JP4487353B2 - Polishing apparatus and polishing method - Google Patents

Polishing apparatus and polishing method Download PDF

Info

Publication number
JP4487353B2
JP4487353B2 JP33679599A JP33679599A JP4487353B2 JP 4487353 B2 JP4487353 B2 JP 4487353B2 JP 33679599 A JP33679599 A JP 33679599A JP 33679599 A JP33679599 A JP 33679599A JP 4487353 B2 JP4487353 B2 JP 4487353B2
Authority
JP
Japan
Prior art keywords
polishing
polished
tool
polishing tool
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33679599A
Other languages
Japanese (ja)
Other versions
JP2001150339A (en
Inventor
吉文 赤池
孝 鈴木
博之 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP33679599A priority Critical patent/JP4487353B2/en
Priority to US09/717,103 priority patent/US6511362B1/en
Priority to TW089124787A priority patent/TW510843B/en
Priority to DE10057998A priority patent/DE10057998B4/en
Priority to KR1020000070463A priority patent/KR100731202B1/en
Publication of JP2001150339A publication Critical patent/JP2001150339A/en
Application granted granted Critical
Publication of JP4487353B2 publication Critical patent/JP4487353B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/0084Other grinding machines or devices the grinding wheel support being angularly adjustable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/04Headstocks; Working-spindles; Features relating thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、研磨装置および研磨方法に関する。
【0002】
【従来の技術】
半導体装置の高集積化、多層配線化が進むにつれて、半導体装置の製造工程では、各種層間絶縁膜あるいはその他の膜の平坦化が重要となっている。
平坦化のための技術としては、種々の手段が提案されているが、近年、シリコンウェーハのミラーポリシング技術を応用したCMP(Chemical Mechanical Polishing:化学的機械研磨)法が注目され、これを利用して平坦化を図る方法が開発されている。
従来のCMP法を用いた研磨装置の一例を図17に示す。
図17に示す研磨装置301は、研磨工具302を回転させる主軸スピンドル303と、ウェーハWを保持するテーブル304とを有する。
テーブル304は、レール305に沿ってX軸方向に移動自在に設けられたスライダ306の上に回転自在に装着してあり、たとえば、モータ、プーリ、ベルト等によって構成される回転駆動手段によって回転駆動される。
主軸スピンドル303は、Z軸方向に移動自在に保持されており、図示しない駆動機構によってZ軸方向の目標位置に位置決めされる。
上記構成の研磨装置301では、まず、ウェーハWが所定の回転数で回転され、ウェーハW上に、たとえば、酸化シリコン等の研磨砥粒を水酸化カリウムの水溶液等の液体に混ぜた研磨剤としてのスラリーが図示しないスラリー供給装置からウェーハW上に供給される。
次に、研磨工具302が所定の回転数で回転され、研磨工具302の外周端部がウェーハWの外周端部に重なり合って接触するように、ウェーハWおよび研磨工具302がX軸およびZ軸方向に位置決めされる。
研磨工具302はウェーハWに対して所定の切り込み量となるようにZ軸方向に位置決めされ、これにより、研磨工具302とウェーハWとの間には所定の加工圧力が発生する。この状態で、ウェーハWが所定の速度パターンでX軸方向に移動され、研磨工具302がウェーハWに接触しながらウェーハWの研磨加工が行われウェーハWが平坦化される。
【0003】
【発明が解決しようとする課題】
ところで、上記構成の研磨装置301では、研磨工具302の研磨面302aは回転テーブル304の保持面に平行であり、ウェーハWに対する研磨工具302のX軸方向の相対移動にしたがって、研磨工具302の研磨面302aとウェーハWの被研磨面とは重なり合う領域が全面的に接触する。このため、研磨工具302の研磨面302aのウェーハWの被研磨面に対する実効的な作用領域の面積は研磨工具302の研磨面302aとウェーハWの被研磨面とは重なり合う領域となり、この面積は比較的大きく、また、研磨工具302のX軸方向の相対移動にしたがって変化する。
研磨工具302の研磨面302aのウェーハWの被研磨面に対する実効的な作用領域の面積が大きいとウェーハWの被研磨面に存在する凹凸等によって実効的な作用領域内での研磨量が不均一となりやすく、また、実効的な作用領域の面積が変化すると、単位時間当たりの研磨量である研磨レートが変化するため、ウェーハWの被研磨面を均一に研磨することが難しい。また、研磨工具302の研磨面302aとウェーハWの被研磨面とが平行であると、研磨工具302の研磨面302aとウェーハWの被研磨面との間にスラリーが侵入しにくく、これによっても研磨量が安定しないことがある。
【0004】
このため、従来においては、たとえば、図18(a)に示すように、研磨工具302の回転軸K1を傾斜角度αで研磨工具302の進行方向に向けて傾斜させて加工を行っていた。
ここで、図19は、研磨工具302の回転軸K1を研磨工具302の進行方向に傾斜させた場合の研磨工具302の研磨面302aとウェーハWの被研磨面との間に発生する圧力分布を示す図である。なお、図19は、ウェーハWを回転させず研磨工具302のみを回転させてウェーハWの被研磨面を研磨したときの仮想的な圧力分布を示している。
図19に示すように、研磨工具302の研磨面302aとウェーハWの被研磨面との間に発生する圧力分布は、略三日月状の領域PRとなり、この三日月状の領域PRには、内部に圧力が比較的高い領域PHと、その周囲に存在する圧力が比較的低いPLが発生する。圧力が比較的高い領域PHは、X軸に関して略対称な形状となっており、この領域PHがウェーハWの被研磨面に対して実効的に作用する領域となる。領域PHは、ウェーハWと研磨工具302の研磨面302aとの重なり合う面積よりも十分に狭小化されており、また、研磨工具302がX軸方向に相対移動しても領域PHの面積は略一定となる。このため、実効的な作用領域内での研磨量を均一にでき、また、研磨レートを一定にすることができる。
【0005】
しかしながら、研磨工具302は、たとえば、円板状の部材からなり、たとえば、発泡ポリウレタン等の樹脂から形成されている弾性体であり、図18に示したように、加工圧力FでウェーハWの表面に押し付けられる。このため、ウェーハWに押し付けられた研磨工具302は弾性変形する。
加えて、研磨工具302の研磨面302aがウェーハW表面に対して傾斜角度αで傾斜していると、研磨工具302の研磨面302aがウェーハWに乗り上げる際に図19に示す乗り上げ領域190および逃げ領域191においては、それぞれ、たとえば、図20に示すように変形する。乗り上げ領域190では、図20(a)に示すように、研磨工具302の研磨面302aがウェーハWの外周端部EGからウェーハWの表面上に乗り上げるため、研磨工具302の研磨面302aは弾性変形し、外周端部EG近傍に位置するウェーハW表面に乗り上げ寸前の研磨面302aは、ウェーハWの表面に対して下方に突き出た状態になる。逃げ領域191では、図20(b)に示すように、研磨工具302の研磨面302aがウェーハWの表面上から外周端部EGを通過して離れるため、弾性変形した研磨工具302の研磨面302aは、ウェーハWの外周端部EGから離れ、応力が緩和されながら変形が復元される。
【0006】
研磨工具302の研磨面302aが弾性変形すると、研磨面302aのウェーハWの表面に対して下方に突き出た部分は、ウェーハWの外周端部EGに強く接触し、加工エネルギーの大半は研磨面302aの突き出た部分がウェーハWの外周端部EGに乗り上げる作業に費やされ、図19に示したように、ウェーハWの外周端部にダメージDMを与える。
このような研磨面302aの突き出た部分によるウェーハWの外周端部EGへのダメージが蓄積されると、ウェーハWは回転しているため、たとえば、図21に示すように、ウェーハWの外周部の全域に過剰研磨された過剰研磨部402が形成されてしまう。過剰研磨部402が形成されると、1枚のウェーハW上に形成される半導体チップの取り数が少なくなり、歩留りが低下するという不利益がある。
また、加工エネルギーがウェーハWの外周端部EGの過剰研磨に費やされる分、単位時間当たりのウェーハW表面の研磨除去量である研磨レートが低下し、単位時間当たりのウェーハWの処理数が低下し、生産性が低下する。
【0007】
また、研磨工具302の研磨面302aがウェーハWの外周端部EGに乗り上げる領域では、研磨面302aとウェーハWの表面との間にスラリーが侵入しにくく、研磨面302aとウェーハWの表面との間に供給されるスラリーが不足するため、研磨レートが低下する。このスラリーの不足を補うために、コストが高いスラリーを多量に供給しなければならず、生産性が低下する。
さらに、研磨工具302の研磨面302aがウェーハWの外周端部EGに乗り上げる領域では、研磨面302aへのダメージも大きく、研磨面302aの品質が急激に劣化しやすく、このため、加工条件の変動が起こりやすくなる。加工条件の変動を防ぐために、研磨面302aをドレッシング等の手段によってコンディショニングする必要があり、研磨面302aの状態を適切にするためコンディショニングする頻度が増すと研磨装置の生産性が低下してしまう。
【0008】
本発明は、上述した従来の問題に鑑みてなされたものであって、研磨工具の弾性変形に起因する被研磨対象物の被研磨面の外周端部の過剰研磨を抑制することができ、かつ、研磨レートを安定化することができる研磨装置および研磨方法を提供することを目的とする。
【0009】
本発明によれば、回転部材に保持され、当該回転部材の回転軸直交する平面に沿った研磨面を備える弾性体からなる研磨工具を前記回転部材の回転に応じて回転させ、前記研磨工具の研磨面を保持テーブル上に保持された被研磨対象物の被研磨面に所定の加工圧力で相対的に押し付け、前記被研磨対象物と前記研磨工具とを前記保持テーブルの保持面に平行な平面に沿って相対的に移動させて前記被研磨対象物の被研磨面を研磨する研磨方法であって、
前記研磨工具が固定された前記回転部材の回転軸を前記保持テーブルの保持面に垂直な方向に対して前記研磨工具と前記保持テーブルとの相対的移動方向における進行方向に向けて第1の角度だけ傾斜させ、かつ、前記研磨工具の研磨面が前記被研磨対象物の被研磨面の外周端部に乗り上げる領域での前記研磨工具に備えられた弾性体の研磨面の弾性変形を軽減させるように、前記回転部材の回転軸を前記進行方向に直交する方向の平面に沿って、前記研磨工具の被研磨面の外周端部への前記研磨工具の研磨面の乗り上げ領域での前記被研磨対象物の被研磨面に対する高さが、前記研磨工具の研磨面前記被研磨対象物の被研磨面の外周端部から逃げる領域での前記被研磨対象物の被研磨面に対する高さよりも高くなる向きに第2の角度だけ傾斜させて、
前記研磨工具の研磨面によって前記被研磨対象物の被研磨面を研磨する、
研磨方法が提供される。
【0010】
好ましくは、前記研磨工具として前記被研磨対象物の被研磨面の直径と略等しい直径を持つ研磨工具を使用し、前記被研磨対象物の被研磨面の外に位置する前記研磨工具の研磨面の外周端部を前記被研磨対象物の被研磨面の外周端部に位置させ、前記研磨工具を前記研磨面と前記被研磨面との重なり合う面積が増加する方向に相対的に移動させて前記被研磨面を研磨加工し、前記研磨工具の研磨面の外周端部が前記被研磨対象物の被研磨面の外周端部に達した位置で研磨加工を停止する。
【0011】
好ましくは、前記研磨工具として環状の研磨面をもつ研磨工具を用いて研磨を行う。
【0012】
好ましくは、前記回転部材の回転軸が前記第1の角度および前記第2の角度で傾斜した状態の前回転部材の回転に応じて回転する前記研磨工具を前記保持テーブルの保持面に平行な修正工具の修正面に沿って相対的に移動させることによってフェーシング加工された研磨面をもつ研磨工具を用いる。
【0013】
好ましくは、前記第1の角度を前記第2の角度よりも大きくする。
【0014】
好ましくは、前記保持テーブルを回転させ、前記被研磨対象物を回転させながら前記研磨を行う。
あるいは、好ましくは、前記被研磨対象物と前記研磨工具の回転方向を逆向きにして前記研磨を行う。
【0015】
好ましくは、前記研磨工具の研磨面と前記被研磨対象物の被研磨面との間に研磨剤を介在させて前記研磨を行う。
また好ましくは、前記被研磨対象物の被研磨面の外に位置する前記研磨工具の研磨面の外周端部を前記被研磨対象物の被研磨面の外周端部に位置させ、前記研磨工具の研磨面と前記被研磨対象物の被研磨面との重なり合う面積が増加する方向に移動させて研磨するとき、少なくとも前記研磨工具の研磨面の前記被研磨対象物の被研磨面の外周端部の乗り上げによる前記研磨面の弾性変形が発生しなくなる位置まで、前記第2の角度だけ傾斜させる。
好ましくは、前記研磨工具の研磨面の前記被研磨面の外周端部の乗り上げによる前記研磨面の弾性変形が発生しなくなる位置に当該研磨工具が到達したら、前記回転部材の回転軸を前記前記保持テーブルの保持面に対して垂直にする。
【0016】
また本発明によれば、回転部材と、被研磨対象物を保持する保持テーブルと、前記回転部材に保持され前記回転部材の回転軸直交する平面に沿った、弾性体の研磨面を備えた研磨工具と、前記回転部材を垂直方向に昇降させて前記研磨工具の研磨面を前記保持テーブルに保持された前記被研磨対象物の被研磨面に離間させるまたは押しつける、垂直軸方向移動手段と、水平方向において前記保持テーブルを前記研磨工具に対して相対的に移動させ、前記保持テーブルに保持された前記被研磨対象物の被研磨面と前記研磨工具の研磨面とを、接触または離間させる、水平方向移動手段と、前記回転部材の外周の少なくとも3か所に設けられ、前記回転部材の回転軸を、水平方向において直交する2方向に傾斜させる、回転軸傾斜手段と、を有し、
前記回転部材の外周の少なくとも3か所に設けられた回転軸傾斜手段を調整して、前記水平方向移動手段によって前記研磨工具と前記保持テーブルとを接近させるときの進行方向に向けて、前記回転部材の回転軸を前記保持テーブルの保持面に垂直な方向に対しての第1の角度だけ傾斜させ、かつ、前記垂直軸方向移動手段および前記水平方向移動手段の動作によって移動された、前記研磨工具の研磨面が前記被研磨対象物の被研磨面の外周端部に乗り上げる領域での当該研磨工具に備えられた弾性体の研磨面の弾性変形を軽減させるように、前記回転部材の回転軸を前記進行方向と直交する方向において、前記被研磨対象物の被研磨面の外周端部への前記研磨工具の研磨面の乗り上げ領域での前記被研磨面に対する高さが、前記研磨工具の研磨面前記被研磨面の外周端部から逃げる領域での前記被研磨面に対する高さよりも高くする第2の角度だけ傾斜させ、
前記回転部材の回転軸を前記第1の角度および前記第2の角度だけ傾斜させた状態で、前記垂直軸方向移動手段により前記研磨工具を前記被研磨対象物に押しつけて加工圧を前記被研磨対象物に加えながら、前記被研磨対象物の被研磨面と前記研磨工具の研磨面とを前記回転部材の回転に応じて回転接触させ、前記水平方向移動手段により前記被研磨対象物の被研磨面と前記研磨工具の研磨面とを相対的に移動させて、前記被研磨対象物の被研磨面を研磨する、
研磨装置が提供される。
好ましくは、前記研磨工具は、環状の研磨面をもつ。
好ましくは、前記研磨工具の研磨面は、前記回転部材の回転軸が前記各方向に傾斜した状態の回転する前記研磨工具を前記保持テーブルに平行な修正工具の修正面に沿って相対移動させることによってフェーシング加工されている。
好ましくは、当該研磨装置は、前記保持テーブルを回転させる回転手段をさらに有する。
好ましくは、当該研磨装置は、前記研磨面と前記被研磨面との間に介在させる研磨剤を供給する研磨剤供給手段をさらに有する。
【0017】
本発明では、研磨工具をその研磨面が被研磨対象物の被研磨面の外周端部に乗り上げる領域での当該研磨面の弾性変形を軽減させる向きに傾斜させて研磨を行うため、研磨面の被研磨面の外周端部への乗り上げによる弾性変形によって被研磨面の外周端部が受けるダメージが抑制され、研磨面の被研磨面の外周端部への加工エネルギの集中が抑制される。この結果、単位時間当たりの被研磨対象物の研磨面の研磨除去量である研磨レートの低下が抑制される。
また、研磨面を被研磨面に対して傾斜させることで、乗り上げ領域での研磨面の被研磨面に対する高さが相対的に高くなり、研磨面と被研磨面との間に介在させる研磨剤を供給した際に、乗り上げ領域での研磨面と被研磨面との間に研磨面の回転方向に向けて研磨剤が侵入しやすくなり、研磨面と被研磨面との間に十分量の研磨剤が安定して供給される。
【0018】
さらに、研磨工具の回転軸を保持テーブルの保持面に垂直な方向に対して、研磨工具の進行方向に向けて所定の角度傾斜させることで、研磨面と被研磨面との実効的な接触面積が狭小化される。これにより、接触面積内での被研磨面の研磨量の分布が不均一となることが抑制され、被研磨面内での研磨量のバラツキが抑制される。一方、研磨工具の回転軸を保持テーブルの保持面に垂直な方向に対して、研磨工具の進行方向に向けて所定の角度傾斜させると、研磨工具の進行方向の研磨面の前方部では、傾斜させない場合よりも被研磨面への乗り上げ領域で大きな弾性変形が生じ、被研磨面の外周端部が受けるダメージが増大することになるが、本発明では、研磨工具の回転軸を研磨面の乗り上げ領域で弾性変形を軽減させる向きに傾斜させているので、被研磨面の外周端部が受けるダメージを抑制することができる。
【0019】
さらに、本発明では、研磨面が回転軸に直交する平面に対して、研磨工具の進行方向の向きの傾斜角度と略同じ角度で傾斜した研磨工具を用いて研磨を行うことで、研磨面は曲面となり、研磨面と被研磨面との実効的な接触面積はさらに狭小化され、かつ、研磨面の被研磨面への乗り上げ領域での被研磨面に対する高さが高くなり、研磨面の弾性変形量がさらに軽減され、研磨面の弾性変形により被研磨面の外周端部が受けるダメージを一層抑制することができる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して詳細に説明する。
第1実施形態
図1は、本発明の第1の実施形態に係る研磨装置の構成を示す図である。
図1に示す研磨装置1は、研磨工具8と、研磨工具8を回転保持する主軸スピンドル21と、主軸スピンドル21をZ軸方向に移動位置決めするZ軸移動機構11と、ウェーハWを保持し回転させる回転テーブル41と、回転テーブル41をX軸方向に移動させるX軸移動機構51とを備える。
【0021】
主軸スピンドル21は、研磨工具8を保持しており、この研磨工具8を回転軸K1を中心に回転させる。この主軸スピンドル21は、内部に主軸23、この主軸23を回転自在に保持する静圧軸受、および主軸22を回転させるサーボモータを内蔵している。また、主軸スピンドル21は、スピンドルホルダ20に保持されている。スピンドルホルダ20は、コラム3に対して図示しないガイドによってZ軸方向に沿って移動自在に保持されている。
さらに、主軸スピンドル21の外周の所定の位置には、研磨剤としてのスラリーおよび純水をウェーハW上に供給するスラリー/純水供給ノズル81が設けられている。
【0022】
Z軸移動機構11は、ベース2上に立設された門型のコラム3にZ軸方向(垂直方向)に沿って設けられており、主軸スピンドル21をZ軸方向に移動自在に保持している。Z軸移動機構11は、研磨工具8の研磨面8aがウェーハWの被研磨面に対向する方向に保持し、当該対向方向の研磨面8aのウェーハWの被研磨面に対する相対位置を決定する移動位置決め手段として機能する。
具体的には、Z軸移動機構11は、コラム3に固定されたサーボモータ12と、サーボモータ12と接続されたネジが形成されたネジ軸13と、ネジ軸13と螺合するネジ部が形成されスピンドルホルダ20に連結されたZ軸スライダ14とを備えている。
サーボモータ12を回転駆動することにより、Z軸スライダ14がZ軸方向に沿って上昇または下降し、Z軸スライダ14に連結されたスピンドルホルダ20がZ軸方向に沿って上昇または下降する。これにより、サーボモータ12の回転量を制御することで、研磨工具8のZ軸方向の位置決めを行うことができる。
【0023】
回転テーブル41は、被研磨対象物としてのウェーハWを保持する水平方向に平行に設けられた保持面41aを備えており、ウェーハWを保持面41aに、たとえば、真空吸着等のチャキング手段によってチャッキングする。また、回転テーブル41は、たとえば、モータ等の駆動手段を備えており、ウェーハWを回転させる。なお、回転テーブル41は、本発明の保持テーブルの一具体例に対応している。また、回転テーブル41の周囲には、スラリー/純水ノズル81からウェーハW上に供給されたスラリーを回収するための回収パン82が設けられている。
【0024】
X軸移動機構51は、サーボモータ55と、サーボモータ55に接続されたネジが形成されたネジ軸54と、ネジ軸54に螺合するネジ部が形成されたX軸スライダ53と、X軸スライダ53に連結され、X軸方向に図示しないガイドによって移動自在に保持され、上記の回転テーブル41が設置されたX軸テーブル52とを備える。
このX軸移動機構51は、回転テーブル41を保持しており、研磨工具8とウェーハWとを回転テーブル41の保持面41aに沿って相対的に移動させる本発明の相対移動手段として機能する。
すなわち、サーボモータ55を回転駆動することにより、X軸スライダ53はX軸方向のいずれかの向きに移動し、X軸テーブル52もX軸方向のいずれかの向きに移動し、回転テーブル41の保持面41aは水平面に沿ってX軸方向のいずれかの方向に移動するため、ウェーハWと研磨工具8とは回転テーブル41の保持面41aに沿って相対的に移動する。
【0025】
研磨工具8は、主軸22の下端面に固定されており、ウェーハWに押し付けられることによって弾性変形する弾性体からなる円筒状の部材である。研磨工具8の形成材料としては、たとえば、発泡性ポリウレタン等の樹脂や、たとえば、酸化セリウム(CeO2 )からなる固定砥粒を軟質結合材で固めたものを用いることができる。軟質結合材としては、たとえば、メラミン樹脂、ウレタン樹脂、またはフェノール樹脂を用いることができる。
研磨工具8は、円筒状の部材の下端面に回転軸K1に垂直な平面に平行な環状の端面を有しており、これがウェーハWの被研磨面を加工する研磨面8aとなる。
研磨工具8は、直径8インチのウェーハを研磨する場合には、たとえば、直径200×幅20×厚さ20(mm)の寸法のものを使用することができる。すなわち、ウェーハWの直径と研磨工具8の外径とは略同じである。
【0026】
回転軸K1の傾斜機構
図2は、上記構成の研磨装置1の主軸スピンドル21とスピンドルホルダ20との間に設けられ、主軸スピンドル21(研磨工具8))の回転軸K1を回転テーブル41の保持面41aに垂直な軸K2に対する傾斜量を調整する回転軸傾斜機構を説明するための図である。
図2において、主軸スピンドル21の外周にはフランジ部24が形成されている。この主軸スピンドル21のフランジ部24の上側の挿入軸部27は、フランジ部24に近い位置では平行部となっており、上方にいくにしたがって先細りのテーパ面となっており、この挿入軸部27にスピンドルホルダ20の嵌合孔20bが嵌合挿入される。
また、回転軸傾斜機構61は、主軸スピンドル21の外周に形成されたフランジ部24の上端面24aとスピンドルホルダ20の下端面20aとの間に設けられている。回転軸傾斜機構61は、たとえば、フランジ部24の周方向の等間隔に位置する3ヶ所に設けられている。
なお、フランジ部24の上端面24aは、主軸スピンドル21(研磨工具8))の回転軸K1に垂直な平面に平行な面である。
【0027】
主軸スピンドル21のフランジ部24の回転軸傾斜機構61の設置位置には、固定用ボルト65を挿入するための貫通孔がそれぞれ形成されており、また、スピンドルホルダ20の下端面20aには、これらの貫通孔と対応する位置に固定用ボルト65が螺合するネジ穴が形成されており、主軸スピンドル21のフランジ部24とスピンドルホルダ20の下端面20aとは、回転軸傾斜機構61を間に挟んで固定用ボルト65で固定されている。
【0028】
回転軸傾斜機構61は、図3に示すように、2つの傾斜調整用ブロック62および63を備えている。
傾斜調整用ブロック62は、断面がL字状の形状を有しており、スピンドルホルダ20の下端面20aと当接する面62aは、基準面となっており、この基準面62aと反対側の面62bは基準面62aに対して傾斜する傾斜面となっている。
また、図4に示すように、傾斜調整用ブロック62の基準面62aには、上記の固定用ボルト65が挿入される挿入孔62cが形成されている。
さらに、傾斜調整用ブロック62の側面側の中央部には、突っ張り用ボルト67が螺合するネジ孔62eと、このネジ孔62eの両側に固定用ボルト66が挿入される2つの貫通孔66が形成されている。
【0029】
傾斜調整用ブロック63は、断面がL字状の形状を有しており、主軸スピンドル21のフランジ部24の上端面24aに当接する面は、基準面となっており、この基準面63aと反対側の面63bは基準面63aに対して傾斜する傾斜面となっている。この傾斜面63bは、傾斜調整用ブロック62の傾斜面62bと当接し、当該傾斜面62b同じ角度で且つ逆向きに傾斜している。
また、図5に示すように、傾斜調整用ブロック63の基準面63aには、上記の固定用ボルト65が挿入される挿入孔63cが形成されている。
さらに、傾斜調整用ブロック63の側面側の上記の傾斜調整用ブロック62の2つの貫通孔66に対応する位置には、固定用ボルト66が螺合する2つのネジ孔63dが形成されている。
【0030】
傾斜調整用ブロック62の傾斜面62bと傾斜調整用ブロック63の傾斜面63bとを接触させた状態では、傾斜調整用ブロック62の基準面62aと傾斜調整用ブロック63の基準面63aとは平行な関係となり、傾斜調整用ブロック62の傾斜面62bと傾斜調整用ブロック63の傾斜面63bとの相対位置関係によって、傾斜調整用ブロック62の基準面62aと傾斜調整用ブロック63の基準面63aとの距離THは変化する。
したがって、傾斜調整用ブロック62の傾斜面62bと傾斜調整用ブロック63の傾斜面63bとの相対位置を調整することによって、距離THを調整でき、主軸スピンドル21のフランジ部24の上端面24aとスピンドルホルダ20の下端面20aとの距離を調整できる。
【0031】
すなわち、主軸スピンドル21のフランジ部24の上端面24aとスピンドルホルダ20の下端面20aとの間の3ヶ所に、傾斜調整用ブロック62,63を設置し、それぞれの基準面62a,63a間の距離THを調整することにより、主軸スピンドル21(研磨工具8)の回転軸K1の回転テーブル41の保持面41aに垂直な軸K2に対する傾斜角度を任意に調整することができ、かつ、任意の方向に傾斜させることができる。
主軸スピンドル21(研磨工具8)の回転軸K1の傾斜角度の調整は、まず、主軸スピンドル21とスピンドルホルダ20とを固定するための固定ボルト65をゆるめ、突っ張り用ボルト67をいずれかの向きに回すと、突っ張り用ボルト67の先端部が傾斜調整用ブロック63の側面63eに当接することで、傾斜調整用ブロック62,63間の相対位置を決定でき、この相対位置に応じて傾斜調整用ブロック62,63の基準面62a,63a間の距離THを変更することができる。各傾斜調整用ブロック62,63の基準面62a,63a間の距離THを適宜に調整することで、主軸スピンドル21(研磨工具8)の回転軸K1の傾斜方向および傾斜量を調整する。
傾斜調整用ブロック62,63の基準面62a,63a間の距離THを所望の値に調整したら、固定ボルト66を締め、傾斜調整用ブロック62,63間の相対位置を固定し、さらに、固定ボルト65を締めることで、主軸スピンドル21(研磨工具8)の回転軸K1の傾斜方向および傾斜量の調整が完了する。
【0032】
次に、上記構成の研磨装置1を用いた本発明の研磨方法について説明する。
回転軸の傾斜(角度α)
まず、研磨装置1の回転軸傾斜機構61を調整して、研磨工具8の回転軸K1を回転テーブル41の保持面41aに平行な平面に垂直な方向に対して研磨工具8の進行方向に向けて所定の角度傾斜させる。
具体的には、図6に示すように、研磨工具8の回転軸K1を、回転テーブル41の保持面41aに平行な平面(XーY平面)に垂直な軸Oに対して研磨工具8のウェーハWに対する相対的な進行方向D(研磨加工の進む方向)に向けて角度αで傾斜させる。
研磨工具8の回転軸K1の傾斜角度αは、ウェーハWに直径8インチのものを使用した場合に、たとえば、図6に示す研磨工具8の研磨面8aのX軸方向に関する前後端部のZ軸方向の高低差Hαが15〜50μm程度の値に設定される。すなわち、8インチの長さに対して15〜50μm程度の傾斜角度である。
【0033】
回転軸の傾斜(角度β)
さらに、研磨工具8の回転軸K1を回転テーブルの保持面41aに垂直な方向に対して、研磨面8aがウェーハWの被研磨面の外周端部に乗り上げる領域での研磨面8aの弾性変形を軽減させる向きに傾斜させる。
この弾性変形を軽減させる向きの傾斜は、一方向に限定されないが、好ましくは、図7(a)に示すように、研磨工具8の回転軸K1を、研磨工具8のウェーハWに対する相対的な進行方向Dに直交する平面(YーZ平面)に沿って軸Oから角度βで傾斜させる。なお、図7(a)は研磨工具8の進行方向Dから見た研磨工具8とウェーハWとの関係を示しており、図7(b)はZ軸方向から見た研磨工具8とウェーハWとの関係を示している。
研磨工具8の回転軸K1の傾斜の向きは、図7(b)に示すウェーハWの外周端部への研磨工具8の乗り上げ領域90および研磨工具8がウェーハWの外周端部から逃げる領域91において、乗り上げ領域90での研磨工具8の研磨面8aのウェーハW表面に対する高さが、逃げる領域91よりも高くなる向きである。
【0034】
研磨工具8の回転軸K1の傾斜角度βは、図8に示す研磨工具8の研磨面8aのY軸方向に関する前後端部のZ軸方向の高低差Hβが、たとえば、15〜30μm程度の値に設定される。すなわち、8インチの長さに対して15〜30μm程度の傾斜角度である。また、後述するように、研磨工具8の回転軸K1の傾斜角度αは、傾斜角度βよりも大きい値に設定するのが好ましい。
【0035】
次いで、回転軸K1が異なる2方向に傾斜角度αおよびβで傾斜した状態の研磨装置1において、ウェーハWの裏面を回転テーブル41の保持面41a上に固定し、回転テーブル41および研磨工具8を回転させた状態にする。
図8に示すように、研磨工具8の回転方向R1とウェーハWの回転方向R2は、逆向きにする。
【0036】
さらに、図8に示すように、スラリーSLをスラリー/純水供給ノズル81からウェーハW上に一定量吐出させておく。なお、スラリーSLは研磨加工時にも必要量だけ常時補充する。スラリーは、特に限定されないが、たとえば、酸化膜用として、シリカ系のヒュームドシリカと高純度セリアを水酸化カリウムをベースとした水溶液に懸濁させたものや、配線メタル用として、アルミナを研磨砥粒とした加工液に酸化力のある溶剤を混ぜたもの等を使用することができる。
【0037】
次いで、研磨工具8をZ軸方向に下降させ、図8に示すように、ウェーハWの外に位置する研磨工具8の研磨面8aの外周端部をの外周端部に位置させ、ウェーハWの外周縁部の加工開始点P1と研磨工具8の外周縁部をオーバーラップさせた状態とする。なお、この状態では、研磨工具8およびウェーハWの回転中心はX軸に沿った同一直線上に位置している。
【0038】
次いで、研磨工具8をウェーハWに押し付けて加工圧FをウェーハWの被研磨面に垂直な方向に加えながら、ウェーハWと研磨工具8の研磨面とを回転接触させる。
この状態から、X軸テーブル52を駆動して、ウェーハWを加工開始点P1から、ウェーハWと研磨工具8との重なり合う面積が相対的に増加する矢印Cの方向に所定の速度パターンで移動する。これによって、研磨工具8は、ウェーハWの半径方向に向かって相対的に進行する。
なお、研磨開始時において、研磨工具8の研磨面8aをウェーハWの加工開始点P1に接触させたのち、研磨工具8をウェーハWに対して相対的に移動させる際に、加工圧Fは研磨工具8の相対移動に対応させて徐々に増加させ、研磨工具8がウェーハWに対して所定の位置に達したら、加工圧Fを一定の値にして研磨加工を行う。
後述する三日月形状の領域の面積は、加工圧Fの増加に伴って加工開始点P1から徐々に大きくなり、研磨工具8がウェーハWに対して所定の位置に達した後は、この三日月形状の領域の面積は略一定の面積となる。これにより、研磨工具8による研磨量の均一性が得られる。さらに、研磨工具8のX軸方向の速度パターンは、ウェーハW面内での研磨量が均一になるようにあらかじめ調整されている。
【0039】
図9(a)は、研磨工具8の研磨面8aとウェーハWの被研磨面との間に発生する圧力分布の一例を示す図であり、図9(b)は図9(a)のA−A線方向の断面図である。なお、図9(a)は、ウェーハWを回転させないで研磨工具8によって研磨を行ったときの仮想的な圧力分布を示している。
研磨工具8の回転軸K1は、図6において説明したように、軸Oに対して研磨工具8のウェーハWに対する相対的な進行方向Dに向けて角度αで傾斜している。このため、図9(a)に示すように、研磨工具8の研磨面8aとウェーハWの被研磨面との間に発生する圧力分布は、基本的には略三日月状の領域PRとなるる。
【0040】
この三日月状の領域PRには、内部に圧力が比較的高い領域PHと、その周囲に存在する圧力が比較的低いPLが発生する。圧力が比較的高い領域PHがウェーハWの被研磨面に対して実効的に作用する領域となる。領域PHは、ウェーハWと研磨工具8の研磨面8aとの重なり合う面積よりも十分に狭小化されており、また、研磨工具8が進行方向Dに相対移動しても領域PHの面積は略一定となる。このため、実効的な作用領域内での研磨量は均一になり、また、研磨レートは略一定になる。
【0041】
一方、研磨工具8の回転軸K1は、図9(b)に示すように、ウェーハWの外周端部への研磨工具8の乗り上げ領域90での研磨工具8の研磨面8aのウェーハW表面に対する高さが、研磨工具8がウェーハWの外周端部から逃げる領域91での研磨面8aのウェーハW表面に対する高さよりも高くなる向きに角度βで傾斜している。
このため、乗り上げ領域90での研磨工具8の研磨面8aの弾性変形が軽減され、ウェーハWの外周端部に発生するダメージを抑制することができる。
【0042】
ここで、研磨工具8の研磨面8aの乗り上げ領域90および逃げる領域91での状態を図10に示す。
図10は、研磨工具8の研磨面8aの状態を示す図であって、(a)は乗り上げ領域90、(b)は逃げる領域91の状態を示している。なお、図10(a)および図10(b)は領域90,91でのウェーハWの半径方向に沿った断面図である。
傾斜角度βが比較的小さいと、図10に示すように、研磨工具8の研磨面8aの乗り上げ領域90での弾性変形は発生するが、弾性変形量は逃げ領域91での弾性変形量よりも相対的に小さくなる。このため、研磨工具8の研磨面8aの乗り上げ領域90では、弾性変形した研磨工具8の研磨面8aのウェーハWの外周端部に対する接触圧が傾斜させない場合よりも軽減され、ウェーハWの外周端部に発生する過剰研磨を抑制できる。
また、乗り上げ領域90で研磨工具8の研磨面8aの弾性変形が軽減されることによって消費されなくなった加工エネルギは、上記したウェーハWの被研磨面に対して実効的に作用する圧力が比較的高い領域PHに集中し、研磨レートが向上する。
さらに、弾性変形した研磨工具8の研磨面8aのウェーハWの外周端部に対する接触圧が軽減されることにより、回転する研磨工具8の研磨面8aに付着したスラリーSLは、乗り上げ領域90において研磨工具8の研磨面8aとウェーハWの外周端部の表面との間に侵入し易くなる。このため、研磨面8aとウェーハWの被研磨面との実効的な作用領域にスラリーが安定的かつ効率的に供給されるようになり、研磨レートが向上、安定化する。
【0043】
