JPS61274876A - Semiconductor wafer measuring method in automatic surface grinder - Google Patents

Semiconductor wafer measuring method in automatic surface grinder

Info

Publication number
JPS61274876A
JPS61274876A JP11438285A JP11438285A JPS61274876A JP S61274876 A JPS61274876 A JP S61274876A JP 11438285 A JP11438285 A JP 11438285A JP 11438285 A JP11438285 A JP 11438285A JP S61274876 A JPS61274876 A JP S61274876A
Authority
JP
Japan
Prior art keywords
wafer
chuck
grinding
semiconductor wafer
rotary table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11438285A
Other languages
Japanese (ja)
Inventor
Kazuo Kobayashi
一雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibayama Kikai Co Ltd
Original Assignee
Shibayama Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibayama Kikai Co Ltd filed Critical Shibayama Kikai Co Ltd
Priority to JP11438285A priority Critical patent/JPS61274876A/en
Publication of JPS61274876A publication Critical patent/JPS61274876A/en
Pending legal-status Critical Current

Links

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

PURPOSE:To finish a semiconductor wafer into a high quality and accuracy mirror surface by measuring the upper surfaces of the wafer and a chuck with a two-point system integrated inprocess gauge while the wafer is vacuum adsorbed. CONSTITUTION:While a chuck 9 is rotated with high speed, a spindle 10 is automatically lowered. While a diamond grinding wheel 12 fixed to a cup wheel 11 on the lower end of the shaft 10 is fed for grinding, the working surface of a semiconductor wafer A vacuum adsorbed by the chuck 9 and the upper surface of the chuck 9 on a rotary table 8 are measured by an integrated inprocess gauge 13. Next, after an accurate predetermined thickness of the wafer is ground at a chuck position, the spindle 10 is lifted to release the wafer A from the grinding wheel 12, move the wafer to the next chuck position by the rotation of the rotary table 8 and carry out intermediate finish grinding while the working surface of the semiconductor A and the upper surface of the chuck 9 are measured by the similar gauge 13.

Description

【発明の詳細な説明】 本発明は、単品毎にカートリッジから送出される広径薄
物ウェハを平面研削盤へ゛正確に載置し、バキューム吸
着せしめて自動研削する平面研削盤の研削加工中、又は
研削加工後の半導体ウェハの厚みの計測方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is applicable to a surface grinding machine in which wide-diameter thin wafers sent out from a cartridge individually are accurately placed on a surface grinder, vacuum-adsorbed, and automatically ground. This invention relates to a method for measuring the thickness of a semiconductor wafer after grinding.

現今における弛まざる技術革新は目覚ましいものがあり
、其の先端技術による開発によって、優れた様々な商品
群が多数送出されている。
Today's continuous technological innovation is remarkable, and the development of cutting-edge technology has produced a large number of excellent product groups.

本発明に係る特にこの種のコンピュータ、マイコン等を
搭載した電子関連機器の開発は、実に日進月歩の感があ
り、更により高度な応用技術の開発に鏑を削っている実
状にある。
In particular, the development of electronic equipment equipped with computers, microcomputers, etc. of this type according to the present invention seems to be progressing rapidly, and efforts are being made to develop even more advanced applied technologies.

このため半導体ウェハは、より超高度の質性と、小型化
に繋がる或は大量集積回路化の図れるように、広径化、
極薄化が要求されてきつつある。
For this reason, semiconductor wafers are becoming wider and wider in order to achieve ultra-high quality, miniaturization, and mass integration of circuits.
There is a growing demand for ultra-thin devices.

