さい。
According to the present invention, one contact of the two-point in-process gage is applied to the surface of the chuck to measure the height, and the other contact is applied to the upper surface of the wafer to measure the height. Is measured and the thickness of the ground wafer is calculated from the difference in height in consideration of the thickness correction value due to the inclination of the axis of the chuck. Without being affected by the vertical fluctuation of the bull and the inclination of the axis of the chuck, the swing width of the thickness of each ground wafer is 0.5 μm for a silicon wafer having a diameter of 200 μm.
0.8 μm for silicon wafers of 300 μm diameter or less
Less than the following.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 ウエハ研削装置の上面図である。FIG. 1 is a top view of a wafer grinding apparatus.

【図2】 ウエハ研削装置の断面図である。FIG. 2 is a sectional view of a wafer grinding apparatus.

【図3】 ウエハの厚みを測定する状態を示す正面図
である。
FIG. 3 is a front view showing a state in which the thickness of a wafer is measured.

【図4】 チャックの軸芯の傾きがインプロセスゲ−
ジによりウエハの厚みを測定する際に測定誤差を生じさ
せる原因を説明する図である。
FIG. 4 shows the inclination of the axis of the chuck when the in-process
FIG. 6 is a diagram for explaining a cause of a measurement error when measuring the thickness of a wafer by using a method.

【符号の説明】[Explanation of symbols]

1 研削装置 9 チャック 17 2点式インプロセスゲ−ジ 17a 接触子 17b 接触子 w ウエハ DESCRIPTION OF SYMBOLS 1 Grinding apparatus 9 Chuck 17 Two-point in-process gage 17a Contact 17b Contact w Wafer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 元夫 神奈川県厚木市上依知3009番地 株式会社 岡本工作機械製作所半導体事業本部内 Fターム(参考) 3C034 AA08 AA13 BB73 BB91 CA02 CB13 DD20 3C058 AA04 AA07 AA18 AB03 AB04 AC01 AC02 AC05 BA07 BB09 CB01 DA17  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Motoo Yoshida 3009 Kamiyori, Atsugi-shi, Kanagawa Prefecture F-term in the Semiconductor Division, Okamoto Machine Tool Works, Ltd. AC01 AC02 AC05 BA07 BB09 CB01 DA17

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 チャックにバキュ−ム吸着されたウエハ
の厚みを研削加工中、または研削加工後にバキュ−ム吸
着した状態でウエハの表面とチャックの表面とに2点式
インプロセスゲ−ジの一対の接触子を当てて測定された
高さの差をウエハの厚みとして計測する方法において、 先づウエハをチャックに吸着させない状態で2点式イン
プロセスゲ−ジの接触子の一対をチャックの表面にあて
て高さ(Tc0、Tw0)を測定し、その高さの大きい方の
値を示した接触子の番号ならびにその高さの差の値 t
=|Tc0−Tw0|を補正値として制御装置に記憶させ、 研削加工中、または研削加工後にウエハの表面とチャッ
クの表面とに2点式インプロセスゲ−ジの一対の接触子
を当てて測定された高さ(Tci、Twi)の両者の差(T
wi−Tci)からウエハの厚みを決める際、上記番号が記
憶された大きい高さの値を示した接触子が測定した高さ
(TciまたはTwi)から補正値のtを差し引いた高さを
その接触子が測定した高さとみなして研削されたウエハ
の厚みを計算することを特徴とする、ウエハの厚み測定
方法。
1. A two-point in-process gage is applied to the surface of a wafer and the surface of a chuck while the thickness of the wafer vacuum-adsorbed to the chuck is being ground during vacuum processing or after vacuum processing. In a method of measuring a difference in height measured by applying a pair of contacts as a thickness of a wafer, a pair of contacts of a two-point in-process gage is first attached to the chuck in a state where the wafer is not attracted to the chuck. The height (T c0 , T w0 ) measured on the surface was measured, and the contact number indicating the larger value of the height and the value of the difference in height t
= | T c0 −T w0 | is stored in the controller as a correction value, and a pair of contacts of a two-point in-process gage are applied to the surface of the wafer and the surface of the chuck during or after the grinding. Difference (T ci , T wi ) between the measured heights (T ci , T wi )
When determining the thickness of the wafer from wi− T ci ), the height obtained by subtracting the correction value t from the height (T ci or T wi ) measured by the contact having the large number stored with the above number. A method for measuring the thickness of a wafer, comprising calculating a thickness of a ground wafer by regarding the height as a height measured by the contact.
JP17756499A 1999-06-24 1999-06-24 Wafer thickness measuring method Pending JP2001009716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17756499A JP2001009716A (en) 1999-06-24 1999-06-24 Wafer thickness measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17756499A JP2001009716A (en) 1999-06-24 1999-06-24 Wafer thickness measuring method

Publications (1)

Publication Number Publication Date
JP2001009716A true JP2001009716A (en) 2001-01-16

Family

ID=16033178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17756499A Pending JP2001009716A (en) 1999-06-24 1999-06-24 Wafer thickness measuring method

Country Status (1)

