JP4566107B2 - Adhesive force / thickness measuring apparatus and measuring method thereof - Google Patents

Adhesive force / thickness measuring apparatus and measuring method thereof Download PDF

Info

Publication number
JP4566107B2
JP4566107B2 JP2005292502A JP2005292502A JP4566107B2 JP 4566107 B2 JP4566107 B2 JP 4566107B2 JP 2005292502 A JP2005292502 A JP 2005292502A JP 2005292502 A JP2005292502 A JP 2005292502A JP 4566107 B2 JP4566107 B2 JP 4566107B2
Authority
JP
Japan
Prior art keywords
measured
contact terminal
thickness
measuring
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005292502A
Other languages
Japanese (ja)
Other versions
JP2007101402A (en
Inventor
博 春野
俊明 初見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2005292502A priority Critical patent/JP4566107B2/en
Publication of JP2007101402A publication Critical patent/JP2007101402A/en
Application granted granted Critical
Publication of JP4566107B2 publication Critical patent/JP4566107B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、粘着性を有する部材、例えば、シリコーンゴム板等の粘着力を測定する粘着力兼厚み測定装置及びその測定方法に関するものである。   The present invention relates to an adhesive force / thickness measuring apparatus for measuring an adhesive force of an adhesive member such as a silicone rubber plate and a method for measuring the same.

従来、例えば、未加硫ゴムシートをタイヤ部品に巻き付けて生タイヤを製造する際、未加硫ゴムシートの粘着力が作業性及び、その後の品質に影響を及ぼすため、粘着力が或る範囲を外れないようにすることが重要であり、所定ロット毎等に未加硫ゴムシートの一部を切り取って、粘着力測定用の被測定物を作製し、その被測定物の粘着力の測定を行っていた。   Conventionally, for example, when a raw tire is manufactured by wrapping an unvulcanized rubber sheet around a tire part, the adhesive strength of the unvulcanized rubber sheet affects workability and subsequent quality. It is important that the uncured rubber sheet is cut out for each predetermined lot, etc., to prepare a measurement object for measuring the adhesive strength, and measure the adhesive strength of the measurement object. Had gone.

この場合の粘着力測定装置としては、例えば、生タイヤの製造に種々の未加硫ゴムシートの未加硫ゴムの粘着力を測定するための押圧力及び引張力を測定可能な手で把持できる小型の携帯可能な粘着力測定装置(例えば、日本計測システム(株)製のハンディーフォース・ゲージHFシリーズ等)が使用されていた(特許文献1を参照)。   As an apparatus for measuring the adhesive strength in this case, for example, it can be gripped with a hand capable of measuring the pressing force and tensile force for measuring the adhesive strength of unvulcanized rubber of various unvulcanized rubber sheets in the production of raw tires. A small portable adhesive force measuring device (for example, Handy Force Gauge HF series manufactured by Nihon Keisoku System Co., Ltd.) has been used (see Patent Document 1).

この携帯用の粘着力測定装置を使用した粘着力の測定は、図6に示したように、粘着力測定装置本体100から突出するシャフト102の先端には円板状の粘着力測定用接触端子104が取り付けられ、この粘着力測定用接触端子104を測定対象である未加硫ゴムシート106に所定の荷重で平行に押し付け、その後、ハンディーフォースゲージ本体100を手で把持しながら未加硫ゴムシート106から離れる方向へゆっくりと移動し(図7(a)参照)、粘着力測定用接触端子104が未加硫ゴムシート106から離れる瞬間の引張荷重を読取っていた。   As shown in FIG. 6, the adhesive force measurement using this portable adhesive force measuring device is performed by using a disk-shaped adhesive force measuring contact terminal at the tip of the shaft 102 protruding from the adhesive force measuring device main body 100. 104 is attached, and this adhesive force measuring contact terminal 104 is pressed against the unvulcanized rubber sheet 106 to be measured in parallel with a predetermined load, and then the unvulcanized rubber is held while holding the handy force gauge body 100 by hand. The sheet slowly moved in the direction away from the sheet 106 (see FIG. 7A), and the tensile load at the moment when the contact terminal 104 for measuring adhesive force was separated from the unvulcanized rubber sheet 106 was read.

しかしながら、正確な粘着力を測定するには、粘着力測定用接触端子104の接触面を未加硫ゴムシート106の表面と平行に保ったまま移動する必要があり、図7(b)に示すように未加硫ゴムシート106の測定表面に対して斜めに引っ張ると測定値が大きく変動する問題があるため、正確な粘着力を測定することは熟練者でも困難であった。   However, in order to accurately measure the adhesive force, it is necessary to move while keeping the contact surface of the contact terminal 104 for measuring the adhesive force parallel to the surface of the unvulcanized rubber sheet 106, as shown in FIG. As described above, there is a problem in that the measured value greatly fluctuates when pulled obliquely with respect to the measurement surface of the unvulcanized rubber sheet 106, so that it is difficult even for a skilled person to measure an accurate adhesive force.

そのため、携帯用の粘着力測定装置を使用した粘着力の測定方法は、担当者レベルの確認作業としての利用に留まり、実際の品質管理にあたっては、測定者の熟練度に左右されることのない固定型の大型の粘着力測定装置が使用されていたが、従来の固定型の粘着力測定装置は設備が大がかりなものであって、操作が面倒で設備費が高いといった問題があった。
特開2001−159598号公報
Therefore, the method of measuring the adhesive force using a portable adhesive force measuring device is only used as a confirmation work at the person-in-charge level, and does not depend on the skill level of the measurer in actual quality control. A fixed-type large-sized adhesive force measuring device has been used, but the conventional fixed-type adhesive force measuring device has a large facility, and has a problem that the operation is troublesome and the equipment cost is high.
JP 2001-159598 A

そこで、この発明は、従来の携帯用の粘着力測定装置と固定型の粘着力測定装置の問題点を解消した、測定作業が容易で、短時間で正確な粘着力の測定を行うことのできる粘着力兼厚み測定装置及びその測定方法を提供することを課題とする。   Therefore, the present invention solves the problems of the conventional portable adhesive force measuring device and the fixed adhesive force measuring device, is easy to measure, and can accurately measure the adhesive force in a short time. It is an object of the present invention to provide an adhesive force / thickness measuring device and a measuring method thereof.

以上のような課題を実現するため、請求項1に係る発明は、基盤上に載置した被測定物の表面に接触させる接触端子を前記被測定物の表面と平行な平面の任意の位置に移動可能なXY軸方向駆動手段と、前記接触端子を垂直方向に移動させることで前記被測定物が前記接触端子に作用する押圧力及び引張力を測定する測定手段とを備えた粘着力測定装置であって、前記XY軸方向駆動手段には、前記接触端子が接触する箇所の前記被測定物の表面にレーザ光を照射して被測定物の厚みを測定する非接触式厚み測定装置を備えていることを特徴としている。   In order to realize the above-described problems, the invention according to claim 1 is configured such that the contact terminal that contacts the surface of the object to be measured placed on the base is at an arbitrary position on a plane parallel to the surface of the object to be measured. Adhesive force measuring device comprising: movable XY axial direction driving means; and measuring means for measuring the pressing force and tensile force that the object to be measured acts on the contact terminals by moving the contact terminals in the vertical direction. And the said XY axial direction drive means is equipped with the non-contact-type thickness measuring apparatus which irradiates the laser beam to the surface of the said to-be-measured object of the location where the said contact terminal contacts, and measures the thickness of to-be-measured object It is characterized by having.

請求項2に記載の発明は、請求項1の構成に加え、前記接触端子を垂直方向に昇降させるためのZ軸方向駆動手段と、予め設定された条件で前記接触端子が昇降するように、前記Z軸方向駆動手段に対して制御信号を供給する制御手段と、前記接触端子に加わる応力を検出するための前記接触端子と結合されたセンサと、前記センサからの検出信号を処理して一つの前記被測定物に対する複数の測定点における前記接触端子に作用する押圧力及び引張力の測定値及び厚みの測定値を表示装置に一覧表示するためのデータ処理手段とを備えていることを特徴としている。   In addition to the configuration of claim 1, the invention according to claim 2 is a Z-axis direction driving means for raising and lowering the contact terminal in a vertical direction, and the contact terminal is raised and lowered under a preset condition. Control means for supplying a control signal to the Z-axis direction driving means, a sensor coupled to the contact terminal for detecting stress applied to the contact terminal, and a detection signal from the sensor Data processing means for displaying on a display device a list of measured values of pressing force and tensile force acting on the contact terminals at a plurality of measurement points with respect to the object to be measured, and measured values of thickness. It is said.