一方、研磨工具8の研磨面8aの逃げ領域91では、乗り上げ領域90における研磨面8aの弾性変形の軽減に応じて、加圧力が増加し弾性変形量が増加すると考えられる。逃げ領域91で研磨面8aの弾性変形量が増加すると、ウェーハWの外周端部に対する影響も増加するが、逃げ領域91では弾性変形した研磨面8aがウェーハWの外周端部に巻きつくことがなく、その影響は乗り上げ領域90における影響に比べて十分に小さい。
【0044】
図11は、傾斜角度βを図10に示した場合よりも相対的に大きくした状態を示している。
傾斜角度βを大きくしていくと、図11(a)に示すように、乗り上げ領域90で研磨工具8の研磨面8aの弾性変形の発生を完全になくし、研磨面8aとウェーハW表面との間に隙間が形成される状態とすることができる。
このような状態にすると、乗り上げ領域90で加工エネルギが消費されることがほとんどなくなり、加工エネルギをウェーハWの被研磨面に対して実効的に作用する圧力が比較的高い領域PHに集中させて、研磨レートをさらに向上させることができる。また、研磨面8aとウェーハW表面との間に隙間が形成されることで、研磨面8aとウェーハWの被研磨面との間にスラリーSLがさらに入り込み易くなり、実効的な作用領域にスラリーSLをさらに安定的かつ効率的に供給できる。
【0045】
傾斜角度βを大きくすると、図11(b)に示すように、逃げ領域91における研磨面8aの弾性変形量も増大すると考えられる。上記したように、逃げ領域91では弾性変形した研磨面8aがウェーハWの外周端部に巻きつくことがないため影響は比較的小さいが、逃げ領域91における研磨面8aの弾性変形の影響が無視できない場合には、たとえば、研磨工具8のウェーハWに対する加工圧力Fを調整(小さく)して、逃げ領域91における研磨面8aの弾性変形量を小さくする。これにより、逃げ領域91における研磨面8aの弾性変形の影響を軽減できる。加工圧力Fを減少させても、加工エネルギを領域PHに集中させているので、研磨レートの低下は最小限にすることができる。
【0046】
図9(a)に示したように、回転軸K1を角度βで傾斜させると、三日月状の領域PR全体は、角度βの傾斜に応じて、研磨面8aのウェーハWの外周端部から逃げる領域91に向かってシフトする。実効的な作用領域である圧力の高い領域PHも研磨面8aのウェーハWの外周端部から逃げる領域91に向かってシフトする。このため、実効的な作用領域である圧力の高い領域PHは、ウェーハWの中心を通るX軸に関して対称な形状ではなくなり、角度βが大きいほどウェーハWの中心を通るX軸から離れていく。
したがって、研磨工具8の回転軸K1の傾斜角度βをあまりに大きく設定すると、実効的な作用領域である圧力の高い領域PHがウェーハWの回転中心を通るX軸から完全に離れてしまい、研磨工具8およびウェーハWを共に回転させてウェーハWを研磨した際に、ウェーハWの中心領域の研磨を十分に行えなくなってしまう。
これを防ぐためには、研磨工具8の回転軸K1の傾斜角度βは、傾斜角度αよりも小さく設定するのが好ましく、さらに、実効的な作用領域である圧力の高い領域PHがウェーハWの回転中心を通るX軸に交わるように傾斜角度βを設定するのが好ましい。
【0047】
上述したように、ウェーハWの外周端部の過剰研磨が抑制されつつ研磨工具8による研磨加工が進行方向Dに沿って行われ、研磨工具8の外周端部は、図8に示すウェーハWの加工終了点P2に到達する。
ウェーハWの加工終了点P2まで研磨工具8の外周縁部が移動したら、ウェーハWの被研磨面の加工を終了させる。研磨加工の終了は、研磨工具8をZ軸方向に上昇させることによって行う。
このように、ウェーハWの外周端部と研磨工具8とが略重なる位置で研磨加工を終了することにより、ウェーハWの外周端部へのダメージの発生はほとんどない。
また、加工終了点P2から研磨工具8の外周端部が多少突出する位置で加工を終了したとしても、研磨工具8の外径とウェーハWの直径とは略等しいため、研磨工具8の研磨面8aのウェーハWの中心に向かう速度成分が殆どなく、研磨面8aの乗り上げによるウェーハWの外周端部のダメージの発生はほとんどない。
【0048】
以上のように、本実施形態に係る研磨方法によれば、研磨工具8の回転軸K1を回転する研磨工具8の研磨面8aに発生するウェーハWの外周端部への乗り上げ領域90での弾性変形を軽減する向きに傾斜させることにより、研磨工具8の研磨面8aの弾性変形が緩和され、その分、ウェーハWと研磨面8aとの間の実効的な作用領域である圧力の高い領域PHの加工圧が増加する。
これにより、加工エネルギがウェーハWと研磨面8aとの間の実効的な作用領域に集中し、研磨効率が向上する。
また、本実施形態によれば、研磨工具8の研磨面8aのウェーハWの外周端部への乗り上げ領域90の高さが相対的に高くなるため、こららの間に隙間が形成され、研磨面8aのウェーハWの被研磨面との間にスラリーが入り込み易くなる。すなわち、回転した研磨面8aに付着したスラリーが研磨面8aのウェーハWの被研磨面との間に運ばれる。
この結果、研磨面8aとウェーハWの被研磨面との実効的な作用領域にスラリーが安定的かつ効率的に供給され、研磨レートが向上、安定化する。
【0049】
さらに、本実施形態では、ウェーハWの外周端部への乗り上げによる加工エネルギの消費を抑制できることから、研磨工具8の研磨面8aの一部、すなわち、上記した三日月形状の領域PRの圧力が高い領域PHによってウェーハWの被研磨面の部分的な研磨を行う際に、狭小化された実効的な作用領域である領域PHに加工エネルギが集中するので、領域PHのウェーハW表面に存在する反りやうねりへの追従性が向上する。
すなわち、ウェーハWの被研磨面には、前工程までに生じた歪等がウェーハWの形状に影響し、数μm〜10μm程度の反りやうねりがある場合があるが、研磨工具8の研磨面8aがウェーハWの外周端部を強く押さえ付けると、研磨を行う実効的な作用領域である三日月形状の領域PRの圧力が高い領域PHの反りやうねりへの追従性が低下するが、本実施形態ではこの追従性の低下を防ぐことができ、加工均一性を向上させることができる。
【0050】
また、本実施形態によれば、研磨工具8の研磨面8aのウェーハWの外周端部への乗り上げ領域90での研磨面8aの弾性変形が軽減されるため、研磨工具8の研磨面8aの品質の劣化が少なく、研磨面8aのコンディショニングの頻度を抑えることができる。
【0051】
なお、上記したように、回転軸K1を大きな傾斜角度βで傾斜させることにより、実効的な作用領域である三日月形状の領域PRの圧力が高い領域PHがウェーハWの中心を通るX軸方向の直線から隔たることにより、ウェーハWの中心部領域の研磨が十分に行えない場合には、たとえば、回転テーブル41を保持するX軸テーブル52に代えて、X軸およびY軸方向に回転テーブル41を移動可能に保持するXーYテーブル上に回転テーブル41を保持し、回転テーブル41をX軸およびY軸に移動させることによって、実効的な作用領域である三日月形状の領域PRの圧力が高い領域PHがウェーハWの回転中心上を通過するようにしてもよい。
【0052】
第2実施形態
次に、本発明の第2の実施形態として、上記の研磨装置1を用いた他の研磨方法について説明する。
図12は、本発明の第2の実施形態に係る研磨方法を説明するための図であって、(a)は研磨装置1における研磨工具8の傾斜状態を示す図であり、(b)はウェーハWと研磨工具8の相対移動方向の位置関係を示す図である。
本実施形態では、研磨工具8とウェーハWとを、図12(b)に示すような位置関係で、相対的に移動させる。すなわち、研磨工具8をX軸方向に沿ったウェーハWの回転中心を通る直線X1に平行で所定距離d離れた直線X2に沿って進行方向Dの向き移動させる。
さらに、図12(a)に示すように、研磨工具8の回転軸K1を、研磨工具8のウェーハWに対する相対的な進行方向Dに直交するYーZ平面に沿って回転テーブル41の保持面41aに垂直な軸Oから角度βで傾斜させる。研磨工具8の回転軸K1を、回転テーブル41の保持面41aに垂直な軸Oに対してYーZ平面に沿って角度βで傾斜させる。
また、角度βの傾斜の向きは、図12(a)に示すように、ウェーハWの中心を通る直線上に位置する研磨工具8の研磨面8aのウェーハWに対する高さが相対的に低くなる向きである。
【0053】
研磨工具8の回転軸K1の傾斜角度βは、図12(a)に示す研磨工具8の研磨面8aのY軸方向に関する前後端部のZ軸方向の高低差Hβが、たとえば、15〜30μm程度の値に設定される。すなわち、8インチの長さに対して15〜30μm程度の傾斜角度である。
【0054】
研磨工具8の回転軸K1を角度βで傾斜させると、研磨工具8の研磨面8aのウェーハWに対する実効的な作用領域Sは、たとえば、図12(b)に示すように、三日月状になる。
直線X1とX2との距離dは、図12(b)に示す研磨面8aの実効的な作用領域SがウェーハWの中心を通る直線X1上に位置するような距離とする。
さらに、研磨工具8の回転方向R1およびウェーハWの回転方向R2は、図12(b)に示すように、逆向きとする。
【0055】
図13は、本実施形態に係る研磨方法の研磨手順を説明するための図である。
ウェーハWの研磨加工は、たとえば、図13(a)に示す加工開始位置P1から開始する。
すなわち、ウェーハWの加工開始位置P1に、研磨工具8の研磨面8aの実効的な作用領域Sが位置するように、研磨工具8をウェーハWに押し付ける。
この時、円A内に示す領域が研磨工具8の研磨面8aがウェーハWの外周端部に乗り上げる乗り上げ領域となり、円B内に示す領域が研磨工具8の研磨面8aがウェーハWの外周端部から逃げる逃げ領域となる。
この乗り上げ領域では、研磨工具8の回転軸K1を角度βで傾斜させているため、研磨面8aの弾性変形は軽減されており、ウェーハWの外周端部へのダメージは抑制されている。
【0056】
図13(a)に示す位置から、研磨工具8を相対的な進行方向Dに移動させていくと、実効的な作用領域Sは、回転するウェーハWの半径方向に沿って移動する。このため、図13(b)に示すように、実効的な作用領域Sは、ウェーハWの回転中心を通過するため、ウェーハWの中心部における研磨不足が発生することがない。
【0057】
研磨工具8を相対的な進行方向Dに移動させていくにしたがって、円A内に示す乗り上げ領域は、直線X1に近づいていく。このため、乗り上げ領域における研磨面8aとウェーハWの被研磨面との距離は接近していき、乗り上げ領域における研磨面8aの弾性変形が発生してくる。あるいは、軽減されていた弾性変形量が増加してくる。
このため、図13(c)に示すように、実効的な作用領域Sの進行方向Dの先端部がウェーハWの外周端部の加工終了位置P2に到達するあたりで、研磨を終了する。
これにより、研磨面8aの乗り上げによるウェーハWの外周端部の過剰研磨を防ぐことができる。
【0058】
以上のように、本実施形態によれば、ウェーハWと研磨工具の配置および相対移動方向を適切に選択するよって、回転軸K1を一方向のみに傾斜させた場合にも、ウェーハWの外周端部の過剰研磨を防ぐことができるとともに、ウェーハWの中心部における研磨不足の発生を回避することができる。
【0059】
第3実施形態
次に、本発明の第3の実施形態として、上記の研磨装置を用いたさらに他の研磨方法について説明する。
上述した第1の実施形態では、研磨工具8の回転軸K1を、回転テーブル41の保持面41aに平行な平面に垂直な方向に対して研磨工具8の進行方向に向けて傾斜角度αで傾斜させ、かつ、研磨工具8の回転軸K1を回転テーブルの保持面41aに垂直な方向に対して、研磨面8aがウェーハWの被研磨面の外周端部に乗り上げる領域での研磨面8aの弾性変形を軽減させる向きに傾斜角度βで傾斜させて研磨した。
本実施形態では、上述した第1の実施形態と同様に、異なる2方向に傾斜角度αおよびβで傾斜させて研磨するが、さらに、保持テーブル41の保持面41aに平行な修正工具の修正面に沿ってフェーシング加工されている研磨面8aをもつ研磨工具8を用いる。
具体的には、図14(a)および図14(b)に示すように、研磨工具8は、回転軸K1が保持テーブル41の保持面41aに平行な平面に垂直な軸Oに対して、研磨工具の進行方向Dに向けて傾斜角度αで傾斜しており、かつ、軸Oに対して進行方向Dに垂直な平面に沿って傾斜角度βで傾斜している。
さらに、研磨工具8の研磨面8aは、角度αと角度βから合成された角度γで傾斜している。
【0060】
上記のような研磨工具8の研磨面8aの形成方法は、たとえば、図15(a)に示すように、研磨工具8の回転軸K1が研磨工具8の進行方向Dに向けて角度αで傾斜し、さらに、図示しないが、軸Oに対して進行方向Dに垂直な平面に沿って傾斜角度βで傾斜した状態で回転させる。
また、図15(b)に示すように、X軸テーブル52上に修正工具56を設置する。修正工具56は、軸Oに対して垂直な、すなわち、傾斜していない回転軸K1に垂直な修正面56aをもっており、この修正面56aは、ウェーハWを保持する保持テーブル41の保持面41aに平行な面である。この修正面56aには、たとえば、ダイアモンド砥粒などの研磨砥粒が固着されている。
そして、図15(c)に示すように、X軸テーブル52を研磨工具8に対して研磨面8aの回転軸K1が修正工具56の修正面56aを通過するように、相対的に移動させながら、研磨面8aに修正工具56の先端部を接触させて研磨面8aを面取り加工(フェーシング加工)して形成する。
このようなフェーシング加工によって形成された研磨面8aは、円錐面となり、この円錐面の母線の傾斜角度は、図14に示すように、角度αおよび角度βを合成した角度γとなり、角度γで傾斜した研磨面8aが得られる。
【0061】
上記の角度γで傾斜した研磨工具8の研磨面8aをウェーハWに押し付けると、研磨面8aはウェーハWの表面に略平行に接する。また、ウェーハWと研磨面8aとの実効的な作用領域Sの形状は、たとえば、図16に示すように、研磨工具8の半径方向に伸びる直線状の形状となる。また、この作用領域Sの形状は、研磨工具8のウェーハWに対する加工圧力に応じて変化し、加工圧力が大きくなると直線状の形状から扇状に変化する。
また、作用領域Sの位置は、研磨工具8の回転軸K1が弾性変形を軽減させる方向に傾斜角度βで傾斜しているため、この傾斜角度βに応じてウェーハWの中心を通るX軸方向の直線から研磨工具8の研磨面8aのウェーハWの外周端部からの逃げ領域91側に多少シフトする。
【0062】
このとき、研磨工具8のウェーハWの外周端部への乗り上げ領域90およびウェーハWの外周端部からの逃げ領域91では、研磨工具8の研磨面8aは、曲面に形成されているため、ウェーハWの表面に対する研磨工具8の研磨面8aの高さは、作用領域SにおけるウェーハWの表面に対する研磨工具8の研磨面8aの高さに比べて高くなる。
このため、研磨工具8をウェーハWに押し付けても、乗り上げ領域90での研磨工具8の研磨面8aの弾性変形量は上述した実施形態の場合より、すなわち、研磨面8aが平面の場合よりも小さくなる。
【0063】
したがって、研磨工具8の研磨面8aの弾性変形量が小さい分、研磨工具8の回転軸K1の弾性変形を軽減させる方向の傾斜角度βを小さくできる。
この結果、作用領域Sの位置がウェーハWの中心を通るX軸方向の直線から研磨工具8の研磨面8aのウェーハWの外周端部からの逃げ領域91側へシフトする量を極力抑制できる。このため、ウェーハWと研磨工具8とのX軸方向の相対移動によって、作用領域Sは回転するウェーハWの半径方向に向かって進行し、ウェーハWの回転中心を通過するため、ウェーハWの回転中心での研磨不足の発生を防ぐことができる。
【0064】
また、本実施形態によれば、研磨工具8の研磨面8aを角度αと角度βとの合成による角度γで傾斜させることで、研磨工具8の研磨面8aとウェーハWの被研磨面との実効的な作用領域Sがさらに狭小化され、また、研磨工具8の研磨面8aの形状によって作用領域Sの形状を形成しているため、作用領域Sの面積の変動が少なく、研磨レートを一層安定化させやすくなり、また、作用領域SのウェーハW表面に存在する反りやうねりへの追従性がさらに向上し、ウェーハWの被研磨面内での加工均一性を向上させることができる。
【0065】
本発明は、上述した種々の実施形態に限定されない。
上述した実施形態では、研磨装置1の回転軸傾斜機構61によって、研磨工具8の回転軸K1を異なる2方向にそれぞれ傾斜角度α、βで傾斜させた状態で、ウェーハWの被研磨面の全面の加工を行う場合について説明した。
上述した実施形態では、研磨工具8の回転軸K1を研磨工具8の進行方向Dに向けて傾斜角度αで傾斜させているため、研磨工具8をウェーハWに対してある位置まで相対移動させると、研磨面8aのウェーハWの外周端部への乗り上げによる弾性変形が生じない、あるいは、非常に小さな値となる。なお、この研磨工具8のウェーハWに対する位置は、傾斜角度αの大きさや研磨工具8のウェーハWに対する加工圧力の大きさや、研磨面8aの傾斜角度に応じて異なる。
【0066】
このため、研磨面8aのウェーハWの外周端部への乗り上げによる弾性変形が生じない、あるいは、非常に小さな値となる位置まで、研磨工具8がウェーハWに対して相対移動したら、研磨工具8の回転軸K1を弾性変形を軽減する向きに関して回転テーブル41の保持面41aに垂直な向きに戻す構成としてもよい。
このように、研磨工具8の回転軸K1を弾性変形を軽減する向きの傾斜を無くすることにより、研磨工具8とウェーハWとのX軸方向の相対移動によって移動する研磨工具8の研磨面8aとウェーハWの被研磨面との実効的な作用領域は、ウェーハの回転中心を通るX軸方向の直線に沿って移動するため、ウェーハWの中心部の研磨不足が発生することがない。
【0067】
なお、研磨工具8とウェーハWとのX軸方向の相対移動の途中に、研磨工具8の回転軸K1を弾性変形を軽減する向きに関して回転テーブル41の保持面41aに垂直な向きに戻すには、研磨装置1の回転軸傾斜機構61の各2つの傾斜調整用ブロック62および63の相対位置の調整を手動ではなく、たとえば、サーボモータや、シリンダ装置によって行う構成とし、研磨工具8とウェーハWとのX軸方向の相対位置が所定の位置に到達したら、駆動する構成とすることができる。
【0068】
【発明の効果】
本発明によれば、研磨工具の研磨面の被研磨対象物の外周端部への乗り上げ領域での弾性変形による、被研磨対象物の外周端部の過剰研磨を抑制することができる。
さらに、研磨工具の研磨面を異なる2方向に傾斜させることで、実効的な作用領域を狭小化でき、かつ、研磨面と被研磨面との間への研磨剤の供給を安定化でき、被研磨面内での加工均一性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る研磨装置の構成を示す図である。
【図2】本発明の回転軸傾斜手段としての回転軸傾斜機構を説明するための図である。
【図3】回転軸傾斜機構61の構造を示す断面図である。
【図4】角度調整用ブロック62の構造を示す図である。
【図5】角度調整用ブロック63の構造を示す図である。
【図6】本発明の研磨方法を説明するための図であって、研磨工具の回転軸K1の進行方向の傾斜を示す図である。
【図7】本発明の研磨方法を説明するための図であって、研磨工具の回転軸K1の乗り上げ領域での研磨面の弾性変形を軽減させる向きの傾斜を示す図である。
【図8】本発明の研磨方法を説明するための図であって、ウェーハWと研磨工具8の相対的な位置関係を示す図である。
【図9】(a)は研磨工具8の研磨面8aとウェーハWの被研磨面との間に発生する圧力分布の一例を示す図であり、(b)は(a)のA−A線方向の断面図である。
【図10】研磨工具8の研磨面8aの状態を示す図であって、(a)は乗り上げ領域90、(b)は逃げる領域91の状態を示す断面図である。
【図11】傾斜角度βを図10に示した場合よりも相対的に大きくした場合の研磨工具8の研磨面8aの状態を示す図である。
【図12】本発明の第2の実施形態に係る研磨方法を説明するための図である。
【図13】本発明の第2の実施形態に係る研磨方法の研磨手順を説明するための図である。
【図14】本発明の第3の実施形態に係る研磨方法を説明するための図である。
【図15】研磨工具の研磨面のフェーシング方法を説明するための図である。
【図16】ウェーハWと研磨面8aとの実効的な作用領域Sの形状を示す図である。
【図17】従来の研磨装置の一例を示す斜視図である。
【図18】従来の研磨方法の一例を説明するための図である。
【図19】図18に示す研磨方法におけるウェーハと研磨工具との間に発生する圧力分布の一例を示す図である。
【図20】研磨工具の研磨面のウェーハに対する押し付けによって発生するウェーハ外周端部での弾性変形を示す断面図である。
【図21】研磨工具の研磨面の弾性変形によって発生するウェーハWの外周端部の過剰研磨の状態を示す平面図である。
【符号の説明】
1…研磨装置、3…コラム、8…研磨工具、8a…研磨面、11…Z軸移動機構、20…スピンドルホルダ、21…主軸スピンドル、41…回転テーブル、51…X軸移動機構、W…ウェーハ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polishing apparatus and a polishing method.
[0002]
[Prior art]
As semiconductor devices are highly integrated and multi-layered, the flattening of various interlayer insulating films or other films has become important in the manufacturing process of semiconductor devices.
Various means have been proposed as a technique for planarization. Recently, a CMP (Chemical Mechanical Polishing) method using a mirror polishing technique of a silicon wafer has been attracting attention and has been used. A method of flattening has been developed.
An example of a polishing apparatus using a conventional CMP method is shown in FIG.
A polishing apparatus 301 shown in FIG. 17 includes a spindle spindle 303 that rotates a polishing tool 302 and a table 304 that holds a wafer W.
The table 304 is rotatably mounted on a slider 306 provided so as to be movable in the X-axis direction along the rail 305. For example, the table 304 is rotationally driven by a rotational driving means including a motor, a pulley, a belt, and the like. Is done.
The main spindle 303 is held movably in the Z-axis direction, and is positioned at a target position in the Z-axis direction by a drive mechanism (not shown).
In the polishing apparatus 301 having the above-described configuration, first, the wafer W is rotated at a predetermined number of revolutions, and, for example, an abrasive in which abrasive grains such as silicon oxide are mixed with a liquid such as an aqueous solution of potassium hydroxide on the wafer W. The slurry is supplied onto the wafer W from a slurry supply device (not shown).
Next, the polishing tool 302 is rotated at a predetermined number of revolutions, and the wafer W and the polishing tool 302 are in the X-axis and Z-axis directions so that the outer peripheral end portion of the polishing tool 302 overlaps and contacts the outer peripheral end portion of the wafer W. Is positioned.
The polishing tool 302 is positioned in the Z-axis direction so as to have a predetermined cutting amount with respect to the wafer W, whereby a predetermined processing pressure is generated between the polishing tool 302 and the wafer W. In this state, the wafer W is moved in the X-axis direction at a predetermined speed pattern, and the wafer W is polished while the polishing tool 302 is in contact with the wafer W, so that the wafer W is flattened.
[0003]
[Problems to be solved by the invention]
By the way, in the polishing apparatus 301 having the above-described configuration, the polishing surface 302a of the polishing tool 302 is parallel to the holding surface of the rotary table 304, and the polishing tool 302 is polished according to the relative movement of the polishing tool 302 with respect to the wafer W in the X-axis direction. The overlapping region of the surface 302a and the surface to be polished of the wafer W is in full contact. For this reason, the area of the effective working area of the polishing surface 302a of the polishing tool 302 with respect to the surface to be polished of the wafer W is an area where the polishing surface 302a of the polishing tool 302 and the surface to be polished of the wafer W overlap, and this area is compared. Also, it changes according to the relative movement of the polishing tool 302 in the X-axis direction.
If the area of the effective working area of the polishing surface 302a of the polishing tool 302 with respect to the surface to be polished of the wafer W is large, the amount of polishing in the effective working area is not uniform due to unevenness or the like existing on the surface to be polished of the wafer W. If the area of the effective working region changes, the polishing rate, which is the polishing amount per unit time, changes, and it is difficult to uniformly polish the surface to be polished of the wafer W. Further, if the polishing surface 302a of the polishing tool 302 and the surface to be polished of the wafer W are parallel, the slurry is difficult to enter between the polishing surface 302a of the polishing tool 302 and the surface to be polished of the wafer W. The polishing amount may not be stable.
[0004]
For this reason, conventionally, for example, as shown in FIG. 18A, the rotation axis K1 of the polishing tool 302 is inclined at an inclination angle α toward the advancing direction of the polishing tool 302.
Here, FIG. 19 shows the pressure distribution generated between the polishing surface 302a of the polishing tool 302 and the surface to be polished of the wafer W when the rotation axis K1 of the polishing tool 302 is inclined in the traveling direction of the polishing tool 302. FIG. FIG. 19 shows a virtual pressure distribution when the surface to be polished of the wafer W is polished by rotating only the polishing tool 302 without rotating the wafer W.
As shown in FIG. 19, the pressure distribution generated between the polishing surface 302a of the polishing tool 302 and the surface to be polished of the wafer W becomes a substantially crescent-shaped region PR. A region PH having a relatively high pressure and a PL having a relatively low pressure are generated. The region PH having a relatively high pressure has a substantially symmetrical shape with respect to the X axis, and this region PH is a region that effectively acts on the surface to be polished of the wafer W. The area PH is sufficiently narrower than the overlapping area of the wafer W and the polishing surface 302a of the polishing tool 302, and the area PH is substantially constant even if the polishing tool 302 is relatively moved in the X-axis direction. It becomes. For this reason, the polishing amount in the effective working region can be made uniform, and the polishing rate can be made constant.
[0005]
However, the polishing tool 302 is an elastic body made of, for example, a disk-like member and made of a resin such as foamed polyurethane, for example, and as shown in FIG. Pressed against. For this reason, the polishing tool 302 pressed against the wafer W is elastically deformed.
In addition, when the polishing surface 302a of the polishing tool 302 is inclined at an inclination angle α with respect to the surface of the wafer W, when the polishing surface 302a of the polishing tool 302 rides on the wafer W, the rising region 190 and the relief shown in FIG. Each of the areas 191 is deformed, for example, as shown in FIG. 20A, the polishing surface 302a of the polishing tool 302 rides on the surface of the wafer W from the outer peripheral edge EG of the wafer W, so that the polishing surface 302a of the polishing tool 302 is elastically deformed. Then, the polishing surface 302a just before riding on the surface of the wafer W located in the vicinity of the outer peripheral end portion EG protrudes downward from the surface of the wafer W. In the escape area 191, the polishing surface 302a of the polishing tool 302 passes through the outer peripheral edge EG from the surface of the wafer W and leaves as shown in FIG. Is away from the outer peripheral edge EG of the wafer W, and the deformation is restored while the stress is relaxed.
[0006]