従来、半導体ウェハは自動平面研削盤の、等分され枠に
よって形成されたロータリーテーブルの複数箇所のチャ
ックへバキューム吸着され、チャックの回転によって共
に回転し、上部より逆方向に回転するスピンドル軸が降
下して、下端のカップホイールへ固着したダイヤモンド
砥石によって研削されるが、研削加工中、半導体ウェハ
の厚みを計測しながら、絶えず研削の状態をチェックせ
ねばならず、又、研削加工後においても所定の厚みに仕
上がっているか、最終的なチェックの計測が必要であり
、半導体ウェハの上面とチェック機構のチャックの上面
とを各々別の計測器で計測した上、その差でウェハの厚
みを計測したり、ウェハの上面だけ計測して削りしるで
厚みを決定していたが、ダイヤモンド砥石の摩耗度の変
化によるウェハへ与える温度変化、研削後の温度差、又
は周辺雰囲気中の空気の温度変化によって、半導体ウェ
ハの測定する条件が微妙に変化して、ミクロン単位の研
削後の厚みを得るのに問題点があった。
Conventionally, semiconductor wafers are vacuum-adsorbed onto chucks at multiple locations on a rotary table formed by equally divided frames of an automatic surface grinding machine, and the chucks rotate together, causing a spindle shaft that rotates in the opposite direction to descend from above. During the grinding process, the thickness of the semiconductor wafer must be measured and the grinding condition must be constantly checked. A final check measurement is required to check whether the thickness of the wafer is finished, and the top surface of the semiconductor wafer and the top surface of the chuck of the checking mechanism are measured using separate measuring instruments, and the thickness of the wafer is measured by the difference between the two. Or, the thickness was determined by measuring only the top surface of the wafer and grinding it, but the temperature change on the wafer due to changes in the degree of wear of the diamond grinding wheel, the temperature difference after grinding, or the temperature change of the air in the surrounding atmosphere As a result, the conditions under which semiconductor wafers are measured change slightly, creating a problem in obtaining the thickness after grinding in microns.

本発明は上記の事由に着目して、鋭意研鎖の結果、この
問題点を一挙に排除すると共に、広径化、極薄化する半
導体ウェハの精度向上の要望に応じて余りある自動平面
研削盤における半導体ウェハの計測方法に創達し、これ
を供せんとするものである。
Focusing on the above-mentioned reasons, the present invention has been developed to eliminate these problems at once as a result of extensive research, and to meet the demand for improving the precision of semiconductor wafers, which are becoming wider in diameter and ultra-thin. The aim is to develop and provide a method for measuring semiconductor wafers on a board.

斯る目的を達成せしめた本発明の半導体ウェハの自動平
面研削盤におけるウェハ計測方法を以下実施例の図面に
よって説明する。
A method for measuring a wafer in an automatic surface grinding machine for semiconductor wafers according to the present invention, which achieves the above object, will be explained below with reference to drawings of embodiments.

第1図は本発明の説明の為の一実施例の全体の概要平面
図であり、第2図は要部説明のための側面図である。
FIG. 1 is a general plan view of an entire embodiment for explaining the present invention, and FIG. 2 is a side view for explaining the main parts.

多数枚の半導体ウェハAを単品毎に集積格納して昇降自
在なカートリッジBから、ベルトコンベヤー1によって
送出される半導体ウェハAは、先端に吸着パット2を備
えて半転機能を有する移送アーム3によって吸着、反転
されてプリポジション装置4の面上へ移送される。そし
て、プリポジション装置4で正確な位置決めと洗浄を、
液体の噴流によって行ない、先端にエヤー吸着パット5
を備えた水平方向に回転かつ進退し、並びに昇降可能な
ウェハの移送アーム6によって、平面研削盤本体7のロ
ータリーテーブル8の6等分した枠によって設けられた
6ケ箇所のチャック9のチャック位置9aへ正確に案内
され確りとバキューム吸着される。ロータリーテーブル
8は一定の低速で1/6づつ回転、停止を繰り返し、チ
ャック9はロータリーテーブル8が停止した時に予め規
定せしめた自回転を始めロータリーテーブル8の回転中
は自回転を停止する機構である。次いでチャック位[9
aはロータリーテーブル8の回転によって9bの位置へ
移動し、上部より回転するスピンドル軸10自動降下し
下端のカップホイール11へに固着されたダイヤモンド
砥石12で最初の荒研削が開始される。
Semiconductor wafers A are delivered by a belt conveyor 1 from a cartridge B that stores a large number of semiconductor wafers A individually and can be raised and lowered. It is adsorbed, reversed, and transferred onto the surface of the preposition device 4. Then, the preposition device 4 performs accurate positioning and cleaning.
It is carried out by a jet of liquid, and an air suction pad 5 is attached to the tip.
The chuck position of the chuck 9 at six locations provided by the frame divided into six equal parts of the rotary table 8 of the surface grinding machine main body 7 is achieved by the wafer transfer arm 6, which is equipped with a wafer transfer arm 6 that can rotate horizontally, move forward and backward, and move up and down. It is guided accurately to 9a and is firmly vacuum-adsorbed. The rotary table 8 repeatedly rotates and stops in 1/6 increments at a constant low speed, and the chuck 9 has a mechanism that starts self-rotation at a predetermined rate when the rotary table 8 stops, and stops self-rotation while the rotary table 8 is rotating. be. Next is Chuck [9
A is moved to the position 9b by the rotation of the rotary table 8, and the spindle shaft 10 rotating from the upper part is automatically lowered, and the first rough grinding is started with the diamond grindstone 12 fixed to the cup wheel 11 at the lower end.