請求項3に記載の発明は、請求項1又は2に記載の構成に加え、前記被測定物は磁力又は真空力によって吸着することのできる試料板に粘着固定されたものであり、前記基盤にはその表面に吸着力を発生し又は吸着力を消去させることのできる切替手段を有する吸着固定装置を備えていることを特徴としている。   The invention according to claim 3 is the structure according to claim 1 or 2, wherein the object to be measured is adhesively fixed to a sample plate that can be adsorbed by magnetic force or vacuum force. Is characterized in that it is equipped with a suction fixing device having switching means capable of generating or eliminating the suction force on the surface.

請求項4に記載の粘着力兼厚みの測定方法の発明は、基盤上に載置した被測定物の表面に接触させる接触端子を前記被測定物の表面と平行な平面の任意の位置に移動可能なXY軸方向駆動手段と、前記接触端子を垂直方向に移動させることで前記被測定物が前記接触端子に作用する押圧力及び引張力を測定する測定手段とを設けた粘着力兼厚み測定装置を使用した測定方法であって、前記接触端子を前記被測定物に接触させてその厚みを測定する工程と、前記被測定物の厚みを測定した位置で、前記接触端子を前記被測定物側に押し込んで所定の圧力を加えたときに前記接触端子に生じる応力を測定する工程と、前記接触端子を前記被測定物から引き上げるときに前記接触端子に生じる応力を測定する工程とを有することを特徴としている。   According to a fourth aspect of the present invention, the contact terminal for contacting the surface of the object to be measured placed on the substrate is moved to an arbitrary position on a plane parallel to the surface of the object to be measured. Adhesive force / thickness measurement provided with possible XY axis direction driving means and measuring means for measuring the pressing force and tensile force that the object to be measured acts on the contact terminals by moving the contact terminals in the vertical direction A measuring method using an apparatus, wherein the contact terminal is brought into contact with the object to be measured and the thickness thereof is measured, and the contact terminal is placed at the position at which the thickness of the object to be measured is measured. Measuring a stress generated in the contact terminal when pushed to the side and applying a predetermined pressure, and measuring a stress generated in the contact terminal when the contact terminal is pulled up from the object to be measured. It is characterized by.

請求項5に記載の発明は、請求項4に記載の構成に加えて、前記XY軸方向駆動手段には、レーザ光を照射して被測定物の厚みを測定する非接触式厚み測定装置を備えており、該非接触式厚み測定装置から発射されるレーザ光を前記接触端子が接触する箇所の前記被測定物の表面に照射して被測定物の厚みを測定するようにしたことを特徴としている。   According to a fifth aspect of the present invention, in addition to the configuration according to the fourth aspect, a non-contact type thickness measuring device that measures the thickness of the object to be measured by irradiating the XY axis direction driving means with a laser beam. And measuring the thickness of the object to be measured by irradiating the surface of the object to be measured where the contact terminal contacts with the laser beam emitted from the non-contact type thickness measuring device. Yes.

この発明は以上のような構成を有するため、請求項1に記載の発明によれば、XY軸方向駆動手段によって被測定物の表面の任意の位置に移動した後、接触端子を垂直方向に移動させることで被測定物が接触端子に作用する押圧力及び引張力を測定することができる。しかも、接触端子の表面が被測定物の表面に対して平行な状態で移動可能であるから被測定物が接触端子に作用する押圧力及び引張力を正確に測定することができる。さらに、XY軸方向駆動手段には、接触端子が接触する箇所の被測定物の表面にレーザ光を照射して被測定物の厚みを測定する非接触式厚み測定手段を備えているので、被測定物の粘着力の測定のみならず被測定物の厚みも同時に測定することができる。しかも、被測定物の厚みの測定はレーザ光を照射して被測定物の厚みを測定するといった非接触式であるため、接触端子を被測定物の表面に接触させる必要がないので測定に際して被測定物に接触圧力が加わることがなく、弾性を有する粘着性部材に対して正確な厚みを測定することが可能となる。   Since the present invention has the above-described configuration, according to the first aspect of the present invention, the contact terminal is moved in the vertical direction after being moved to an arbitrary position on the surface of the object to be measured by the XY axial direction driving means. By doing so, it is possible to measure the pressing force and tensile force that the object to be measured acts on the contact terminal. In addition, since the surface of the contact terminal can move in a state parallel to the surface of the object to be measured, the pressing force and the tensile force that the object to be measured acts on the contact terminal can be accurately measured. Further, the XY axial direction driving means is provided with non-contact type thickness measuring means for measuring the thickness of the object to be measured by irradiating the surface of the object to be measured where the contact terminal contacts with the laser beam. In addition to measuring the adhesive strength of the measurement object, the thickness of the measurement object can be measured simultaneously. Moreover, since the thickness of the object to be measured is a non-contact type in which the thickness of the object to be measured is measured by irradiating a laser beam, there is no need to bring the contact terminal into contact with the surface of the object to be measured. Contact pressure is not applied to the object to be measured, and an accurate thickness can be measured for an adhesive member having elasticity.

請求項2に記載の発明によれば、表示装置に一つの被測定物に対する複数の測定点における接触端子に作用する押圧力及び引張力の測定値及び厚みの測定値が逐次一覧表示されるので、請求項1の発明の効果に加えて、複数の測定値のばらつきを逐次確認できるから、被測定物の設置不良やその他の不慮の事故による測定不良を早期に発見し測定作業を中断することが可能となり、無駄な測定作業の発生を防止することができる。また、押圧力及び引張力の測定値及び厚みの測定値が一覧表示されているデータを使って、これらの測定値の統計的処理を既存の表計算ソフト等容易に行うことができるから、試験報告書等の試験資料の作成が迅速に行える。   According to the second aspect of the present invention, the measured values of the pressing force and the tensile force and the measured values of the thickness acting on the contact terminals at a plurality of measurement points with respect to one object to be measured are sequentially displayed on the display device. In addition to the effect of the invention of claim 1, since the variation of a plurality of measured values can be sequentially confirmed, the measurement work due to poor installation of the object to be measured or other unforeseen accident can be detected at an early stage and the measurement operation can be interrupted. Therefore, it is possible to prevent unnecessary measurement work from occurring. In addition, using the data that lists the measured values of pressing force and tensile force and the measured values of thickness, statistical processing of these measured values can be easily performed using existing spreadsheet software, etc. Test materials such as reports can be created quickly.

請求項3に記載の発明によれば、被測定物は磁力又は真空力によって吸着することのできる試料板に粘着固定されたものであり、基盤にはその表面に吸着力を発生し又は吸着力を消去させることのできる試料板に粘着固定されたものであり、吸着力を発生し又は吸着力を消去させることのできる切替手段を有する吸着固定装置を備えているので、請求項1又は2の発明の効果に加えて、被測定物を基盤に固定する場合には被測定物を粘着固定した試料板を基盤に載置して基盤の表面に吸着力を発生させ、被測定物を基盤から取り外す場合には基盤の表面の吸着力を消去させてから被測定物を粘着固定した試料板を基盤から持ち上げればよい。したがって、被測定物の基盤に対する固定作業と取り外し作業が吸着力の発生・消去の切替手段のみでよいので、機械的なクランプを使用する場合のような調整作業が不要であるから、初心者でも取り扱うことができる。   According to the invention described in claim 3, the object to be measured is adhesively fixed to a sample plate that can be adsorbed by magnetic force or vacuum force, and the substrate generates or adsorbs an adsorbing force on its surface. And a suction fixing device having a switching means capable of generating an adsorption force or erasing the adsorption force. In addition to the effects of the invention, when fixing the object to be measured to the substrate, a sample plate on which the object to be measured is fixed is placed on the substrate to generate an adsorption force on the surface of the substrate, and the object to be measured is removed from the substrate. When removing the sample plate, the adsorption force on the surface of the substrate is erased, and then the sample plate to which the object to be measured is adhered and fixed is lifted from the substrate. Therefore, since only the means for switching the generation / deletion of adsorption force is required for fixing and detaching the object to be measured, no adjustment work is required, such as when using a mechanical clamp. be able to.

請求項4に記載の発明によれば、接触端子を被測定物に接触させてその厚みを測定した直後に、被測定物の厚みを測定した位置で、接触端子を被測定物側に押し込んで所定の圧力を加えてから接触端子を被測定物から引き上げるときに接触端子に生じる応力を測定するようにしているので、接触端子を被測定物の表面に接触させて被測定物の厚みを測定することと、接触端子に作用する押圧力及び引張力から被測定物の粘着力を測定することとが、同一の測定点での1サイクルの測定動作として実行されるため、同一の測定点における粘着力の測定と厚みの測定との間でXY軸方向駆動手段を使用することがない。そのため、同一の測定点における粘着力と厚みを測定する際の測定点の座標のずれが生じることがない。したがって、複数箇所の粘着力と厚みとを測定しなければならない場合であっても、迅速で正確な測定が可能となる。   According to the invention described in claim 4, immediately after the contact terminal is brought into contact with the object to be measured and the thickness thereof is measured, the contact terminal is pushed into the object to be measured at the position where the thickness of the object to be measured is measured. Since the stress generated in the contact terminal is measured when the contact terminal is pulled up from the object to be measured after applying a predetermined pressure, the thickness of the object to be measured is measured by bringing the contact terminal into contact with the surface of the object to be measured. And measuring the adhesive force of the object to be measured from the pressing force and tensile force acting on the contact terminal is executed as a one-cycle measurement operation at the same measurement point. There is no need to use XY axial direction drive means between the measurement of adhesive force and the measurement of thickness. Therefore, the coordinate of the measurement point does not shift when measuring the adhesive force and thickness at the same measurement point. Therefore, even when it is necessary to measure the adhesive strength and thickness at a plurality of locations, quick and accurate measurement is possible.

請求項5に記載の発明によれば、接触端子が接触する箇所の被測定物の表面にレーザ光を照射して被測定物の厚みを測定する非接触式厚み測定装置をXY軸方向駆動手段に備えており、接触端子が接触する箇所の被測定物の表面にレーザ光を照射して被測定物の厚みを測定するようにしているので、請求項4の発明の効果に加えて、接触端子を被測定物の表面に接触させる必要がないため測定に際して被測定物に接触圧力が加わることがなく、弾性を有する粘着性部材に対して正確な厚みを測定することが可能となるとともに、レーザ光による厚みの測定値は接触端子を被測定物に接触させて測定した厚みの値より大きな値となるといった性質があるため、その逆の関係になっている測定点があればその測定点における厚みの値は誤りとして採用しないようにすることで、厚みの測定値の信頼性が高まる。   According to the fifth aspect of the present invention, the non-contact type thickness measuring device that measures the thickness of the object to be measured by irradiating the surface of the object to be measured where the contact terminal is in contact with the laser beam is provided in the XY axial direction driving means. Since the thickness of the object to be measured is measured by irradiating the surface of the object to be measured where the contact terminal comes into contact with the laser beam, in addition to the effect of the invention of claim 4, the contact Since it is not necessary to bring the terminal into contact with the surface of the object to be measured, no contact pressure is applied to the object to be measured at the time of measurement, and it becomes possible to measure an accurate thickness with respect to the adhesive member having elasticity, The measurement value of the thickness by the laser beam has the property that it is larger than the thickness value measured by bringing the contact terminal into contact with the object to be measured, so if there is a measurement point that has the opposite relationship, the measurement point The thickness value in By not to use, it increases reliability of the measurement value of the thickness.

[発明の実施の形態1]
以下、この発明の実施の形態1について図面を参照しながら説明する。
Embodiment 1 of the Invention
Embodiment 1 of the present invention will be described below with reference to the drawings.

図1はこの発明の実施の形態1に係る粘着力兼厚み測定装置を示した斜視図であり、図2はこの発明の実施の形態1に係る粘着力兼厚み測定装置の接触端子と被測定物との接触状態を示した要部断面図である。   FIG. 1 is a perspective view showing an adhesive force / thickness measuring apparatus according to Embodiment 1 of the present invention, and FIG. 2 is a contact terminal and an object to be measured of the adhesive force / thickness measuring apparatus according to Embodiment 1 of the present invention. It is principal part sectional drawing which showed the contact state with the thing.

図1において、1はこの発明の実施の形態1に係る粘着力兼厚み測定装置であって、土台2の上に剛性を有する水平に設置された定盤3を有している。定盤3の上の中央部には、被測定物4を載置する表面が平滑な基盤5が設けられている。実施の形態1では、基盤5の表面に磁力を発生し又は磁力を消去させることのできる切替手段を有する電磁石による吸着固定装置(商品名:電磁チャック、KET−1530B、カネテック(株)製)を採用している。他方、被測定物4は磁力によって吸着することのできるステンレス製の試料板6に粘着固定したものを使用することで、磁力の発生と消去とを磁力吸着装置の電気的な切替手段で実現し、被測定物4を基盤5に固定することと被測定物4を基盤5から取り外す操作を容易なものとしている。   In FIG. 1, reference numeral 1 denotes an adhesive force / thickness measurement apparatus according to Embodiment 1 of the present invention, which has a surface plate 3 that is horizontally installed on a base 2 and has rigidity. A base 5 having a smooth surface on which the object to be measured 4 is placed is provided at the center of the surface plate 3. In the first embodiment, an electromagnet adsorption fixing device (trade name: electromagnetic chuck, KET-1530B, manufactured by Kanetech Co., Ltd.) having switching means capable of generating or erasing magnetic force on the surface of the substrate 5 is used. Adopted. On the other hand, the object to be measured 4 is an adhesive fixed to a stainless steel sample plate 6 that can be adsorbed by magnetic force, so that generation and erasure of magnetic force can be realized by electrical switching means of the magnetic adsorption device. The operation of fixing the device under test 4 to the base 5 and the operation of removing the device under test 4 from the base 5 are facilitated.

ここで、実施の形態1として、吸着固定装置に電磁石の磁力を使用したものについて説明したが、この発明はこれに限らず、大気圧を応用した真空力を使用した真空チャックであってもよい。真空チャックであれば、非磁性材料の吸着が可能であるから、樹脂材料の被測定物4を直接基盤5に固定することも可能となる。さらに、多孔質セラミック真空チャックを使用すれば、ミクロンサイズの気孔径を有しているため、被測定物4がフィルムなどの薄物であっても、基盤5上に変形なく均一に吸着固定することが可能となる。   Here, as the first embodiment, description has been given of the case where the magnetic force of the electromagnet is used for the adsorption fixing device, but the present invention is not limited to this, and may be a vacuum chuck using a vacuum force applying atmospheric pressure. . Since a non-magnetic material can be adsorbed with a vacuum chuck, the measurement object 4 made of a resin material can be directly fixed to the substrate 5. Furthermore, if a porous ceramic vacuum chuck is used, it has a micron-sized pore size, so even if the object to be measured 4 is a thin object such as a film, it is uniformly adsorbed and fixed on the substrate 5 without deformation. Is possible.

定盤3には、基盤5の表面と平行な平面内を任意の方向に移動できるXY軸方向駆動手段7を有している。XY軸方向駆動手段7は、X軸方向(左右方向)を案内するX軸ガイドレール8が、基盤5の背後の位置に左右の支柱9,10によって水平に支持された状態で定盤3に固定されている。定盤3の手前側の右隅には、人間の目の高さの位置に測定条件及び動作条件を設定できるタッチパネルキー11と、設定した測定条件が確認できる数値表示部12等が備えられた制御モニタ13が取り付けられている。   The surface plate 3 has XY-axis direction driving means 7 that can move in any direction within a plane parallel to the surface of the base 5. The XY-axis direction driving means 7 is mounted on the surface plate 3 in a state where the X-axis guide rail 8 for guiding the X-axis direction (left-right direction) is horizontally supported by the left and right support columns 9 and 10 at a position behind the base 5. It is fixed. The right corner on the front side of the surface plate 3 is provided with a touch panel key 11 that can set measurement conditions and operation conditions at the height of the human eye, a numerical display unit 12 that can check the set measurement conditions, and the like. A control monitor 13 is attached.

X軸ガイドレール8にはX軸ガイドレール8を自在に移動できる駆動装置(図示せず)を備えたX方向スライダ14が設けられており、X方向スライダ14にはX軸ガイドレール8と直交するY軸方向(前後方向)を案内するY軸ガイドレール15が設けられている。つまり、Y軸ガイドレール15の一端はX方向スライダ11に固定されており、Y軸ガイドレール15の他端には垂直下方に伸びる可動支柱16が固定され、この可動支柱16によってY軸ガイドレール15が水平に支持された状態でX方向スライダ11がX軸方向に移動自在となっている。可動支柱16の下端部には、定盤3に直接固定された補助X軸ガイドレール17上を移動自在である補助スライダ18が設けられている。   The X-axis guide rail 8 is provided with an X-direction slider 14 having a drive device (not shown) that can freely move the X-axis guide rail 8. The X-direction slider 14 is orthogonal to the X-axis guide rail 8. A Y-axis guide rail 15 for guiding the Y-axis direction (front-rear direction) is provided. That is, one end of the Y-axis guide rail 15 is fixed to the X-direction slider 11, and a movable support 16 extending vertically downward is fixed to the other end of the Y-axis guide rail 15. The X-direction slider 11 is movable in the X-axis direction while 15 is supported horizontally. An auxiliary slider 18 that is movable on an auxiliary X-axis guide rail 17 that is directly fixed to the surface plate 3 is provided at the lower end of the movable column 16.

以上のようなX軸ガイドレール8、X方向スライダ14、Y軸ガイドレール15、可動支柱16、補助X軸ガイドレール17とを組み合わせたX軸方向駆動装置により、Y軸ガイドレール15を基盤5の表面と平行な平面内のX軸方向の任意の位置に位置決めすることができる。   The X-axis guide rail 15 is mounted on the base 5 by the X-axis direction driving device in which the X-axis guide rail 8, the X-direction slider 14, the Y-axis guide rail 15, the movable support column 16, and the auxiliary X-axis guide rail 17 are combined. Can be positioned at any position in the X-axis direction within a plane parallel to the surface of the substrate.

Y軸ガイドレール15には、Y軸ガイドレール15を自在に移動できる駆動装置(図示せず)を備えたY方向スライダ19が設けられている。これにより、Y方向スライダ19を基盤5の表面と平行な平面内のY軸方向の任意の位置に位置決めすることができるY軸方向駆動装置が完成されている。   The Y-axis guide rail 15 is provided with a Y-direction slider 19 provided with a drive device (not shown) that can freely move the Y-axis guide rail 15. Thereby, the Y-axis direction drive device which can position the Y-direction slider 19 at an arbitrary position in the Y-axis direction within a plane parallel to the surface of the substrate 5 is completed.

Y軸ガイドレール15を基盤5の表面と平行な平面内のX軸方向の任意の位置に位置決めすることができるX軸方向駆動装置と、Y方向スライダ19を基盤5の表面と平行な平面内のY軸方向の任意の位置に位置決めすることができるY軸方向駆動装置とにより、Y方向スライダ19を基盤5の表面と平行な平面内のX軸及びY軸方向の任意の位置に位置決めすることができるXY軸方向駆動手段7が完成されている。   An X-axis direction driving device capable of positioning the Y-axis guide rail 15 at an arbitrary position in the X-axis direction in a plane parallel to the surface of the base 5 and a Y-direction slider 19 in a plane parallel to the surface of the base 5 The Y-direction slider 19 is positioned at any position in the X-axis and Y-axis directions in a plane parallel to the surface of the substrate 5 by the Y-axis direction drive device that can be positioned at any position in the Y-axis direction. The XY axial direction drive means 7 that can do this is completed.

Y方向スライダ19には、Z軸方向(上下方向)を案内するZ軸ガイドレール20が垂直に固定されており、Z軸ガイドレール20にはZ軸ガイドレール20を自在に移動できる駆動装置(図示せず)を備えたZ方向スライダ21が設けられている。これにより、Z方向スライダ21を基盤5の表面と垂直な平面内のZ軸方向の任意の位置に位置決めすることができるZ軸方向駆動装置が完成されている。   A Z-axis guide rail 20 that guides the Z-axis direction (vertical direction) is fixed vertically to the Y-direction slider 19, and the Z-axis guide rail 20 can freely move the Z-axis guide rail 20. A Z-direction slider 21 having a not-shown) is provided. Thereby, the Z-axis direction drive device which can position the Z-direction slider 21 at an arbitrary position in the Z-axis direction within a plane perpendicular to the surface of the substrate 5 is completed.

Z方向スライダ21には、接触端子22を備えた粘着力測定装置23と、レーザ光による非接触式厚み測定装置24が固定されている。   An adhesive force measuring device 23 having a contact terminal 22 and a non-contact type thickness measuring device 24 using a laser beam are fixed to the Z-direction slider 21.

実施の形態1では、粘着力測定装置23には引張、圧縮を一軸にて測定しその測定結果をデジタル表示できるデジタルフォースゲージ(商品名:ZP−50N、(株)イマダ製)を採用し、接触端子22には直径10mmの円柱形状をしたステンレス製のものを使用している。   In the first embodiment, the adhesive force measuring device 23 employs a digital force gauge (trade name: ZP-50N, manufactured by Imada Co., Ltd.) capable of measuring tension and compression uniaxially and digitally displaying the measurement results. The contact terminal 22 is made of stainless steel having a cylindrical shape with a diameter of 10 mm.

粘着力測定装置23は、接触端子22を被測定物4の表面へ押し付ける際の押圧力と被測定物4の表面から接触端子22を引き離す際の引張力とを測定することができるものであって、さらに、接触端子22を被測定物4の表面に接触させることで試料板6の表面との差から
被測定物4の厚みも測定できる。
The adhesive force measuring device 23 is capable of measuring the pressing force when the contact terminal 22 is pressed against the surface of the device under test 4 and the tensile force when pulling the contact terminal 22 away from the surface of the device under test 4. Furthermore, the thickness of the DUT 4 can be measured from the difference from the surface of the sample plate 6 by bringing the contact terminal 22 into contact with the surface of the DUT 4.

なお、粘着力測定装置23として実施の形態1で採用したデジタルフォースゲージは、接触端子22と粘着力測定装置23に内蔵されたセンサとが直接接続されているものであるが、接触端子22と粘着力測定装置23に内蔵されたセンサとの間に緩衝部材を介在させたものであってもよい。この緩衝部材を介在させたものの場合には、接触端子22を被測定物4の表面に接触させてからセンサに荷重が作用するまでに時間的な遅れを持たせることができるので、センサに衝撃荷重が働くことを防止できるため、粘着力測定装置23の安全な使用が保証される。   In the digital force gauge employed in the first embodiment as the adhesive force measuring device 23, the contact terminal 22 and a sensor built in the adhesive force measuring device 23 are directly connected. A buffer member may be interposed between the sensor and the sensor built in the adhesive force measuring device 23. In the case where the buffer member is interposed, it is possible to give a time delay until the load is applied to the sensor after the contact terminal 22 is brought into contact with the surface of the object 4 to be measured. Since the load can be prevented from working, the safe use of the adhesive force measuring device 23 is guaranteed.

レーザ光による非接触式厚み測定装置24には、被測定物4の微細な表面凹凸による乱反射を平均化し、データのばらつきを防ぐことができるとともに、被測定物4の表面をセンジングしてレーザ光量を最適に調整できる高速・高精度CCDレーザ変位計(商品名:LK−G35、(株)キーエンス製)を採用している。そのため、レーザ計測が苦手とされていた透明体、半透明体の被測定物4であっても実用的な計測が可能となっており、シリコーンゴムのような材料の厚み測定に最適なものといえる。   The non-contact type thickness measuring device 24 using laser light can average irregular reflection due to fine surface irregularities of the object to be measured 4 to prevent variation in data, and can also sense the amount of laser light by sensing the surface of the object to be measured 4. A high-speed, high-precision CCD laser displacement meter (trade name: LK-G35, manufactured by Keyence Corporation) can be used. For this reason, practical measurement is possible even for transparent and translucent objects to be measured 4 that were not good at laser measurement, which is optimal for measuring the thickness of materials such as silicone rubber. I can say that.

粘着力測定装置23による被測定物4の厚みと粘着力を測定する場合には、図2のように、粘着力測定装置23の接触端子22の中心が被測定物4の表面の測定点25と一致するようにXY軸方向駆動装置7によって位置決めされるが、このとき非接触式厚み測定装置24から発射されるレーザ光26も、粘着力測定装置23の接触端子22の中心と対応する被測定物4の表面の測定点25に照射されるように予め調整しておく。   When measuring the thickness and adhesive strength of the object 4 to be measured by the adhesive force measuring device 23, the center of the contact terminal 22 of the adhesive force measuring device 23 is the measurement point 25 on the surface of the object 4 to be measured as shown in FIG. In this case, the laser beam 26 emitted from the non-contact type thickness measuring device 24 is also subjected to the object corresponding to the center of the contact terminal 22 of the adhesive force measuring device 23. Adjustment is made in advance so that the measurement point 25 on the surface of the measurement object 4 is irradiated.

図3は、この発明の実施の形態1に係る粘着力兼厚み測定装置のシステム構成を示すブロック図である。   FIG. 3 is a block diagram showing a system configuration of the adhesive force / thickness measuring apparatus according to Embodiment 1 of the present invention.

粘着力兼厚み測定装置1には、X方向スライダ14がX軸ガイドレール8を自在に移動するための駆動源としてX軸用ステッピングモータ27が備えられている。また、X軸用ステッピングモータ27の回転軸には、X軸ガイドレール8に回転可能な状態で組み込まれているボールねじ(図示せず)が連結されており、X方向スライダ14に回転不能な状態で組み込まれているねじ部材(図示せず)とが螺合されている。これにより、X軸用ステッピングモータ27が回転すると、ボールねじが回転することでX方向スライダ14に取り付けられているねじ部材がボールねじの軸方向に移動することとなり、結果として、X軸用ステッピングモータ27の回転量に応じてX方向スライダ14がX軸ガイドレール8の軸方向に移動することができる。   The adhesive force / thickness measuring apparatus 1 is provided with an X-axis stepping motor 27 as a drive source for the X-direction slider 14 to move freely along the X-axis guide rail 8. In addition, a ball screw (not shown) incorporated in a rotatable state on the X-axis guide rail 8 is connected to the rotation shaft of the X-axis stepping motor 27 and cannot rotate on the X-direction slider 14. A screw member (not shown) incorporated in a state is screwed together. Thus, when the X-axis stepping motor 27 rotates, the screw member attached to the X-direction slider 14 moves in the axial direction of the ball screw due to the rotation of the ball screw. The X-direction slider 14 can move in the axial direction of the X-axis guide rail 8 according to the rotation amount of the motor 27.

また、粘着力兼厚み測定装置1には、Y方向スライダ19がY軸ガイドレール15を自在に移動するための駆動源としてY軸用ステッピングモータ28が備えられている。Y軸用ステッピングモータ28の回転軸には、Y軸ガイドレール15に回転可能に組み込まれているボールねじ(図示せず)が連結されており、Y方向スライダ19に回転不能に組み込まれているねじ部材(図示せず)とが螺合されている。これにより、Y軸用ステッピングモータ28が回転すると、ボールねじが回転することで回転不能な状態でY方向スライダ19に取り付けられているねじ部材がボールねじの軸方向に移動することとなり、結果として、Y軸用ステッピングモータ28の回転量に応じてY方向スライダ19がY軸ガイドレール15の軸方向に移動することができる。   Further, the adhesive force / thickness measuring apparatus 1 is provided with a Y-axis stepping motor 28 as a drive source for the Y-direction slider 19 to freely move on the Y-axis guide rail 15. A ball screw (not shown) rotatably connected to the Y-axis guide rail 15 is connected to the rotation shaft of the Y-axis stepping motor 28 and is rotatably integrated to the Y-direction slider 19. A screw member (not shown) is screwed together. As a result, when the Y-axis stepping motor 28 rotates, the screw member attached to the Y-direction slider 19 moves in the axial direction of the ball screw in a non-rotatable state due to the rotation of the ball screw. The Y-direction slider 19 can move in the axial direction of the Y-axis guide rail 15 according to the rotation amount of the Y-axis stepping motor 28.

さらに、粘着力兼厚み測定装置1には、Z方向スライダ22がZ軸ガイドレール20を自在に移動するための駆動源としてY軸用ステッピングモータ29が備えられている。Z軸用ステッピングモータ29の回転軸には、Z軸ガイドレール20に回転可能に組み込まれているボールねじ(図示せず)とZ方向スライダ22に回転不能に組み込まれているねじ部材(図示せず)とが螺合されている。これにより、Z軸用ステッピングモータ29が回転すると、ボールねじが回転することで回転不能な状態でZ方向スライダ22に取り付けられているねじ部材がボールねじの軸方向に移動することとなり、結果として、Z軸用ステッピングモータ29の回転量に応じてZ方向スライダ22がZ軸ガイドレール20の軸方向に移動することができる。   Further, the adhesive force / thickness measuring apparatus 1 is provided with a Y-axis stepping motor 29 as a drive source for the Z-direction slider 22 to move freely along the Z-axis guide rail 20. On the rotation axis of the Z-axis stepping motor 29, a ball screw (not shown) rotatably incorporated in the Z-axis guide rail 20 and a screw member (not shown) incorporated non-rotatably in the Z-direction slider 22 are provided. Are screwed together. Thus, when the Z-axis stepping motor 29 rotates, the screw member attached to the Z-direction slider 22 moves in the axial direction of the ball screw in a non-rotatable state due to the rotation of the ball screw. The Z-direction slider 22 can move in the axial direction of the Z-axis guide rail 20 according to the rotation amount of the Z-axis stepping motor 29.

粘着力測定装置23の接触端子22の先端に加わる応力を粘着力測定装置23に内蔵されているセンサによって検出し、その応力信号がマイクロコンピュータ30に供給される。マイクロコンピュータ30に供給された応力信号は、増幅器及びA/D変換器を介してデジタル信号に変換して、粘着力測定装置23に備えられている液晶表示装置31、マイクロコンピュータ30に接続されている制御モニタ13、パソコン32に接続されているディスプレイ33に数値データとして表示される。   The stress applied to the tip of the contact terminal 22 of the adhesive force measuring device 23 is detected by a sensor built in the adhesive force measuring device 23, and the stress signal is supplied to the microcomputer 30. The stress signal supplied to the microcomputer 30 is converted into a digital signal via an amplifier and an A / D converter, and is connected to the liquid crystal display device 31 and the microcomputer 30 provided in the adhesive force measuring device 23. Displayed on the display 33 connected to the control monitor 13 and the personal computer 32 as numerical data.

なお、応力信号は増幅器及びA/D変換器を介して表示装置の仕様に適したデジタル信号に変換されるが、増幅器及びA/D変換器は粘着力測定装置23又はマイクロコンピュータ30のいずれに組み込まれていてもよい。   The stress signal is converted into a digital signal suitable for the specification of the display device via an amplifier and an A / D converter. The amplifier and the A / D converter are connected to either the adhesive force measuring device 23 or the microcomputer 30. It may be incorporated.

以下、この発明の実施の形態1に係る粘着力兼厚み測定装置の使用方法について図面を参照しながら説明する。   Hereinafter, a method of using the adhesive force / thickness measuring apparatus according to Embodiment 1 of the present invention will be described with reference to the drawings.

図4は、この発明の実施の形態1に係る粘着力兼厚み測定装置の一部である制御モニタの自動設定画面の一例である。図5は、この発明の実施の形態1に係る粘着力兼厚み測定装置の一部である制御モニタの自動運転画面の一例である。   FIG. 4 is an example of an automatic setting screen of a control monitor which is a part of the adhesive force / thickness measuring apparatus according to Embodiment 1 of the present invention. FIG. 5 is an example of an automatic operation screen of a control monitor which is a part of the adhesive force / thickness measuring apparatus according to Embodiment 1 of the present invention.

被測定物4は、被測定物4より一回り大きい四角形をした磁石に吸着されるステンレス製の試料板6に粘着固定されているものを使用する。   The object to be measured 4 is one that is adhesively fixed to a stainless steel sample plate 6 that is attracted to a square magnet that is slightly larger than the object to be measured 4.

実施の形態1の試料板6は平面形状が正方形で、縦110mm、横110mm、厚み0.8mmであり、被測定物4は平面形状が長方形で、縦90mm、横100mm、厚み1.8mmである。また、測定点25は、X軸方向ピッチ32mm、Y軸方向ピッチ35mmの9点とし、測定環境としては、温度20℃(実測値:19〜23℃)、湿度50%(実測値:40〜60%)とする。   The sample plate 6 of the first embodiment has a square planar shape, 110 mm long, 110 mm wide, and 0.8 mm thick, and the DUT 4 has a rectangular planar shape, 90 mm long, 100 mm wide, 1.8 mm thick. is there. The measurement points 25 are 9 points with an X-axis direction pitch of 32 mm and a Y-axis direction pitch of 35 mm. The measurement environment includes a temperature of 20 ° C. (actual measurement value: 19 to 23 ° C.) and a humidity of 50% (actual measurement value: 40 to 40%). 60%).

最初に、被測定物4が粘着固定されている試料板6の4辺のうちの隣り合う2辺を、予め基盤5の所定位置に固定されているL字型の位置決めゲージ(図示せず)の内側に宛うようにして基盤5上に設置し、基盤5の電磁石による磁力吸着装置を機動させて磁力によって試料板6を基盤5に固定させる。   First, an L-shaped positioning gauge (not shown) in which two adjacent sides of the four sides of the sample plate 6 to which the object to be measured 4 is adhesively fixed is fixed in advance to a predetermined position of the substrate 5. The sample plate 6 is fixed to the substrate 5 by the magnetic force by moving the magnetic adsorption device using the electromagnet of the substrate 5.

次に、被測定物4の粘着力と厚みを測定する前に、試料板6の表面に粘着測定装置23の接触端子22の先端を接触することでZ軸方向の0点を設定する。非接触式厚み測定装置24についても同様に、レーザ光を試料板6の表面に照射することでZ軸方向の0点を設定する。   Next, before measuring the adhesive force and thickness of the DUT 4, the zero point in the Z-axis direction is set by bringing the tip of the contact terminal 22 of the adhesion measuring device 23 into contact with the surface of the sample plate 6. Similarly, for the non-contact type thickness measuring device 24, the zero point in the Z-axis direction is set by irradiating the surface of the sample plate 6 with laser light.

粘着力兼厚み測定装置1を機動させた初期段階では、制御モニタ13には図4に示したような自動設定画面G1が表示されている。   At the initial stage where the adhesive force / thickness measuring apparatus 1 is moved, the control monitor 13 displays an automatic setting screen G1 as shown in FIG.

そこで、粘着力を測定するために粘着力測定装置23の接触端子22を被測定物4の表面に接触させて、押し込んで、引き離す、といった動作を行わせるために、制御モニタ13に写し出されているタッチパネルキー11を操作することで、被測定物4の測定位置を決めるX軸方向の数値(mm)とY軸方向の数値(mm)、測定回数(回)、測定間隔(分)、Z方向スライダ21の測定下降速度の数値(mm/min)と測定上昇速度の数値(mm/min)、停止時間(sec)等の測定条件を入力する。   Therefore, in order to measure the adhesive force, the contact terminal 22 of the adhesive force measuring device 23 is brought into contact with the surface of the object 4 to be measured, and is pushed and pulled away. By operating the touch panel key 11, the X-axis direction numerical value (mm) and the Y-axis direction numerical value (mm) for determining the measurement position of the DUT 4, the number of times of measurement (times), the measurement interval (minutes), Z Measurement conditions such as a numerical value (mm / min) of a measurement descending speed of the direction slider 21, a numerical value (mm / min) of a measuring upward speed, and a stop time (sec) are input.

制御モニタ13のタッチパネルキー11で入力された数値は制御モニタ13上の数値表示部12で確認できるため、表示されている数値に間違いがなければ、入力した測定条件のデータをマイクロコンピュータ30に記憶させる。   Since the numerical value input by the touch panel key 11 of the control monitor 13 can be confirmed by the numerical value display unit 12 on the control monitor 13, if the displayed numerical value is correct, the data of the input measurement condition is stored in the microcomputer 30. Let

測定を開始する場合には、測定開始のタッチパネルキー11を押すことで、マイクロコンピュータ30から既に記憶されている測定条件に対応した制御信号が粘着力兼厚み測定装置1に送られ、所望の測定条件に従った動作を自動的に実行する。   When starting the measurement, by pressing the touch panel key 11 for starting the measurement, a control signal corresponding to the measurement conditions already stored from the microcomputer 30 is sent to the adhesive force / thickness measuring apparatus 1 to perform a desired measurement. Automatically perform actions according to conditions.

マイクロコンピュータ30に記憶された測定条件のデータに基づいて、マイクロコンピュータ30からモータドライバ34に対して入力された測定条件に対応したモータ制御信号が供給され、モータドライバ34からのドライブ信号がX軸用ステッピングモータ27、Y軸用ステッピングモータ28、Z軸用ステッピングモータ29に供給される。X軸用ステッピングモータ27によってX方向スライダ14がX軸ガイドレール8を移動し、Y軸用ステッピングモータ28によってY方向スライダ19がY軸ガイドレール15を移動することで測定点25のXY座標に位置決めされ、Z軸用ステッピングモータ29によってZ方向スライダ22がZ軸ガイドレール20を移動することで粘着力測定装置23の接触端子22が昇降する。   Based on the measurement condition data stored in the microcomputer 30, a motor control signal corresponding to the measurement condition input from the microcomputer 30 to the motor driver 34 is supplied, and the drive signal from the motor driver 34 is the X axis. Are supplied to the stepping motor 27, the Y-axis stepping motor 28, and the Z-axis stepping motor 29. The X-direction stepping motor 27 causes the X-direction slider 14 to move along the X-axis guide rail 8, and the Y-axis stepping motor 28 causes the Y-direction slider 19 to move along the Y-axis guide rail 15. The Z-axis stepping motor 29 moves the Z-direction slider 22 along the Z-axis guide rail 20 to move the contact terminal 22 of the adhesive force measuring device 23 up and down.

最初に、接触端子22が被測定物4に押し付けられ、所定時間その状態を維持し、次に、接触端子22を引き上げて行き、この工程で粘着力測定装置23に内蔵されたセンサの出力の変化が測定される。接触端子22が押し付けるときの力も粘着力測定装置23に内蔵されたセンサからの応力信号をマイクロコンピュータ30が受け、設定された値で押し付けるように制御される。以上の動作は測定点25の数(9点)だけ繰り返される。   First, the contact terminal 22 is pressed against the object 4 to be measured, and the state is maintained for a predetermined time. Next, the contact terminal 22 is pulled up, and in this process, the output of the sensor built in the adhesive force measuring device 23 is output. Changes are measured. The force when the contact terminal 22 is pressed is also controlled so that the microcomputer 30 receives a stress signal from a sensor built in the adhesive force measuring device 23 and presses it with a set value. The above operation is repeated for the number of measurement points 25 (9 points).

具体的には、接触端子22を被測定物4の表面に向けてゆっくりと移動(被測定物4の表面から1mmの間で20mm/min)させ、制御モニタ13の押圧力測定値を確認しながら予め決めておいた押圧力(弱粘着(粘着力1.2kg)の場合に200g、強粘着(粘着力2.7kg)の場合に2kg)で被測定物4の表面に接触端子22を押圧したまま所定時間(3秒間)維持する。   Specifically, the contact terminal 22 is slowly moved toward the surface of the object to be measured 4 (20 mm / min between 1 mm from the surface of the object to be measured 4) and the measured pressure value of the control monitor 13 is confirmed. However, the contact terminal 22 is pressed against the surface of the measured object 4 with a predetermined pressing force (200 g for weak adhesion (adhesion strength 1.2 kg) and 2 kg for strong adhesion (adhesion strength 2.7 kg)). And maintained for a predetermined time (3 seconds).

所定の押圧時間が経過したら、接触端子22を被測定物4の表面から被測定物4から離れる方向へ一定の速度(被測定物4の表面から1mmの間で180mm/min)でゆっくりと移動し、接触端子22が被測定物4の表面から剥離した瞬間の引張力を粘着力測定装置23に内蔵されたセンサで測定する。そして、このときの引張力をもって粘着力とする。   When a predetermined pressing time has elapsed, the contact terminal 22 is slowly moved at a constant speed (180 mm / min between 1 mm from the surface of the object to be measured 4) in a direction away from the object to be measured 4 from the surface of the object to be measured 4. Then, the tensile force at the moment when the contact terminal 22 is peeled off from the surface of the object to be measured 4 is measured by a sensor built in the adhesive force measuring device 23. And let the tensile force at this time be adhesive force.

所望の測定動作が実行される自動運転の結果、粘着力測定装置23に内蔵されたセンサによって測定された接触端子22に働く応力信号は、粘着力測定装置23及び/又はマイクロコンピュータ30によってディジタル信号に変換処理され、押圧力、引張力の数値及び厚みの数値が、粘着力測定装置23に備えられている液晶表示装置31と制御モニタ13に表示される自動運転画面G2(図5参照)上の数値表示部12に表示されるとともに、粘着力測定装置23に接続されているパソコン32のディスプレイ33に測定点25のXY座標位置の値に対応させて、測定点の数に応じた数の数値データが一覧表示される。非接触式厚み測定装置24には表示装置が備えられておらず、非接触式厚み測定装置24によって測定された被測定物4の厚みの数値は、制御モニタ13に表示されるとともに、非接触式厚み測定装置24に接続されているパソコン32のディスプレイ33に測定点25のXY座標位置の値に対応させて、測定点の数に応じた数の数値データが一覧表示される。   As a result of automatic operation in which a desired measurement operation is performed, a stress signal acting on the contact terminal 22 measured by a sensor built in the adhesive force measuring device 23 is converted into a digital signal by the adhesive force measuring device 23 and / or the microcomputer 30. On the automatic operation screen G2 (see FIG. 5), the pressure value, the tensile force value, and the thickness value are displayed on the liquid crystal display device 31 and the control monitor 13 provided in the adhesive force measuring device 23. And the number 33 corresponding to the number of measurement points corresponding to the value of the XY coordinate position of the measurement point 25 on the display 33 of the personal computer 32 connected to the adhesive force measuring device 23. A list of numerical data is displayed. The non-contact type thickness measuring device 24 is not provided with a display device, and the numerical value of the thickness of the object 4 measured by the non-contact type thickness measuring device 24 is displayed on the control monitor 13 and non-contacted. A list of numerical data corresponding to the number of measurement points is displayed on the display 33 of the personal computer 32 connected to the expression thickness measuring device 24 in correspondence with the value of the XY coordinate position of the measurement point 25.

通常、一つの被測定物4について、同一条件での測定を数回から数十回繰り返して行い、得られたデータに統計的処理を行って粘着力のデータとして採用するが、複数の測定点の測定値及び複数回の測定値から平均値を求めることは、パソコン32にインストールされている一般の表計算ソフトを利用することで簡単に実現できるので、試験データの整理が容易となり試験報告書を迅速に作成することができる。   Usually, the measurement under the same condition is repeated several times to several tens of times for one object to be measured 4, and the obtained data is statistically processed and used as adhesive force data. Obtaining the average value from the measured values and multiple measured values can be easily achieved by using general spreadsheet software installed in the personal computer 32, so that the test data can be easily organized and the test report Can be created quickly.

なお、実施の形態1では、Z軸用ステッピングモータ29によってZ方向スライダ21がZ軸ガイドレール20を移動することで、Z軸方向に粘着力測定装置23の接触端子22が移動する機構を採用しているが、この発明はこれに限らず、Z軸ガイドレール20とZ方向スライダ22によるZ軸方向駆動手段を採用せず、XY軸方向駆動手段7のY方向スライダ19に粘着力測定装置23を直接固定し、基盤5側を昇降するようにして、粘着力測定装置23の接触端子22がZ軸方向の移動を実現するようにしてもよい。   In the first embodiment, a mechanism is adopted in which the contact terminal 22 of the adhesive force measuring device 23 moves in the Z-axis direction when the Z-direction slider 21 moves on the Z-axis guide rail 20 by the Z-axis stepping motor 29. However, the present invention is not limited to this, and the Z-axis direction driving means using the Z-axis guide rail 20 and the Z-direction slider 22 is not adopted, and the adhesive force measuring device is applied to the Y-direction slider 19 of the XY-axis direction driving means 7. The contact terminal 22 of the adhesive force measuring device 23 may be moved in the Z-axis direction by directly fixing the head 23 and moving up and down the base 5 side.

この発明の実施の形態1に係る粘着力兼厚み測定装置を示した斜視図である。It is the perspective view which showed the adhesive force and thickness measuring apparatus which concerns on Embodiment 1 of this invention. 同実施の形態1に係る粘着力兼厚み測定装置の接触端子と被測定物との接触状態を示した要部断面図であり、(a)は接触端子が接触した状態を示し、(b)は接触端子を引き上げる状態を示している。It is principal part sectional drawing which showed the contact state of the contact terminal and to-be-measured object of the adhesive force and thickness measuring apparatus which concerns on the same Embodiment 1, (a) shows the state which the contact terminal contacted, (b) Indicates a state in which the contact terminal is pulled up. 同実施の形態1に係る粘着力兼厚み測定装置のシステム構成を示すブロック図である。It is a block diagram which shows the system configuration | structure of the adhesive force and thickness measuring apparatus which concerns on the same Embodiment 1. FIG. 同実施の形態1に係る粘着力兼厚み測定装置の一部である制御モニタの自動設定画面の一例である。It is an example of the automatic setting screen of the control monitor which is a part of the adhesive force and thickness measuring apparatus according to the first embodiment. 同実施の形態1に係る粘着力兼厚み測定装置の一部である制御モニタの自動運転画面の一例である。It is an example of the automatic operation screen of the control monitor which is a part of the adhesive force and thickness measuring apparatus which concerns on the same Embodiment 1. FIG. 従来の携帯用の粘着力測定装置の斜視図である。It is a perspective view of the conventional portable adhesive force measuring apparatus. 同携帯用の粘着力測定装置の接触端子を被測定物から引き上げる状態を示した要部断面図であり、(a)は接触端子を被測定物から垂直に引き上げる接触状態を示し、(b)は接触端子を被測定物から斜めに引き上げる接触状態を示している。It is principal part sectional drawing which showed the state which pulls up the contact terminal of the portable adhesive force measuring apparatus from a to-be-measured object, (a) shows the contact state which pulls up a contact terminal perpendicularly from a to-be-measured object, (b) Indicates a contact state in which the contact terminal is lifted obliquely from the object to be measured.

符号の説明Explanation of symbols

1 粘着力兼厚み測定装置
3 定盤
4 被測定物
5 基盤
6 試料板
7 XY軸方向駆動手段
8 X軸ガイドレール
13 制御モニタ
14 X方向スライダ
15 Y軸ガイドレール
19 Y方向スライダ
20 Z軸ガイドレール
21 Z方向スライダ
22 接触端子
23 粘着力測定装置
24 非接触式厚み測定装置
25 測定点
27 X軸用ステッピングモータ
28 Y軸用ステッピングモータ
29 Z軸用ステッピングモータ
30 マイクロコンピュータ
32 パソコン
33 ディスプレイ
34 モータドライバ
1 Adhesive strength and thickness measuring device 3 Surface plate
4 DUT 5 Base
6 Sample plate 7 XY-axis direction driving means 8 X-axis guide rail 13 Control monitor 14 X-direction slider 15 Y-axis guide rail 19 Y-direction slider 20 Z-axis guide rail 21 Z-direction slider 22 Contact terminal 23 Adhesive force measuring device 24 Non-contact Type thickness measuring device 25 Measuring point 27 X-axis stepping motor 28 Y-axis stepping motor 29 Z-axis stepping motor 30 Microcomputer 32 Personal computer 33 Display 34 Motor driver

Claims (5)

基盤上に載置した被測定物の表面に接触させる接触端子を前記被測定物の表面と平行な平面の任意の位置に移動可能なXY軸方向駆動手段と、前記接触端子を垂直方向に移動させることで前記被測定物が前記接触端子に作用する押圧力及び引張力を測定する測定手段とを備えた粘着力測定装置であって、前記XY軸方向駆動手段には、前記接触端子が接触する箇所の前記被測定物の表面にレーザ光を照射して被測定物の厚みを測定する非接触式厚み測定装置を備えていることを特徴とする粘着力兼厚み測定装置。 XY axis direction driving means capable of moving a contact terminal to be brought into contact with the surface of the object to be measured placed on the substrate to an arbitrary position on a plane parallel to the surface of the object to be measured, and the contact terminal to be moved in the vertical direction A measuring means for measuring a pressing force and a tensile force acting on the contact terminal by the object to be measured, wherein the contact terminal is in contact with the XY axial direction driving means. An adhesive force / thickness measuring apparatus comprising a non-contact type thickness measuring apparatus that measures the thickness of the object to be measured by irradiating the surface of the object to be measured at a place to be measured. 前記接触端子を垂直方向に昇降させるためのZ軸方向駆動手段と、予め設定された条件で前記接触端子が昇降するように、前記Z軸方向駆動手段に対して制御信号を供給する制御手段と、前記接触端子に加わる応力を検出するための前記接触端子と結合されたセンサと、前記センサからの検出信号を処理して一つの前記被測定物に対する複数の測定点における前記接触端子に作用する押圧力及び引張力の測定値及び厚みの測定値を表示装置に一覧表示するためのデータ処理手段とを備えていることを特徴とする請求項1に記載の粘着力兼厚み測定装置。 Z-axis direction drive means for raising and lowering the contact terminal in the vertical direction; and control means for supplying a control signal to the Z-axis direction drive means so that the contact terminal is raised and lowered under a preset condition. A sensor coupled to the contact terminal for detecting stress applied to the contact terminal, and a detection signal from the sensor is processed to act on the contact terminal at a plurality of measurement points for one object to be measured. 2. The adhesive force / thickness measuring device according to claim 1, further comprising data processing means for displaying a list of measured values of pressing force and tensile force and measured values of thickness on a display device. 前記被測定物は磁力又は真空力によって吸着することのできる試料板に粘着固定されたものであり、前記基盤にはその表面に吸着力を発生し又は吸着力を消去させることのできる切替手段を有する吸着固定装置を備えていることを特徴とする請求項1又は2に記載の粘着力兼厚み測定装置。 The object to be measured is adhesively fixed to a sample plate that can be adsorbed by a magnetic force or a vacuum force, and the substrate has a switching means that can generate an adsorption force on the surface or erase the adsorption force. The adhesive force / thickness measuring device according to claim 1, further comprising an adsorption fixing device having the adhesive fixing device. 基盤上に載置した被測定物の表面に接触させる接触端子を前記被測定物の表面と平行な平面の任意の位置に移動可能なXY軸方向駆動手段と、前記接触端子を垂直方向に移動させることで前記被測定物が前記接触端子に作用する押圧力及び引張力を測定する測定手段とを設けた粘着力兼厚み測定装置を使用した測定方法であって、前記接触端子を前記被測定物に接触させてその厚みを測定する工程と、前記被測定物の厚みを測定した位置で、前記接触端子を前記被測定物側に押し込んで所定の圧力を加えたときに前記接触端子に生じる応力を測定する工程と、前記接触端子を前記被測定物から引き上げるときに前記接触端子に生じる応力を測定する工程とを有することを特徴とする粘着力兼厚みの測定方法。 XY axis direction driving means capable of moving a contact terminal to be brought into contact with the surface of the object to be measured placed on the substrate to an arbitrary position on a plane parallel to the surface of the object to be measured, and the contact terminal to be moved in the vertical direction A measuring method using an adhesive force / thickness measuring device provided with a measuring means for measuring a pressing force and a tensile force acting on the contact terminal by the measured object, the contact terminal being measured It occurs in the contact terminal when a predetermined pressure is applied by pressing the contact terminal toward the object to be measured at the position where the object is brought into contact with the object and measuring the thickness of the object to be measured. A method for measuring adhesive force and thickness, comprising: a step of measuring stress; and a step of measuring stress generated in the contact terminal when the contact terminal is pulled up from the object to be measured. 前記XY軸方向駆動手段には、レーザ光を照射して被測定物の厚みを測定する非接触式厚み測定装置を備えており、該非接触式厚み測定装置から発射されるレーザ光を前記接触端子が接触する箇所の前記被測定物の表面に照射して被測定物の厚みを測定するようにしたことを特徴とする請求項4に記載の粘着力兼厚みの測定方法。 The XY axis direction driving means includes a non-contact type thickness measuring device that measures the thickness of the object to be measured by irradiating the laser beam, and the laser light emitted from the non-contact type thickness measuring device is used as the contact terminal. 5. The method of measuring adhesive force / thickness according to claim 4, wherein the thickness of the object to be measured is measured by irradiating the surface of the object to be measured at a place where the object contacts.
JP2005292502A 2005-10-05 2005-10-05 Adhesive force / thickness measuring apparatus and measuring method thereof Expired - Fee Related JP4566107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005292502A JP4566107B2 (en) 2005-10-05 2005-10-05 Adhesive force / thickness measuring apparatus and measuring method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005292502A JP4566107B2 (en) 2005-10-05 2005-10-05 Adhesive force / thickness measuring apparatus and measuring method thereof

Publications (2)

Publication Number Publication Date
JP2007101402A JP2007101402A (en) 2007-04-19
JP4566107B2 true JP4566107B2 (en) 2010-10-20

Family

ID=38028484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005292502A Expired - Fee Related JP4566107B2 (en) 2005-10-05 2005-10-05 Adhesive force / thickness measuring apparatus and measuring method thereof

Country Status (1)

Country Link
JP (1) JP4566107B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103389044A (en) * 2013-08-09 2013-11-13 昆山允可精密工业技术有限公司 Manual single-measure-head contact-type measuring method for veneer board thickness

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101398849B1 (en) * 2012-07-17 2014-05-27 한국기계연구원 Mesurement apparatus of ink cohesion and adhesion and the method therof
KR101354631B1 (en) * 2012-08-27 2014-01-24 (주)테크원코리아 Battery shield for vinyl thickness measurement device
CN103389045A (en) * 2013-08-09 2013-11-13 昆山允可精密工业技术有限公司 Contact type measuring unit for thickness of manual single measure head veneer board
KR101868605B1 (en) * 2016-07-12 2018-06-18 김승복 Brake pad thickness measuring equipment
JP6807255B2 (en) * 2017-03-09 2021-01-06 株式会社 資生堂 Measuring device, measuring method and measuring program
CN109115129A (en) * 2018-11-12 2019-01-01 江西丝安本精密制版有限公司 A kind of halftone seine angle measurement device and its application method
CN110095074A (en) * 2019-04-17 2019-08-06 西安航天计量测试研究所 A kind of high-precision laser measuring system and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009716A (en) * 1999-06-24 2001-01-16 Okamoto Machine Tool Works Ltd Wafer thickness measuring method
JP2001159598A (en) * 1999-12-02 2001-06-12 Bridgestone Corp Device and method for measuring tackiness and contact terminal for the same device
JP2003083877A (en) * 2001-09-12 2003-03-19 Tosoku Kogyo Kk Tack measuring instrument and testing device equipped with tack measuring instrument
JP2003232778A (en) * 2002-02-08 2003-08-22 Japan Science & Technology Corp Method for measuring physical property of sample
JP2004165276A (en) * 2002-11-11 2004-06-10 Nikon Corp Adsorbing device and transport device
JP2004299184A (en) * 2003-03-31 2004-10-28 Yokohama Rubber Co Ltd:The Profile measuring instrument and profile measuring method
JP2005077363A (en) * 2003-09-03 2005-03-24 Yokohama Rubber Co Ltd:The Tack strength measuring instrument
JP2005224779A (en) * 2004-02-16 2005-08-25 Dainippon Printing Co Ltd Coating layer detection method and device and cylindrical sticking method and device using it

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274876A (en) * 1985-05-29 1986-12-05 Shibayama Kikai Kk Semiconductor wafer measuring method in automatic surface grinder
JPS63272524A (en) * 1987-05-01 1988-11-10 Toray Ind Inc Manufacture of thermoplastic polymeric sheet
JPH0769151B2 (en) * 1990-03-15 1995-07-26 アンリツ株式会社 Surface shape measuring device
EP0614066A1 (en) * 1993-03-01 1994-09-07 José Maria Las Navas Garcia Device to measure depth and hardness using two equal load cells
US5525138A (en) * 1994-05-26 1996-06-11 Ford Motor Company Determination of tensile membrane stress and compressive layer thickness in tempered glass using a CO2 laser beam
JPH11190616A (en) * 1997-10-20 1999-07-13 Anritsu Corp Surface shape measuring device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009716A (en) * 1999-06-24 2001-01-16 Okamoto Machine Tool Works Ltd Wafer thickness measuring method
JP2001159598A (en) * 1999-12-02 2001-06-12 Bridgestone Corp Device and method for measuring tackiness and contact terminal for the same device
JP2003083877A (en) * 2001-09-12 2003-03-19 Tosoku Kogyo Kk Tack measuring instrument and testing device equipped with tack measuring instrument
JP2003232778A (en) * 2002-02-08 2003-08-22 Japan Science & Technology Corp Method for measuring physical property of sample
JP2004165276A (en) * 2002-11-11 2004-06-10 Nikon Corp Adsorbing device and transport device
JP2004299184A (en) * 2003-03-31 2004-10-28 Yokohama Rubber Co Ltd:The Profile measuring instrument and profile measuring method
JP2005077363A (en) * 2003-09-03 2005-03-24 Yokohama Rubber Co Ltd:The Tack strength measuring instrument
JP2005224779A (en) * 2004-02-16 2005-08-25 Dainippon Printing Co Ltd Coating layer detection method and device and cylindrical sticking method and device using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103389044A (en) * 2013-08-09 2013-11-13 昆山允可精密工业技术有限公司 Manual single-measure-head contact-type measuring method for veneer board thickness

Also Published As

Publication number Publication date
JP2007101402A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP4566107B2 (en) Adhesive force / thickness measuring apparatus and measuring method thereof
TWI513970B (en) Shear testing apparatus
TWI447024B (en) Mating device and bonding method
US9341554B2 (en) Hardness tester
JP2003254894A (en) Apparatus for measuring bond strength and shearing strength of coating film
US9366609B2 (en) Hardness tester and method for hardness test
JP6679427B2 (en) Hardness tester
JP2009529667A (en) Tensile test calibration device and method
EP0772036A2 (en) Apparatus for testing bonds between an (electric) element and a support provided with conducting tracks
US6370948B2 (en) Mini-tension tester
JP3266457B2 (en) Automatic Rockwell hardness tester
CN217505500U (en) Adhesive tape performance testing device
JP3100231B2 (en) Adhesion test apparatus and method
JPWO2008084602A1 (en) Electronic component mounting apparatus and mounting method
KR200479321Y1 (en) Measuring device for large length member
JP2968487B2 (en) Semiconductor device inspection equipment
CN111077353A (en) Display panel CELL end detection probe and jig
JPH0347582B2 (en)
JP6648676B2 (en) Micro hardness tester
TWI714103B (en) Apparatus for checking pin contact pressure using z-axial feeder of flat panel display inspection device
JP7354966B2 (en) Thickness measuring device
JPH0712710A (en) Adhesiveness testing device
JP2008241415A (en) Scanning probe microscope and local thin film adhesion evaluation method
JPH06273302A (en) Method and device for measuring characteristic of test piece
KR20080103647A (en) Apparatus for testing adhesion of painting layer for vehicle and method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees