JP2001269855A - Polishing device and polishing method - Google Patents

Polishing device and polishing method

Info

Publication number
JP2001269855A
JP2001269855A JP2000087093A JP2000087093A JP2001269855A JP 2001269855 A JP2001269855 A JP 2001269855A JP 2000087093 A JP2000087093 A JP 2000087093A JP 2000087093 A JP2000087093 A JP 2000087093A JP 2001269855 A JP2001269855 A JP 2001269855A
Authority
JP
Japan
Prior art keywords
polishing
polished
wafer
polishing tool
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000087093A
Other languages
Japanese (ja)
Inventor
Keiichi Kimura
景一 木村
Motohisa Haga
元久 羽賀
Osamu Morikawa
修 森川
Norihisa Kawamura
徳久 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2000087093A priority Critical patent/JP2001269855A/en
Publication of JP2001269855A publication Critical patent/JP2001269855A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polishing device and a polishing method capable of suppressing the excessive polishing of the outer peripheral end part of the polished face of a polished body such as a semiconductor wafer. SOLUTION: The polishing face 8a of a polishing tool 8 is brought into contact with the polished face of the wafer W so that a low-pressure region PL in the pressure distribution PR occurring at a contact part between the polishing face 8a and the polished face of the wafer W is located at the outer peripheral end part EG of the polished face and a high-pressure region PH is located on the inside of the polished face. After the polishing face 8a is brought into contact with the polished face, the polishing tool 8 is relatively moved in the radial direction of the wafer W for polishing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、研磨装置および研
磨方法に関する。
[0001] The present invention relates to a polishing apparatus and a polishing method.

【0002】[0002]

【従来の技術】半導体装置の高集積化、多層配線化が進
むにつれて、半導体装置の製造工程では、各種層間絶縁
膜あるいはその他の膜の平坦化が重要となっている。平
坦化のための技術としては、種々の手段が提案されてい
るが、近年、シリコンウェーハのミラーポリシング技術
を応用したCMP(Chemical Mechanical Polishing:化
学的機械研磨)法が注目され、これを利用して平坦化を
図る方法が開発されている。CMP法を用いた研磨装置
の一例を図14に示す。図14に示す研磨装置301
は、円筒状の研磨工具302を回転させる主軸スピンド
ル303と、ウェーハWを保持するテーブル304とを
有する。テーブル304は、レール305に沿ってX軸
方向に移動自在に設けられたスライダ306の上に回転
自在に装着してあり、たとえば、モータ、プーリ、ベル
ト等によって構成される回転駆動手段によって回転駆動
される。主軸スピンドル303は、Z軸方向に移動自在
に保持されており、図示しない駆動機構によってZ軸方
向の目標位置に位置決めされる。上記構成の研磨装置3
01では、まず、ウェーハWが所定の回転数で回転さ
れ、ウェーハW上に、たとえば、酸化シリコン等の研磨
砥粒を水酸化カリウムの水溶液等の液体に混ぜた研磨剤
としてのスラリーが図示しないスラリー供給装置からウ
ェーハW上に供給される。次に、研磨工具302が所定
の回転数で回転され、研磨工具302の外周端部がウェ
ーハWの外周端部に重なり合って接触するように、ウェ
ーハWおよび研磨工具302がX軸およびZ軸方向に位
置決めされる。研磨工具302はウェーハWに対して所
定の切り込み量となるようにZ軸方向に位置決めされ、
これにより、研磨工具302とウェーハWとの間には所
定の加工圧力が発生する。この状態で、ウェーハWが所
定の速度パターンでX軸方向に移動され、研磨工具30
2がウェーハWに接触しながらウェーハWの研磨加工が
行われウェーハWが平坦化される。
2. Description of the Related Art As semiconductor devices become more highly integrated and multi-layered, flattening of various interlayer insulating films or other films becomes more important in the process of manufacturing semiconductor devices. Various means have been proposed as a technique for planarization. In recent years, a CMP (Chemical Mechanical Polishing) method which applies a mirror polishing technique of a silicon wafer has attracted attention and is utilized. A method for flattening has been developed. FIG. 14 shows an example of a polishing apparatus using the CMP method. Polishing device 301 shown in FIG.
Has a main spindle 303 for rotating a cylindrical polishing tool 302 and a table 304 for holding a wafer W. The table 304 is rotatably mounted on a slider 306 provided movably in the X-axis direction along a rail 305, and is rotatably driven by a rotary drive unit including, for example, a motor, a pulley, a belt, and the like. Is done. The main spindle 303 is held movably in the Z-axis direction, and is positioned at a target position in the Z-axis direction by a drive mechanism (not shown). Polishing device 3 having the above configuration
In FIG. 01, first, the wafer W is rotated at a predetermined rotation speed, and a slurry as an abrasive obtained by mixing abrasive grains such as silicon oxide with a liquid such as an aqueous solution of potassium hydroxide is not shown on the wafer W. The slurry is supplied onto the wafer W from the slurry supply device. Next, the wafer W and the polishing tool 302 are rotated in the X-axis and Z-axis directions so that the polishing tool 302 is rotated at a predetermined number of revolutions, and the outer peripheral edge of the polishing tool 302 overlaps and comes into contact with the outer peripheral edge of the wafer W. Is positioned. The polishing tool 302 is positioned in the Z-axis direction so as to have a predetermined cutting amount with respect to the wafer W,
As a result, a predetermined processing pressure is generated between the polishing tool 302 and the wafer W. In this state, the wafer W is moved in the X-axis direction at a predetermined speed pattern, and the polishing tool 30 is moved.
While the wafer 2 is in contact with the wafer W, the wafer W is polished and the wafer W is flattened.

【0003】[0003]

【発明が解決しようとする課題】ところで、研磨工具3
02は、リング状の部材からなり、発泡ポリウレタン等
の樹脂から形成されている弾性体である。この研磨工具
302は所定加工圧力でウェーハWの表面に押し付けら
れる。このため、ウェーハWに押し付けられた研磨工具
302は弾性変形する。また、図15に示すように、矢
印R1の向きに回転する研磨工具302が矢印R1とは
反対向きの矢印R2の向きに回転するウェーハWに対し
て加工進行方向Dに移動すると、研磨工具302の円A
で示す領域は、ウェーハWの外側からウェーハW内に乗
り上げる。この乗り上げ領域では、研磨工具302は、
たとえば、図16(a)に示すように、研磨工具302
の研磨面302aがウェーハWの外周端部EGからウェ
ーハWの表面上に乗り上げるため、研磨工具302の研
磨面302aは弾性変形し、外周端部EG近傍に位置す
るウェーハW表面に乗り上げ寸前の研磨面302aは、
ウェーハWの表面に対して下方に突き出た状態になる。
上記のように研磨工具302の研磨面302aが弾性変
形すると、研磨面302aのウェーハWの表面に対して
下方に突き出た部分は、ウェーハWの外周端部EGに強
く接触し、応力集中により端部において局所的に圧力が
高くなる結果、ウェーハWの外周端部にダメージを与え
る。一方、図15において円Bで示す研磨工具302が
ウェーハW内からウェーハWの外側に逃げる領域では、
図16(b)に示すように、研磨工具302の研磨面3
02aがウェーハWの表面上から外周端部EGを通過し
て離れるため、弾性変形した研磨工具302の研磨面3
02aは、ウェーハWの外周端部EGから離れ、応力が
緩和されながら変形が復元される。また、この領域で
は、流体力学的現象による圧力の上昇も生じる。このた
め、研磨工具302がウェーハW内からウェーハWの外
側に逃げる領域では、ウェーハWの外周端部にダメージ
が発生しにくい。
By the way, the polishing tool 3
Reference numeral 02 denotes an elastic body formed of a ring-shaped member and formed of a resin such as polyurethane foam. The polishing tool 302 is pressed against the surface of the wafer W at a predetermined processing pressure. Therefore, the polishing tool 302 pressed against the wafer W is elastically deformed. As shown in FIG. 15, when the polishing tool 302 rotating in the direction of the arrow R1 moves in the processing progress direction D with respect to the wafer W rotating in the direction of the arrow R2 opposite to the arrow R1, the polishing tool 302 Circle A
The region indicated by runs over the wafer W from outside the wafer W. In this riding region, the polishing tool 302
For example, as shown in FIG.
The polishing surface 302a of the polishing tool 302 is elastically deformed because the polishing surface 302a of the polishing tool 302 rides on the surface of the wafer W from the outer peripheral edge EG of the wafer W, and the polishing just before the polishing surface 302a rides on the surface of the wafer W located near the outer peripheral edge EG. The surface 302a
The wafer W is projected downward from the surface of the wafer W.
When the polishing surface 302a of the polishing tool 302 is elastically deformed as described above, the portion of the polishing surface 302a protruding downward with respect to the surface of the wafer W comes into strong contact with the outer peripheral end portion EG of the wafer W, and the end portion due to stress concentration. As a result, the outer peripheral edge of the wafer W is damaged. On the other hand, in a region where the polishing tool 302 indicated by a circle B in FIG.
As shown in FIG. 16B, the polishing surface 3 of the polishing tool 302
02a is separated from the surface of the wafer W through the outer peripheral end EG, so that the polishing surface 3 of the polishing tool 302 elastically deformed.
02a is separated from the outer peripheral end EG of the wafer W, and the deformation is restored while the stress is relaxed. In this region, a pressure increase due to a hydrodynamic phenomenon also occurs. For this reason, in a region where the polishing tool 302 escapes from the inside of the wafer W to the outside of the wafer W, the outer peripheral edge of the wafer W is hardly damaged.

【0004】上記のような研磨面302aの突き出た部
分によるウェーハWの外周端部EGへのダメージが蓄積
されると、ウェーハWは回転しているため、たとえば、
図17に示すように、ウェーハWの外周部の全域に過剰
研磨された過剰研磨部352が形成されてしまう。過剰
研磨部352が形成されると、1枚のウェーハW上に形
成される半導体チップの取り数が少なくなり、歩留りが
低下するという不利益がある。また、研磨工具302の
研磨面302aがウェーハWの外周端部EGに乗り上げ
る領域では、研磨面302aへのダメージも大きく、研
磨面302aの品質が急激に劣化しやすく、このため、
加工条件の変動が起こりやすくなる。加工条件の変動を
防ぐために、研磨面302aをドレッシング等の手段に
よってコンディショニングする必要があり、研磨面30
2aの状態を適切にするためコンディショニングする頻
度が増すと研磨装置の生産性が低下してしまうという不
利益も存在した。
When damage to the outer peripheral edge EG of the wafer W due to the protruding portion of the polishing surface 302a as described above is accumulated, the wafer W is rotated.
As shown in FIG. 17, an excessively polished portion 352 that is excessively polished is formed over the entire outer peripheral portion of the wafer W. When the excessively polished portion 352 is formed, the number of semiconductor chips formed on one wafer W is reduced, and there is a disadvantage that the yield is reduced. Further, in a region where the polishing surface 302a of the polishing tool 302 rides on the outer peripheral edge EG of the wafer W, damage to the polishing surface 302a is large, and the quality of the polishing surface 302a is apt to be rapidly deteriorated.
Variations in processing conditions are likely to occur. In order to prevent the processing conditions from fluctuating, it is necessary to condition the polished surface 302a by means such as dressing.
If the frequency of conditioning to make the state of 2a appropriate is increased, there is also a disadvantage that productivity of the polishing apparatus is reduced.

【0005】本発明は、上述の問題に鑑みて成されたも
のであって、その目的は、半導体ウェーハ等の被研磨体
の被研磨面の外周端部の過剰研磨を抑制することができ
る研磨装置および研磨方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has as its object to provide a polishing method capable of suppressing excessive polishing of the outer peripheral edge of a surface to be polished of a body to be polished such as a semiconductor wafer. An object of the present invention is to provide an apparatus and a polishing method.

【0006】[0006]

【課題を解決するための手段】本発明の研磨方法は、被
研磨体を保持する保持面に垂直な方向に対して回転軸が
傾斜した回転する研磨工具の研磨面を、回転する前記被
研磨体の被研磨面に相対的に押し付けて前記研磨面を前
記被研磨面に部分的に接触させ、前記研磨工具と前記被
研磨体とを移動させて前記接触部を前記被研磨面内で移
動させることによって当該被研磨面の加工を行う研磨方
法であって、前記接触部に発生する中心部に高圧力領域
をもち周辺部に低圧力領域をもつ圧力分布のうち、少な
くとも前記高圧力領域が常に前記被研磨面の外周端部か
ら離れた状態で当該被研磨面内に収まるように、前記研
磨工具と前記被研磨体との相対位置を制御しつつ前記被
研磨面の加工を行う。
According to the present invention, there is provided a polishing method comprising the steps of: rotating a polishing surface of a rotating polishing tool whose rotation axis is inclined with respect to a direction perpendicular to a holding surface for holding an object to be polished; Relatively pressing against the surface to be polished of the body to bring the polishing surface into partial contact with the surface to be polished, moving the polishing tool and the object to be polished, and moving the contact portion within the surface to be polished A polishing method for processing the surface to be polished by causing the high pressure region at least in the pressure distribution having a high pressure region in the center and a low pressure region in the peripheral portion generated in the contact portion. The processing of the surface to be polished is performed while controlling the relative position between the polishing tool and the object to be polished so that the polishing tool always stays within the surface to be polished away from the outer peripheral end of the surface to be polished.

【0007】前記接触部の低圧力領域で前記被研磨面の
外周端部の研磨を行う。
The outer peripheral edge of the surface to be polished is polished in a low pressure region of the contact portion.

【0008】前記研磨面と前記被研磨面との接触部に発
生する圧力分布のうち、前記低圧力領域が前記被研磨面
の外周端部に位置し、かつ、前記高圧力領域が前記被研
磨面の内部に位置するように、前記研磨工具の研磨面を
前記被研磨体の被研磨面に接触させ、前記前記研磨面と
前記被研磨面とを接触させた後、前記研磨工具を前記被
研磨体の半径方向に相対移動させて研磨する。
In the pressure distribution generated at the contact portion between the polished surface and the surface to be polished, the low pressure region is located at the outer peripheral end of the surface to be polished, and the high pressure region is the polished surface. The polishing surface of the polishing tool is brought into contact with the surface to be polished of the object to be polished so as to be located inside the surface, and the polishing surface is brought into contact with the surface to be polished. Polishing is performed by relative movement in the radial direction of the polishing body.

【0009】前記研磨工具は、前記被研磨体との接触に
よって弾性変形する。
The polishing tool is elastically deformed by contact with the object to be polished.

【0010】前記接触部に発生する圧力分布の輪郭形状
は、前記研磨工具の進行方向に直交する向きに伸びる三
日月状である。
[0010] The contour of the pressure distribution generated at the contact portion is a crescent extending in a direction perpendicular to the traveling direction of the polishing tool.

【0011】前記三日月形状の圧力分布は、中心部が最
大圧力をもち周辺部に向かって圧力が低下する。
In the crescent-shaped pressure distribution, the central part has the maximum pressure and the pressure decreases toward the peripheral part.

【0012】本発明の研磨装置は、被研磨体を保持する
保持面に垂直な方向に対して回転軸が傾斜した回転する
研磨工具の研磨面を、回転する前記被研磨体の被研磨面
に相対的に押し付けて前記研磨面を前記被研磨面に部分
的に接触させ、前記研磨工具と前記被研磨体とを移動さ
せて前記接触部を前記被研磨面内で移動させることによ
って当該被研磨面の加工を行う研磨装置であって、前記
接触部に発生する中心部に高圧力領域をもち周辺部に低
圧力領域をもつ圧力分布のうち、少なくとも前記高圧力
領域が常に前記被研磨面の外周端部から離れた状態で当
該被研磨面内に収まるように、前記研磨工具と前記被研
磨体との相対位置を制御する制御手段を備える。
A polishing apparatus according to the present invention is characterized in that a polishing surface of a rotating polishing tool whose rotation axis is inclined with respect to a direction perpendicular to a holding surface for holding an object to be polished, By relatively pressing the polishing surface to partially contact the surface to be polished, moving the polishing tool and the object to be polished to move the contact portion within the surface to be polished, A polishing apparatus for processing a surface, wherein, of the pressure distribution having a high pressure region in a central portion generated in the contact portion and a low pressure region in a peripheral portion, at least the high pressure region is always a surface of the polished surface. Control means is provided for controlling a relative position between the polishing tool and the object to be polished so as to be contained in the surface to be polished away from the outer peripheral end.

【0013】本発明では、研磨工具の研磨面を被研磨体
の被研磨面に押し付けると、研磨工具の回転軸は研磨工
具の進行方向に向かって傾斜していることから、研磨面
は被研磨に部分的に接触する。研磨面と被研磨面との部
分的な接触によって、研磨面の接触部は弾性変形し、こ
の接触部には圧力が発生する。接触部に発生した圧力は
中心部に高圧力領域をもち、周辺部に低圧力領域をもつ
三日月状の圧力分布となる。たとえば、回転する研磨工
具の研磨面が被研磨体の外側から被研磨面に乗り上げる
位置で、研磨面の接触部の高圧力領域が被研磨面の外周
端部上にあると、研磨面は高い圧力によって大きく弾性
変形し、被研磨面の外周端部に応力が集中して被研磨面
の外周端部が過剰に研磨されることになる。このため、
本発明では、研磨面の接触部の高圧力領域が常に被研磨
面の外周端部から離れた状態で当該被研磨面内に収まる
ように、研磨工具と研磨面の接触部の高圧力領域が被研
磨面の外周端部に位置しないように研磨工具と被研磨体
の装置位置を制御する。
In the present invention, when the polishing surface of the polishing tool is pressed against the surface to be polished of the object to be polished, the rotation axis of the polishing tool is inclined toward the traveling direction of the polishing tool. Partially contacts Due to the partial contact between the polished surface and the polished surface, the contact portion of the polished surface is elastically deformed, and pressure is generated at this contact portion. The pressure generated at the contact portion has a crescent-shaped pressure distribution having a high pressure region at the center and a low pressure region at the periphery. For example, when the polishing surface of the rotating polishing tool rides on the surface to be polished from the outside of the object to be polished, and the high pressure region of the contact portion of the polishing surface is on the outer peripheral end of the surface to be polished, the polishing surface is high The material is largely elastically deformed by the pressure, stress is concentrated on the outer peripheral edge of the polished surface, and the outer peripheral edge of the polished surface is excessively polished. For this reason,
In the present invention, the high pressure region of the contact portion between the polishing tool and the polishing surface is such that the high pressure region of the contact portion of the polishing surface always falls within the surface to be polished in a state away from the outer peripheral end of the surface to be polished. The apparatus position of the polishing tool and the object to be polished is controlled so as not to be located at the outer peripheral end of the surface to be polished.

【0014】また、本発明では、被研磨面の外周端部に
研磨工具と研磨面の接触部の高圧力領域を位置させない
代わりに、研磨面の接触部の低圧力領域を位置させ、こ
の低圧力領域によって被研磨面の外周端部を研磨する。
被研磨面の外周端部は研磨面の接触部の低圧力領域によ
って研磨されるため、被研磨面の外周端部の過剰研磨が
抑制される。
In the present invention, instead of positioning the high-pressure region of the contact portion between the polishing tool and the polishing surface at the outer peripheral end of the surface to be polished, the low-pressure region of the contact portion of the polishing surface is positioned. The outer peripheral edge of the surface to be polished is polished by the pressure region.
Since the outer peripheral edge of the polished surface is polished by the low-pressure region of the contact portion of the polished surface, excessive polishing of the outer peripheral edge of the polished surface is suppressed.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。図1は、本発明が適用され
る研磨装置の構成を示す図である。図1に示す研磨装置
1は、研磨工具8と、研磨工具8を回転保持する主軸ス
ピンドル21と、主軸スピンドル21をZ軸方向に移動
位置決めするZ軸移動機構11と、ウェーハWを保持し
回転させる保持テーブル41と、保持テーブル41をX
軸方向に移動させるX軸移動機構51と、制御装置10
1とを備える。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration of a polishing apparatus to which the present invention is applied. The polishing apparatus 1 shown in FIG. 1 includes a polishing tool 8, a spindle spindle 21 for rotating and holding the polishing tool 8, a Z-axis moving mechanism 11 for moving and positioning the spindle spindle 21 in the Z-axis direction, and a wafer W for holding and rotating. Holding table 41 to be held and X
An X-axis moving mechanism 51 for moving in the axial direction;
1 is provided.

【0016】主軸スピンドル21は、研磨工具8を保持
しており、この研磨工具8を回転軸K1を中心に回転さ
せる。この主軸スピンドル21は、内部に主軸23、こ
の主軸23を回転自在に保持する静圧軸受、および主軸
22を回転させるサーボモータを内蔵している。また、
主軸スピンドル21は、スピンドルホルダ20に保持さ
れている。スピンドルホルダ20は、コラム3に対して
図示しないガイドによってZ軸方向に沿って移動自在に
保持されている。さらに、主軸スピンドル21の外周の
所定の位置には、研磨剤としてのスラリーおよび純水を
ウェーハW上に供給するスラリー/純水供給ノズル81
が設けられている。
The main spindle 21 holds the polishing tool 8, and rotates the polishing tool 8 about a rotation axis K1. The spindle 21 incorporates therein a spindle 23, a hydrostatic bearing for rotatably holding the spindle 23, and a servomotor for rotating the spindle 22. Also,
The main spindle 21 is held by a spindle holder 20. The spindle holder 20 is movably held on the column 3 by a guide (not shown) along the Z-axis direction. Further, a slurry / pure water supply nozzle 81 for supplying slurry as slurry and pure water onto the wafer W is provided at a predetermined position on the outer periphery of the main spindle 21.
Is provided.

【0017】Z軸移動機構11は、ベース2上に立設さ
れた門型のコラム3にZ軸方向(垂直方向)に沿って設
けられており、主軸スピンドル21をZ軸方向に移動自
在に保持している。Z軸移動機構11は、研磨工具8の
研磨面8aがウェーハWの被研磨面に対向する方向に保
持し、当該対向方向の研磨面8aのウェーハWの被研磨
面に対する相対位置を決定する。具体的には、Z軸移動
機構11は、コラム3に固定されたサーボモータ12
と、サーボモータ12と接続されたネジが形成されたネ
ジ軸13と、ネジ軸13と螺合するネジ部が形成されス
ピンドルホルダ20に連結されたZ軸スライダ14とを
備えている。サーボモータ12を回転駆動することによ
り、Z軸スライダ14がZ軸方向に沿って上昇または下
降し、Z軸スライダ14に連結されたスピンドルホルダ
20がZ軸方向に沿って上昇または下降する。これによ
り、サーボモータ12の回転量を制御することで、研磨
工具8のZ軸方向の位置決めを行うことができる。
The Z-axis moving mechanism 11 is provided along the Z-axis direction (vertical direction) on the portal column 3 erected on the base 2 so that the main spindle 21 can be moved in the Z-axis direction. keeping. The Z-axis moving mechanism 11 holds the polishing surface 8a of the polishing tool 8 in a direction facing the surface to be polished of the wafer W, and determines the relative position of the polishing surface 8a in the facing direction to the surface to be polished of the wafer W. Specifically, the Z-axis moving mechanism 11 includes a servo motor 12 fixed to the column 3.
And a screw shaft 13 formed with a screw connected to the servomotor 12, and a Z-axis slider 14 formed with a screw portion to be screwed with the screw shaft 13 and connected to the spindle holder 20. By driving the servo motor 12 to rotate, the Z-axis slider 14 moves up or down along the Z-axis direction, and the spindle holder 20 connected to the Z-axis slider 14 moves up or down along the Z-axis direction. Thus, by controlling the amount of rotation of the servomotor 12, the polishing tool 8 can be positioned in the Z-axis direction.

【0018】保持テーブル41は、被研磨体としてのウ
ェーハWを保持する水平方向に平行に設けられた保持プ
レート41aを備えており、ウェーハWを保持プレート
41aに、たとえば、真空吸着等のチャキング手段によ
ってチャッキングする。また、保持テーブル41は、た
とえば、サーボモータを備えており、これによりウェー
ハWを回転させる。
The holding table 41 is provided with a holding plate 41a provided in parallel with the horizontal direction for holding a wafer W as an object to be polished. The wafer W is held on the holding plate 41a by, for example, chucking means such as vacuum suction. Chucking by. Further, the holding table 41 includes, for example, a servomotor, and thereby rotates the wafer W.

【0019】X軸移動機構51は、サーボモータ55
と、サーボモータ55に接続されたネジが形成されたネ
ジ軸54と、ネジ軸54に螺合するネジ部が形成された
X軸スライダ53と、X軸スライダ53に連結され、X
軸方向に図示しないガイドによって移動自在に保持さ
れ、上記の保持テーブル41が設置されたX軸テーブル
52とを備える。このX軸移動機構51は、保持テーブ
ル41を保持しており、研磨工具8とウェーハWとを保
持テーブル41の保持プレート41aに沿って相対的に
移動させる。すなわち、サーボモータ55を回転駆動す
ることにより、X軸スライダ53はX軸方向のいずれか
の向きに移動し、X軸テーブル52もX軸方向のいずれ
かの向きに移動し、保持テーブル41の保持プレート4
1aは水平面に沿ってX軸方向のいずれかの方向に移動
するため、ウェーハWと研磨工具8とは保持テーブル4
1の保持プレート41aに沿って相対的に移動する。
The X-axis moving mechanism 51 includes a servo motor 55
And a screw shaft 54 formed with a screw connected to the servomotor 55, an X-axis slider 53 formed with a screw portion screwed to the screw shaft 54, and an X-axis slider 53 connected to the X-axis slider 53.
An X-axis table 52, which is movably held in the axial direction by a guide (not shown) and on which the above-described holding table 41 is installed, is provided. The X-axis moving mechanism 51 holds the holding table 41, and relatively moves the polishing tool 8 and the wafer W along the holding plate 41a of the holding table 41. That is, by driving the servo motor 55 to rotate, the X-axis slider 53 moves in any direction in the X-axis direction, and the X-axis table 52 also moves in any direction in the X-axis direction. Holding plate 4
1a moves in any direction along the horizontal plane in the X-axis direction.
It relatively moves along the first holding plate 41a.

【0020】研磨工具8は、主軸22の下端面に固定さ
れており、ウェーハWに押し付けられることによって弾
性変形する弾性体からなる円筒状の部材である。研磨工
具8の形成材料としては、たとえば、発泡性ポリウレタ
ン等の樹脂や、たとえば、酸化セリウム(CeO2 )か
らなる砥粒を軟質結合材で固めたものを用いることがで
きる。軟質結合材としては、たとえば、メラミン樹脂、
ウレタン樹脂、またはフェノール樹脂を用いることがで
きる。研磨工具8は、基本的には、円筒状の部材の下端
面に回転軸K1に垂直な平面に略平行な環状の端面を有
しており、これがウェーハWの被研磨面を加工する研磨
面8aとなる。この研磨工具8の研磨面8aは、後述す
る研磨工具8の回転軸Kの傾斜角度αに応じてフェーシ
ングされ、回転軸Kの傾斜角度αと同じ角度で傾斜した
円錐面とした状態で使用される。研磨工具8は、直径8
インチのウェーハを研磨する場合には、たとえば、直径
200(mm)×幅20(mm)×厚さ20(mm)の
寸法のものを使用することができる。すなわち、ウェー
ハWの直径と研磨工具8の外径とは略同じである。
The polishing tool 8 is a cylindrical member fixed to the lower end surface of the main shaft 22 and made of an elastic body which is elastically deformed when pressed against the wafer W. As a material for forming the polishing tool 8, for example, a resin such as foamable polyurethane or a material obtained by solidifying abrasive grains made of, for example, cerium oxide (CeO 2 ) with a soft binder can be used. As the soft binder, for example, melamine resin,
A urethane resin or a phenol resin can be used. The polishing tool 8 basically has an annular end surface substantially parallel to a plane perpendicular to the rotation axis K1 on the lower end surface of the cylindrical member, and this is a polishing surface for processing the polished surface of the wafer W. 8a. The polishing surface 8a of the polishing tool 8 is faced in accordance with the inclination angle α of the rotation axis K of the polishing tool 8 described later, and is used in the state of a conical surface inclined at the same angle as the inclination angle α of the rotation axis K. You. The polishing tool 8 has a diameter of 8
When polishing an inch wafer, for example, a wafer having a diameter of 200 (mm) × a width of 20 (mm) × a thickness of 20 (mm) can be used. That is, the diameter of the wafer W and the outer diameter of the polishing tool 8 are substantially the same.

【0021】制御装置101は、X軸移動機構51のサ
ーボモータ55を駆動制御し、ウェーハWのX軸送り方
向の位置制御および速度制御を行う。また、制御装置1
01は、Z軸移動機構11のサーボモータ12を駆動制
御し、研磨工具8のZ軸方向の位置制御を行う。また、
制御装置101は、主軸22を回転させるサーボモータ
を駆動制御して、研磨工具8の回転制御を行う。また、
制御装置101は、保持テーブル41を回転させるサー
ボモータを駆動制御して、ウェーハWの回転制御を行
う。この制御装置101は、ウェーハWのX軸送り方向
の位置制御および速度制御と研磨工具8のZ軸方向の位
置制御とによって、研磨工具8とウェーハWとの相対位
置の制御を行うが、制御装置101の具体的な制御方法
については後述する。
The control device 101 controls the driving of the servomotor 55 of the X-axis moving mechanism 51 to control the position and speed of the wafer W in the X-axis feed direction. Also, the control device 1
01 controls the drive of the servo motor 12 of the Z-axis moving mechanism 11 to control the position of the polishing tool 8 in the Z-axis direction. Also,
The control device 101 controls the drive of a servomotor that rotates the main shaft 22 to control the rotation of the polishing tool 8. Also,
The control device 101 drives and controls a servomotor that rotates the holding table 41 to control the rotation of the wafer W. The control device 101 controls the relative position between the polishing tool 8 and the wafer W by controlling the position and speed of the wafer W in the X-axis feed direction and the position of the polishing tool 8 in the Z-axis direction. A specific control method of the device 101 will be described later.

【0022】図2は、上記構成の研磨装置1の主軸スピ
ンドル21とスピンドルホルダ20との間に設けられ、
主軸スピンドル21(研磨工具8)の回転軸K1を保持
テーブル41の保持プレート41aに垂直な軸K2に対
する傾斜量を調整する回転軸傾斜機構を説明するための
図である。図2において、主軸スピンドル21の外周に
はフランジ部24が形成されている。この主軸スピンド
ル21のフランジ部24の上側の挿入軸部27は、フラ
ンジ部24に近い位置では平行部となっており、上方に
いくにしたがって先細りのテーパ面となっており、この
挿入軸部27にスピンドルホルダ20の嵌合孔20bが
嵌合挿入される。また、回転軸傾斜機構61は、主軸ス
ピンドル21の外周に形成されたフランジ部24の上端
面24aとスピンドルホルダ20の下端面20aとの間
に設けられている。回転軸傾斜機構61は、たとえば、
フランジ部24の周方向の等間隔に位置する3ヶ所に設
けられている。
FIG. 2 is provided between the main spindle 21 and the spindle holder 20 of the polishing apparatus 1 having the above configuration.
FIG. 7 is a diagram for explaining a rotation axis tilting mechanism that adjusts a tilt amount of a rotation axis K1 of a spindle spindle 21 (polishing tool 8) with respect to an axis K2 perpendicular to a holding plate 41a of a holding table 41. In FIG. 2, a flange 24 is formed on the outer periphery of the spindle 21. The insertion shaft portion 27 above the flange portion 24 of the spindle spindle 21 is a parallel portion at a position close to the flange portion 24, and has a tapered surface tapering upward. The fitting hole 20b of the spindle holder 20 is fitted and inserted into the spindle holder 20. The rotating shaft tilting mechanism 61 is provided between the upper end surface 24 a of the flange 24 formed on the outer periphery of the main spindle 21 and the lower end surface 20 a of the spindle holder 20. The rotation axis tilting mechanism 61 includes, for example,
It is provided at three places located at equal intervals in the circumferential direction of the flange portion 24.

【0023】フランジ部24の上端面24aは、主軸ス
ピンドル21(研磨工具8)の回転軸K1に垂直な平面
に平行な面である。また、回転軸傾斜機構61は、2つ
の傾斜調整用ブロック62および63を備えている。こ
れら傾斜調整用ブロック62と傾斜調整用ブロック63
との相対位置関係を調整することによって、主軸スピン
ドル21のフランジ部24の上端面24aとスピンドル
ホルダ20の下端面20aとの距離を調整できる。した
がって、3か所に設けられた回転軸傾斜機構61を調整
することで、主軸スピンドル21(研磨工具8)の回転
軸K1の回転テーブル41の保持プレート41aに垂直
な軸K2に対する傾斜角度を任意に調整することがで
き、かつ、任意の方向に傾斜させることができる。
The upper end surface 24a of the flange portion 24 is a surface parallel to a plane perpendicular to the rotation axis K1 of the spindle spindle 21 (polishing tool 8). Further, the rotating shaft tilting mechanism 61 includes two tilt adjusting blocks 62 and 63. The tilt adjusting block 62 and the tilt adjusting block 63
By adjusting the relative positional relationship between the upper end surface 24a and the lower end surface 20a of the spindle holder 20, the distance between the upper end surface 24a of the flange portion 24 of the main spindle 21 and the lower end surface 20a of the spindle holder 20 can be adjusted. Therefore, by adjusting the rotation axis tilt mechanisms 61 provided at three locations, the tilt angle of the rotation axis K1 of the spindle spindle 21 (polishing tool 8) with respect to the axis K2 perpendicular to the holding plate 41a of the rotary table 41 can be set to any value. And can be inclined in any direction.

【0024】次に、上記した研磨装置1を用いた本発明
の研磨方法について説明する。まず、研磨装置1の回転
軸傾斜機構61を調整して、研磨工具8の回転軸K1を
回転テーブル41の保持プレート41aに平行な平面に
垂直な方向に対して研磨工具8の進行方向に向けて所定
の角度傾斜させる。具体的には、図3に示すように、研
磨工具8の回転軸K1を、回転テーブル41の保持プレ
ート41aに平行な平面(XーY平面)に垂直な軸Oに
対して研磨工具8のウェーハWに対する相対的な進行方
向D(研磨加工の進む方向)に向けて角度αで傾斜させ
る。研磨工具8の回転軸K1の傾斜角度αは、ウェーハ
Wに直径8インチのものを使用した場合に、たとえば、
図3に示す研磨工具8の研磨面8aのX軸方向に関する
前後端部のZ軸方向の高低差Hαが数μm〜数百μm/
200mm程度の値に設定される。すなわち、8インチ
の長さに対して数μm〜数百μm程度の傾斜角度であ
る。なお、研磨工具8は、回転軸K1が傾斜角度αで傾
斜した状態で、研磨面8aが水平面に沿って予めフェー
シング加工されており、研磨面8aが傾斜角度αと同じ
角度で傾斜した状態となっている。
Next, a polishing method of the present invention using the above-described polishing apparatus 1 will be described. First, the rotation axis tilting mechanism 61 of the polishing apparatus 1 is adjusted so that the rotation axis K1 of the polishing tool 8 is oriented in the direction of travel of the polishing tool 8 with respect to a direction perpendicular to a plane parallel to the holding plate 41a of the turntable 41. To a predetermined angle. Specifically, as shown in FIG. 3, the rotation axis K1 of the polishing tool 8 is set with respect to an axis O perpendicular to a plane (XY plane) parallel to the holding plate 41a of the rotary table 41. It is inclined at an angle α toward a traveling direction D relative to the wafer W (a direction in which polishing proceeds). When the inclination angle α of the rotation axis K1 of the polishing tool 8 is 8 inches in diameter for the wafer W, for example,
The height difference Hα in the Z-axis direction at the front and rear ends of the polishing surface 8a of the polishing tool 8 shown in FIG. 3 in the X-axis direction is several μm to several hundred μm /.
It is set to a value of about 200 mm. That is, the inclination angle is about several μm to several hundred μm with respect to the length of 8 inches. The polishing tool 8 has a state in which the polishing surface 8a has been subjected to facing processing in advance along a horizontal plane in a state where the rotation axis K1 is inclined at the inclination angle α, and the polishing surface 8a is inclined at the same angle as the inclination angle α. Has become.

【0025】次いで、回転軸K1が傾斜角度αで傾斜し
た状態の研磨装置1において、図3に示すように、ウェ
ーハWの裏面を回転テーブル41の保持プレート41a
上に固定し、回転テーブル41および研磨工具8を回転
させた状態にする。なお、研磨工具8の回転方向R1と
ウェーハWの回転方向R2は、逆向きにする。
Next, in the polishing apparatus 1 in which the rotation axis K1 is inclined at the inclination angle α, the back surface of the wafer W is moved to the holding plate 41a of the rotation table 41 as shown in FIG.
The rotating table 41 and the polishing tool 8 are rotated. Note that the rotation direction R1 of the polishing tool 8 and the rotation direction R2 of the wafer W are reversed.

【0026】さらに、スラリーSLをスラリー/純水供
給ノズル81からウェーハW上に一定量吐出させてお
く。なお、スラリーSLは研磨加工時にも必要量だけ常
時補充する。スラリーは、特に限定されないが、たとえ
ば、酸化膜用として、シリカ系のヒュームドシリカと高
純度セリアを水酸化カリウムをベースとした水溶液に懸
濁させたものや、配線メタル用として、アルミナを研磨
砥粒とした加工液に酸化力のある溶剤を混ぜたもの等を
使用することができる。
Further, a predetermined amount of the slurry SL is discharged from the slurry / pure water supply nozzle 81 onto the wafer W. It should be noted that the slurry SL is always replenished by a necessary amount even during polishing. The slurry is not particularly limited. For example, a slurry in which silica-based fumed silica and high-purity ceria are suspended in an aqueous solution based on potassium hydroxide is used for an oxide film, and an abrasive is polished in alumina for a wiring metal. A mixture obtained by mixing a solvent having an oxidizing power with a working fluid formed as abrasive grains can be used.

【0027】ウェーハWと研磨工具8の研磨面8aとが
離隔した状態から、図4に示すように、研磨工具8をウ
ェーハWに対して矢印E1で示すZ軸方向および矢印D
で示すX軸方向に相対移動させる。研磨工具8をウェー
ハWに対して矢印E1で示すZ軸方向および矢印Dで示
すX軸方向に相対移動させると、図5に示すように、ウ
ェーハWの外周端部の加工開始点P1と研磨工具8の研
磨面8aがオーバーラップした状態で接触する。このと
き、研磨工具8の研磨面8aはウェーハWの表面に対し
て角度αで傾斜しているので、研磨面8aはウェーハW
の表面に全面的にではなく部分的に接触する。また、研
磨工具8をウェーハWに所定の荷重Fで押し付けられ、
研磨工具8の研磨面8aとウェーハWの被研磨面との接
触部PRには圧力が発生する。
When the wafer W and the polishing surface 8a of the polishing tool 8 are separated from each other, as shown in FIG. 4, the polishing tool 8 is moved with respect to the wafer W in the Z-axis direction indicated by an arrow E1 and an arrow D.
Are relatively moved in the X-axis direction indicated by. When the polishing tool 8 is moved relative to the wafer W in the Z-axis direction indicated by an arrow E1 and the X-axis direction indicated by an arrow D, as shown in FIG. The polishing surfaces 8a of the tool 8 come into contact with each other in an overlapping state. At this time, since the polishing surface 8a of the polishing tool 8 is inclined at an angle α with respect to the surface of the wafer W, the polishing surface 8a is
Contact partially, but not entirely, with the surface. Further, the polishing tool 8 is pressed against the wafer W with a predetermined load F,
Pressure is generated at a contact portion PR between the polishing surface 8a of the polishing tool 8 and the surface to be polished of the wafer W.

【0028】研磨工具8の研磨面8aは、ウェーハWへ
の押し付けによって弾性変形し、この弾性変形した研磨
面8aの接触部には図6に示すように、圧力分布PRが
発生する。なお、図6において、等高線によって圧力の
勾配を示している。また、実際にはウェーハWの外部に
は圧力分布PRは発生しないが、説明の便宜上、圧力分
布PRがウェーハWの外部の研磨面8aにも存在してい
るように示す。この圧力分布PRの輪郭形状は、研磨工
具8の進行方向Dに直交する向きに伸びる略三日月状と
なる。
The polishing surface 8a of the polishing tool 8 is elastically deformed by being pressed against the wafer W, and a pressure distribution PR is generated at a contact portion of the elastically deformed polishing surface 8a as shown in FIG. In FIG. 6, the pressure gradient is indicated by a contour line. Although the pressure distribution PR does not actually occur outside the wafer W, it is shown that the pressure distribution PR also exists on the polishing surface 8a outside the wafer W for convenience of explanation. The contour shape of the pressure distribution PR is a substantially crescent shape extending in a direction perpendicular to the traveling direction D of the polishing tool 8.

【0029】図6に示すように、圧力分布PRのたとえ
ば、中心部に高圧力領域PHをもち周辺部に低圧力領域
PLをもち、この高圧力領域PHが最大圧力をもち周辺
部に向かって圧力が低下する。したがって、高圧力領域
PHから低圧力領域PLに向かって圧力の勾配が存在す
る。
As shown in FIG. 6, for example, the pressure distribution PR has a high pressure region PH at the center and a low pressure region PL at the periphery, and the high pressure region PH has the maximum pressure and moves toward the periphery. The pressure drops. Therefore, there is a pressure gradient from the high pressure region PH to the low pressure region PL.

【0030】研磨面8aの圧力分布PRの高圧力領域P
Hは、ウェーハWに作用する圧力が高いので単位時間当
たりの加工量が相対的に大きく、低圧力領域PLはウェ
ーハWに作用する圧力が低いので加工量が相対的に小さ
い。したがって、圧力分布PR内において高い加工効率
の領域と低い加工効率の領域が存在する。
High pressure region P of pressure distribution PR on polished surface 8a
H has a relatively large processing amount per unit time because the pressure acting on the wafer W is high, and the low-pressure region PL has a relatively small processing amount because the pressure acting on the wafer W is low. Therefore, a region with a high processing efficiency and a region with a low processing efficiency exist in the pressure distribution PR.

【0031】本実施形態に係る研磨方法では、上記の研
磨工具8の研磨面8aに発生する高圧力領域PHがウェ
ーハWの被研磨面の外周端部から離れた状態でウェーハ
W被研磨面内に位置するとともに、低圧力領域PLがウ
ェーハWの被研磨面の外周端部EGに位置するように、
研磨工具8の研磨面8aとウェーハWの被研磨面とを接
触させる。これにより、ウェーハWの外周端部EGから
内側に向けた所定の領域KRの加工が開始される。
In the polishing method according to this embodiment, the high pressure region PH generated on the polishing surface 8a of the polishing tool 8 is separated from the outer peripheral edge of the surface to be polished of the wafer W in the polishing surface of the wafer W. And the low pressure region PL is located at the outer peripheral end EG of the surface to be polished of the wafer W,
The polishing surface 8a of the polishing tool 8 is brought into contact with the surface to be polished of the wafer W. Thus, the processing of the predetermined region KR inward from the outer peripheral end EG of the wafer W is started.

【0032】また、研磨工具8の研磨面8aを上記のよ
うにウェーハWの被研磨面に接触させて荷重Fで押し付
けることにより、ウェーハWの被研磨面の外周端部EG
には研磨面8aから比較的低い圧力しか作用しない。
Further, by bringing the polishing surface 8a of the polishing tool 8 into contact with the surface to be polished of the wafer W and pressing it with the load F as described above, the outer peripheral edge EG of the surface to be polished of the wafer W is formed.
Only a relatively low pressure acts from the polishing surface 8a.

【0033】一方、たとえば、図6に示した場合より
も、研磨面8aをウェーハWの外側位置で接触させる
と、図7に示すように、ウェーハWに対して圧力分布P
Rの高圧力領域PHがウェーハWの被研磨面の外周端部
EG上に位置する、または、外周端部EGに接近して位
置する。このため、ウェーハWの被研磨面の外周端部E
Gには研磨面8aから高い圧力が作用する。
On the other hand, for example, when the polishing surface 8a is brought into contact with a position outside the wafer W as compared with the case shown in FIG.
The high pressure region PH of R is located on the outer peripheral end EG of the surface to be polished of the wafer W or is located close to the outer peripheral end EG. For this reason, the outer peripheral edge E of the surface to be polished of the wafer W
High pressure acts on G from the polishing surface 8a.

【0034】また、たとえば、図6に示した場合より
も、研磨面8aをウェーハWの内側位置で接触させる
と、図8に示すように、圧力分布PRはウェーハWの外
周部EGから離れて、ウェーハWの被研磨面の内部に位
置することになり、圧力分布PRによる加工領域KRと
ウェーハWの被研磨面の外周端部EGとの間には加工さ
れない非加工領域NRが発生する。
For example, when the polishing surface 8a is brought into contact with the inner side of the wafer W as compared with the case shown in FIG. 6, the pressure distribution PR becomes farther from the outer peripheral portion EG of the wafer W as shown in FIG. , A non-processed region NR that is not processed is generated between the processed region KR due to the pressure distribution PR and the outer peripheral edge EG of the polished surface of the wafer W.

【0035】ここで、図9は、図6〜図8において円C
内に示す、研磨面8aがウェーハWの外部からウェーハ
Wの外周端部EGに向けて乗り上げる領域での研磨工具
8とウェーハWとの関係を示す断面図である。図9
(a)は、図6において説明したように、圧力分布PR
のうち低圧力領域PLがウェーハWの外周端部EGに位
置するように研磨面8aとウェーハWの被研磨面とを接
触させたときの状態を示している。図9(a)からわか
るように、ウェーハWの外周端部EGに作用する研磨面
8aの圧力が比較的低いことから研磨面8aの弾性変形
量も小さい。
FIG. 9 shows a circle C in FIGS.
7 is a cross-sectional view showing a relationship between the polishing tool 8 and the wafer W in a region where the polishing surface 8a runs from the outside of the wafer W toward the outer peripheral end EG of the wafer W. FIG.
(A) shows the pressure distribution PR as described with reference to FIG.
3 shows a state in which the polished surface 8a and the polished surface of the wafer W are brought into contact with each other so that the low pressure region PL is located at the outer peripheral end EG of the wafer W. As can be seen from FIG. 9A, since the pressure of the polishing surface 8a acting on the outer peripheral end EG of the wafer W is relatively low, the amount of elastic deformation of the polishing surface 8a is also small.

【0036】図9(b)は、図7において説明したよう
に、圧力分布PRのうち高圧力領域PHがウェーハWの
外周端部EG上に位置する、または、外周端部EGに接
近して位置するように、研磨面8aとウェーハWの被研
磨面とを接触させたときの状態を示している。図9
(b)から分かるように、ウェーハWの外周端部EGに
作用する研磨面8aの圧力が比較高いことから研磨面8
aの弾性変形量も大きくなる。研磨面8aの弾性変形量
が大きいと、ウェーハWの外周端部EGに応力が集中
し、ウェーハWの外周端部EGが過剰に研磨されてしま
う。
FIG. 9B shows that the high pressure region PH of the pressure distribution PR is located on the outer peripheral end EG of the wafer W or approaches the outer peripheral end EG as described with reference to FIG. The state when the polished surface 8a and the polished surface of the wafer W are brought into contact with each other so as to be positioned is shown. FIG.
As can be seen from (b), since the pressure of the polishing surface 8a acting on the outer peripheral edge EG of the wafer W is relatively high, the polishing surface 8a
The elastic deformation of “a” also increases. When the amount of elastic deformation of the polished surface 8a is large, stress concentrates on the outer peripheral edge EG of the wafer W, and the outer peripheral edge EG of the wafer W is excessively polished.

【0037】図9(c)は、図8において説明したよう
に、圧力分布PRがウェーハWの外周端部EGから離れ
て内部に位置するように、研磨面8aとウェーハWの被
研磨面とを接触させたときの状態を示している。図9
(c)から分かるように、ウェーハWの外周端部EGに
は研磨面8aから圧力が作用せず、したがって、ウェー
ハWの外周端部EGの研磨が行われない。
FIG. 9 (c) shows the polished surface 8a and the polished surface of the wafer W such that the pressure distribution PR is located away from the outer peripheral end EG of the wafer W and inside as described with reference to FIG. Shows the state when the contact is made. FIG.
As can be seen from (c), no pressure acts on the outer peripheral edge EG of the wafer W from the polishing surface 8a, and therefore, the outer peripheral edge EG of the wafer W is not polished.

【0038】上記のように、研磨面8aの圧力分布PR
がウェーハWの被研磨面内で最適に発生する、すなわ
ち、ウェーハWの外周端部EGに過剰な圧力が作用しな
いように研磨工具8とウェーハWとのX軸方向およびZ
軸方向の相対位置を最適に制御して研磨面8aとウェー
ハWの被研磨面とを接触させることで、ウェーハWの外
周端部EGの過剰研磨を抑制できる。
As described above, the pressure distribution PR on the polishing surface 8a
Is generated optimally in the surface to be polished of the wafer W, that is, in the X-axis direction and the Z direction between the polishing tool 8 and the wafer W so that excessive pressure does not act on the outer peripheral end EG of the wafer W.
By controlling the relative position in the axial direction optimally and bringing the polished surface 8a into contact with the polished surface of the wafer W, excessive polishing of the outer peripheral end EG of the wafer W can be suppressed.

【0039】次いで、研磨面8aとウェーハWの被研磨
面とを接触させたのち、図10に示すように、ウェーハ
Wを矢印CのX軸方向に移動させると、研磨面8aの圧
力分布PRは、ウェーハWの外周端部EGからウェーハ
Wの半径方向に移動する。これにより、ウェーハWの被
研磨面は外周から内部に向かって加工され、ウェーハW
の中心に研磨面8aの圧力分布PRが到達すると、ウェ
ーハWの被研磨面の全面が加工される。この状態では、
研磨面8aの圧力分布PRは、ウェーハWの被研磨面の
内部に存在するため、ウェーハWの外周端部EGの過剰
研磨は発生しない。また、ウェーハWの被研磨面の加工
量は、たとえば、ウェーハWの送り速度を調整すること
で、任意に調整することができる。
Next, after bringing the polished surface 8a into contact with the surface to be polished of the wafer W, as shown in FIG. 10, when the wafer W is moved in the X-axis direction indicated by the arrow C, the pressure distribution PR of the polished surface 8a is reduced. Moves in the radial direction of the wafer W from the outer peripheral end EG of the wafer W. As a result, the surface to be polished of the wafer W is processed from the outer periphery toward the inside, and the wafer W
When the pressure distribution PR of the polished surface 8a reaches the center of the wafer W, the entire polished surface of the wafer W is processed. In this state,
Since the pressure distribution PR of the polished surface 8a exists inside the surface to be polished of the wafer W, excessive polishing of the outer peripheral end portion EG of the wafer W does not occur. Further, the processing amount of the polished surface of the wafer W can be arbitrarily adjusted by adjusting the feed speed of the wafer W, for example.

【0040】さらに、図10に示す状態から、ウェーハ
Wを矢印CのX軸方向に移動させると、ウェーハWの被
研磨面は内部から外周に向かって再び加工され、図11
に示すように、研磨工具8の外周端は、ウェーハWの外
周縁部の加工終了点P2に近づく。研磨工具8の研磨面
8aが加工終了点P2に重なる位置まで移動したら、研
磨工具8を矢印E2に示すZ軸方向に上昇させ、ウェー
ハWの被研磨面と研磨工具8の研磨面8aとを離隔させ
る。
Further, when the wafer W is moved from the state shown in FIG. 10 in the X-axis direction indicated by the arrow C, the polished surface of the wafer W is processed again from the inside to the outer periphery.
As shown in (2), the outer peripheral end of the polishing tool 8 approaches the processing end point P2 on the outer peripheral edge of the wafer W. When the polishing surface 8a of the polishing tool 8 moves to a position overlapping the processing end point P2, the polishing tool 8 is raised in the Z-axis direction indicated by the arrow E2, and the polished surface of the wafer W and the polishing surface 8a of the polishing tool 8 are moved. Separate.

【0041】ウェーハWの被研磨面と研磨工具8の研磨
面8aとを離隔させるときの、研磨工具8とウェーハW
のX軸方向の相対位置は、図12に示すような位置とす
る。図12において、研磨面8aに発生する圧力分布P
Rの高圧力領域PHがウェーハWの外周端部EGに到達
せず、高圧力領域PHが外周端部EGから離隔した位置
で研磨工具8をウェーハWから離す。このように、高圧
力領域PHがウェーハWの外周端部EGから離隔した位
置で研磨工具8をウェーハWから離すことにより、ウェ
ーハWの外周端部EGの過剰研磨を抑制することができ
る。
When the polishing surface of the wafer W is separated from the polishing surface 8a of the polishing tool 8, the polishing tool 8 and the wafer W
Are relative positions in the X-axis direction as shown in FIG. In FIG. 12, a pressure distribution P generated on the polishing surface 8a is shown.
The high pressure region PH of R does not reach the outer peripheral end EG of the wafer W, and the polishing tool 8 is separated from the wafer W at a position where the high pressure region PH is separated from the outer peripheral end EG. As described above, by separating the polishing tool 8 from the wafer W at a position where the high pressure region PH is separated from the outer peripheral end EG of the wafer W, excessive polishing of the outer peripheral end EG of the wafer W can be suppressed.

【0042】ここで、図13に、本実施形態にかかる研
磨方法を用いてウェーハWに形成された所定厚の膜の研
磨加工を行ったときの、ウェーハWの外周端部EGの加
工量の測定結果を示す。なお、ウェーハWの直径は20
0mmであり、ウェーハWの中心から100mmの位置
が外周端である。図13において、(1)で示す膜厚分
布は、研磨工具8の外周端部がウェーハWの外周端部E
Gから半径方向に40mmの位置(ウェーハWの中心か
ら60mmに位置)で接触させた場合である。また、
(2)で示す膜厚分布は、研磨工具8の外周端部がウェ
ーハWの外周端部EGから半径方向に5mmの位置(ウ
ェーハWの中心から95mmに位置)で接触させた場合
である。
Here, FIG. 13 shows the amount of processing of the outer peripheral edge EG of the wafer W when polishing a film having a predetermined thickness formed on the wafer W using the polishing method according to the present embodiment. The measurement results are shown. The diameter of the wafer W is 20
0 mm, and the position 100 mm from the center of the wafer W is the outer peripheral end. In FIG. 13, the film thickness distribution indicated by (1) indicates that the outer peripheral edge of the polishing tool 8 is the outer peripheral edge E of the wafer W.
This is a case where the contact is made at a position of 40 mm in the radial direction from G (at a position of 60 mm from the center of the wafer W). Also,
The film thickness distribution shown by (2) is a case where the outer peripheral end of the polishing tool 8 is brought into contact with the outer peripheral end EG of the wafer W at a position 5 mm radially (at a position 95 mm from the center of the wafer W).

【0043】図13から分かるように、(1)で示す膜
厚分布は外周端部EGでの膜厚が略一定しており、過剰
研磨が発生していない。一方、(2)で示す膜厚分布は
外周端部EGでの膜厚が薄くなっており、外周端部EG
で過剰研磨が発生している。このことから、研磨工具8
の研磨面8aとウェーハWの被研磨面とを接触させる位
置を適切に調整すれば、外周端部EGでの過剰研磨を抑
制することができることがわかる。
As can be seen from FIG. 13, in the film thickness distribution indicated by (1), the film thickness at the outer peripheral edge EG is substantially constant, and no excessive polishing occurs. On the other hand, in the film thickness distribution shown in (2), the film thickness at the outer peripheral end portion EG is small, and the outer peripheral end portion EG
Excessive polishing occurs. From this, the polishing tool 8
It can be seen that by appropriately adjusting the position at which the polishing surface 8a of the wafer W comes into contact with the surface to be polished of the wafer W, excessive polishing at the outer peripheral end EG can be suppressed.

【0044】研磨工具8の研磨面8aとウェーハWの被
研磨面との接触位置を決定するには、たとえば、研磨面
8aとウェーハWの被研磨面との接触位置を変更して加
工を行い、各接触位置でのウェーハWの被研磨面の加工
量を測定し、外周端部EGでの過剰研磨が発生しない、
あるいは、過剰研磨が最も抑制される接触位置を求める
ことで、決定することができる。
In order to determine the contact position between the polishing surface 8a of the polishing tool 8 and the surface to be polished of the wafer W, for example, the processing is performed by changing the contact position between the polishing surface 8a and the surface to be polished of the wafer W. Measuring the processing amount of the surface to be polished of the wafer W at each contact position, and preventing excessive polishing at the outer peripheral end portion EG;
Alternatively, it can be determined by obtaining the contact position where the excessive polishing is most suppressed.

【0045】以上のように、本実施形態によれば、研磨
工具8の研磨面8aとウェーハWの被研磨面との接触位
置を最適化することにより、ウェーハWの外周端部EG
に発生する過剰研磨を抑制することが可能となる。した
がって、本実施形態によれば、研磨工具8の研磨面8a
とウェーハWの被研磨面との接触位置を最適化する以外
に、何ら追加機能、追加機構を必要とせず、研磨装置1
の加工性能を飛躍的に向上させることができる。また、
本実施形態によれば、研磨工具8の研磨面8aに発生す
る低圧力領域PLによってウェーハWの外周端部EGの
加工を行うため、研磨面8aがウェーハWに乗り上げる
乗り上げ領域において、研磨面8aに大きな弾性変形が
発生せず、研磨面8aの摩耗を抑制することができる。
As described above, according to the present embodiment, by optimizing the contact position between the polishing surface 8a of the polishing tool 8 and the surface to be polished of the wafer W, the outer peripheral edge EG of the wafer W
It is possible to suppress excessive polishing that occurs during the polishing. Therefore, according to the present embodiment, the polishing surface 8a of the polishing tool 8
The polishing apparatus 1 does not require any additional function or mechanism other than optimizing the contact position between the wafer and the surface to be polished of the wafer W.
Processing performance can be dramatically improved. Also,
According to the present embodiment, since the outer peripheral edge EG of the wafer W is processed by the low pressure region PL generated on the polishing surface 8a of the polishing tool 8, the polishing surface 8a is formed in the riding region where the polishing surface 8a runs on the wafer W. Large elastic deformation does not occur, and abrasion of the polishing surface 8a can be suppressed.

【0046】本発明は、上述した実施形態に限定されな
い。上述した実施形態においては、回転するウェーハW
と回転する研磨工具8とをX軸方向に相体移動させて、
ウェーハWの被研磨面を全面的に加工する場合について
説明した。ウェーハWの被研磨面と研磨工具8の研磨面
8aとを部分的に接触させて被研磨面を加工する部分研
磨加工方式では、ウェーハWと研磨工具8とを一定の方
向(X軸方向)に相対移動させなくても、他の方向に相
対移動させてウェーハWの被研磨面と研磨工具8の研磨
面8aとの接触部をウェーハの被研磨面で任意に走査し
て加工することも可能である。このとき、ウェーハWの
被研磨面と研磨工具8の研磨面8aとの接触部は、ウェ
ーハWの被研磨面内で任意の位置に移動するため、接触
部がウェーハWの外周端部付近EGに移動することもあ
る。接触部がウェーハWの外周端部付近EGに移動する
ような場合に、接触部に発生する圧力分布PRの高圧力
領域PHが外周端部付近EG上に位置させず常に被研磨
面内に収め、低圧力領域PLで外周端部付近EGを加工
することで、外周端部EGの過剰研磨を抑制することが
できる。
The present invention is not limited to the above embodiment. In the embodiment described above, the rotating wafer W
And the rotating polishing tool 8 are moved in phase with each other in the X-axis direction.
The case where the polished surface of the wafer W is entirely processed has been described. In the partial polishing method in which the polished surface of the wafer W is partially brought into contact with the polished surface 8a of the polishing tool 8, the polished surface is processed in a certain direction (X-axis direction). Instead of the relative movement, the contact portion between the surface to be polished of the wafer W and the polishing surface 8a of the polishing tool 8 can be arbitrarily scanned and processed by the relative movement in the other direction. It is possible. At this time, the contact portion between the polished surface of the wafer W and the polished surface 8a of the polishing tool 8 moves to an arbitrary position in the polished surface of the wafer W. May move to. In the case where the contact portion moves to the EG near the outer peripheral end of the wafer W, the high pressure region PH of the pressure distribution PR generated at the contact portion is always located on the surface to be polished without being located on the EG near the outer peripheral end. By processing the EG near the outer peripheral end in the low pressure region PL, excessive polishing of the outer peripheral end EG can be suppressed.

【0047】[0047]

【発明の効果】本発明によれば、被研磨体の被研磨面の
外周端部の過剰研磨を抑制することができる。また、本
発明によれば、研磨工具の摩耗を抑制することができ、
結果として、研磨加工に要するコストを削減することが
できる。
According to the present invention, excessive polishing of the outer peripheral edge of the surface to be polished of the object to be polished can be suppressed. Further, according to the present invention, it is possible to suppress wear of the polishing tool,
As a result, the cost required for polishing can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る研磨装置の構成を示
す図である。
FIG. 1 is a diagram showing a configuration of a polishing apparatus according to an embodiment of the present invention.

【図2】回転軸傾斜機構の構成を説明するための図であ
る。
FIG. 2 is a diagram for explaining a configuration of a rotating shaft tilting mechanism.

【図3】研磨装置1の研磨加工を開始する直前の状態を
説明するための図である。
FIG. 3 is a view for explaining a state immediately before the polishing process of the polishing apparatus 1 is started.

【図4】研磨工具8をウェーハWに接触させるときの動
作を説明するための断面図である。
FIG. 4 is a cross-sectional view for explaining an operation when the polishing tool 8 is brought into contact with a wafer W.

【図5】研磨工具8をウェーハWに接触させた状態を示
す平面図である。
FIG. 5 is a plan view showing a state in which a polishing tool 8 is brought into contact with a wafer W.

【図6】研磨面8aとウェーハWの被研磨面との接触に
よって発生する圧力分布PRの一例を示す図である。
FIG. 6 is a diagram showing an example of a pressure distribution PR generated by contact between the polishing surface 8a and the surface to be polished of the wafer W.

【図7】研磨面8aとウェーハWの被研磨面との接触に
よって発生する圧力分布PRの他の例を示す図である。
FIG. 7 is a diagram showing another example of the pressure distribution PR generated by the contact between the polishing surface 8a and the surface to be polished of the wafer W.

【図8】研磨面8aとウェーハWの被研磨面との接触に
よって発生する圧力分布PRのさらに他の例を示す図で
ある。
FIG. 8 is a diagram showing still another example of a pressure distribution PR generated by the contact between the polishing surface 8a and the surface to be polished of the wafer W.

【図9】図6〜図8の状態における乗り上げ領域での研
磨工具8の各状態を示す断面図である。
FIG. 9 is a cross-sectional view showing each state of the polishing tool 8 in a riding area in the states of FIGS. 6 to 8;

【図10】接触部が移動してウェーハW研磨加工が進行
した状態を示す図である。
FIG. 10 is a view showing a state in which a contact portion has moved and polishing of a wafer W has progressed.

【図11】ウェーハWと研磨工具8とを離隔させるとき
の状態を示す図である。
FIG. 11 is a diagram showing a state when a wafer W and a polishing tool 8 are separated from each other.

【図12】ウェーハWと研磨工具8とを離隔させるウェ
ーハWと研磨工具8の相対位置を説明するための図であ
る。
FIG. 12 is a view for explaining a relative position between the wafer W and the polishing tool 8 for separating the wafer W from the polishing tool 8;

【図13】本発明の研磨方法によってウェーハWを実際
に加工したときのウェーハ外周端部における残存膜厚分
布を示すグラフである。
FIG. 13 is a graph showing the remaining film thickness distribution at the outer peripheral edge of the wafer W when the wafer W is actually processed by the polishing method of the present invention.

【図14】CMP法を用いた研磨装置の一例を示す図で
ある。
FIG. 14 is a diagram illustrating an example of a polishing apparatus using a CMP method.

【図15】研磨工具302とウェーハWとの相対位置関
係を示す平面図である。
FIG. 15 is a plan view showing a relative positional relationship between a polishing tool 302 and a wafer W.

【図16】研磨工具の研磨面のウェーハに対する押し付
けによって発生するウェーハ外周端部での弾性変形を示
す断面図である。
FIG. 16 is a cross-sectional view showing elastic deformation at the outer peripheral edge of the wafer caused by pressing the polishing surface of the polishing tool against the wafer.

【図17】研磨工具の研磨面の弾性変形によって発生す
るウェーハWの外周端部の過剰研磨の状態を示す平面図
である。
FIG. 17 is a plan view showing a state in which the outer peripheral edge of the wafer W is excessively polished due to elastic deformation of the polishing surface of the polishing tool.

【符号の説明】[Explanation of symbols]

1…研磨装置、8…研磨工具、8a…研磨面、101…
制御装置、W…ウェーハ。
DESCRIPTION OF SYMBOLS 1 ... Polishing apparatus, 8 ... Polishing tool, 8a ... Polishing surface, 101 ...
Control device, W: wafer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森川 修 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 (72)発明者 河村 徳久 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 Fターム(参考) 3C058 AA07 AA11 BA02 BA05 BA07 BB03 BC02 CB01 DA12 DA17 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Osamu Morikawa, Inventor 6-7-35 Kita-Shinagawa, Shinagawa-ku, Tokyo Inside Sony Corporation (72) Inventor Tokuhisa Kawamura 6-35, Kita-Shinagawa, Shinagawa-ku, Tokyo Sony Corporation F term (reference) 3C058 AA07 AA11 BA02 BA05 BA07 BB03 BC02 CB01 DA12 DA17

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】被研磨体を保持する保持面に垂直な方向に
対して回転軸が傾斜した回転する研磨工具の研磨面を、
回転する前記被研磨体の被研磨面に相対的に押し付けて
前記研磨面を前記被研磨面に部分的に接触させ、前記研
磨工具と前記被研磨体とを移動させて前記接触部を前記
被研磨面内で移動させることによって当該被研磨面の加
工を行う研磨方法であって、 前記接触部に発生する中心部に高圧力領域をもち周辺部
に低圧力領域をもつ圧力分布のうち、少なくとも前記高
圧力領域が常に前記被研磨面の外周端部から離れた状態
で当該被研磨面内に収まるように、前記研磨工具と前記
被研磨体との相対位置を制御しつつ前記被研磨面の加工
を行う研磨方法。
A polishing surface of a rotating polishing tool whose rotation axis is inclined with respect to a direction perpendicular to a holding surface for holding an object to be polished,
The rotating surface of the object to be polished is pressed relatively to the surface to be polished to bring the polishing surface into partial contact with the surface to be polished, and the polishing tool and the object to be polished are moved to bring the contact portion into contact with the object to be polished. A polishing method for processing the surface to be polished by moving within a polishing surface, wherein at least a pressure distribution having a high pressure region in a central portion generated in the contact portion and a low pressure region in a peripheral portion. The high pressure region is always kept away from the outer peripheral end of the surface to be polished so as to fit within the surface to be polished, so that the relative position between the polishing tool and the object to be polished is controlled while controlling the relative position of the surface to be polished. Polishing method for processing.
【請求項2】前記接触部の低圧力領域で前記被研磨面の
外周端部の研磨を行う請求項1に記載の研磨方法。
2. The polishing method according to claim 1, wherein the outer peripheral edge of the surface to be polished is polished in a low pressure region of the contact portion.
【請求項3】前記研磨面と前記被研磨面との接触部に発
生する圧力分布のうち、前記低圧力領域が前記被研磨面
の外周端部に位置し、かつ、前記高圧力領域が前記被研
磨面の内部に位置するように、前記研磨工具の研磨面を
前記被研磨体の被研磨面に接触させ、 前記前記研磨面と前記被研磨面とを接触させた後、前記
研磨工具を前記被研磨体の半径方向に相対移動させて研
磨する請求項1に記載の研磨方法。
3. A pressure distribution generated at a contact portion between the polishing surface and the surface to be polished, wherein the low pressure region is located at an outer peripheral end of the surface to be polished, and the high pressure region is The polishing surface of the polishing tool is brought into contact with the surface to be polished so that the polishing tool is located inside the surface to be polished. The polishing method according to claim 1, wherein the polishing is performed by relatively moving the object to be polished in a radial direction.
【請求項4】前記研磨工具は、前記被研磨体への押し付
けによって弾性変形する請求項1に記載の研磨方法。
4. The polishing method according to claim 1, wherein the polishing tool is elastically deformed by being pressed against the object to be polished.
【請求項5】前記接触部に発生する圧力分布の輪郭形状
は、前記研磨工具の進行方向に直交する向きに伸びる三
日月状である請求項4に記載の研磨方法。
5. The polishing method according to claim 4, wherein the contour shape of the pressure distribution generated in said contact portion is a crescent extending in a direction perpendicular to the direction in which said polishing tool advances.
【請求項6】前記三日月形状の圧力分布は、中心部が最
大圧力をもち周辺部に向かって圧力が低下する請求項5
に記載の研磨方法。
6. The crescent-shaped pressure distribution has a maximum pressure at a central portion and decreases in pressure toward a peripheral portion.
3. The polishing method according to 1.
【請求項7】前記研磨工具の回転軸は、前記研磨工具の
前記被研磨体に対する進行方向に向けて所定角度で傾斜
している請求項1に記載の研磨方法。
7. The polishing method according to claim 1, wherein a rotation axis of the polishing tool is inclined at a predetermined angle in a direction in which the polishing tool advances with respect to the object to be polished.
【請求項8】前記研磨工具の研磨面は、前記回転軸の傾
斜角度と同じ角度で傾斜した円錐面からなる請求項7に
記載の研磨方法。
8. The polishing method according to claim 7, wherein the polishing surface of the polishing tool is a conical surface inclined at the same angle as the inclination angle of the rotating shaft.
【請求項9】被研磨体を保持する保持面に垂直な方向に
対して回転軸が傾斜した回転する研磨工具の研磨面を、
回転する前記被研磨体の被研磨面に相対的に押し付けて
前記研磨面を前記被研磨面に部分的に接触させ、前記研
磨工具と前記被研磨体とを移動させて前記接触部を前記
被研磨面内で移動させることによって当該被研磨面の加
工を行う研磨装置であって、 前記接触部に発生する中心部に高圧力領域をもち周辺部
に低圧力領域をもつ圧力分布のうち、少なくとも前記高
圧力領域が常に前記被研磨面の外周端部から離れた状態
で当該被研磨面内に収まるように、前記研磨工具と前記
被研磨体との相対位置を制御する制御手段を備える研磨
装置。
9. A polishing surface of a rotating polishing tool whose rotation axis is inclined with respect to a direction perpendicular to a holding surface for holding an object to be polished,
The rotating surface of the object to be polished is pressed relatively to the surface to be polished to bring the polishing surface into partial contact with the surface to be polished, and the polishing tool and the object to be polished are moved to bring the contact portion into contact with the object. A polishing apparatus for processing the surface to be polished by moving within a polishing surface, wherein at least a pressure distribution having a high pressure region in a central portion generated in the contact portion and a low pressure region in a peripheral portion. A polishing apparatus comprising control means for controlling a relative position between the polishing tool and the object to be polished so that the high-pressure region always falls within the surface to be polished while being separated from an outer peripheral end of the surface to be polished; .
【請求項10】前記制御手段は、前記研磨工具の接触部
の圧力分布の比較的低い領域で前記被研磨面の外周端部
の研磨を行わせる請求項9に記載の研磨装置。
10. The polishing apparatus according to claim 9, wherein said control means causes the outer peripheral edge of said polished surface to be polished in a region where the pressure distribution at the contact portion of said polishing tool is relatively low.
【請求項11】前記制御手段は、前記研磨面と前記被研
磨面との接触部に発生する圧力分布のうち、前記低圧力
領域が前記被研磨面の外周端部に位置し、かつ、前記高
圧力領域が前記被研磨面の内部に位置するように、前記
研磨工具の研磨面を前記被研磨体の被研磨面に接触さ
せ、前記前記研磨面と前記被研磨面とを接触させた後、
前記研磨工具を前記被研磨体の半径方向に相対移動させ
る請求項9に記載の研磨装置。
11. The control means according to claim 1, wherein, of the pressure distribution generated at a contact portion between the polishing surface and the surface to be polished, the low pressure region is located at an outer peripheral end of the surface to be polished, and After the polishing surface of the polishing tool is brought into contact with the surface to be polished of the object to be polished so that the high pressure region is located inside the surface to be polished, and after the polishing surface and the surface to be polished are brought into contact with each other. ,
The polishing apparatus according to claim 9, wherein the polishing tool is relatively moved in a radial direction of the object to be polished.
【請求項12】前記研磨工具は、前記被研磨体への押し
付けによって弾性変形する弾性体である請求項9に記載
の研磨装置。
12. The polishing apparatus according to claim 9, wherein said polishing tool is an elastic body which is elastically deformed by being pressed against said object to be polished.
【請求項13】前記接触部に発生する圧力分布の輪郭形
状は、前記研磨工具の進行方向に直交する向きに伸びる
三日月状である請求項12に記載の研磨装置。
13. The polishing apparatus according to claim 12, wherein the contour of the pressure distribution generated in said contact portion is a crescent extending in a direction perpendicular to the direction of travel of said polishing tool.
【請求項14】前記三日月形状の圧力分布は、中心部が
最大圧力をもち周辺部に向かって圧力が低下する請求項
13に記載の研磨装置。
14. The polishing apparatus according to claim 13, wherein the crescent-shaped pressure distribution has a maximum pressure at a central portion and a pressure decreases toward a peripheral portion.
【請求項15】前記研磨工具の回転軸は、前記研磨工具
の前記被研磨体に対する進行方向に向けて所定角度で傾
斜している請求項9に記載の研磨装置。
15. The polishing apparatus according to claim 9, wherein a rotation axis of the polishing tool is inclined at a predetermined angle in a direction in which the polishing tool advances with respect to the object to be polished.
【請求項16】前記研磨工具の研磨面は、前記回転軸の
傾斜角度と同じ角度で傾斜した円錐面からなる請求項1
5に記載の研磨装置。
16. A polishing surface of the polishing tool comprises a conical surface inclined at the same angle as the inclination angle of the rotating shaft.
6. The polishing apparatus according to 5.
JP2000087093A 2000-03-23 2000-03-23 Polishing device and polishing method Pending JP2001269855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000087093A JP2001269855A (en) 2000-03-23 2000-03-23 Polishing device and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000087093A JP2001269855A (en) 2000-03-23 2000-03-23 Polishing device and polishing method

Publications (1)

Publication Number Publication Date
JP2001269855A true JP2001269855A (en) 2001-10-02

Family

ID=18603158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000087093A Pending JP2001269855A (en) 2000-03-23 2000-03-23 Polishing device and polishing method

Country Status (1)

Country Link
JP (1) JP2001269855A (en)

Similar Documents

Publication Publication Date Title
US6572454B1 (en) Apparatus and method of conditioning polishing pads of chemical-mechanical polishing system
JPH11156711A (en) Polishing device
KR100706626B1 (en) Method and device for grinding double sides of thin disk work
JPH1158217A (en) Abrasive cloth conditioner for chemical-mechanical polishing device and conditioning method therefor as well as improved chemical-mechanical polishing device for polishing semiconductor wafer
JP2007260850A (en) Flattening device of semiconductor substrate and flattening method
US6336842B1 (en) Rotary machining apparatus
WO2000063963A1 (en) Non-abrasive conditioning for polishing pads
JP4487353B2 (en) Polishing apparatus and polishing method
US6656818B1 (en) Manufacturing process for semiconductor wafer comprising surface grinding and planarization or polishing
US6913525B2 (en) CMP device and production method for semiconductor device
JPH09168953A (en) Semiconductor wafer edge polishing method and device
JP2007030119A (en) Wafer chamfering device and wafer chamfering method
US6537139B2 (en) Apparatus and method for ELID grinding a large-diameter workpiece to produce a mirror surface finish
US7137866B2 (en) Polishing apparatus and method for producing semiconductors using the apparatus
JP7419467B2 (en) Wafer, wafer thinning method, and wafer thinning device
JP2001138233A (en) Grinding apparatus, grinding method and cleaning method of grinding tool
JP2007061978A (en) Truing method for wafer chamfering grinding wheel and wafer chamfering device
JP2001269855A (en) Polishing device and polishing method
JPH1034528A (en) Polishing device and polishing method
US6283836B1 (en) Non-abrasive conditioning for polishing pads
KR102078342B1 (en) Diamond conditioner with adjustable contact area
US7166013B2 (en) Polishing apparatus and method for producing semiconductors using the apparatus
JP2001246551A (en) Polishing device and polishing method
JP3427670B2 (en) Polishing apparatus and polishing method
US6149499A (en) Polishing apparatus and polishing method