本発明は前記研削中、又は研削後の被研削物の半導体ウ
ェハAの厚みを正確に計測するもので、チャック9は高
速で自回転を開始し、スピンドル軸10が自動降下して
、最初の研削が定められた量の削りしろを任意の微速度
の隆下量による、該軸10下端のカップホイール11へ
固着したダイヤモンド砥石12の切り込み量で研削を開
始するが、正確に荒研削中、又は研削後の半導体ウェハ
の厚みを計測するためにチャック9で確りとバキューム
吸着された状態で半導体ウェハAの上面。
The present invention accurately measures the thickness of the semiconductor wafer A to be ground during or after the grinding. Grinding is started with a predetermined amount of cutting margin by the amount of protrusion at an arbitrary slow speed, and the cutting amount of the diamond grinding wheel 12 fixed to the cup wheel 11 at the lower end of the shaft 10, but during accurate rough grinding, Alternatively, the top surface of the semiconductor wafer A is firmly vacuumed by the chuck 9 in order to measure the thickness of the semiconductor wafer after grinding.

即ち加工面と、ロータリーテーブル8へ数ケ所設けた加
工中のチャック9の上面を、一体と成したインプロセス
ゲージ13で計測を行うものである。
That is, the machining surface and the upper surface of the chuck 9 during machining provided at several locations on the rotary table 8 are measured by an integrated in-process gauge 13.

チャック位置9bで正確な所定の厚みに研削後はスピン
ドル軸10は上昇して研削砥石12からウェハAは開放
されロータリーテーブル8の回転によりチャック位置9
cへ移動し、更に前記方法によって中仕上げ研削を行な
うものである。そして、チャック位[9dでは同様に仕
上げの研削を行なうが、チャック位置9c、9dでも、
本発明の半導体ウェハ計測方法を用いて計測を行なうこ
とは勿論である。
After grinding to an accurate predetermined thickness at the chuck position 9b, the spindle shaft 10 rises and the wafer A is released from the grinding wheel 12, and the rotary table 8 rotates to the chuck position 9.
c, and further performs semi-finish grinding using the method described above. Then, finish grinding is performed in the same way at the chuck position [9d, but also at chuck positions 9c and 9d.
Of course, the measurement can be performed using the semiconductor wafer measurement method of the present invention.

次いで、研削を完了した極薄半導体ウェハAはチャック
位置9eで洗浄された後、先端に収納用移送アームの吸
着パット14を備えた水平方向に回転かつ進退し、並び
に昇降可能な収納用移送アーム15で吸着され洗浄及び
乾燥装置16へ移送されて、洗浄並びに乾燥後に収納用
反転アームのエヤー吸着パット17を備える収納用反転
アーム18で収納用ベルトコンベヤ19に載置され収納
カートリッジCの収納枠へ整然と単品毎に順次収納され
る構成を持つ自動平面研削盤である。
Next, the ultra-thin semiconductor wafer A that has been ground is cleaned at the chuck position 9e, and then moved to the storage transfer arm, which is equipped with a suction pad 14 of the storage transfer arm at the tip and can rotate horizontally and move forward and backward, and can be raised and lowered. 15, and transferred to the cleaning and drying device 16, and after cleaning and drying, the storage frame of the storage cartridge C is placed on the storage belt conveyor 19 by the storage reversal arm 18 equipped with the air suction pad 17 of the storage reversal arm. This is an automatic surface grinding machine that has a structure in which each item is stored in an orderly manner.

前記の説明は、半導体ウェハが一枚での研削工程の説明
であるが、ウェハAがカートリッジBよりベルトコンベ
ヤ1を経て、ブリポジション5へ移送された時には、次
のウェハはカートリッジBよりベルトコンベヤ1で移送
され、前のウェハがロータリーテーブル8のチャック位
置9aへ移送されるのを待機する等、これらの動作を繰
返し連続して行なえる自動送り出し、自動回転機構を有
する構成であり、ロータリーテーブル8に設けたチャン
99位置の各々の位置9a〜9fでは夫々作業を同時に
連続して行なうものである。即ち、チャック位l 9 
eで研削を完了したウェハは洗浄乾燥装置16へ移送さ
れ、収納用搬送アーム18で収納用コンベヤ19に載置
され、収納用カートリッジCへ収納されるが、ロータリ
ーテーブル8のチャック9はチャック位置9fで洗浄を
し、次のウェハ研削のための準備を行なうものである。
The above explanation is an explanation of the grinding process for one semiconductor wafer, but when wafer A is transferred from cartridge B to belt conveyor 1 to Bri position 5, the next wafer is transferred from cartridge B to belt conveyor 5. 1 and waits for the previous wafer to be transferred to the chuck position 9a of the rotary table 8.The structure has automatic feeding and automatic rotation mechanisms that can repeatedly and continuously perform these operations, such as waiting for the previous wafer to be transferred to the chuck position 9a of the rotary table 8. At each of the positions 9a to 9f of the chang 99 provided in 8, operations are performed simultaneously and continuously. That is, chuck position l 9
The wafer that has been ground in e is transferred to the cleaning/drying device 16, placed on the storage conveyor 19 by the storage transfer arm 18, and stored in the storage cartridge C, but the chuck 9 of the rotary table 8 is in the chuck position. At 9f, cleaning is performed and preparations are made for the next wafer grinding.

つまり、ウェハは、カートリッジ→ベルトコンベヤ→反
転アーム→プリポジション→チャック位置9a→チャッ
ク位置9b→チャック位置9C→チャック位置9d→チ
ャック位置9e→収納用移送アーム→洗浄乾燥装置→収
納用反転アーム→収納用ベルトコンベヤ→収納用カート
リッジと、次々と移送され、研削され、収納される自動
平面研削盤である。 本実施例はロータリーテーブルが
6等分された枠で構成であるが、その加工工程、方法等
により1等分される枠の数は任意に設定できるものであ
る。
In other words, the wafer is transferred from the cartridge to the belt conveyor to the reversing arm to the preposition to the chuck position 9a to the chuck position 9b to the chuck position 9C to the chuck position 9d to the chuck position 9e to the storage transfer arm to the cleaning/drying device to the storage reversing arm. This is an automatic surface grinding machine that transports, grinds, and stores one after another from a storage belt conveyor to a storage cartridge. In this embodiment, the rotary table is composed of frames divided into six equal parts, but the number of equal parts can be set arbitrarily depending on the processing process, method, etc.

現在要求される極薄化、広径化、かつ、高精度を求める
ために本発明の一体となした二点式インプロセスゲージ
を用いた計測方法は対応して余り有る画期的な方法であ
り、半導体ウェハとチャックの温度差、ダイヤモンド砥
石の摩耗度による温度変化にも、又外気温度の変化に関
係なく、高品質、高精度の鏡面を得ることのできるもの
で、その貢献度は計りしれないものがあり、極めて有意
義な効果を奏するものである。
The measurement method using the two-point in-process gauge integrated with the present invention is an epoch-making method that meets the current demands for ultra-thinness, wide diameter, and high precision. It is possible to obtain a high-quality, high-precision mirror surface regardless of the temperature difference between the semiconductor wafer and the chuck, the temperature change due to the degree of wear of the diamond grinding wheel, or the change in outside temperature, and its contribution is immeasurable. There are things that can be done that can have an extremely meaningful effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の説明のための平面図であり
、第2図はその要部の側面図である。 A−ウェハ、B−カートリッジ、C−収納用カートリッ
ジ。 1−ベルトコンベヤ、2−吸着バット、3−移送アーム
、4−プリポジション、5−エヤー吸着バット、6−移
送アーム、7一平面研削盤本体、8−ロータリーテーブ
ル、9−チャック、9a、9b、9c、9d、9e、9
f−チャック位置、10−スピンドル軸、11−カップ
ホイール、12−ダイヤモンド砥石、13−インプロセ
スゲージ、14−収納用移送アームのエヤー吸着バット
、15−収納用移送アーム、16−洗浄及び乾燥装置、
17−収納用反転アームのエヤー吸着バット、18−収
納用反転アーム、19−収納用ベルトコンベヤ。
FIG. 1 is a plan view for explaining one embodiment of the present invention, and FIG. 2 is a side view of the main parts thereof. A-wafer, B-cartridge, C-storage cartridge. 1-belt conveyor, 2-suction bat, 3-transfer arm, 4-preposition, 5-air suction bat, 6-transfer arm, 7-plane grinder body, 8-rotary table, 9-chuck, 9a, 9b , 9c, 9d, 9e, 9
f-chuck position, 10-spindle shaft, 11-cup wheel, 12-diamond grindstone, 13-in-process gauge, 14-air suction butt of transfer arm for storage, 15-transfer arm for storage, 16-washing and drying device ,
17-Air suction bat of inversion arm for storage, 18-Inversion arm for storage, 19-belt conveyor for storage.

Claims (1)

【特許請求の範囲】 複数等分した枠によって形成され、薄物ウェハをチャッ
ク機構でバキューム吸着して一定の低速で回転、停止を
繰り返すロータリーテーブルへ複数個の半導体ウェハを
チャックして自動研削する平面研削盤であって、 研削加工中、又は、研削加工後の半導体ウェハをバキュ
ーム吸着した状態で、該ウェハの上面と、チャックの上
面とを、一体と成した二点式インプロセスゲージを用い
て計測することを特徴とする自動平面研削盤における半
導体ウェハの計測方法。
[Scope of Claims] A flat surface formed by a frame divided into multiple equal parts, where a plurality of semiconductor wafers are vacuum-adsorbed by a chuck mechanism, chucked onto a rotary table that repeatedly rotates and stops at a constant low speed, and is automatically ground. The grinding machine is a grinding machine that uses a two-point in-process gauge that integrates the top surface of the wafer and the top surface of the chuck with the semiconductor wafer being vacuum-adsorbed during or after the grinding process. A method for measuring a semiconductor wafer in an automatic surface grinding machine.
JP11438285A 1985-05-29 1985-05-29 Semiconductor wafer measuring method in automatic surface grinder Pending JPS61274876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11438285A JPS61274876A (en) 1985-05-29 1985-05-29 Semiconductor wafer measuring method in automatic surface grinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11438285A JPS61274876A (en) 1985-05-29 1985-05-29 Semiconductor wafer measuring method in automatic surface grinder

Publications (1)

Publication Number Publication Date
JPS61274876A true JPS61274876A (en) 1986-12-05

Family

ID=14636275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11438285A Pending JPS61274876A (en) 1985-05-29 1985-05-29 Semiconductor wafer measuring method in automatic surface grinder

Country Status (1)

Country Link
JP (1) JPS61274876A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948206A (en) * 1996-12-17 1999-09-07 Tokyo Seimitsu Co., Ltd. Apparatus for determining removed amount of wafer
JP2007101402A (en) * 2005-10-05 2007-04-19 Shin Etsu Polymer Co Ltd Tackiness and thickness measuring instrument and measuring method using it

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120459A (en) * 1979-03-12 1980-09-16 Nippon Steel Corp Longitudinal cutting method of slab and device thereof
JPS5815265A (en) * 1981-07-20 1983-01-28 Hitachi Ltd Mos substrate bias generating circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120459A (en) * 1979-03-12 1980-09-16 Nippon Steel Corp Longitudinal cutting method of slab and device thereof
JPS5815265A (en) * 1981-07-20 1983-01-28 Hitachi Ltd Mos substrate bias generating circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948206A (en) * 1996-12-17 1999-09-07 Tokyo Seimitsu Co., Ltd. Apparatus for determining removed amount of wafer
JP2007101402A (en) * 2005-10-05 2007-04-19 Shin Etsu Polymer Co Ltd Tackiness and thickness measuring instrument and measuring method using it

Similar Documents

Publication Publication Date Title
US6267648B1 (en) Apparatus and method for chamfering wafer
US7278903B2 (en) Processing method for wafer and processing apparatus therefor
KR102507675B1 (en) Wafer processing method
JPH04234607A (en) Machine and method to slice and polish wafer
JP7417362B2 (en) grinding equipment
JP2000006018A (en) Grinding device
JP7127994B2 (en) Dressing board and dressing method
JP2554432B2 (en) Peripheral surface processing equipment for semiconductor wafers
JPH07130692A (en) Surface grinder
KR20200070103A (en) Method for processing disk-like workpiece
JPS61274876A (en) Semiconductor wafer measuring method in automatic surface grinder
JP3944891B2 (en) Wafer positioning mechanism and accuracy adjustment method thereof
JPH1148107A (en) Method and device for grinding both side
JP2011245571A (en) Machining device
JP3007678B2 (en) Polishing apparatus and polishing method
JPH08170912A (en) Measuring method and grinding method for semiconductor chip
WO2022201650A1 (en) Processing system
JP7504616B2 (en) Processing System
JP2019111634A (en) Method for grinding work-piece
JP7024039B2 (en) Chamfering equipment
JPH0577147A (en) Surface grinding machine
JPS63288654A (en) Method and device for grinding semiconductor wafer
JPS61230853A (en) Continuous down feeding of semi-conductor wafer on automatic plane grinding machine
JPH03104545A (en) Surface grinding device
JP2000117630A (en) Dressing tool for wafer chamfering device, and dressing mechanism for the wafer chamfering device using the dressing tool