When the polishing surface 302a of the polishing tool 302 is elastically deformed, the portion of the polishing surface 302a that protrudes downward with respect to the surface of the wafer W comes into strong contact with the outer peripheral edge EG of the wafer W, and most of the processing energy is the polishing surface 302a. The protruding portion is spent on the operation of riding on the outer peripheral edge EG of the wafer W, and damage DM is given to the outer peripheral edge of the wafer W as shown in FIG.
When damage to the outer peripheral edge EG of the wafer W due to the protruding portion of the polishing surface 302a is accumulated, the wafer W is rotated. For example, as shown in FIG. As a result, the excessively polished portion 402 is excessively polished. If the excessive polishing portion 402 is formed, there is a disadvantage that the number of semiconductor chips formed on one wafer W is reduced and the yield is lowered.
In addition, since the processing energy is consumed for excessive polishing of the outer peripheral edge EG of the wafer W, the polishing rate, which is the polishing removal amount on the surface of the wafer W per unit time, is reduced, and the number of wafers W processed per unit time is reduced. And productivity is reduced.
[0007]
Further, in the region where the polishing surface 302a of the polishing tool 302 rides on the outer peripheral edge EG of the wafer W, the slurry is difficult to enter between the polishing surface 302a and the surface of the wafer W, and the polishing surface 302a and the surface of the wafer W Since the slurry supplied between them is insufficient, the polishing rate is lowered. In order to make up for the shortage of the slurry, a large amount of high-cost slurry must be supplied, resulting in a decrease in productivity.
Further, in the region where the polishing surface 302a of the polishing tool 302 rides on the outer peripheral edge EG of the wafer W, the damage to the polishing surface 302a is also large, and the quality of the polishing surface 302a is likely to deteriorate rapidly, and therefore the processing conditions vary. Is likely to occur. In order to prevent fluctuations in the processing conditions, it is necessary to condition the polishing surface 302a by means such as dressing. If the frequency of conditioning increases in order to make the state of the polishing surface 302a appropriate, the productivity of the polishing apparatus decreases.
[0008]
The present invention has been made in view of the above-described conventional problems, and can suppress excessive polishing of the outer peripheral end of the surface to be polished due to elastic deformation of the polishing tool, and An object of the present invention is to provide a polishing apparatus and a polishing method capable of stabilizing the polishing rate.
[0009]
  According to the present invention, the rotating shaft of the rotating member is held by the rotating member.WhenOrthogonalA polishing tool made of an elastic body having a polishing surface along a plane.According to the rotation of the rotating memberRotate and saidAbrasive toolA flat surface parallel to the holding surface of the holding table by pressing the polishing surface and the polishing tool relative to the polishing surface of the target object held on the holding table with a predetermined processing pressure. Relative alongInMove and saidOf the object to be polishedA polishing method for polishing a surface to be polished,
  The polishing toolOf the rotating member fixedThe polishing tool with respect to the direction perpendicular to the holding surface of the holding tableSaidRelative to holding tableNaDirection of movementInFirst angle toward the direction of travelOnlyTilt,And,AboveAbrasive toolThe polished surface is the aboveOf the object to be polishedIn the region that rides on the outer peripheral edge of the surface to be polishedThe elastic body provided in the polishing toolIn order to reduce elastic deformation of the polishing surface,Of rotating partsThe rotation axis is orthogonal to the direction of travelDirectionAlong the plane,Abrasive toolTo the outer edge of the surface to be polishedOf the polishing toolIn the area where the polished surface is mountedOf the object to be polishedThe height relative to the surface to be polished isAbrasive toolPolished surfaceButAboveOf the object to be polishedIn the area that escapes from the outer edge of the surface to be polishedOf the object to be polishedSecond angle in a direction higher than the height relative to the surface to be polishedOnlySlopeLet me
  The surface to be polished of the object to be polished is polished by the polishing surface of the polishing tool.
  A polishing method is provided.
[0010]
  Preferably, a polishing tool having a diameter substantially equal to the diameter of the surface to be polished of the object to be polished is used as the polishing tool, and the polishing surface of the polishing tool located outside the surface to be polished of the object to be polished The outer peripheral end of the polishing object is positioned at the outer peripheral end of the surface to be polished, and the polishing tool is moved relatively in the direction in which the overlapping area of the polishing surface and the surface to be polished increases. The surface to be polished is polished, and the polishing process is stopped at a position where the outer peripheral end of the polishing surface of the polishing tool reaches the outer peripheral end of the surface to be polished of the object to be polished.
[0011]
  Preferably, polishing is performed using a polishing tool having an annular polishing surface as the polishing tool.
[0012]
  Preferably, the polishing tool that rotates according to the rotation of the front rotating member in a state in which the rotating shaft of the rotating member is inclined at the first angle and the second angle is corrected to be parallel to the holding surface of the holding table. A polishing tool is used that has a polishing surface that is faced by being moved relatively along the correction surface of the tool.
[0013]
  Preferably, the first angle is larger than the second angle.
[0014]
  Preferably, the polishing is performed while rotating the holding table and rotating the object to be polished.
  Alternatively, preferably, the polishing is performed with the object to be polished and the polishing tool rotating in opposite directions.
[0015]
  Preferably, the polishing is performed with an abrasive interposed between the polishing surface of the polishing tool and the surface to be polished of the object to be polished.
  Further preferably, an outer peripheral end of the polishing surface of the polishing tool located outside the surface to be polished of the object to be polished is positioned at an outer peripheral end of the surface to be polished of the object to be polished, and When polishing by moving in an increasing direction of the overlapping area of the polishing surface and the surface to be polished of the object to be polished, at least the outer peripheral end of the surface to be polished of the object to be polished of the polishing surface of the polishing tool The second angle is inclined to a position at which elastic deformation of the polished surface due to riding does not occur.
  Preferably, when the polishing tool reaches a position where elastic deformation of the polishing surface due to running of the outer peripheral end of the polishing surface of the polishing surface of the polishing tool does not occur, the rotating shaft of the rotating member is held by the holding member. Be perpendicular to the table holding surface.
[0016]
  Also according to the invention,A rotating member;A holding table for holding an object to be polished;Held by the rotating member,Of the rotating memberAxis of rotationWhenAlong an orthogonal plane,Elastic bodyPolishing tool with polishing surfaceVertical axis moving means that moves the rotating member up and down in the vertical direction to separate or press the polishing surface of the polishing tool against the surface to be polished held by the holding table; and horizontal direction In the horizontal direction, the holding table is moved relative to the polishing tool and the surface to be polished of the object to be polished held on the holding table is brought into contact with or separated from the polishing surface of the polishing tool. A moving means and at least three locations on the outer periphery of the rotating member, and the rotating shaft of the rotating member is inclined in two directions orthogonal to each other in the horizontal direction;Rotation axis tilting means,
  By adjusting the rotating shaft tilting means provided at at least three places on the outer periphery of the rotating member, the horizontal moving meansThe polishing tool andSaidIn the direction of travel when bringing the holding table closer,Rotating memberThe rotation axis of the holding table is inclined by a first angle with respect to a direction perpendicular to the holding surface of the holding table,And,AboveVertical axis moving meansandMoved by the movement of the horizontal movement means,AboveAbrasive toolThe polished surface is the aboveOf the object to be polishedIn the area that rides on the outer peripheral edge of the surface to be polishedThe elastic body provided in the polishing toolIn order to reduce elastic deformation of the polishing surface,Of rotating partsThe rotation axis is orthogonal to the traveling directionIn directionAboveOf the object to be polishedTo the outer edge of the surface to be polishedOf the polishing toolIn the area where the polished surface is mountedSaidThe height relative to the surface to be polished isAbrasive toolPolished surfaceButIn the area that escapes from the outer peripheral edge of the surface to be polishedSaidThan the height relative to the surface to be polishedIncreaseSecond angleOnlyTilt,
  With the rotating shaft of the rotating member inclined by the first angle and the second angle, the polishing tool is pressed against the object to be polished by the vertical axis direction moving means to apply a processing pressure to the object to be polished. While being added to the object, the polishing surface of the object to be polished and the polishing surface of the polishing tool are brought into rotational contact according to the rotation of the rotating member, and the object to be polished is polished by the horizontal movement means. Polishing the surface to be polished of the object to be polished by relatively moving the surface and the polishing surface of the polishing tool,
  A polishing apparatus is provided.
  Preferably, the polishing tool has an annular polishing surface.
  Preferably, the polishing surface of the polishing tool relatively moves the rotating polishing tool with the rotation axis of the rotating member inclined in each direction along the correction surface of the correction tool parallel to the holding table. Facing process.
  Preferably, the polishing apparatus further includes a rotating unit that rotates the holding table.
  Preferably, the polishing apparatus further includes an abrasive supply means for supplying an abrasive interposed between the polishing surface and the surface to be polished.
[0017]
In the present invention, since the polishing tool is tilted in a direction that reduces the elastic deformation of the polishing surface in a region where the polishing surface rides on the outer peripheral end of the polishing target surface of the object to be polished, Damage to the outer peripheral end of the surface to be polished is suppressed by elastic deformation caused by running on the outer peripheral end of the surface to be polished, and concentration of processing energy on the outer peripheral end of the surface to be polished is suppressed. As a result, a decrease in the polishing rate, which is the polishing removal amount of the polishing surface of the object to be polished per unit time, is suppressed.
In addition, by inclining the polishing surface with respect to the surface to be polished, the height of the polishing surface in the riding region relative to the surface to be polished becomes relatively high, and the abrasive is interposed between the polishing surface and the surface to be polished. When the surface is supplied, the abrasive easily enters the rotating direction of the polishing surface between the polishing surface and the polishing surface in the riding area, and a sufficient amount of polishing is performed between the polishing surface and the polishing surface. The agent is supplied stably.
[0018]
Furthermore, the effective contact area between the polishing surface and the surface to be polished is inclined by a predetermined angle toward the direction of travel of the polishing tool with respect to the direction perpendicular to the holding surface of the holding table. Is narrowed. Thereby, the distribution of the polishing amount on the surface to be polished within the contact area is suppressed from being non-uniform, and the variation in the polishing amount within the surface to be polished is suppressed. On the other hand, when the rotation axis of the polishing tool is inclined at a predetermined angle toward the direction of movement of the polishing tool with respect to the direction perpendicular to the holding surface of the holding table, the front portion of the polishing surface in the direction of movement of the polishing tool is inclined. In the present invention, the rotation axis of the polishing tool is moved up to the polishing surface. Since the region is inclined in a direction that reduces elastic deformation, damage to the outer peripheral end of the surface to be polished can be suppressed.
[0019]
Further, in the present invention, the polishing surface is obtained by performing polishing with a polishing tool inclined at substantially the same angle as the inclination angle of the direction of travel of the polishing tool with respect to a plane perpendicular to the rotation axis. It becomes a curved surface, the effective contact area between the polished surface and the surface to be polished is further narrowed, and the height of the polished surface with respect to the surface to be polished in the region where the polishing surface rides on the surface to be polished is increased, and the elasticity of the polishing surface is increased. The amount of deformation is further reduced, and damage to the outer peripheral edge of the polished surface due to elastic deformation of the polished surface can be further suppressed.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
First embodiment
FIG. 1 is a diagram showing a configuration of a polishing apparatus according to the first embodiment of the present invention.
A polishing apparatus 1 shown in FIG. 1 includes a polishing tool 8, a spindle spindle 21 that rotates and holds the polishing tool 8, a Z-axis moving mechanism 11 that moves and positions the spindle spindle 21 in the Z-axis direction, and a wafer W that holds and rotates. A rotary table 41 to be moved, and an X-axis moving mechanism 51 for moving the rotary table 41 in the X-axis direction.
[0021]
The main spindle 21 holds the polishing tool 8 and rotates the polishing tool 8 about the rotation axis K1. The main spindle 21 includes a main shaft 23, a hydrostatic bearing that rotatably holds the main shaft 23, and a servo motor that rotates the main shaft 22. The spindle spindle 21 is held by a spindle holder 20. The spindle holder 20 is held movably along the Z-axis direction by a guide (not shown) with respect to the column 3.
Further, a slurry / pure water supply nozzle 81 for supplying slurry and pure water as an abrasive onto the wafer W is provided at a predetermined position on the outer periphery of the main spindle 21.
[0022]
The Z-axis moving mechanism 11 is provided along a Z-axis direction (vertical direction) on a portal column 3 standing on the base 2 and holds a spindle spindle 21 so as to be movable in the Z-axis direction. Yes. The Z-axis moving mechanism 11 holds the polishing surface 8a of the polishing tool 8 in a direction facing the surface to be polished of the wafer W, and moves to determine the relative position of the polishing surface 8a in the facing direction with respect to the surface to be polished of the wafer W. Functions as positioning means.
