JPH11266069A - Transfer member and manufacture thereof - Google Patents

Transfer member and manufacture thereof

Info

Publication number
JPH11266069A
JPH11266069A JP6893898A JP6893898A JPH11266069A JP H11266069 A JPH11266069 A JP H11266069A JP 6893898 A JP6893898 A JP 6893898A JP 6893898 A JP6893898 A JP 6893898A JP H11266069 A JPH11266069 A JP H11266069A
Authority
JP
Japan
Prior art keywords
conductive substrate
conductive
layer
transfer member
mask pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6893898A
Other languages
Japanese (ja)
Inventor
Mitsuo Mikami
上 光 夫 三
Shigeki Kono
野 茂 樹 河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP6893898A priority Critical patent/JPH11266069A/en
Publication of JPH11266069A publication Critical patent/JPH11266069A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transfer member with which a wiring is prevented from disappearing and peeling off and plating is restrained from penetrating between an insulating mask pattern and a conductive board. SOLUTION: A method of manufacturing a transfer member comprises a first process where the conductive surface of a conductive board 1, which is possessed of, at least one conductive surface is regulated in surface roughness through a wet blast treatment, a second process in which an electrical insulating mask pattern 2 is formed on the surface of the conductive board 1, a third process where at least a single or more layered conductive layer 4 is formed on the non-masked part of the conductive board 1 surface, where the mask pattern 2 is formed, and a fourth process where an adhesive layer 5 is formed on the conductive layer 4, and a patterned transfer layer where at least, the conductive layer 4 and the adhesive layer 5 are laminated is formed on a conductive board.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微細パターンを有
する転写用部材とその製造方法に関する。特に多層プリ
ント配線板等の製造に用いることができる、基板上にパ
ターン化された導電層等からなる転写層が形成されてい
る転写用部材とその製造方法に関する。
The present invention relates to a transfer member having a fine pattern and a method for manufacturing the same. In particular, the present invention relates to a transfer member having a transfer layer formed of a patterned conductive layer or the like formed on a substrate and a method of manufacturing the same, which can be used for manufacturing a multilayer printed wiring board and the like.

【0002】[0002]

【従来の技術】電気分野における技術の飛躍的な発展に
より、CSPに代表されるように半導体パッケージの小
型化、ベアチップ実装等の高密度実装技術が急速に進展
している。それに伴って、プリント配線板も片面配線か
ら両面配線へ、さらに多層化、薄型軽量化が進められて
いる。
2. Description of the Related Art Due to the dramatic development of technology in the electric field, high-density mounting techniques such as miniaturization of semiconductor packages and bare chip mounting, as typified by CSP, are rapidly advancing. Along with this, printed wiring boards are also being changed from single-sided wiring to double-sided wiring, and are becoming more multilayered and thinner and lighter.

【0003】このようなプリント配線板の製造方法に
は、一般にサブトラクティブ法と、アディティブ法が用
いられている。
[0003] As a method of manufacturing such a printed wiring board, a subtractive method and an additive method are generally used.

【0004】サブトラクティブ法は、典型的にはエッチ
ングレジストを形成した後、銅張積層板をエッチングし
て導体回路を形成する方法である。この方法は、技術的
にはほぼ完成されており、低コストではあるが、エッチ
ングの際に銅箔の厚さ等による制約があるため、微細パ
ターンの形成には限界がある。
[0004] The subtractive method is typically a method of forming a conductive circuit by etching a copper clad laminate after forming an etching resist. Although this method is technically almost completed and low in cost, the formation of a fine pattern is limited due to restrictions such as the thickness of the copper foil during etching.

【0005】一方、アディティブ法は、典型的には、基
板上に触媒核を付与した後、めっきレジストを形成し、
無電解銅めっき処理を行うことにより、導体回路を形成
する方法である。この方法は、微細パターンの形成は可
能であるが、コスト低減や、信頼性のさらなる向上が求
められている。
On the other hand, in the additive method, typically, after a catalyst nucleus is provided on a substrate, a plating resist is formed,
This is a method of forming a conductor circuit by performing electroless copper plating. This method can form a fine pattern, but requires cost reduction and further improvement in reliability.

【0006】これらの方法で作製した片面あるいは両面
のプリント配線板は、さらにプリプレグと共に加圧積層
され、多層基板が製造される。このような多層基板で
は、通常、一括での多層化後に、内部に無電解めっき等
を施したスルーホールを形成することによって各層の導
体回路の接続を行っているが、スルーホールの精度のさ
らなる向上が求められている。
The single-sided or double-sided printed wiring boards produced by these methods are further laminated under pressure together with a prepreg to produce a multilayer substrate. In such a multilayer substrate, the conductor circuits of each layer are usually connected by forming through-holes subjected to electroless plating or the like after the multilayering at once, but the accuracy of the through-holes is further increased. Improvement is required.

【0007】近年上述のような要求を満たすものとし
て、コア基板の表面に絶縁層を介して回路パターンを積
み上げて形成するビルドアップ方式の多層プリント配線
板が注目されている。このビルドアップ方式の多層プリ
ント配線板は、従来のスルーホールを用いる多層基板に
比べ、スルーホールによって配線が邪魔されないために
配線ピッチが同じであっても配線密度が向上する。しか
しながら、中間工程での不良の修正が困難であり、プロ
セスが煩雑であるために、製造コストの低減に支障を来
たしている。
In recent years, a multilayer printed wiring board of a build-up type, which is formed by stacking circuit patterns on the surface of a core substrate via an insulating layer, has been attracting attention as satisfying the above requirements. In the multilayer printed wiring board of this build-up system, the wiring density is improved even when the wiring pitch is the same, since the wiring is not hindered by the through holes, as compared with the conventional multilayer substrate using the through holes. However, it is difficult to correct a defect in an intermediate step, and the process is complicated, which hinders a reduction in manufacturing cost.

【0008】このような問題を解決するために、基板と
基板上に順次転写される複数の配線パターン層を有する
多層プリント配線板であって、各配線パターン層が導電
層と導電層を基板あるいは下層の配線パターン層に固定
する絶縁樹脂層を有するもの、及びその製造方法が提案
されている(特開平8−116172)。
In order to solve such a problem, there is provided a multilayer printed wiring board having a substrate and a plurality of wiring pattern layers sequentially transferred onto the substrate, wherein each wiring pattern layer comprises a conductive layer and a conductive layer. A device having an insulating resin layer fixed to a lower wiring pattern layer and a method for manufacturing the same have been proposed (Japanese Patent Application Laid-Open No. Hei 8-116172).

【0009】図1に、このような転写用部材及びプリン
ト配線板の製造方法の典型例を示す。まず図1(a)に
示すように、導電性基板1を用意し、図1(b)に示す
ように導電性基板1上にマスクパターン2を形成する。
次いで図1(c)に示すように、パターニングを行う。
さらに図1(d)に示すように、非マスク部3に電解め
っき等により導電層4を形成する。さらに図1(e)に
示すように、導電層のパターン上に電着法等により粘接
着層5を形成させる。このようにして製造された転写用
部材は、次いで図1(f)に示すように被転写基板6に
転写され、図1(g)に示すようなプリント配線板が製
造される。
FIG. 1 shows a typical example of a method for manufacturing such a transfer member and a printed wiring board. First, a conductive substrate 1 is prepared as shown in FIG. 1A, and a mask pattern 2 is formed on the conductive substrate 1 as shown in FIG. 1B.
Next, patterning is performed as shown in FIG.
Further, as shown in FIG. 1D, a conductive layer 4 is formed on the non-mask portion 3 by electrolytic plating or the like. Further, as shown in FIG. 1E, an adhesive layer 5 is formed on the conductive layer pattern by an electrodeposition method or the like. The transfer member manufactured in this manner is then transferred to the transfer-receiving substrate 6 as shown in FIG. 1 (f), and a printed wiring board as shown in FIG. 1 (g) is manufactured.

【0010】しかしながら、このような製造方法により
製造された転写用部材は、導電層の内部応力等のため
に、通電ないしは水洗中に配線パターンの一部ないし全
部が剥離、消失する等の問題が生じることがある。ま
た、該導電性基板の非マスク部に電解めっきを行う場合
に、絶縁性マスクパターンと導電性基板の界面へのめっ
きの染込みが発生することがある等の問題もあり、これ
らの改善が望まれている。
However, the transfer member manufactured by such a manufacturing method has a problem that a part or all of the wiring pattern is peeled off or lost during energization or washing due to internal stress of the conductive layer. May occur. In addition, when electrolytic plating is performed on the non-mask portion of the conductive substrate, there is a problem that plating infiltration may occur at the interface between the insulating mask pattern and the conductive substrate, and these improvements have been made. Is desired.

【0011】[0011]

【発明が解決しようとする課題】本発明は上記の課題を
解決しようとするものであって、本発明の目的は、金属
めっきの内部応力などに起因する配線の消失、剥離、お
よび絶縁性マスクパターンと導電性基板の間へのめっき
の染込みが生じない転写用部材およびその製造方法を提
供することである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for eliminating or exfoliating wiring due to internal stress of metal plating and the like, and an insulating mask. An object of the present invention is to provide a transfer member in which plating does not infiltrate between a pattern and a conductive substrate, and a method for manufacturing the same.

【0012】[0012]

【課題を解決するための手段】本発明者らは、導電性基
板の導電性を有する表面の表面粗度を特定範囲に調整し
てから転写用部材を製造することにより、上記課題が解
決されることを見出した。すなわち、本発明の転写用部
材の製造方法は、少なくとも片側表面に導電性を有する
導電性基板に対して、前記導電性基板の導電性を有する
前記表面の表面粗度を、ウエットブラスト処理を用いて
調整する工程と、前記導電性基板の前記表面に電気絶縁
性のマスクパターンを形成する工程と、前記導電性基板
のマスクパターンを形成した側の非マスク部に少なくと
も1層以上の導電層を形成する工程と、前記導電層上に
粘接着層を形成する工程、を具備してなり、前記導電性
基板上に、少なくとも前記導電層及び粘接着層が積層さ
れてなるパターン化された転写層を形成する方法であ
る。
Means for Solving the Problems The present inventors have solved the above-mentioned problems by adjusting the surface roughness of a conductive surface of a conductive substrate to a specific range and then manufacturing a transfer member. I found that. That is, the method for producing a transfer member of the present invention uses a wet blast treatment for a conductive substrate having conductivity on at least one surface, the surface roughness of the conductive surface of the conductive substrate. Adjusting, and forming an electrically insulating mask pattern on the surface of the conductive substrate; and forming at least one conductive layer on a non-mask portion of the conductive substrate on the side where the mask pattern is formed. Forming, and a step of forming an adhesive layer on the conductive layer, and on the conductive substrate, patterned at least the conductive layer and the adhesive layer are laminated This is a method for forming a transfer layer.

【0013】[0013]

【発明の実施の形態】転写用部材の製造方法 図2を用いて、本発明の転写用部材の製造方法を具体例
によって説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A method for manufacturing a transfer member according to the present invention will be described with reference to FIG.

【0014】まず、図2(a)に示す導電性基板1を用
意し、この導電性を有する表面の粗度を調整して、図2
(b)に示す表面粗度調整導電性基板を得る。この図2
(b)においては、下面の表面粗度が調整されている。
次いで図2(c)に示すように、導電性基板1の粗度調
整表面上にマスク2を形成する。さらに図2(d)に示
すように、パターニングを行うことによりマスクパター
ン2と非マスク部3を形成する。次いで図2(e)に示
すように、非マスク部3に導電層4を形成する。さらに
図2(f)に示すように、導電層4のパターン上に粘接
着層5を形成させることにより転写用部材を製造する。
First, a conductive substrate 1 shown in FIG. 2A is prepared, and the roughness of the conductive surface is adjusted.
A surface roughness-adjusting conductive substrate shown in (b) is obtained. This figure 2
In (b), the surface roughness of the lower surface is adjusted.
Next, as shown in FIG. 2C, a mask 2 is formed on the roughness adjusting surface of the conductive substrate 1. Further, as shown in FIG. 2D, a mask pattern 2 and a non-mask portion 3 are formed by performing patterning. Next, as shown in FIG. 2E, a conductive layer 4 is formed on the non-mask portion 3. Further, as shown in FIG. 2F, a transfer member is manufactured by forming an adhesive layer 5 on the pattern of the conductive layer 4.

【0015】本発明の転写用部材はの典型例は、図2
(f)に模式的に示すように、表面粗度を調整した導電
性基板1の表面に、任意のパターンのマスクパターン2
と、非マスク部3に導電層4とその上に積層した粘接着
層5からなる転写層が形成されたものである。その後本
発明の転写用部材を典型的には図2(g)に示すように
被転写基板6に圧着し、導電層4と粘接着層5からなる
転写層(配線パターン)を被転写基板6に転写すること
により図2(h)に示すプリント配線板が製造される。
A typical example of the transfer member of the present invention is shown in FIG.
As schematically shown in (f), an arbitrary mask pattern 2 is formed on the surface of the conductive substrate 1 whose surface roughness is adjusted.
And a transfer layer comprising a conductive layer 4 and an adhesive layer 5 laminated thereon is formed on the non-mask portion 3. Thereafter, the transfer member of the present invention is typically pressed onto the transfer substrate 6 as shown in FIG. 2 (g), and the transfer layer (wiring pattern) including the conductive layer 4 and the adhesive layer 5 is transferred to the transfer substrate. The printed wiring board shown in FIG.

【0016】以下、本発明の転写用部材の製造方法をよ
り一層詳しく説明する。
Hereinafter, the method for producing a transfer member of the present invention will be described in more detail.

【0017】導電性基板の表面粗度調整 本発明の転写用部材に用いられる導電性基板の表面の粗
度の調整方法は、ウエットブラスト法を用いる。一般に
粗度調整方法としては、大きく分けて化学的方法と物理
的方法がある。化学的方法は、塩化第二鉄、塩化第二銅
等のエッチャントを用いて、基板表面を溶解させる方法
であるが、圧延筋や欠陥等の存在により局所的にエッチ
ングレートが異なるため、不均一な処理になりやすい問
題がある。一方物理的方法は、ケイ砂等をエアーととも
に吹き付けるサンドブラスト法や、アルミナビーズ、シ
リカビーズ等を水、空気と混合して吹け付けるウェット
ブラスト法などがあり、例えば圧延筋の除去を期待でき
るなど、比較的均一な処理が得られやすい。このうちウ
エットブラスト法は、良好な粗度を得やすく、配線の剥
離防止と良好な転写性の双方を満たすという点および導
電性基板と絶縁性マスクパターンとの密着性が向上する
点で、本発明において好適な粗度調整方法である。
Adjustment of Surface Roughness of Conductive Substrate The method for adjusting the surface roughness of the conductive substrate used in the transfer member of the present invention uses a wet blast method. Generally, the roughness adjustment method is roughly classified into a chemical method and a physical method. The chemical method is a method of dissolving the substrate surface using an etchant such as ferric chloride or cupric chloride, but the etching rate is locally different due to the presence of rolling streaks, defects, etc. There is a problem that can easily be processed. On the other hand, physical methods include a sand blast method in which silica sand or the like is blown together with air, a wet blast method in which alumina beads, silica beads, or the like are mixed with water and air and blown, and, for example, removal of rolling streaks can be expected. Relatively uniform processing is easily obtained. Among these, the wet blast method is advantageous in that good roughness can be easily obtained, and that both peeling of the wiring and good transferability are satisfied, and that the adhesion between the conductive substrate and the insulating mask pattern is improved. This is a preferred roughness adjustment method in the present invention.

【0018】本発明の転写用部材に用いられる導電性基
板の表面粗度は、比較的薄い(0.5〜5μm程度)絶
縁性マスクパターンをその上に形成するためRa=0.
01〜0.3μm(触針式表面粗さ計で測定)とするこ
とが好ましく、より好ましくはRa=0.01〜0.1
5μmの粗度、特に好ましくは0.01〜0.10μm
とすることが好ましい。粗すぎると、導電性基板と導電
層との密着強度が高まりすぎて、転写が困難になること
がある。また、粗すぎるとマスクパターンを薄く塗布す
ることが困難になることがある。さらに導電性基板が粗
いと、その表面形状が反映された表面の粗い導電層が現
れるため、金などの接続性を有する金属を導電層に用い
た場合にワイヤボンディング性に影響を及ぼすことがあ
る。
The surface roughness of the conductive substrate used for the transfer member of the present invention is Ra = 0.50 to form a relatively thin (about 0.5 to 5 μm) insulating mask pattern thereon.
It is preferably from 0.01 to 0.3 μm (measured with a stylus type surface roughness meter), and more preferably Ra = 0.01 to 0.1.
5 μm roughness, particularly preferably 0.01 to 0.10 μm
It is preferable that If it is too rough, the adhesion between the conductive substrate and the conductive layer may be too high, and transfer may be difficult. On the other hand, if it is too coarse, it may be difficult to apply a thin mask pattern. Furthermore, if the conductive substrate is rough, a conductive layer with a rough surface reflecting its surface shape appears, so that when a metal having connectivity such as gold is used for the conductive layer, wire bonding properties may be affected. .

【0019】導電性基板 本発明の転写用部材に用いられる導電性基板の材料は、
少なくとも片側の表面が導電性を有するものであれば特
に制限されるものではない。このようなものとしては、
例えば各種の金属板及び各種の絶縁体に金属を被覆した
もの、例えば銅、ニッケル、ステンレス鋼、鉄、アルミ
ニウム、42アロイ及びスパッタリング等でメタライズ
した樹脂フィルム等を挙げることができる。好ましく
は、電解めっき法によって、銅、ニッケル、クロム、
金、銀、白金、錫、はんだ等が析出可能で、該導電性基
板から析出金属層を剥離することが可能な材料、具体的
には、例えばステンレス鋼、チタン系材料等が好まし
い。
The material of the conductive substrate used in the transfer member of the conductive substrate present invention,
There is no particular limitation as long as at least one surface has conductivity. As such,
For example, various metal plates and various insulators coated with metal, such as copper, nickel, stainless steel, iron, aluminum, 42 alloy, and resin films metallized with sputtering or the like can be used. Preferably, copper, nickel, chromium,
A material capable of depositing gold, silver, platinum, tin, solder, and the like and capable of separating the deposited metal layer from the conductive substrate, specifically, for example, stainless steel, a titanium-based material, or the like is preferable.

【0020】本発明の転写用部材に用いられる導電性基
板の厚さは特に制限されないが、0.05〜1.0mm
程度が一般的に好ましい。
The thickness of the conductive substrate used for the transfer member of the present invention is not particularly limited, but may be 0.05 to 1.0 mm.
The degree is generally preferred.

【0021】マスクパターンの形成 本発明の転写用部材に用いられる電気絶縁性のマスクパ
ターンの形成方法および材料は、絶縁性を有する層をパ
ターニングすることが可能であれば、特に限定されな
い。この方法としては、例えばフォトレジスト、スクリ
ーン印刷、精密ディスペンスが挙げられる。このうち、
微細パターンを形成に有利なフォトレジストを使用する
ことが好ましい。また、後の工程において耐酸性、耐溶
剤性、耐電圧性等が要求される場合があるため、このよ
うな特性を有するものを使用することがより好ましい。
特に好ましい具体例としては、環化ゴム系フォトレジス
ト、熱硬化性を有するアクリル系レジスト、メラミン系
レジスト、水溶性コロイド系フォトレジスト等が挙げら
れる。
Formation of Mask Pattern The method and material for forming an electrically insulating mask pattern used in the transfer member of the present invention are not particularly limited as long as the insulating layer can be patterned. This method includes, for example, photoresist, screen printing, and precision dispensing. this house,
It is preferable to use a photoresist that is advantageous for forming a fine pattern. Further, since acid resistance, solvent resistance, voltage resistance, and the like may be required in a later step, it is more preferable to use one having such characteristics.
Particularly preferred specific examples include a cyclized rubber-based photoresist, a thermosetting acrylic-based resist, a melamine-based resist, and a water-soluble colloid-based photoresist.

【0022】本発明の転写用部材に用いられる電気絶縁
性のマスクパターンは典型的には以下のように形成す
る。導電性基板の粗度調整した表面に公知の方法でマス
クを形成する。次いで所定パターンのフォトマスクを介
してマスクパターンに紫外線を照射し、露光・現像す
る。かくして、導電性基板の表面に所定パターンのマス
クパターン及び非マスク部が形成される。
The electrically insulating mask pattern used for the transfer member of the present invention is typically formed as follows. A mask is formed by a known method on the surface of the conductive substrate whose roughness has been adjusted. Next, the mask pattern is irradiated with ultraviolet rays through a photomask of a predetermined pattern, and is exposed and developed. Thus, a mask pattern of a predetermined pattern and a non-mask portion are formed on the surface of the conductive substrate.

【0023】導電層の形成 本発明の転写用部材に用いられる導電層の形成方法及び
材料は、通常の配線板に用いることができるものであれ
ば限定されるものではない。典型的な例としては非マス
ク部に電着法により導電層を形成する方法がある。電着
法による導電層の形成は公知のめっき法に従って行うこ
とができる。導電層を形成する材料は、好ましくは電着
法で導電性薄膜が形成されるものであり、例えば、銅、
銀、金、パラジウム、ニッケル、クロム、亜鉛、錫、白
金等が挙げられる。
Formation of Conductive Layer The method and material for forming the conductive layer used in the transfer member of the present invention are not limited as long as they can be used for ordinary wiring boards. A typical example is a method in which a conductive layer is formed on a non-mask portion by an electrodeposition method. The formation of the conductive layer by the electrodeposition method can be performed according to a known plating method. The material for forming the conductive layer is preferably a material on which a conductive thin film is formed by an electrodeposition method.
Silver, gold, palladium, nickel, chromium, zinc, tin, platinum and the like can be mentioned.

【0024】また、好ましくは、銅などの金属イオンが
粘接着層に溶出する現象であるイオンマイグレーション
を防止するために後述するバリア導電層をこの導電層と
粘接着層の間に設けることができる。
Preferably, a barrier conductive layer described later is provided between the conductive layer and the adhesive layer in order to prevent ion migration, which is a phenomenon in which metal ions such as copper are eluted into the adhesive layer. Can be.

【0025】粘接着層の形成 本発明の転写用部材に用いられる粘接着層は、典型的に
は導電層の表面に電着法によって形成することができ
る。電着法は、例えば電着塗装として従来から用いられ
ており、皮膜形成材料を含有するイオン性の電着液を用
いて行うことができる。本発明における電着は公知の電
着法に従って行うことができる。
Formation of Adhesive Layer The adhesive layer used in the transfer member of the present invention can be typically formed on the surface of the conductive layer by an electrodeposition method. The electrodeposition method is conventionally used as, for example, electrodeposition coating, and can be performed using an ionic electrodeposition liquid containing a film-forming material. Electrodeposition in the present invention can be performed according to a known electrodeposition method.

【0026】本発明の転写用部材に用いられる粘接着層
の材料は、常温あるいは加熱により粘接着性を示すもの
であり、転写用部材を被転写基板に圧着し、導電層を粘
接着層によって被転写基板に固着させることができるも
のであれば特に限定されない。好ましくは転写後に配線
間及び被転写基板と配線の間の絶縁性をもたせるため
に、粘接着層は絶縁体とする。また、電着液に含有させ
て電着させることが可能な物質、例えばイオン性高分子
化合物を用いることも好ましい。
The material of the adhesive layer used for the transfer member of the present invention exhibits adhesive properties at room temperature or by heating. The transfer member is pressed against the substrate to be transferred, and the conductive layer is adhered. There is no particular limitation as long as it can be fixed to the substrate to be transferred by the attachment layer. Preferably, the adhesive layer is made of an insulator in order to provide insulation between the wirings and between the wirings to be transferred and the wirings after the transfer. It is also preferable to use a substance that can be contained in the electrodeposition solution and electrodeposited, for example, an ionic polymer compound.

【0027】電着液に含有される絶縁性粘接着層を形成
する好ましいイオン性高分子化合物としては、例えば、
天然系樹脂、アクリル系樹脂、ポリエステル系樹脂、ア
ルキッド系樹脂、マレイン化油系樹脂、ポリブタジエン
系樹脂、エポキシ系樹脂、ポリアミド系樹脂、ポリイミ
ド系樹脂等が挙げられる。アニオン性高分子化合物とし
てはカルボキシル基等のアニオン性基を有するものが、
カチオン性高分子化合物としてはアミノ基等のカチオン
性基を有するものが包含される。本発明においては、粘
接着層に要求される性能に従って最適なイオン性高分子
化合物を適宜選択することができる。また、必要に応じ
てこれらのイオン性高分子化合物とともに、ロジン系、
テルペン系、石油樹脂系等の粘着付与剤を使用すること
ができる。
Preferred ionic polymer compounds for forming the insulating adhesive layer contained in the electrodeposition solution include, for example,
Examples include natural resins, acrylic resins, polyester resins, alkyd resins, maleated oil resins, polybutadiene resins, epoxy resins, polyamide resins, and polyimide resins. As the anionic polymer compound, those having an anionic group such as a carboxyl group,
Examples of the cationic polymer compound include those having a cationic group such as an amino group. In the present invention, an optimal ionic polymer compound can be appropriately selected according to the performance required for the adhesive layer. In addition, if necessary, a rosin-based compound,
A terpene-based or petroleum resin-based tackifier can be used.

【0028】上記の高分子化合物は、アルカリ性物質ま
たは酸性物質によって中和して水に可溶化された状態
で、あるいはに水分散した状態で電着を行うことができ
る。アニオン性高分子化合物は、例えば、トリメチルア
ミン、ジエチルアミン、ジメチルエタノールアミン等の
アミン類、アンモニア、苛性カリ等の無機のアルカリで
中和することができる。カチオン性高分子化合物は、例
えば、酢酸、蟻酸、プロピオン酸、乳酸等の酸で中和す
ることができる。
The above-mentioned polymer compound can be electrodeposited in a state of being neutralized by an alkaline substance or an acidic substance and solubilized in water, or in a state of being dispersed in water. The anionic polymer compound can be neutralized with, for example, amines such as trimethylamine, diethylamine and dimethylethanolamine, and inorganic alkalis such as ammonia and potassium hydroxide. The cationic polymer compound can be neutralized with, for example, an acid such as acetic acid, formic acid, propionic acid, and lactic acid.

【0029】粘接着層の厚みは粘接着性及び必要に応じ
た絶縁性が満たされれば、特に限定されるものではない
が、一般的には1〜100μmであり、好ましくは10
〜50μmとする。
The thickness of the pressure-sensitive adhesive layer is not particularly limited as long as the pressure-sensitive adhesive property and the required insulating property are satisfied, but it is generally 1 to 100 μm, preferably 10 to 100 μm.
5050 μm.

【0030】バリア導電層の形成 転写用部材において、導電層に銅などを使用した場合に
は、一般に銅などの金属イオンが絶縁樹脂中に溶出する
現象、いわゆるイオンマイグレーションが発生し、高湿
度の環境で絶縁樹脂層が10μm程度と比較的薄い場合
には絶縁性に悪影響を及ぼす可能性がある。本発明の転
写用部材においては、好ましくは、このようなイオンマ
イグレーションを防止するためのバリア導電層を導電層
と粘接着層との間に設けることができる。この層を形成
する材料としては、好ましくは、安定した酸化被膜を有
するイオンマイグレーションが発生しにくい金属、具体
的にはニッケル、クロム、スズ−ニッケル合金などを用
いることができる。このバリア導電層の厚みは特に限定
されないが、好ましくは0.5〜1.0μm程度であ
る。この層の形成方法は特に限定されるものではない
が、好ましくは電着法、無電解めっき法、蒸着法、スパ
ッタリングなどを用いることができ、特に好ましくは電
着法である。また、バリア導電層は、導電層と粘接着層
の密着性を向上させる作用もある。
When copper or the like is used for the conductive layer in the transfer member for forming the barrier conductive layer, a phenomenon in which metal ions such as copper are eluted into the insulating resin, so-called ion migration, generally occurs, resulting in high humidity. If the insulating resin layer is relatively thin, such as about 10 μm, in the environment, there is a possibility that the insulating property is adversely affected. In the transfer member of the present invention, preferably, a barrier conductive layer for preventing such ion migration can be provided between the conductive layer and the adhesive layer. As a material for forming this layer, preferably, a metal having a stable oxide film and hardly causing ion migration, specifically, nickel, chromium, a tin-nickel alloy, or the like can be used. The thickness of the barrier conductive layer is not particularly limited, but is preferably about 0.5 to 1.0 μm. The method for forming this layer is not particularly limited, but preferably, an electrodeposition method, an electroless plating method, an evaporation method, a sputtering method, or the like can be used, and the electrodeposition method is particularly preferable. The barrier conductive layer also has an effect of improving the adhesion between the conductive layer and the adhesive layer.

【0031】ニッケルめっきをバリア導電層として用い
た場合、一般に銅めっきに比べてニッケルめっきの内部
応力は大きいため、前記した通電ないしは水洗中におけ
る、配線パターンの一部ないし全部が剥離、消失する等
の問題がより生じやすくなることがある。したがって、
この場合、本発明は特に上記の問題をより効果的に解決
する点で有効である。
When nickel plating is used as the barrier conductive layer, since the internal stress of nickel plating is generally larger than that of copper plating, part or all of the wiring pattern is peeled off or disappears during the above-mentioned energization or washing with water. May be more likely to occur. Therefore,
In this case, the present invention is particularly effective in solving the above problem more effectively.

【0032】[0032]

【実施例】実施例1 ステンレス鋼(SUS304CSP(H))の薄板(厚
さ0.1mm、Ra=0.112)を導電性基板として
転写用部材を以下の工程により作製した。 (1)表面粗度の調整 上記導電性基板をアルカリ性脱脂浴(日本マルセル
(株)製、マルクリーンSP 30g/l)中に10分
間浸漬した後、表面を十分に水洗し、乾燥した。脱脂処
理済み導電性基板の両面をウェットブラスト装置(マコ
ー(株)製、ウェットブラスト加工セル)で下記条件で
ブラスト処理し、十分に水洗、乾燥した。ブラスト処理
後の表面粗度はRa=0.151であった。
EXAMPLE 1 A transfer member was manufactured by the following steps using a thin plate of stainless steel (SUS304CSP (H)) (thickness 0.1 mm, Ra = 0.112) as a conductive substrate. (1) Adjustment of Surface Roughness After the conductive substrate was immersed in an alkaline degreasing bath (Malclean SP 30 g / l, manufactured by Nippon Marcel Co., Ltd.) for 10 minutes, the surface was sufficiently washed with water and dried. Both surfaces of the degreased conductive substrate were blasted with a wet blasting apparatus (wet blasting cell, manufactured by Macho Co., Ltd.) under the following conditions, washed sufficiently with water and dried. The surface roughness after the blast treatment was Ra = 0.151.

【0033】 ウェットブラスト処理条件 使用砥材 アルミナビーズ#1000 砥材濃度 20% ポンプ圧力 0.7kg/mm2 エアー圧力 1.0kg/cm2 処理速度 15mm/sec 投射距離 20mm 投射角度 90° (2)マスクパターンの形成 上記表面粗さ調整済み導電性基板上に、環化ゴム系ネガ
型フォトレジスト(東京応化工業(株)製、OMR85
35cP)を約2μmの厚さに塗布し、85℃のクリ
ーンオーブンで30分間プレベークを行った。その後、
所定のパターンを有するフォトマスクを用い、下記条件
で露光を行い、現像液(東京応化工業(株)製、OMR
現像液)で現像し、リンス液(東京応化工業(株)製、
OMRリンス液)でリンスを行った。次いで、145℃
のクリーンオーブンで30分間ポストベークを行い、マ
スクパターンを形成した。
Wet blasting treatment conditions Abrasive material used Alumina beads # 1000 Abrasive material concentration 20% Pump pressure 0.7 kg / mm 2 Air pressure 1.0 kg / cm 2 Processing speed 15 mm / sec Projection distance 20 mm Projection angle 90 ° (2) Formation of a mask pattern On the conductive substrate of which surface roughness has been adjusted, a cyclized rubber negative photoresist (OMR85, manufactured by Tokyo Ohka Kogyo Co., Ltd.)
35 cP) was applied to a thickness of about 2 μm, and prebaked in a clean oven at 85 ° C. for 30 minutes. afterwards,
Using a photomask having a predetermined pattern, exposure is performed under the following conditions, and a developing solution (OMR, manufactured by Tokyo Ohka Kogyo Co., Ltd.)
Developing solution) and rinse solution (manufactured by Tokyo Ohka Kogyo Co., Ltd.
(OMR rinse solution). Then 145 ° C
Was performed in a clean oven for 30 minutes to form a mask pattern.

【0034】 露光条件 密着露光機 大日本スクリーン製造(株)製 P−202−G 真空引き 30秒 露光時間 30カウント (3)導電層の形成 上記のマスクパターンを形成した導電性基板を、含燐銅
陽極と対向させて下記組成の硫酸銅めっき浴中に浸漬
し、該導電性基板を陰極として、直流電源により2A/
dm2 の電流密度で25分間通電した。その結果、該導
電性基板の非マスク部上に厚さ10μmの銅めっきから
なる導電層が形成された。なお絶縁性マスクパターンと
導電性基板の間への銅めっきの染込みは生じなかった。
Exposure conditions Contact exposure machine P-202-G manufactured by Dainippon Screen Mfg. Co., Ltd. Vacuum evacuation 30 seconds Exposure time 30 counts (3) Formation of conductive layer The conductive substrate on which the above mask pattern is formed is phosphorus-containing. It was immersed in a copper sulfate plating bath having the following composition in opposition to the copper anode.
A current was passed at a current density of dm 2 for 25 minutes. As a result, a 10 μm-thick conductive layer made of copper plating was formed on the non-mask portion of the conductive substrate. It should be noted that copper plating did not penetrate between the insulating mask pattern and the conductive substrate.

【0035】 硫酸銅めっき浴の組成(浴温25℃) CuSO4・5H2O 75g/l H2SO4 180g/l HCl 0.15ml/l (Cl-として60ppm) Cu−Board HA MU 10ml/l (荏原ユージライト(株)製) 次いで、十分な水洗の後、該導電性基板を電解ニッケル
陽極と対向させて下記組成のワットニッケルめっき浴中
に浸漬し、該導電性基板を陰極として、定電流電源によ
り1A/dm2 の電流密度で5分間通電した。その結
果、該導電性基板の上記銅めっき層上に厚さ1μmのニ
ッケルめっきからなるバリア導電層が形成された。な
お、金属めっきの内部応力による導電層の剥離は全く生
じなかった。 ワットニッケルめっき浴の組成(浴温50℃、pH4.0) NiSO4・6H2O 300g/l NiCl2・6H2O 50g/l H3BO3 40g/l (4)粘接着層の形成 (アニオン性電着液の調製) (i)ポリイミドワニスの製造 1リットル容量の三つ口セパラブルフラスコにステンレ
ス鋼製イカリ攪拌器、窒素導入管及びストップコックの
付いたトラップの上に玉付き冷却管をつけた還流冷却器
を取り付けた。窒素気流を流しながら温度調整機のつい
たシリコーン浴中にセパラブルフラスコを浸漬して加熱
した。反応温度は浴温で示した。
Composition of copper sulfate plating bath (bath temperature 25 ° C.) CuSO 4 .5H 2 O 75 g / l H 2 SO 4 180 g / l HCl 0.15 ml / l (60 ppm as Cl ) Cu-Board HA MU 10 ml / l (manufactured by Ebara Uzilite Co., Ltd.) Then, after sufficient washing, the conductive substrate was immersed in a Watt nickel plating bath having the following composition facing the electrolytic nickel anode, and the conductive substrate was used as a cathode. A current was supplied for 5 minutes at a current density of 1 A / dm 2 by a constant current power supply. As a result, a barrier conductive layer made of nickel plating having a thickness of 1 μm was formed on the copper plating layer of the conductive substrate. The peeling of the conductive layer due to the internal stress of the metal plating did not occur at all. Composition of Watt nickel plating bath (bath temperature 50 ° C., pH 4.0) NiSO 4 .6H 2 O 300 g / l NiCl 2 .6H 2 O 50 g / l H 3 BO 3 40 g / l (4) Formation of adhesive layer (Preparation of anionic electrodeposition solution) (i) Production of polyimide varnish Cooling with beads on a 1-liter three-neck separable flask on a trap with a stainless steel squirrel stirrer, nitrogen introduction tube and stopcock A reflux condenser fitted with a tube was attached. The separable flask was immersed and heated in a silicone bath equipped with a temperature controller while flowing a nitrogen stream. The reaction temperature was indicated by bath temperature.

【0036】3,4,3′,4′−ベンゾフェノンテト
ラカルボン酸ジ無水物(以下BTDAと呼ぶ)32.2
2g(0.1モル)、ビス(4−(3−アミノフェノキ
シ)フェニル)スルホン(m−BAPS)21.63g
(0.1モル)、バレロラクトン1.5g(0.015
モル)、ピリジン2.4g(0.03モル)、Nメチル
2ピロリドン(以下NMPと呼ぶ)200g、トルエン
30g、を加えて、窒素を通じながらシリコン浴中、室
温で30分攪拌(200rpm)、ついで昇温して18
0℃、1時間、200rpmに攪拌しながら反応させ
た。トルエン−水留出分15mlを除去し、空冷して、
BTDA6.11g(0.05モル)、3,5ジアミノ
安息香酸(以下DABzと呼ぶ)15.216g(0.
1モル)、NMP119g、トルエン30gを添加し、
室温で30分攪拌したのち(200rpm)、次いで1
80℃に昇温して加熱攪拌しトルエン−水留出分15m
lを除去した。その後、トルエン−水留出分を系外に除
きながら、180℃に加熱、3時間攪拌して反応を終了
させた。20%のポリイミドワニスを得た。酸当量(1
個のCOOHあたりのポリマー量は1554)は70で
あった。 (ii)電着液の調製 濃度20%のポリイミドワニス100gに3SN(NM
P:テトラヒドロチオフェン−1,1−ジオキシド=
1:3(重量)の混合溶液)150g、ベンジルアルコ
ール75g、メチルモルホリン5.0g(中和率200
%)、水30gを加え攪拌して水性電着液を調製した。
得られた水性電着液は、ポリイミド7.4%、pH7.
8、暗赤褐色透明液であった。
3,4,3 ', 4'-benzophenonetetracarboxylic dianhydride (hereinafter referred to as BTDA) 32.2.
2 g (0.1 mol), bis (4- (3-aminophenoxy) phenyl) sulfone (m-BAPS) 21.63 g
(0.1 mol), 1.5 g of valerolactone (0.015
Mol), 2.4 g (0.03 mol) of pyridine, 200 g of N-methyl-2-pyrrolidone (hereinafter referred to as NMP) and 30 g of toluene. 18
The reaction was carried out at 0 ° C. for 1 hour with stirring at 200 rpm. Remove 15 ml of toluene-water distillate, air-cool,
6.11 g (0.05 mol) of BTDA, 15.216 g (0.1%) of 3,5 diaminobenzoic acid (hereinafter referred to as DABz).
1 mol), 119 g of NMP and 30 g of toluene,
After stirring at room temperature for 30 minutes (200 rpm), then
The temperature was raised to 80 ° C and the mixture was heated and stirred, and the toluene-water distillate was 15m.
l was removed. Thereafter, while removing the toluene-water distillate outside the system, the mixture was heated to 180 ° C. and stirred for 3 hours to terminate the reaction. A polyimide varnish of 20% was obtained. Acid equivalent (1
The polymer amount per COOH was 1554) was 70. (Ii) Preparation of electrodeposition solution 3SN (NM) was added to 100 g of a 20% concentration polyimide varnish.
P: tetrahydrothiophene-1,1-dioxide =
1: 3 (weight) mixed solution) 150 g, benzyl alcohol 75 g, methylmorpholine 5.0 g (neutralization ratio 200
%) And 30 g of water were added and stirred to prepare an aqueous electrodeposition solution.
The obtained aqueous electrodeposition solution had a polyimide content of 7.4% and a pH of 7.4.
8. It was a dark reddish brown transparent liquid.

【0037】(電着)前記導電性パターンを有する導電
性基板をステンレス鋼製陰極(SUS430MA)と対
向させて上記のアニオン性絶縁性電着液中に浸漬し、該
導電性基板を陽極として、直流電源により100Vの電
圧で3分間通電した。水洗後、80℃のホットプレート
で3分間乾燥した。その結果、該導電性基板のバリア導
電層上に厚さ10μmの上記ポリイミドからなる電着塗
膜が形成され、本発明の転写用部材を得た。 (5)転写 以上の工程で得られた転写用部材を厚さ25μmのステ
ンレス鋼箔(SUS304TA)上に、160℃、圧力
1kgf/cm2 の条件で圧着し、該導電性基板を剥離
して転写を行ったところ、パターンはすべて転写され
た。よって、導電性基板の表面粗度を調整し、導電層と
導電性基板との密着性を高めた場合でも、パターンの転
写性が保持されることが確認された。
(Electrodeposition) The conductive substrate having the conductive pattern was immersed in the above-mentioned anionic insulating electrodeposition solution facing a stainless steel cathode (SUS430MA), and the conductive substrate was used as an anode. It was energized by a DC power supply at a voltage of 100 V for 3 minutes. After washing with water, it was dried on a hot plate at 80 ° C. for 3 minutes. As a result, a 10 μm-thick electrodeposition coating film of the above polyimide was formed on the barrier conductive layer of the conductive substrate, and the transfer member of the present invention was obtained. (5) Transfer The transfer member obtained in the above process is pressed on a stainless steel foil (SUS304TA) having a thickness of 25 μm at a temperature of 160 ° C. and a pressure of 1 kgf / cm 2 to peel off the conductive substrate. When the transfer was performed, all the patterns were transferred. Therefore, it was confirmed that the pattern transferability was maintained even when the surface roughness of the conductive substrate was adjusted to increase the adhesion between the conductive layer and the conductive substrate.

【0038】実施例2 ステンレス鋼(SUS430MA)の薄板(厚さ0.1
5mm、Ra=0.019)を導電性基板として転写用
部材を以下の工程により作製した。
Example 2 A thin plate of stainless steel (SUS430MA) (thickness 0.1
(5 mm, Ra = 0.019) was used as a conductive substrate to prepare a transfer member by the following steps.

【0039】(1)表面粗度の調整 上記導電性基板をアルカリ性脱脂浴(日本マルセル
(株)製、マルクリーンSP 30g/l)中に10分
間浸漬した後、表面を十分に水洗し、乾燥させた。脱脂
処理導電性基板の両面をウェットブラスト装置(マコー
(株)製、ウェットブラスト加工セル)で下記条件でブ
ラスト処理し、十分に水洗、乾燥した。ブラスト処理後
の表面粗さはRa=0.042であった。 ウェットブラスト処理条件 使用砥材 球状シリカ砥材 粒径約20μm以下 砥材濃度 21% ポンプ圧力 0.6kg/mm2 エアー圧力 1.0kg/cm2 処理速度 12mm/sec 投射距離 20mm 投射角度 90°
(1) Adjustment of Surface Roughness After the conductive substrate was immersed in an alkaline degreasing bath (Malclean SP 30 g / l, manufactured by Nippon Marcel Co., Ltd.) for 10 minutes, the surface was sufficiently washed with water and dried. I let it. Both surfaces of the degreasing conductive substrate were blasted under the following conditions using a wet blasting device (wet blasting cell manufactured by Macho Co., Ltd.), washed sufficiently with water, and dried. The surface roughness after the blast treatment was Ra = 0.42. Wet blasting conditions Abrasive material Spherical silica abrasive Particle size less than about 20 μm Abrasive material concentration 21% Pump pressure 0.6 kg / mm 2 Air pressure 1.0 kg / cm 2 Processing speed 12 mm / sec Projection distance 20 mm Projection angle 90 °

【0040】(2)マスクパターンの形成 上記表面粗さ調整済み導電性基板上に、環化ゴム系ネガ
型フォトレジスト(東京応化工業(株)製、OMR85
36cP)を約2μmの厚さに塗布し、85℃のクリ
ーンオーブンにおいて30分間プレベークを行った。そ
の後、所定のパターンを有するフォトマスクを用い、下
記条件で露光を行い、現像液(東京応化工業(株)製、
OMR現像液)で現像し、リンス液(東京応化工業
(株)製、OMRリンス液)によってリンスを行った。
次いで、145℃のクリーンオーブンにおいて30分間
ポストベークを行い、マスクパターンを形成した。 露光条件 密着露光機 大日本スクリーン製造(株)製 P−202−G 真空引き 30秒 露光時間 30カウント
(2) Formation of a mask pattern On the conductive substrate whose surface roughness has been adjusted, a cyclized rubber negative photoresist (OMR85, manufactured by Tokyo Ohka Kogyo Co., Ltd.)
36cP) was applied to a thickness of about 2 μm, and prebaked in a clean oven at 85 ° C. for 30 minutes. Then, using a photomask having a predetermined pattern, exposure is performed under the following conditions, and a developer (manufactured by Tokyo Ohka Kogyo Co., Ltd.
(OMR developer) and rinsed with a rinse (OMR rinse, manufactured by Tokyo Ohka Kogyo Co., Ltd.).
Next, post-baking was performed in a clean oven at 145 ° C. for 30 minutes to form a mask pattern. Exposure conditions Contact exposure machine Dainippon Screen Mfg. Co., Ltd. P-202-G Vacuum evacuation 30 seconds Exposure time 30 count

【0041】(3)導電層の形成 上記のマスクパターンを形成した導電性基板を、含燐陽
極と対向させて下記組成の硫酸銅めっき浴中に浸漬し、
該導電性基板を陰極として、直流電源により2A/dm
2 の電流密度で25分間通電した。その結果、該導電性
基板の非マスク部上に厚さ10μmの銅めっきから成る
導電層が形成された。なお、絶縁性マスクパターンと導
電性基板の間への銅めっきの染込みは生じなかった。 硫酸銅めっき浴の組成(浴温25℃) CuSO4・5H2O 75g/l H2SO4 180g/l HCl 0.15ml/l (Cl-として60ppm) Cu−Board HA MU 10ml/l (荏原ユージライト(株)製)
(3) Formation of Conductive Layer The conductive substrate having the above-described mask pattern formed thereon is immersed in a copper sulfate plating bath having the following composition in opposition to the phosphorus-containing anode.
Using the conductive substrate as a cathode, 2 A / dm
The current was passed at a current density of 2 for 25 minutes. As a result, a conductive layer made of copper plating having a thickness of 10 μm was formed on the non-mask portion of the conductive substrate. In addition, copper plating did not penetrate between the insulating mask pattern and the conductive substrate. Composition of copper sulfate plating bath (bath temperature 25 ° C.) CuSO 4 .5H 2 O 75 g / l H 2 SO 4 180 g / l HCl 0.15 ml / l (60 ppm as Cl ) Cu-Board HA MU 10 ml / l (EBARA (Eugerite Co., Ltd.)

【0042】次いで、十分な水洗の後、該導電性基板を
電解ニッケル陽極と対向させて下記組成のワットニッケ
ルめっき浴中に浸漬し、該導電性基板を陰極として、定
電流電源により1A/dm2 の電流密度で5分間通電し
た。その結果、該導電性基板の上記銅めっき層上に厚さ
1μmのニッケルめっきから成るバリア導電層が形成さ
れた。なお金属めっきの内部応力による導電層の剥離は
全く生じなかった。 ワットニッケルめっき浴の組成(浴温50℃、pH4.0) NiSO4・6H2O 300g/l NiCl2・6H2O 50g/l H3BO3 40g/l
Next, after sufficient washing with water, the conductive substrate was immersed in a nickel plating bath having the following composition, facing the electrolytic nickel anode, and the conductive substrate was used as a cathode at a current of 1 A / dm. The current was passed at a current density of 2 for 5 minutes. As a result, a barrier conductive layer made of nickel plating having a thickness of 1 μm was formed on the copper plating layer of the conductive substrate. The conductive layer did not peel off due to the internal stress of the metal plating. Composition of Watt nickel plating bath (bath temperature 50 ° C., pH 4.0) NiSO 4 .6H 2 O 300 g / l NiCl 2 .6H 2 O 50 g / l H 3 BO 3 40 g / l

【0043】(4)粘接着層の形成 (アニオン性電着液の調製)実施例1と同様にして電着
液を調製した。 (電着)前記導電性パターンを有する導電性基板をステ
ンレス鋼陰極(SUS430MA)と対向させて上記の
アニオン性絶縁性電着液中に浸漬し、該導電性基板を陽
極として、直流電源により100Vの電圧で3分間通電
した。水洗後、80℃のホットプレートで3分間乾燥し
た。その結果、該導電性基板のバリア導電層上に厚さ1
0μmの上記ポリイミドからなる電着塗膜が形成され、
本発明の転写用部材を得た。 (5)転写 以上の工程で得られた転写用部材を厚さ25μmのステ
ンレス鋼箔(SUS304TA)上に、160℃、圧力
1kgf/cm2 の条件で圧着し、該導電性基板を剥離
して転写を行ったところ、パターンはすべて転写され
た。よって、導電性基板の表面粗度を調整し、導電層と
導電性基板との密着性を高めた場合でも、パターンの転
写性が保持されることが確認された。
(4) Formation of Adhesive Layer (Preparation of Anionic Electrodeposit) An electrodeposit was prepared in the same manner as in Example 1. (Electrodeposition) The conductive substrate having the conductive pattern was immersed in the above-described anionic insulating electrodeposition solution facing a stainless steel cathode (SUS430MA), and the conductive substrate was used as an anode and 100 V was supplied by a DC power supply. For 3 minutes. After washing with water, it was dried on a hot plate at 80 ° C. for 3 minutes. As a result, a thickness of 1 on the barrier conductive layer of the conductive substrate.
A 0 μm electrodeposition coating film made of the polyimide is formed,
The transfer member of the present invention was obtained. (5) Transfer The transfer member obtained in the above process is pressed on a stainless steel foil (SUS304TA) having a thickness of 25 μm at a temperature of 160 ° C. and a pressure of 1 kgf / cm 2 to peel off the conductive substrate. When the transfer was performed, all the patterns were transferred. Therefore, it was confirmed that the pattern transferability was maintained even when the surface roughness of the conductive substrate was adjusted to increase the adhesion between the conductive layer and the conductive substrate.

【0044】比較例1 工程(1)でウェットブラスト装置による表面粗度の調
整を行わないこと以外は実施例1と同様にして転写用部
材を作製したが、工程(3)のワットニッケルめっき後
に該導電性基板の非マスク部に形成される導電層の消
失、剥離が生じ、良好な転写用部材は得られなかった。
Comparative Example 1 A transfer member was prepared in the same manner as in Example 1 except that the surface roughness was not adjusted by a wet blasting device in the step (1), but after the watt nickel plating in the step (3). The conductive layer formed on the non-mask portion of the conductive substrate disappeared and peeled off, and a good transfer member could not be obtained.

【0045】比較例2 工程(1)でウェットブラスト装置による表面粗度の調
整を行わず、工程(2)でネガ型フォトレジスト(富士
薬品工業(株)製、FR14)を使用し、現像、リンス
を純水浸漬で行うこと以外は実施例1と同様にして転写
用部材を作製したが、工程(3)の硫酸銅めっき後に該
導電性基板と絶縁性マスクパターンの間に銅めっきの染
込みが発生し、良好な転写用部材は得られなかった。
COMPARATIVE EXAMPLE 2 In step (1), the surface roughness was not adjusted by a wet blasting apparatus, and in step (2), a negative photoresist (FR14 manufactured by Fuji Pharmaceutical Co., Ltd., FR14) was used. A transfer member was prepared in the same manner as in Example 1 except that rinsing was performed by immersion in pure water. However, after the copper sulfate plating in the step (3), the copper plating was performed between the conductive substrate and the insulating mask pattern. And a good transfer member could not be obtained.

【0046】比較例3 工程(1)でサンドブラスト装置によって下記条件で処
理(処理後の導電性基板のRa=0.175)すること
以外は実施例1と同様にして転写用部材を作製したが、
工程(5)の転写を行ったところ、パターンは一部のみ
しか転写せず、良好な転写用部材は得られなかった。 サンドブラスト処理条件 使用砥材 アルミナ #240 エアー圧力 1.2kg/cm2 処理速度 50mm/sec 投射距離 100mm 投射角度 90°
Comparative Example 3 A transfer member was prepared in the same manner as in Example 1 except that in the step (1), a treatment was carried out by a sand blasting device under the following conditions (Ra of the conductive substrate after treatment = 0.175). ,
When the transfer in the step (5) was performed, only a part of the pattern was transferred, and a good transfer member was not obtained. Sandblasting conditions Abrasive material used Alumina # 240 Air pressure 1.2 kg / cm 2 Processing speed 50 mm / sec Projection distance 100 mm Projection angle 90 °

【0047】比較例4 工程(1)でサンドブラスト装置によって下記条件で処
理(処理後の導電性基板のRa=0.227)すること
以外は実施例1と同様にして転写用部材を作製したが、
工程(5)の転写を行ったところ、パターンは全く転写
せず、良好な転写用部材は得られなかった。 サンドブラスト処理条件 使用砥材 アルミナ #240 エアー圧力 3.0kg/cm2 処理速度 50mm/sec 投射距離 100mm 投射角度 90°
Comparative Example 4 A transfer member was prepared in the same manner as in Example 1 except that in the step (1), the treatment was carried out by a sandblasting device under the following conditions (Ra of the treated conductive substrate = 0.227). ,
When the transfer in the step (5) was performed, no pattern was transferred at all, and a good transfer member was not obtained. Sandblasting conditions Abrasive material used Alumina # 240 Air pressure 3.0 kg / cm 2 Processing speed 50 mm / sec Projection distance 100 mm Projection angle 90 °

【0048】[0048]

【発明の効果】以上の本発明によれば、絶縁性マスクパ
ターンを形成する前に、導電性基板の表面粗度を調整す
ることによって、導電性基板上の非マスク部に形成され
る導電層と導電性基板との密着性、及び導電性基板とマ
スクパターンとの密着性の双方を高め、かつ、転写可能
な転写用部材を得ることができる。その結果、金属めっ
きの内部応力による配線の消失、剥離の防止、絶縁性マ
スクパターンと導電性基板の間へのめっきの染込み防止
の2つの課題を同時に解決し、転写用部材の製造歩留ま
りが向上する。
According to the present invention described above, the surface roughness of the conductive substrate is adjusted before the formation of the insulating mask pattern, so that the conductive layer formed on the non-mask portion on the conductive substrate is formed. It is possible to obtain a transfer member capable of improving both the adhesiveness between the conductive substrate and the conductive substrate and the adhesiveness between the conductive substrate and the mask pattern and transferring the image. As a result, it is possible to simultaneously solve the two problems of the disappearance and peeling of the wiring due to the internal stress of the metal plating and the prevention of the penetration of the plating between the insulating mask pattern and the conductive substrate, thereby reducing the production yield of the transfer member. improves.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の転写用部材の製造方法の概略説明図であ
る。
FIG. 1 is a schematic explanatory view of a conventional method for manufacturing a transfer member.

【図2】本発明の転写用部材の製造方法の一例を示す概
略説明図である。
FIG. 2 is a schematic explanatory view showing one example of a method for manufacturing a transfer member of the present invention.

【符号の説明】[Explanation of symbols]

1 導電性基板 2 マスクパターン 3 非マスク部 4 導電層 5 粘接着層 6 被転写基板 DESCRIPTION OF SYMBOLS 1 Conductive substrate 2 Mask pattern 3 Non-mask part 4 Conductive layer 5 Adhesive layer 6 Transfer receiving substrate

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】少なくとも片側表面に導電性を有する導電
性基板に対して、 前記導電性基板の導電性を有する前記表面の表面粗度
を、ウエットブラスト処理を用いて調整する工程と、 前記導電性基板の前記表面に電気絶縁性のマスクパター
ンを形成する工程と、 前記導電性基板のマスクパターンを形成した側の非マス
ク部に少なくとも1層以上の導電層を形成する工程と、 前記導電層上に粘接着層を形成する工程、を具備してな
り、 前記導電性基板上に、少なくとも前記導電層及び前記粘
接着層が積層されてなるパターン化された転写層を形成
することを特徴とする、転写用部材の製造方法。
1. A step of adjusting the surface roughness of the conductive surface of the conductive substrate by using a wet blast process with respect to the conductive substrate having conductivity on at least one side surface; Forming an electrically insulating mask pattern on the surface of the conductive substrate; forming at least one conductive layer on a non-mask portion of the conductive substrate on the side where the mask pattern is formed; Forming an adhesive layer on the conductive substrate, forming a patterned transfer layer formed by laminating at least the conductive layer and the adhesive layer on the conductive substrate. A method for producing a transfer member, which is characterized by the following.
【請求項2】前記表面粗度の調整を中心線平均粗さ(R
a)0.01〜0.3μmに調整する、請求項1に記載
の方法。
2. The method according to claim 1, wherein the adjustment of the surface roughness is performed by adjusting a center line average roughness (R).
The method according to claim 1, wherein a) is adjusted to 0.01 to 0.3 µm.
【請求項3】前記マスクパターンの形成が、フォトレジ
ストを用いて行われる、請求項1または2に記載の方
法。
3. The method according to claim 1, wherein the formation of the mask pattern is performed using a photoresist.
【請求項4】前記導電層の形成及び粘接着層の形成が、
電着法を用いて行われる、請求項1〜3のいずれか1項
に記載の方法。
4. The formation of the conductive layer and the formation of the adhesive layer
The method according to claim 1, wherein the method is performed using an electrodeposition method.
【請求項5】前記導電性基板がステンレス鋼からなり、
前記導電性基板表面の中心線平均粗さ(Ra)が、0.
01〜0.15μmであって、かつ、前記導電性基板の
粗度調整前の中心線平均粗さ(Ra)に対して0.00
1〜0.05μm大きいものである、請求項1〜4のい
ずれか1項に記載の方法。
5. The conductive substrate is made of stainless steel,
The center line average roughness (Ra) of the surface of the conductive substrate is 0.
0.01 to 0.15 μm, and 0.00 to the center line average roughness (Ra) of the conductive substrate before roughness adjustment.
The method according to any one of claims 1 to 4, which is 1 to 0.05 µm larger.
【請求項6】請求項1〜5のいずれか1項に記載の方法
を用いて製造されてなる、転写用部材。
6. A transfer member produced by using the method according to claim 1. Description:
【請求項7】請求項1〜5のいずれか1項に記載の方法
を用いて製造されてなる、プリント配線板。
7. A printed wiring board produced by using the method according to claim 1. Description:
JP6893898A 1998-03-18 1998-03-18 Transfer member and manufacture thereof Pending JPH11266069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6893898A JPH11266069A (en) 1998-03-18 1998-03-18 Transfer member and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6893898A JPH11266069A (en) 1998-03-18 1998-03-18 Transfer member and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11266069A true JPH11266069A (en) 1999-09-28

Family

ID=13388121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6893898A Pending JPH11266069A (en) 1998-03-18 1998-03-18 Transfer member and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11266069A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046224A (en) * 2001-07-30 2003-02-14 Kyocera Corp Metal layer transfer film and method of manufacturing it
JP2005276893A (en) * 2004-03-23 2005-10-06 Kyocera Corp Method for manufacturing ceramics multilayer wiring board
KR20130104575A (en) * 2012-03-14 2013-09-25 엘지디스플레이 주식회사 Master mold having fine scale pattern and method for manufacturing the same
KR101714737B1 (en) * 2015-12-01 2017-03-23 한국기계연구원 Selective transferring method and apparatus using bump type stamp

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046224A (en) * 2001-07-30 2003-02-14 Kyocera Corp Metal layer transfer film and method of manufacturing it
JP2005276893A (en) * 2004-03-23 2005-10-06 Kyocera Corp Method for manufacturing ceramics multilayer wiring board
KR20130104575A (en) * 2012-03-14 2013-09-25 엘지디스플레이 주식회사 Master mold having fine scale pattern and method for manufacturing the same
KR101714737B1 (en) * 2015-12-01 2017-03-23 한국기계연구원 Selective transferring method and apparatus using bump type stamp

Similar Documents

Publication Publication Date Title
JPS60147192A (en) Method of producing printed circuit board
JPH0455555B2 (en)
TWI232711B (en) Method for the manufacture of printed circuit boards with integral plated resistors
KR100417544B1 (en) A method for adding layers to a PWB which yields high levels of copper to dielectric adhesion
JP4480111B2 (en) Wiring forming method and wiring member
JPH06152105A (en) Manufacture of printed wiring board
JPH11266069A (en) Transfer member and manufacture thereof
US4968398A (en) Process for the electrolytic removal of polyimide resins
JP4101919B2 (en) Method for manufacturing transfer member and transfer member
JPH11274695A (en) Transferring material and manufacture thereof
JPH11266070A (en) Manufacture of transfer member and printed wiring board
JP2002009203A (en) Wiring forming method and wiring board
JPH0745948A (en) Multilayer wiring board and its manufacture
JP2000091741A (en) Member for transfer and manufacture thereof
JP2000068628A (en) Transfer member, printed wiring board and manufacture of the transfer member
JP3828205B2 (en) Method for manufacturing transfer member and transfer member
JP2001077513A (en) Forming method of film covered wiring and wiring board
JP2713037B2 (en) Printed wiring board and manufacturing method thereof
JPH11274693A (en) Transferring material and manufacture thereof
JP3071733B2 (en) Method for manufacturing multilayer printed wiring board
JP2001085822A (en) Method for manufacturing transfer plate and the transfer plate, and method for manufacturing wiring board and the wiring board
JPH08116172A (en) Multilayer printed wiring board and manufacture thereof and original edition for transferring to be used for manufacturing multilayer printed wiring board and manufacture thereof
JP2000183502A (en) Member for transfer, conductive pattern transferred body, and manufacture of member for transfer
JP3617880B2 (en) Manufacturing method of multilayer printed wiring board
JP2000101239A (en) Method and member for transfer

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050311

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080314

A02 Decision of refusal

Effective date: 20081121

Free format text: JAPANESE INTERMEDIATE CODE: A02