Country Link
JP (1) JP2001009716A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054925A (en) * 2005-08-26 2007-03-08 Okamoto Machine Tool Works Ltd Substrate grinding device equipped with two-point type in-process gage equipment
JP2007101402A (en) * 2005-10-05 2007-04-19 Shin Etsu Polymer Co Ltd Tackiness and thickness measuring instrument and measuring method using it
JP2007222986A (en) * 2006-02-23 2007-09-06 Disco Abrasive Syst Ltd Grinding device
JP2007283462A (en) * 2006-04-19 2007-11-01 Disco Abrasive Syst Ltd Control method for grinder
JP2007335458A (en) * 2006-06-12 2007-12-27 Disco Abrasive Syst Ltd Wafer grinder
JP2008238341A (en) * 2007-03-27 2008-10-09 Disco Abrasive Syst Ltd Machining device
JP2011042003A (en) * 2009-08-20 2011-03-03 Disco Abrasive Syst Ltd Holding table and grinding device
JP2014024145A (en) * 2012-07-26 2014-02-06 Disco Abrasive Syst Ltd Grinding device
JP2015178139A (en) * 2014-03-18 2015-10-08 株式会社ディスコ Polishing method of workpiece
KR20160088815A (en) 2015-01-16 2016-07-26 가부시기가이샤 디스코 Method of grinding workpiece
JP2017019055A (en) * 2015-07-13 2017-01-26 株式会社ディスコ Chuck table and processing device equipped with chuck table
CN111283548A (en) * 2018-12-07 2020-06-16 株式会社迪思科 Method for machining disc-shaped workpiece
KR20230029819A (en) 2020-06-30 2023-03-03 도쿄엘렉트론가부시키가이샤 Substrate processing system, substrate processing method and storage medium

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054925A (en) * 2005-08-26 2007-03-08 Okamoto Machine Tool Works Ltd Substrate grinding device equipped with two-point type in-process gage equipment
JP4566107B2 (en) * 2005-10-05 2010-10-20 信越ポリマー株式会社 Adhesive force / thickness measuring apparatus and measuring method thereof
JP2007101402A (en) * 2005-10-05 2007-04-19 Shin Etsu Polymer Co Ltd Tackiness and thickness measuring instrument and measuring method using it
JP2007222986A (en) * 2006-02-23 2007-09-06 Disco Abrasive Syst Ltd Grinding device
JP2007283462A (en) * 2006-04-19 2007-11-01 Disco Abrasive Syst Ltd Control method for grinder
JP2007335458A (en) * 2006-06-12 2007-12-27 Disco Abrasive Syst Ltd Wafer grinder
JP2008238341A (en) * 2007-03-27 2008-10-09 Disco Abrasive Syst Ltd Machining device
JP2011042003A (en) * 2009-08-20 2011-03-03 Disco Abrasive Syst Ltd Holding table and grinding device
JP2014024145A (en) * 2012-07-26 2014-02-06 Disco Abrasive Syst Ltd Grinding device
JP2015178139A (en) * 2014-03-18 2015-10-08 株式会社ディスコ Polishing method of workpiece
KR20160088815A (en) 2015-01-16 2016-07-26 가부시기가이샤 디스코 Method of grinding workpiece
JP2017019055A (en) * 2015-07-13 2017-01-26 株式会社ディスコ Chuck table and processing device equipped with chuck table
CN111283548A (en) * 2018-12-07 2020-06-16 株式会社迪思科 Method for machining disc-shaped workpiece
CN111283548B (en) * 2018-12-07 2023-07-18 株式会社迪思科 Method for machining disc-shaped workpiece
KR20230029819A (en) 2020-06-30 2023-03-03 도쿄엘렉트론가부시키가이샤 Substrate processing system, substrate processing method and storage medium

Similar Documents

Publication Publication Date Title
EP1068047B1 (en) Apparatus and method for film thickness measurement integrated into a wafer load/unload unit
US6431949B1 (en) Planarization apparatus
JP2001009716A (en) Wafer thickness measuring method
JP6937370B2 (en) Grinding equipment, grinding methods and computer storage media
JP2018058160A (en) Dressing method of grinding grindstone
WO2018235619A1 (en) Substrate processing system, substrate processing method and computer storage medium
JP2003092274A (en) Apparatus and method for working, method of manufacturing semiconductor device using the apparatus and semiconductor device manufactured by the method
JPWO2019013042A1 (en) Substrate processing system, substrate processing method, and computer storage medium
JP6552930B2 (en) Grinding device
JPH10166259A (en) Sapphire substrate grinding and polishing method and device
JP2019084590A (en) Dressing wafer and dressing method
WO2021095586A1 (en) Substrate processing method and substrate processing device
TWI729712B (en) Grinding device and grinding method
JPH11267968A (en) Polishing method of wafer and polishing machine used therefor
JP4208675B2 (en) Substrate cleaning evaluation method
JP2000216124A (en) Grinding machine and wafer grinding method
JP2000225561A (en) Grinding wheel starting point positioning mechanism in wafer grinding device
JP4850666B2 (en) Wafer processing equipment
JP3341369B2 (en) Semiconductor wafer back grinding machine
JP2002093762A (en) Grinding machine for wafer
WO2021095588A1 (en) Substrate processing method and substrate processing device
JP2003100684A (en) Substrate polishing device and method of polishing, cleaning, and drying substrate
WO2022004383A1 (en) Substrate processing system and substrate processing method
JP2022125928A (en) Processing method and processing device
JP2022046137A (en) Substrate treatment method and substrate treatment system