Specifically, the Z-axis moving mechanism 11 includes a servo motor 12 fixed to the column 3, a screw shaft 13 formed with a screw connected to the servo motor 12, and a screw portion screwed with the screw shaft 13. And a Z-axis slider 14 formed and connected to the spindle holder 20.
By rotating and driving the servo motor 12, the Z-axis slider 14 rises or falls along the Z-axis direction, and the spindle holder 20 connected to the Z-axis slider 14 rises or falls along the Z-axis direction. Thereby, the polishing tool 8 can be positioned in the Z-axis direction by controlling the rotation amount of the servo motor 12.
[0023]
The turntable 41 includes a holding surface 41a provided in parallel to the horizontal direction for holding a wafer W as an object to be polished. The wafer W is chucked on the holding surface 41a by, for example, chucking means such as vacuum suction. King. Further, the rotary table 41 includes driving means such as a motor, and rotates the wafer W. The rotary table 41 corresponds to a specific example of the holding table of the present invention. A recovery pan 82 for recovering the slurry supplied from the slurry / pure water nozzle 81 onto the wafer W is provided around the turntable 41.
[0024]
The X-axis moving mechanism 51 includes a servo motor 55, a screw shaft 54 formed with a screw connected to the servo motor 55, an X-axis slider 53 formed with a screw portion that is screwed to the screw shaft 54, and an X-axis An X-axis table 52 connected to the slider 53 and held movably by a guide (not shown) in the X-axis direction is provided with the rotary table 41 described above.
The X-axis moving mechanism 51 holds the rotary table 41, and functions as a relative moving means of the present invention that relatively moves the polishing tool 8 and the wafer W along the holding surface 41a of the rotary table 41.
That is, by rotating the servo motor 55, the X-axis slider 53 moves in any direction in the X-axis direction, and the X-axis table 52 also moves in any direction in the X-axis direction. Since the holding surface 41 a moves in any direction in the X-axis direction along the horizontal plane, the wafer W and the polishing tool 8 move relatively along the holding surface 41 a of the turntable 41.
[0025]
The polishing tool 8 is a cylindrical member made of an elastic body that is fixed to the lower end surface of the main shaft 22 and elastically deforms when pressed against the wafer W. As a forming material of the polishing tool 8, for example, a resin such as foaming polyurethane, for example, cerium oxide (CeO) is used.2) And fixed abrasive grains made of a soft binder can be used. As the soft binder, for example, melamine resin, urethane resin, or phenol resin can be used.
The polishing tool 8 has an annular end surface parallel to a plane perpendicular to the rotation axis K1 on the lower end surface of the cylindrical member, and this becomes a polishing surface 8a for processing the surface to be polished of the wafer W.
As the polishing tool 8, when a wafer having a diameter of 8 inches is polished, for example, a tool having a size of diameter 200 × width 20 × thickness 20 (mm) can be used. That is, the diameter of the wafer W and the outer diameter of the polishing tool 8 are substantially the same.
[0026]
Tilting mechanism of rotation axis K1
2 is provided between the spindle spindle 21 and the spindle holder 20 of the polishing apparatus 1 configured as described above, and the axis of rotation K1 of the spindle spindle 21 (polishing tool 8) is an axis perpendicular to the holding surface 41a of the rotary table 41. It is a figure for demonstrating the rotating shaft inclination mechanism which adjusts the inclination amount with respect to K2.
In FIG. 2, a flange portion 24 is formed on the outer periphery of the main spindle 21. The insertion shaft portion 27 on the upper side of the flange portion 24 of the main spindle 21 is a parallel portion at a position close to the flange portion 24 and has a tapered surface that tapers upward. The fitting hole 20b of the spindle holder 20 is inserted into the fitting.
The rotary shaft tilt mechanism 61 is provided between the upper end surface 24 a of the flange portion 24 formed on the outer periphery of the main spindle 21 and the lower end surface 20 a of the spindle holder 20. The rotating shaft tilting mechanism 61 is provided at, for example, three locations located at equal intervals in the circumferential direction of the flange portion 24.
Note that the upper end surface 24a of the flange portion 24 is a surface parallel to a plane perpendicular to the rotation axis K1 of the main spindle 21 (polishing tool 8).
[0027]
Through holes for inserting the fixing bolts 65 are formed at the installation positions of the rotary shaft tilting mechanism 61 of the flange portion 24 of the main spindle 21, and these are formed on the lower end surface 20 a of the spindle holder 20. A screw hole into which the fixing bolt 65 is screwed is formed at a position corresponding to the through hole of the main shaft spindle 21, and the flange portion 24 of the spindle spindle 21 and the lower end surface 20 a of the spindle holder 20 sandwich the rotary shaft tilt mechanism 61 therebetween. It is fixed with fixing bolts 65 sandwiched therebetween.
[0028]
As shown in FIG. 3, the rotary shaft tilt mechanism 61 includes two tilt adjustment blocks 62 and 63.
The inclination adjusting block 62 has an L-shaped cross section, and a surface 62a that contacts the lower end surface 20a of the spindle holder 20 serves as a reference surface, and is a surface opposite to the reference surface 62a. 62b is an inclined surface that is inclined with respect to the reference surface 62a.
As shown in FIG. 4, an insertion hole 62 c into which the fixing bolt 65 is inserted is formed in the reference surface 62 a of the inclination adjustment block 62.
Further, a screw hole 62e into which the tension bolt 67 is screwed and two through holes 66 into which the fixing bolts 66 are inserted on both sides of the screw hole 62e are formed in the central portion on the side surface side of the inclination adjusting block 62. Is formed.
[0029]
The inclination adjusting block 63 has an L-shaped cross section, and the surface that contacts the upper end surface 24a of the flange portion 24 of the main spindle 21 is a reference surface, and is opposite to the reference surface 63a. The side surface 63b is an inclined surface that is inclined with respect to the reference surface 63a. The inclined surface 63b is in contact with the inclined surface 62b of the inclination adjusting block 62, and is inclined at the same angle and in the opposite direction.
Further, as shown in FIG. 5, an insertion hole 63 c into which the fixing bolt 65 is inserted is formed in the reference surface 63 a of the inclination adjustment block 63.
Further, two screw holes 63 d into which the fixing bolts 66 are screwed are formed at positions corresponding to the two through holes 66 of the inclination adjustment block 62 on the side surface side of the inclination adjustment block 63.
[0030]
In a state where the inclined surface 62b of the inclination adjusting block 62 and the inclined surface 63b of the inclination adjusting block 63 are in contact with each other, the reference surface 62a of the inclination adjusting block 62 and the reference surface 63a of the inclination adjusting block 63 are parallel to each other. The relationship between the reference surface 62a of the inclination adjustment block 62 and the reference surface 63a of the inclination adjustment block 63 is determined by the relative positional relationship between the inclination surface 62b of the inclination adjustment block 62 and the inclination surface 63b of the inclination adjustment block 63. The distance TH changes.
Therefore, the distance TH can be adjusted by adjusting the relative position between the inclined surface 62b of the inclination adjusting block 62 and the inclined surface 63b of the inclination adjusting block 63, and the upper end surface 24a of the flange portion 24 of the spindle spindle 21 and the spindle can be adjusted. The distance with the lower end surface 20a of the holder 20 can be adjusted.
[0031]
That is, the inclination adjusting blocks 62 and 63 are installed at three positions between the upper end surface 24a of the flange portion 24 of the spindle 21 and the lower end surface 20a of the spindle holder 20, and the distance between the respective reference surfaces 62a and 63a. By adjusting TH, the inclination angle of the rotation axis K1 of the spindle spindle 21 (polishing tool 8) with respect to the axis K2 perpendicular to the holding surface 41a of the rotary table 41 can be arbitrarily adjusted, and in any direction Can be tilted.
To adjust the tilt angle of the rotation axis K1 of the spindle spindle 21 (polishing tool 8), first, the fixing bolt 65 for fixing the spindle spindle 21 and the spindle holder 20 is loosened, and the tension bolt 67 is directed in either direction. When turned, the tip of the tension bolt 67 contacts the side surface 63e of the inclination adjustment block 63, whereby the relative position between the inclination adjustment blocks 62, 63 can be determined, and the inclination adjustment block is determined according to this relative position. The distance TH between the reference surfaces 62a and 63a of 62 and 63 can be changed. By appropriately adjusting the distance TH between the reference surfaces 62a and 63a of the respective inclination adjustment blocks 62 and 63, the inclination direction and the inclination amount of the rotation axis K1 of the spindle spindle 21 (polishing tool 8) are adjusted.
When the distance TH between the reference surfaces 62a and 63a of the inclination adjusting blocks 62 and 63 is adjusted to a desired value, the fixing bolt 66 is tightened, the relative position between the inclination adjusting blocks 62 and 63 is fixed, and the fixing bolt is further fixed. By tightening 65, the adjustment of the inclination direction and the inclination amount of the rotation axis K1 of the spindle spindle 21 (polishing tool 8) is completed.
[0032]
Next, the polishing method of the present invention using the polishing apparatus 1 having the above configuration will be described.
Inclination of rotation axis (angle α)
First, the rotating shaft tilt mechanism 61 of the polishing apparatus 1 is adjusted so that the rotating shaft K1 of the polishing tool 8 is directed in the traveling direction of the polishing tool 8 with respect to the direction perpendicular to the plane parallel to the holding surface 41a of the rotary table 41. And tilt at a predetermined angle.
Specifically, as shown in FIG. 6, the rotation axis K1 of the polishing tool 8 is set so that the polishing tool 8 has an axis O perpendicular to a plane (XY plane) parallel to the holding surface 41a of the rotary table 41. It is inclined at an angle α toward the direction of travel D relative to the wafer W (direction of progress of polishing).
The inclination angle α of the rotation axis K1 of the polishing tool 8 is, for example, Z at the front and rear ends of the polishing surface 8a of the polishing tool 8 shown in FIG. The height difference Hα in the axial direction is set to a value of about 15 to 50 μm. That is, the inclination angle is about 15 to 50 μm with respect to the length of 8 inches.
[0033]
Inclination of rotation axis (angle β)
Further, the polishing surface 8a is elastically deformed in a region where the polishing surface 8a rides on the outer peripheral end of the surface to be polished of the wafer W with respect to the direction perpendicular to the rotary table holding surface 41a with respect to the rotation axis K1 of the polishing tool 8. Tilt in the direction to reduce.
Although the inclination of the direction for reducing the elastic deformation is not limited to one direction, preferably, the rotation axis K1 of the polishing tool 8 is set relative to the wafer W of the polishing tool 8 as shown in FIG. It is inclined at an angle β from the axis O along a plane perpendicular to the traveling direction D (Y-Z plane). 7A shows the relationship between the polishing tool 8 and the wafer W as viewed from the traveling direction D of the polishing tool 8, and FIG. 7B shows the polishing tool 8 and the wafer W as viewed from the Z-axis direction. Shows the relationship.
The direction of the inclination of the rotation axis K1 of the polishing tool 8 is such that the polishing tool 8 rides on the outer peripheral end of the wafer W 90 and the polishing tool 8 escapes from the outer peripheral end of the wafer W as shown in FIG. The height of the polishing surface 8a of the polishing tool 8 in the riding area 90 relative to the surface of the wafer W is higher than that of the escape area 91.
[0034]
The inclination angle β of the rotation axis K1 of the polishing tool 8 is such that the height difference Hβ in the Z-axis direction of the front and rear ends of the polishing surface 8a of the polishing tool 8 shown in FIG. 8 is about 15 to 30 μm, for example. Set to That is, the inclination angle is about 15 to 30 μm with respect to the length of 8 inches. Further, as will be described later, the inclination angle α of the rotation axis K1 of the polishing tool 8 is preferably set to a value larger than the inclination angle β.
[0035]
Next, in the polishing apparatus 1 in a state where the rotation axis K1 is inclined in two different directions at the inclination angles α and β, the back surface of the wafer W is fixed on the holding surface 41a of the rotary table 41, and the rotary table 41 and the polishing tool 8 are fixed. Make it rotate.
As shown in FIG. 8, the rotation direction R1 of the polishing tool 8 and the rotation direction R2 of the wafer W are opposite to each other.
[0036]
Further, as shown in FIG. 8, a predetermined amount of slurry SL is discharged from the slurry / pure water supply nozzle 81 onto the wafer W. The slurry SL is always replenished by a necessary amount even during polishing. The slurry is not particularly limited. For example, a slurry of silica-based fumed silica and high-purity ceria suspended in an aqueous solution based on potassium hydroxide for an oxide film, or alumina for a wiring metal is polished. What mixed the solvent which has oxidizing power with the processing fluid used as the abrasive grain, etc. can be used.
[0037]
Next, the polishing tool 8 is lowered in the Z-axis direction, and the outer peripheral end portion of the polishing surface 8a of the polishing tool 8 located outside the wafer W is positioned at the outer peripheral end portion as shown in FIG. The processing start point P1 at the outer peripheral edge and the outer peripheral edge of the polishing tool 8 are overlapped. In this state, the rotation centers of the polishing tool 8 and the wafer W are located on the same straight line along the X axis.
[0038]
Next, the polishing tool 8 is pressed against the wafer W to apply a processing pressure F in a direction perpendicular to the surface to be polished of the wafer W, and the wafer W and the polishing surface of the polishing tool 8 are brought into rotational contact.
From this state, the X-axis table 52 is driven to move the wafer W from the processing start point P1 in the direction of arrow C in which the overlapping area of the wafer W and the polishing tool 8 relatively increases in a predetermined speed pattern. . Thereby, the polishing tool 8 relatively moves in the radial direction of the wafer W.
Note that when the polishing tool 8 is moved relative to the wafer W after the polishing surface 8a of the polishing tool 8 is brought into contact with the processing start point P1 of the wafer W at the start of polishing, the processing pressure F is determined by polishing. When the polishing tool 8 reaches a predetermined position with respect to the wafer W, the polishing pressure is set to a constant value and polishing is performed.
The area of the crescent-shaped region described later gradually increases from the processing start point P1 as the processing pressure F increases, and after the polishing tool 8 reaches a predetermined position with respect to the wafer W, the crescent-shaped region is increased. The area of the region is a substantially constant area. Thereby, the uniformity of the polishing amount by the polishing tool 8 is obtained. Further, the velocity pattern in the X-axis direction of the polishing tool 8 is adjusted in advance so that the polishing amount in the wafer W plane is uniform.
[0039]
FIG. 9A is a view showing an example of a pressure distribution generated between the polishing surface 8a of the polishing tool 8 and the surface to be polished of the wafer W, and FIG. It is sectional drawing of the -A line direction. FIG. 9A shows a virtual pressure distribution when polishing is performed by the polishing tool 8 without rotating the wafer W.
As described with reference to FIG. 6, the rotation axis K1 of the polishing tool 8 is inclined at an angle α with respect to the axis O in the traveling direction D relative to the wafer W of the polishing tool 8. For this reason, as shown in FIG. 9A, the pressure distribution generated between the polishing surface 8a of the polishing tool 8 and the surface to be polished of the wafer W is basically a substantially crescent-shaped region PR. .
[0040]
In the crescent-shaped region PR, a region PH having a relatively high pressure and a PL having a relatively low pressure are generated. The region PH having a relatively high pressure is a region that effectively acts on the surface to be polished of the wafer W. The region PH is sufficiently narrower than the overlapping area of the wafer W and the polishing surface 8a of the polishing tool 8, and the area PH of the region PH is substantially constant even if the polishing tool 8 moves relative to the traveling direction D. It becomes. For this reason, the polishing amount in the effective working region becomes uniform, and the polishing rate becomes substantially constant.
[0041]
On the other hand, the rotation axis K1 of the polishing tool 8 is relative to the surface of the wafer W on the polishing surface 8a of the polishing tool 8 in the region 90 where the polishing tool 8 rides on the outer peripheral edge of the wafer W as shown in FIG. The height is inclined at an angle β in a direction in which the polishing tool 8 is higher than the height of the polishing surface 8a with respect to the surface of the wafer W in the region 91 where the polishing tool 8 escapes from the outer peripheral edge of the wafer W.
For this reason, the elastic deformation of the polishing surface 8a of the polishing tool 8 in the riding area 90 is reduced, and damage generated on the outer peripheral edge of the wafer W can be suppressed.
[0042]
Here, FIG. 10 shows a state in the riding area 90 and the escape area 91 of the polishing surface 8a of the polishing tool 8. As shown in FIG.
FIGS. 10A and 10B are views showing the state of the polishing surface 8a of the polishing tool 8, wherein FIG. 10A shows the state of the riding area 90, and FIG. 10B shows the state of the escape area 91. FIG. 10A and 10B are cross-sectional views of the regions 90 and 91 along the radial direction of the wafer W. FIG.
When the inclination angle β is relatively small, as shown in FIG. 10, elastic deformation occurs in the riding region 90 of the polishing surface 8 a of the polishing tool 8, but the elastic deformation amount is larger than the elastic deformation amount in the escape region 91. Relatively small. For this reason, in the run-up region 90 of the polishing surface 8a of the polishing tool 8, the contact pressure with respect to the outer peripheral end portion of the wafer W of the polishing surface 8a of the elastically deformed polishing tool 8 is reduced as compared with the case where the outer peripheral end of the wafer W is not inclined. Excessive polishing that occurs in the part can be suppressed.
Further, the processing energy that is no longer consumed by reducing the elastic deformation of the polishing surface 8a of the polishing tool 8 in the riding region 90 is relatively high in pressure that effectively acts on the surface to be polished of the wafer W described above. It concentrates on the high area | region PH and a polishing rate improves.
Further, the contact pressure of the polishing surface 8a of the polishing tool 8 that has been elastically deformed with respect to the outer peripheral end portion of the wafer W is reduced, so that the slurry SL attached to the polishing surface 8a of the rotating polishing tool 8 is polished in the riding region 90. It becomes easy to enter between the polishing surface 8 a of the tool 8 and the surface of the outer peripheral end of the wafer W. For this reason, the slurry is stably and efficiently supplied to the effective working region between the polishing surface 8a and the surface to be polished of the wafer W, and the polishing rate is improved and stabilized.
[0043]
On the other hand, in the relief area 91 of the polishing surface 8a of the polishing tool 8, it is considered that the applied pressure increases and the amount of elastic deformation increases in accordance with the reduction of the elastic deformation of the polishing surface 8a in the riding area 90. When the amount of elastic deformation of the polishing surface 8a increases in the escape region 91, the influence on the outer peripheral end of the wafer W also increases. However, in the escape region 91, the elastically deformed polishing surface 8a may wrap around the outer peripheral end of the wafer W. The effect is sufficiently smaller than the effect in the riding area 90.
[0044]
FIG. 11 shows a state in which the inclination angle β is relatively larger than that shown in FIG.
When the inclination angle β is increased, the elastic deformation of the polishing surface 8a of the polishing tool 8 is completely eliminated in the riding region 90 as shown in FIG. It can be set as the state in which a clearance gap is formed between them.
In such a state, the processing energy is hardly consumed in the riding area 90, and the processing energy is concentrated in the area PH where the pressure that effectively acts on the surface to be polished of the wafer W is relatively high. Further, the polishing rate can be further improved. In addition, since a gap is formed between the polishing surface 8a and the surface of the wafer W, the slurry SL can easily enter between the polishing surface 8a and the surface to be polished of the wafer W, and the slurry can enter the effective working region. SL can be supplied more stably and efficiently.
[0045]
Increasing the inclination angle β is considered to increase the amount of elastic deformation of the polishing surface 8a in the relief region 91 as shown in FIG. As described above, in the escape region 91, the influence of the elastic deformation of the polishing surface 8a in the escape region 91 is negligible although the influence is relatively small because the elastically deformed polishing surface 8a does not wrap around the outer peripheral edge of the wafer W. If this is not possible, for example, the processing pressure F of the polishing tool 8 on the wafer W is adjusted (decreased) to reduce the amount of elastic deformation of the polishing surface 8a in the relief region 91. Thereby, the influence of the elastic deformation of the polishing surface 8a in the relief area 91 can be reduced. Even if the processing pressure F is reduced, the processing energy is concentrated in the region PH, so that the reduction in the polishing rate can be minimized.
[0046]
As shown in FIG. 9A, when the rotation axis K1 is inclined at an angle β, the entire crescent-shaped region PR escapes from the outer peripheral edge of the wafer W on the polishing surface 8a according to the inclination of the angle β. Shift toward region 91. The high-pressure region PH that is an effective working region also shifts toward the region 91 that escapes from the outer peripheral edge of the wafer W on the polishing surface 8a. Therefore, the high-pressure region PH, which is an effective working region, does not have a symmetrical shape with respect to the X axis passing through the center of the wafer W, and is further away from the X axis passing through the center of the wafer W as the angle β increases.
Therefore, if the inclination angle β of the rotation axis K1 of the polishing tool 8 is set too large, the high pressure region PH, which is an effective working region, is completely separated from the X axis passing through the rotation center of the wafer W, and the polishing tool. When both the wafer 8 and the wafer W are rotated and the wafer W is polished, the central region of the wafer W cannot be sufficiently polished.
In order to prevent this, it is preferable to set the inclination angle β of the rotation axis K1 of the polishing tool 8 to be smaller than the inclination angle α, and the high-pressure region PH which is an effective working region is the rotation of the wafer W. It is preferable to set the inclination angle β so as to intersect the X axis passing through the center.
[0047]
As described above, the polishing process by the polishing tool 8 is performed along the traveling direction D while the excessive polishing of the outer peripheral end portion of the wafer W is suppressed, and the outer peripheral end portion of the polishing tool 8 is formed on the wafer W shown in FIG. The processing end point P2 is reached.
When the outer peripheral edge of the polishing tool 8 moves to the processing end point P2 of the wafer W, the processing of the surface to be polished of the wafer W is ended. The polishing process is ended by raising the polishing tool 8 in the Z-axis direction.
As described above, when the polishing process is finished at a position where the outer peripheral end portion of the wafer W and the polishing tool 8 substantially overlap, the outer peripheral end portion of the wafer W is hardly damaged.
Even if the processing is finished at a position where the outer peripheral end of the polishing tool 8 slightly protrudes from the processing end point P2, the outer diameter of the polishing tool 8 and the diameter of the wafer W are substantially equal. There is almost no velocity component toward the center of the wafer W of 8a, and damage to the outer peripheral edge of the wafer W due to the rising of the polishing surface 8a hardly occurs.
[0048]
As described above, according to the polishing method according to the present embodiment, the elasticity in the run-up region 90 on the outer peripheral end of the wafer W generated on the polishing surface 8a of the polishing tool 8 that rotates the rotation axis K1 of the polishing tool 8. By inclining in a direction to reduce the deformation, the elastic deformation of the polishing surface 8a of the polishing tool 8 is relieved, and accordingly, a high pressure region PH that is an effective working region between the wafer W and the polishing surface 8a. The processing pressure increases.
As a result, the processing energy is concentrated in the effective working region between the wafer W and the polishing surface 8a, and the polishing efficiency is improved.
Further, according to the present embodiment, since the height of the run-up area 90 of the polishing surface 8a of the polishing tool 8 on the outer peripheral end of the wafer W is relatively high, a gap is formed between them, and polishing is performed. Slurry easily enters between the surface 8a and the surface to be polished of the wafer W. That is, the slurry adhering to the rotated polishing surface 8a is carried between the polishing surface 8a and the surface to be polished of the wafer W.
As a result, the slurry is stably and efficiently supplied to the effective working area between the polishing surface 8a and the surface to be polished of the wafer W, and the polishing rate is improved and stabilized.
[0049]
Furthermore, in this embodiment, since the consumption of the processing energy due to running on the outer peripheral edge of the wafer W can be suppressed, the pressure of a part of the polishing surface 8a of the polishing tool 8, that is, the crescent-shaped region PR described above is high. When the surface to be polished of the wafer W is partially polished by the region PH, the processing energy is concentrated on the region PH which is an effective working region that is narrowed, so that the warp existing on the surface of the wafer W in the region PH. The followability to the swell improves.
That is, on the surface to be polished of the wafer W, distortion or the like generated up to the previous process affects the shape of the wafer W, and there may be warping or waviness of about several μm to 10 μm. When 8a strongly presses the outer peripheral edge of the wafer W, the followability to warpage and undulation of the region PH where the pressure of the crescent-shaped region PR, which is an effective working region for polishing, is high is reduced. In the form, this decrease in followability can be prevented, and the processing uniformity can be improved.
[0050]
Further, according to the present embodiment, the elastic deformation of the polishing surface 8a in the region 90 where the polishing surface 8a of the polishing tool 8 rides on the outer peripheral edge of the wafer W is reduced, so that the polishing surface 8a of the polishing tool 8 can be reduced. There is little deterioration in quality, and the frequency of conditioning of the polishing surface 8a can be suppressed.
[0051]
As described above, by tilting the rotation axis K1 at a large tilt angle β, the region PH in which the pressure of the crescent-shaped region PR, which is an effective working region, is high, passes through the center of the wafer W in the X-axis direction. If the center region of the wafer W cannot be sufficiently polished by being separated from the straight line, for example, instead of the X-axis table 52 holding the rotary table 41, the rotary table 41 in the X-axis and Y-axis directions is used. By holding the rotary table 41 on the XY table that holds the slidable and moving the rotary table 41 to the X axis and the Y axis, the pressure in the crescent-shaped region PR, which is an effective working region, is high. The region PH may pass over the rotation center of the wafer W.
[0052]
Second embodiment
Next, another polishing method using the above polishing apparatus 1 will be described as a second embodiment of the present invention.
12A and 12B are diagrams for explaining a polishing method according to the second embodiment of the present invention, in which FIG. 12A is a diagram illustrating an inclined state of the polishing tool 8 in the polishing apparatus 1, and FIG. It is a figure which shows the positional relationship of the relative movement direction of the wafer W and the grinding | polishing tool 8. FIG.
In the present embodiment, the polishing tool 8 and the wafer W are relatively moved in a positional relationship as shown in FIG. That is, the polishing tool 8 is moved in the direction of travel D along a straight line X2 parallel to the straight line X1 passing through the rotation center of the wafer W along the X-axis direction and separated by a predetermined distance d.
Further, as shown in FIG. 12A, the holding surface of the rotary table 41 is set so that the rotation axis K1 of the polishing tool 8 is along the Y-Z plane perpendicular to the traveling direction D of the polishing tool 8 relative to the wafer W. Inclined at an angle β from an axis O perpendicular to 41a. The rotation axis K1 of the polishing tool 8 is inclined at an angle β along the YZ plane with respect to the axis O perpendicular to the holding surface 41a of the rotary table 41.
Further, as shown in FIG. 12A, the inclination direction of the angle β is relatively low with respect to the wafer W of the polishing surface 8a of the polishing tool 8 positioned on a straight line passing through the center of the wafer W. The direction.
[0053]
The inclination angle β of the rotation axis K1 of the polishing tool 8 is such that the height difference Hβ in the Z-axis direction at the front and rear ends of the polishing surface 8a of the polishing tool 8 shown in FIG. Set to a value of degree. That is, the inclination angle is about 15 to 30 μm with respect to the length of 8 inches.
[0054]
When the rotation axis K1 of the polishing tool 8 is inclined at an angle β, the effective action area S of the polishing surface 8a of the polishing tool 8 with respect to the wafer W becomes, for example, a crescent shape as shown in FIG. .
The distance d between the straight lines X1 and X2 is set such that the effective action area S of the polishing surface 8a shown in FIG. 12B is located on the straight line X1 passing through the center of the wafer W.
Furthermore, the rotation direction R1 of the polishing tool 8 and the rotation direction R2 of the wafer W are opposite to each other as shown in FIG.
[0055]
FIG. 13 is a diagram for explaining a polishing procedure of the polishing method according to the present embodiment.
For example, the polishing process of the wafer W is started from a processing start position P1 shown in FIG.
That is, the polishing tool 8 is pressed against the wafer W so that the effective working area S of the polishing surface 8a of the polishing tool 8 is positioned at the processing start position P1 of the wafer W.
At this time, the region shown in the circle A is a run-up region where the polishing surface 8a of the polishing tool 8 rides on the outer peripheral end of the wafer W, and the region shown in the circle B is the polishing surface 8a of the polishing tool 8 on the outer peripheral end of the wafer W. It becomes an escape area to escape from the part.
In this riding region, since the rotation axis K1 of the polishing tool 8 is inclined at an angle β, the elastic deformation of the polishing surface 8a is reduced, and damage to the outer peripheral end of the wafer W is suppressed.
[0056]
When the polishing tool 8 is moved in the relative advancing direction D from the position shown in FIG. 13A, the effective action area S moves along the radial direction of the rotating wafer W. For this reason, as shown in FIG. 13B, the effective working region S passes through the rotation center of the wafer W, so that insufficient polishing at the center of the wafer W does not occur.
[0057]
As the polishing tool 8 is moved in the relative traveling direction D, the riding area shown in the circle A approaches the straight line X1. For this reason, the distance between the polishing surface 8a in the riding region and the surface to be polished of the wafer W approaches, and elastic deformation of the polishing surface 8a in the riding region occurs. Alternatively, the amount of elastic deformation that has been reduced increases.
For this reason, as shown in FIG. 13C, the polishing is finished when the front end portion in the traveling direction D of the effective working region S reaches the processing end position P <b> 2 of the outer peripheral end portion of the wafer W.
Thereby, excessive polishing of the outer peripheral end portion of the wafer W due to the rising of the polishing surface 8a can be prevented.
[0058]
As described above, according to the present embodiment, even when the rotation axis K1 is inclined in only one direction by appropriately selecting the arrangement and relative movement direction of the wafer W and the polishing tool, the outer peripheral end of the wafer W It is possible to prevent excessive polishing of the portion and avoid occurrence of insufficient polishing at the center of the wafer W.
[0059]
Third embodiment
Next, another polishing method using the above polishing apparatus will be described as a third embodiment of the present invention.
In the first embodiment described above, the rotation axis K1 of the polishing tool 8 is inclined at an inclination angle α toward the traveling direction of the polishing tool 8 with respect to a direction perpendicular to a plane parallel to the holding surface 41a of the rotary table 41. And the elasticity of the polishing surface 8a in the region where the polishing surface 8a rides on the outer peripheral end of the surface to be polished of the wafer W with respect to the direction perpendicular to the holding surface 41a of the rotary table. Polishing was performed at an inclination angle β in a direction to reduce deformation.
In the present embodiment, as in the first embodiment described above, polishing is performed by inclining in two different directions at inclination angles α and β, but the correction surface of the correction tool parallel to the holding surface 41a of the holding table 41 is further provided. A polishing tool 8 having a polishing surface 8a that is faced along the surface is used.
Specifically, as shown in FIGS. 14A and 14B, the polishing tool 8 has a rotation axis K1 with respect to an axis O perpendicular to a plane parallel to the holding surface 41a of the holding table 41. It is inclined at an inclination angle α toward the traveling direction D of the polishing tool, and is inclined at an inclination angle β along a plane perpendicular to the traveling direction D with respect to the axis O.
Further, the polishing surface 8a of the polishing tool 8 is inclined at an angle γ synthesized from the angle α and the angle β.
[0060]
For example, as shown in FIG. 15A, the method of forming the polishing surface 8a of the polishing tool 8 as described above is such that the rotation axis K1 of the polishing tool 8 is inclined at an angle α toward the traveling direction D of the polishing tool 8. Further, although not shown in the drawing, the rotation is performed in a state inclined at an inclination angle β along a plane perpendicular to the traveling direction D with respect to the axis O.
Further, as shown in FIG. 15B, the correction tool 56 is installed on the X-axis table 52. The correction tool 56 has a correction surface 56a perpendicular to the axis O, that is, perpendicular to the rotation axis K1 that is not inclined, and the correction surface 56a is formed on the holding surface 41a of the holding table 41 that holds the wafer W. Parallel planes. For example, abrasive grains such as diamond abrasive grains are fixed to the correction surface 56a.
15C, the X-axis table 52 is moved relative to the polishing tool 8 so that the rotation axis K1 of the polishing surface 8a passes through the correction surface 56a of the correction tool 56. Then, the tip of the correction tool 56 is brought into contact with the polishing surface 8a to form the polishing surface 8a by chamfering (facing processing).
The polishing surface 8a formed by such facing processing is a conical surface, and the inclination angle of the generatrix of the conical surface is an angle γ obtained by combining the angle α and the angle β as shown in FIG. An inclined polished surface 8a is obtained.
[0061]
When the polishing surface 8 a of the polishing tool 8 inclined at the angle γ is pressed against the wafer W, the polishing surface 8 a contacts the surface of the wafer W substantially in parallel. Moreover, the shape of the effective action area S between the wafer W and the polishing surface 8a is, for example, a linear shape extending in the radial direction of the polishing tool 8, as shown in FIG. Further, the shape of the action region S changes according to the processing pressure of the polishing tool 8 on the wafer W, and when the processing pressure increases, the shape changes from a linear shape to a fan shape.
Further, the position of the action region S is inclined at an inclination angle β in the direction in which the rotation axis K1 of the polishing tool 8 reduces elastic deformation, and therefore the X-axis direction passing through the center of the wafer W according to the inclination angle β. Is slightly shifted from the straight line to the relief region 91 side from the outer peripheral end of the wafer W on the polishing surface 8a of the polishing tool 8.
[0062]
At this time, the polishing surface 8a of the polishing tool 8 is formed in a curved surface in the region 90 of the polishing tool 8 that runs on the outer peripheral end of the wafer W and the escape region 91 from the outer peripheral end of the wafer W. The height of the polishing surface 8a of the polishing tool 8 relative to the surface of W is higher than the height of the polishing surface 8a of the polishing tool 8 relative to the surface of the wafer W in the action region S.
For this reason, even if the polishing tool 8 is pressed against the wafer W, the elastic deformation amount of the polishing surface 8a of the polishing tool 8 in the riding area 90 is larger than that in the above-described embodiment, that is, the polishing surface 8a is flat. Get smaller.
[0063]
Therefore, since the elastic deformation amount of the polishing surface 8a of the polishing tool 8 is small, the inclination angle β in the direction of reducing the elastic deformation of the rotation axis K1 of the polishing tool 8 can be reduced.
As a result, the amount by which the position of the action region S shifts from the straight line in the X-axis direction passing through the center of the wafer W toward the escape region 91 from the outer peripheral end of the wafer W on the polishing surface 8a of the polishing tool 8 can be suppressed as much as possible. For this reason, due to the relative movement of the wafer W and the polishing tool 8 in the X-axis direction, the action region S advances in the radial direction of the rotating wafer W and passes through the rotation center of the wafer W. The occurrence of insufficient polishing at the center can be prevented.
[0064]
Further, according to the present embodiment, the polishing surface 8a of the polishing tool 8 is inclined at an angle γ by combining the angle α and the angle β, so that the polishing surface 8a of the polishing tool 8 and the surface to be polished of the wafer W are separated. Since the effective working area S is further narrowed and the shape of the working area S is formed by the shape of the polishing surface 8a of the polishing tool 8, there is little variation in the area of the working area S, and the polishing rate is further increased. It becomes easy to stabilize, and the followability to the warp and the undulation existing on the surface of the wafer W in the action region S is further improved, so that the processing uniformity of the polished surface of the wafer W can be improved.
[0065]
The present invention is not limited to the various embodiments described above.
In the above-described embodiment, the entire surface to be polished of the wafer W in the state where the rotation axis K1 of the polishing tool 8 is inclined in two different directions at the inclination angles α and β by the rotation axis inclination mechanism 61 of the polishing apparatus 1, respectively. The case of performing the above processing has been described.
In the above-described embodiment, since the rotation axis K1 of the polishing tool 8 is inclined at the inclination angle α toward the traveling direction D of the polishing tool 8, when the polishing tool 8 is moved relative to the wafer W to a certain position. The elastic deformation due to running on the outer peripheral end of the wafer W of the polishing surface 8a does not occur or becomes a very small value. Note that the position of the polishing tool 8 with respect to the wafer W varies depending on the inclination angle α, the processing pressure of the polishing tool 8 on the wafer W, and the inclination angle of the polishing surface 8a.
[0066]
For this reason, when the polishing tool 8 is moved relative to the wafer W to a position where the polishing surface 8a does not undergo elastic deformation due to running on the outer peripheral edge of the wafer W or reaches a very small value, the polishing tool 8 It is good also as a structure which returns the rotating shaft K1 to the direction perpendicular | vertical to the holding surface 41a of the turntable 41 regarding the direction which reduces elastic deformation.
In this way, the polishing surface 8a of the polishing tool 8 that moves by the relative movement of the polishing tool 8 and the wafer W in the X-axis direction is eliminated by eliminating the inclination of the rotation axis K1 of the polishing tool 8 in a direction that reduces elastic deformation. Since the effective action area between the surface of the wafer W and the surface to be polished moves along the straight line in the X-axis direction passing through the rotation center of the wafer, insufficient polishing of the central portion of the wafer W does not occur.
[0067]
In the middle of the relative movement of the polishing tool 8 and the wafer W in the X-axis direction, the rotational axis K1 of the polishing tool 8 is returned to the direction perpendicular to the holding surface 41a of the rotary table 41 with respect to the direction of reducing elastic deformation. The relative position of each of the two tilt adjustment blocks 62 and 63 of the rotating shaft tilt mechanism 61 of the polishing apparatus 1 is not manually adjusted, for example, by a servo motor or a cylinder device. When the relative position in the X-axis direction reaches a predetermined position, it can be configured to drive.
[0068]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the excessive grinding | polishing of the outer peripheral edge part of a grinding | polishing target object by the elastic deformation in the riding area to the outer peripheral edge part of the grinding | polishing target object of a grinding | polishing tool can be suppressed.
Furthermore, by tilting the polishing surface of the polishing tool in two different directions, the effective working area can be narrowed, and the supply of the abrasive between the polishing surface and the surface to be polished can be stabilized. Processing uniformity within the polished surface can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a polishing apparatus according to an embodiment of the present invention.
FIG. 2 is a view for explaining a rotating shaft tilting mechanism as the rotating shaft tilting means of the present invention.
3 is a cross-sectional view showing a structure of a rotating shaft tilt mechanism 61. FIG.
4 is a view showing a structure of an angle adjustment block 62. FIG.
5 is a view showing a structure of an angle adjusting block 63. FIG.
FIG. 6 is a view for explaining the polishing method of the present invention, and is a view showing the inclination in the traveling direction of the rotation axis K1 of the polishing tool.
FIG. 7 is a diagram for explaining a polishing method of the present invention, and is a diagram showing an inclination in a direction to reduce elastic deformation of a polishing surface in a riding area of a rotation axis K1 of a polishing tool.
FIG. 8 is a diagram for explaining a polishing method of the present invention, and is a diagram showing a relative positional relationship between a wafer W and a polishing tool 8;
9A is a diagram showing an example of a pressure distribution generated between the polishing surface 8a of the polishing tool 8 and the surface to be polished of the wafer W, and FIG. 9B is an AA line in FIG. 9A. It is sectional drawing of a direction.
10A and 10B are views showing the state of the polishing surface 8a of the polishing tool 8, wherein FIG. 10A is a cross-sectional view showing the state of the riding area 90 and FIG.
11 is a diagram showing a state of the polishing surface 8a of the polishing tool 8 when the inclination angle β is relatively larger than that shown in FIG.
FIG. 12 is a diagram for explaining a polishing method according to a second embodiment of the present invention.
FIG. 13 is a view for explaining a polishing procedure of a polishing method according to a second embodiment of the present invention.
FIG. 14 is a view for explaining a polishing method according to a third embodiment of the present invention.
FIG. 15 is a diagram for explaining a facing method of a polishing surface of a polishing tool.
FIG. 16 is a diagram showing the shape of an effective action area S between the wafer W and the polishing surface 8a.
FIG. 17 is a perspective view showing an example of a conventional polishing apparatus.
FIG. 18 is a diagram for explaining an example of a conventional polishing method.
19 is a diagram showing an example of a pressure distribution generated between a wafer and a polishing tool in the polishing method shown in FIG.
FIG. 20 is a cross-sectional view showing elastic deformation at the outer peripheral edge of the wafer caused by pressing the polishing surface of the polishing tool against the wafer.
FIG. 21 is a plan view showing a state of excessive polishing of the outer peripheral edge of the wafer W caused by elastic deformation of the polishing surface of the polishing tool.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Polishing apparatus, 3 ... Column, 8 ... Polishing tool, 8a ... Polishing surface, 11 ... Z-axis moving mechanism, 20 ... Spindle holder, 21 ... Spindle spindle, 41 ... Rotary table, 51 ... X-axis moving mechanism, W ... Wafer.

Claims (15)

回転部材に保持され、当該回転部材の回転軸直交する平面に沿った研磨面を備える弾性体からなる研磨工具を前記回転部材の回転に応じて回転させ、前記研磨工具の研磨面を保持テーブル上に保持された被研磨対象物の被研磨面に所定の加工圧力で相対的に押し付け、前記被研磨対象物と前記研磨工具とを前記保持テーブルの保持面に平行な平面に沿って相対的に移動させて前記被研磨対象物の被研磨面を研磨する研磨方法であって、
前記研磨工具が固定された前記回転部材の回転軸を前記保持テーブルの保持面に垂直な方向に対して前記研磨工具と前記保持テーブルとの相対的移動方向における進行方向に向けて第1の角度だけ傾斜させ、かつ、
前記研磨工具の研磨面が前記被研磨対象物の被研磨面の外周端部に乗り上げる領域での前記研磨工具に備えられた弾性体の研磨面の弾性変形を軽減させるように、前記回転部材の回転軸を前記進行方向に直交する方向の平面に沿って、前記研磨工具の被研磨面の外周端部への前記研磨工具の研磨面の乗り上げ領域での前記被研磨対象物の被研磨面に対する高さが、前記研磨工具の研磨面前記被研磨対象物の被研磨面の外周端部から逃げる領域での前記被研磨対象物の被研磨面に対する高さよりも高くなる向きに第2の角度だけ傾斜させて、
前記研磨工具の研磨面によって前記被研磨対象物の被研磨面を研磨する、
研磨方法。
A polishing table made of an elastic body , which is held by a rotating member and has a polishing surface along a plane orthogonal to the rotation axis of the rotating member, is rotated according to the rotation of the rotating member, and the polishing surface of the polishing tool is held by a holding table. pressed relatively at a predetermined processing pressure to the surface to be polished of the object to be polished that is held by the upper, relative along a plane parallel with said polishing tool and the object to be polished on the holding surface of the holding table wherein a polishing method for polishing the surface of the object to be polished is moved,
It said polishing tool is first towards the traveling direction of the relative movement direction between the holding table and the grinding tool rotation shaft of the stationary the rotating member with respect to the direction perpendicular to the holding surface of the holding table by an angle tilted, and,
Wherein as the polishing surface of the polishing tool to reduce the elastic deformation of the polishing surface of the elastic member, wherein provided in the abrasive tool in the region runs onto the outer peripheral edge of the surface to be polished of the object to be polished, of the rotary member A rotation axis with respect to the surface to be polished of the object to be polished in a region where the polishing surface of the polishing tool rides on an outer peripheral end of the surface to be polished of the polishing tool along a plane perpendicular to the traveling direction. height, a second angle becomes higher orientation than the height to the surface to be polished of the object to be polished in the region to escape from the outer circumferential edge of the surface to be polished of the polishing surface wherein the object to be polished of the polishing tool Just tilt ,
The surface to be polished of the object to be polished is polished by the polishing surface of the polishing tool.
Polishing method.
前記研磨工具として前記被研磨対象物の被研磨面の直径と略等しい直径を持つ研磨工具を使用し、
前記被研磨対象物の被研磨面の外に位置する前記研磨工具の研磨面の外周端部を前記被研磨対象物の被研磨面の外周端部に位置させ、
前記研磨工具を前記研磨面と前記被研磨面との重なり合う面積が増加する方向に相対的に移動させて前記被研磨面を研磨加工し、
前記研磨工具の研磨面の外周端部が前記被研磨対象物の被研磨面の外周端部に達した位置で研磨加工を停止する、
請求項1に記載の研磨方法。
Using a polishing tool having a diameter substantially equal to the diameter of the surface to be polished of the object to be polished as the polishing tool ,
Positioning the outer peripheral end of the polishing surface of the polishing tool located outside the surface to be polished of the object to be polished at the outer peripheral end of the surface to be polished of the object to be polished;
Wherein the polishing tool with the polishing surface relatively moved in the direction area overlapping with the surface to be polished increases polished the surface to be polished,
The polishing process is stopped at the position where the outer peripheral end of the polishing surface of the polishing tool reaches the outer peripheral end of the surface to be polished of the object to be polished.
The polishing method according to claim 1.
前記研磨工具として環状の研磨面をもつ研磨工具を用いて研磨を行う
請求項1に記載の研磨方法。
The polishing method according to claim 1 for polishing using a polishing tool having an annular grinding surface as the grinding tool.
前記回転部材の回転軸が前記第1の角度および前記第2の角度で傾斜した状態の前回転部材の回転に応じて回転する前記研磨工具を前記保持テーブルの保持面に平行な修正工具の修正面に沿って相対的に移動させることによってフェーシング加工された研磨面をもつ研磨工具を用いる、
請求項3に記載の研磨方法。
Modification of the angular rotation shaft of the first rotary member and the second angle in the polishing parallel correction tool to the holding surface of the holding table tool which rotates in response to rotation of the front rotary member inclined state using a polishing tool having a facing machined polished surface by moving the relative along the surface,
The polishing method according to claim 3.
前記第1の角度を前記第2の角度よりも大きくする
請求項1に記載の研磨方法。
Larger than the first angle and the second angle,
The polishing method according to claim 1.
前記保持テーブルを回転させ、前記被研磨対象物を回転させながら前記研磨を行う、
請求項1に記載の研磨方法。
Rotating the holding table, perform the polishing while rotating the polishing target object,
The polishing method according to claim 1.
前記被研磨対象物と前記研磨工具の回転方向を逆向きにして前記研磨を行う、
請求項6に記載の研磨方法。
Performing the polishing by the direction of rotation of the polishing tool and the object to be polished in the opposite direction,
The polishing method according to claim 6.
前記研磨工具の研磨面と前記被研磨対象物の被研磨面との間に研磨剤を介在させて前記研磨を行う
請求項1に記載の研磨方法。
The polishing method according to claim 1, wherein the polishing is performed with an abrasive interposed between a polishing surface of the polishing tool and a surface to be polished of the object to be polished.
前記被研磨対象物の被研磨面の外に位置する前記研磨工具の研磨面の外周端部を前記被研磨対象物の被研磨面の外周端部に位置させ、
前記研磨工具の研磨面と前記被研磨対象物の被研磨面との重なり合う面積が増加する方向に移動させて研磨するとき、少なくとも前記研磨工具の研磨面の前記被研磨対象物の被研磨面の外周端部の乗り上げによる前記研磨面の弾性変形が発生しなくなる位置まで、前記第2の角度だけ傾斜させる、
請求項1に記載の研磨方法。
Positioning the outer peripheral end of the polishing surface of the polishing tool located outside the surface to be polished of the object to be polished at the outer peripheral end of the surface to be polished of the object to be polished;
When said area of overlapping with the surface to be polished of the object to be polished and the polishing surface of the polishing tool to polish is moved in the direction of increasing, at least the surface to be polished of the polishing target of the polishing surface of the polishing tool Inclining by the second angle to a position where elastic deformation of the polishing surface due to riding on the outer peripheral end portion does not occur,
The polishing method according to claim 1.
前記研磨工具の研磨面の前記被研磨面の外周端部の乗り上げによる前記研磨面の弾性変形が発生しなくなる位置に当該研磨工具が到達したら、前記回転部材の回転軸を前記前記保持テーブルの保持面に対して垂直にする、
請求項9に記載の研磨方法。
Wherein After the polishing tool to the position where elastic deformation is not generated in the polished surface by riding up on the outer peripheral edge of the surface to be polished of the polishing surface of the polishing tool reaches said rotary member rotating shaft before Symbol the holding table Perpendicular to the holding surface,
The polishing method according to claim 9.
回転部材と、
被研磨対象物を保持する保持テーブルと、
前記回転部材に保持され前記回転部材の回転軸直交する平面に沿った、弾性体の研磨面を備えた研磨工具と、
前記回転部材を垂直方向に昇降させて前記研磨工具の研磨面を前記保持テーブルに保持された前記被研磨対象物の被研磨面に離間させるまたは押しつける、垂直軸方向移動手段と、
水平方向において前記保持テーブルを前記研磨工具に対して相対的に移動させ、前記保持テーブルに保持された前記被研磨対象物の被研磨面と前記研磨工具の研磨面とを、接触または離間させる、水平方向移動手段と、
前記回転部材の外周の少なくとも3か所に設けられ、前記回転部材の回転軸を、水平方向において直交する2方向に傾斜させる、回転軸傾斜手段と、
を有し、
前記回転部材の外周の少なくとも3か所に設けられた回転軸傾斜手段を調整して、
前記水平方向移動手段によって前記研磨工具と前記保持テーブルとを接近させるときの進行方向に向けて、前記回転部材の回転軸を前記保持テーブルの保持面に垂直な方向に対しての第1の角度だけ傾斜させ、かつ、
前記垂直軸方向移動手段および前記水平方向移動手段の動作によって移動された、前記研磨工具の研磨面が前記被研磨対象物の被研磨面の外周端部に乗り上げる領域での当該研磨工具に備えられた弾性体の研磨面の弾性変形を軽減させるように、前記回転部材の回転軸を前記進行方向と直交する方向において、前記被研磨対象物の被研磨面の外周端部への前記研磨工具の研磨面の乗り上げ領域での前記被研磨面に対する高さが、前記研磨工具の研磨面前記被研磨面の外周端部から逃げる領域での前記被研磨面に対する高さよりも高くする第2の角度だけ傾斜させ、
前記回転部材の回転軸を前記第1の角度および前記第2の角度だけ傾斜させた状態で、前記垂直軸方向移動手段により前記研磨工具を前記被研磨対象物に押しつけて加工圧を前記被研磨対象物に加えながら、前記被研磨対象物の被研磨面と前記研磨工具の研磨面とを前記回転部材の回転に応じて回転接触させ、前記水平方向移動手段により前記被研磨対象物の被研磨面と前記研磨工具の研磨面とを相対的に移動させて、前記被研磨対象物の被研磨面を研磨する、
研磨装置。
A rotating member;
A holding table for holding an object to be polished;
A polishing tool comprising an elastic polishing surface along a plane that is held by the rotating member and orthogonal to the rotation axis of the rotating member ;
Vertical axis moving means for moving the rotating member up and down in the vertical direction to separate or press the polishing surface of the polishing tool against the surface to be polished held by the holding table;
Moving the holding table relative to the polishing tool in the horizontal direction, and contacting or separating the polished surface of the object to be polished held by the holding table and the polishing surface of the polishing tool; Horizontal movement means;
A rotating shaft tilting means provided at at least three locations on the outer periphery of the rotating member and tilting the rotating shaft of the rotating member in two directions orthogonal to each other in the horizontal direction ;
Have
Adjusting the rotating shaft tilting means provided in at least three places on the outer periphery of the rotating member;
Towards the traveling direction when approximating the said holding table and the polishing tool by said horizontal moving means, a first angle of the rotation axis of the rotating member with respect to the direction perpendicular to the holding surface of the holding table Just tilt and
The polishing tool is provided in a region where the polishing surface of the polishing tool , which is moved by the operation of the vertical axis direction moving means and the horizontal direction moving means , rides on the outer peripheral end of the surface to be polished of the object to be polished. In order to reduce the elastic deformation of the polished surface of the elastic body, the polishing tool is applied to the outer peripheral end of the polished surface of the object to be polished in a direction orthogonal to the traveling direction of the rotation axis of the rotating member . second angle that the height relative to the surface to be polished in the area riding of the polishing surface, higher than the height relative to the surface to be polished in the region where the polishing surface of the polishing tool to escape from the outer peripheral edge of the surface to be polished Just tilt and
With the rotating shaft of the rotating member inclined by the first angle and the second angle, the polishing tool is pressed against the object to be polished by the vertical axis direction moving means to apply a processing pressure to the object to be polished. While being added to the object, the polishing surface of the object to be polished and the polishing surface of the polishing tool are brought into rotational contact according to the rotation of the rotating member, and the object to be polished is polished by the horizontal movement means. Polishing the surface to be polished of the object to be polished by relatively moving the surface and the polishing surface of the polishing tool,
Polishing equipment.
前記研磨工具は、環状の研磨面をもつ、
請求項11に記載の研磨装置。
The polishing tool has an annular polishing surface;
The polishing apparatus according to claim 11.
前記研磨工具の研磨面は、前記回転部材の回転軸が前記各方向に傾斜した状態の回転する前記研磨工具を前記保持テーブルに平行な修正工具の修正面に沿って相対移動させることによってフェーシング加工されている、
請求項12に記載の研磨装置。
The polishing surface of the polishing tool is facing the processing by the rotation axis of the rotating member is relatively moved along the balancing plane parallel correction tool the abrasive tool which rotates in an inclined state wherein in each direction on the holding table Being
The polishing apparatus according to claim 12 .
当該研磨装置は、前記保持テーブルを回転させる回転手段をさらに有する、
請求項11に記載の研磨装置。
The polishing apparatus further includes a rotating unit that rotates the holding table.
The polishing apparatus according to claim 11.
当該研磨装置は、前記研磨面と前記被研磨面との間に介在させる研磨剤を供給する研磨剤供給手段をさらに有する、
請求項11に記載の研磨装置。
The polishing apparatus further includes an abrasive supply means for supplying an abrasive interposed between the polishing surface and the surface to be polished.
The polishing apparatus according to claim 11.
JP33679599A 1999-11-26 1999-11-26 Polishing apparatus and polishing method Expired - Fee Related JP4487353B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP33679599A JP4487353B2 (en) 1999-11-26 1999-11-26 Polishing apparatus and polishing method
US09/717,103 US6511362B1 (en) 1999-11-26 2000-11-22 Polishing apparatus and polishing method
TW089124787A TW510843B (en) 1999-11-26 2000-11-22 Polishing apparatus and polishing method
DE10057998A DE10057998B4 (en) 1999-11-26 2000-11-23 Polisher and polishing process
KR1020000070463A KR100731202B1 (en) 1999-11-26 2000-11-24 Polishing apparatus and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33679599A JP4487353B2 (en) 1999-11-26 1999-11-26 Polishing apparatus and polishing method

Publications (2)

Publication Number Publication Date
JP2001150339A JP2001150339A (en) 2001-06-05
JP4487353B2 true JP4487353B2 (en) 2010-06-23

Family

ID=18302764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33679599A Expired - Fee Related JP4487353B2 (en) 1999-11-26 1999-11-26 Polishing apparatus and polishing method

Country Status (5)

Country Link
US (1) US6511362B1 (en)
JP (1) JP4487353B2 (en)
KR (1) KR100731202B1 (en)
DE (1) DE10057998B4 (en)
TW (1) TW510843B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109923A (en) * 2001-09-28 2003-04-11 Sumitomo Mitsubishi Silicon Corp Device for polishing semiconductor wafer
JP2008210894A (en) * 2007-02-23 2008-09-11 Nec Electronics Corp Wafer processor
JP5030058B2 (en) * 2007-07-18 2012-09-19 Ntn株式会社 Polishing method and polishing apparatus
JP5147417B2 (en) * 2008-01-08 2013-02-20 株式会社ディスコ Wafer polishing method and polishing apparatus
JP5149020B2 (en) * 2008-01-23 2013-02-20 株式会社ディスコ Wafer grinding method
JP5393039B2 (en) * 2008-03-06 2014-01-22 株式会社荏原製作所 Polishing equipment
JP5578519B2 (en) * 2010-06-11 2014-08-27 秀和工業株式会社 Polishing apparatus and polishing method
JP5789634B2 (en) * 2012-05-14 2015-10-07 株式会社荏原製作所 Polishing pad for polishing a workpiece, chemical mechanical polishing apparatus, and method for polishing a workpiece using the chemical mechanical polishing apparatus
JP6938262B2 (en) * 2017-07-24 2021-09-22 株式会社ディスコ Wafer processing method
JP7396785B2 (en) * 2018-02-20 2023-12-12 株式会社ディスコ grinding equipment
CN109794840A (en) * 2019-02-27 2019-05-24 昆明理工大学 A kind of bearing polishing device
CN115723035B (en) * 2022-09-08 2024-05-28 西安奕斯伟材料科技股份有限公司 System, method and double-sided grinding device for monitoring processing state of grinding device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3209829A1 (en) * 1982-03-18 1983-10-06 Huels Chemische Werke Ag ORGANIC PHOSPHATING SOLUTION FOR PHOSPHATING METAL SURFACES
JP2636383B2 (en) * 1988-11-18 1997-07-30 富士通株式会社 Wafer processing method
US5498198A (en) * 1993-07-27 1996-03-12 Seiko Seiki Kabushiki Kaisha Grinding machine
AU4845396A (en) * 1996-03-04 1997-09-22 Teikoku Denso Co., Ltd. Resin disk polishing method and apparatus
JPH1058308A (en) * 1996-05-29 1998-03-03 Ebara Corp Polishing device
US5951368A (en) * 1996-05-29 1999-09-14 Ebara Corporation Polishing apparatus
JP2000005988A (en) * 1998-04-24 2000-01-11 Ebara Corp Polishing device
US6165057A (en) * 1998-05-15 2000-12-26 Gill, Jr.; Gerald L. Apparatus for localized planarization of semiconductor wafer surface
US6354907B1 (en) * 1999-03-11 2002-03-12 Ebara Corporation Polishing apparatus including attitude controller for turntable and/or wafer carrier

Also Published As

Publication number Publication date
JP2001150339A (en) 2001-06-05
US6511362B1 (en) 2003-01-28
KR20010051940A (en) 2001-06-25
TW510843B (en) 2002-11-21
DE10057998B4 (en) 2009-12-24
DE10057998A1 (en) 2001-05-31
KR100731202B1 (en) 2007-06-22

Similar Documents

Publication Publication Date Title
KR100363039B1 (en) Polishing apparatus and method with constant polishing pressure
JP3076291B2 (en) Polishing equipment
JP4487353B2 (en) Polishing apparatus and polishing method
JP2007260850A (en) Flattening device of semiconductor substrate and flattening method
JPH09103955A (en) Method and apparatus for adjusting abrading pad at normal position
JP2000015557A (en) Polishing device
WO2000063963A1 (en) Non-abrasive conditioning for polishing pads
JP3632500B2 (en) Rotating machine
US20030022605A1 (en) Polishing apparatus and method with belt drive system adapted to extend the lifetime of a refreshing polishing belt provided therein
JP4860192B2 (en) Wafer manufacturing method
WO2001027350A1 (en) Optimal offset, pad size and pad shape for cmp buffing and polishing
JP4143763B2 (en) Polishing equipment
US6913525B2 (en) CMP device and production method for semiconductor device
JPH09168953A (en) Semiconductor wafer edge polishing method and device
JP5218886B2 (en) Double-side polishing equipment
US12030157B2 (en) Processing method
JP2000158306A (en) Both-surface grinding device
TW466150B (en) Non-abrasive conditioning for polishing pads
US20240058922A1 (en) Workpiece processing method
KR20010040249A (en) Polishing apparatus and method for producing semiconductors using the apparatus
JP3427670B2 (en) Polishing apparatus and polishing method
US20230142939A1 (en) MANUFACTURING METHOD OF SiC SUBSTRATE
JP2001269855A (en) Polishing device and polishing method
JPH029535A (en) Method and device of manufacturing thin base sheet
US6676496B2 (en) Apparatus for processing semiconductor wafers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees