JP2000183502A - Member for transfer, conductive pattern transferred body, and manufacture of member for transfer - Google Patents

Member for transfer, conductive pattern transferred body, and manufacture of member for transfer

Info

Publication number
JP2000183502A
JP2000183502A JP10354641A JP35464198A JP2000183502A JP 2000183502 A JP2000183502 A JP 2000183502A JP 10354641 A JP10354641 A JP 10354641A JP 35464198 A JP35464198 A JP 35464198A JP 2000183502 A JP2000183502 A JP 2000183502A
Authority
JP
Japan
Prior art keywords
insulating resin
resin layer
drying
conductive
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10354641A
Other languages
Japanese (ja)
Inventor
Tomoko Maruyama
智子 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP10354641A priority Critical patent/JP2000183502A/en
Publication of JP2000183502A publication Critical patent/JP2000183502A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve capability of being transferred to a body to be transferred and prevent occurrences of bleeding during transferring by composing a member for transfer of at least one conductive layer formed on a conductive substrate and an insulating resin layer formed thereon, and controlling the percentage of the solvent content in the insulating resin layer to a specific value. SOLUTION: An electrically insulating photoresist layer 2 is formed on a conductive substrate 1, exposed to light, and developed to form an electrical insulating mask pattern 2'. A conductive layer 3 is formed on the non-mask area by electrolytic plating, and an insulating resin layer 4 is selectively deposited thereon by electrodeposition. Since the insulating resin layer 4 thus formed by electrodeposition contains solvent, the workpiece is dried before a transferring process to control the percentage of the solvent content to a range of 50-75 wt.%. As a result, when the conductive layer with the pattern formed thereon is transferred to a substrate to be transferred, a bleeding phenomenon does not occur.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微細パターンを有
する転写用部材とその製造方法に関する。特に多層プリ
ント配線板、メタルベースプリント配線板、パッケージ
・サスペンション、ハードディスク磁気ヘッド用配線付
きサスペンション、非接触ICカード用コイル配線等の
製造に用いることができる、基板上にパターン化された
導電層等からなる転写層が形成されている転写用部材と
その製造方法に関する。
The present invention relates to a transfer member having a fine pattern and a method for manufacturing the same. In particular, a conductive layer patterned on a substrate, which can be used for manufacturing a multilayer printed wiring board, a metal base printed wiring board, a package suspension, a suspension with wiring for a hard disk magnetic head, a coil wiring for a non-contact IC card, and the like. And a method for manufacturing the same.

【0002】[0002]

【従来の技術】電気分野における技術の飛躍的な発展に
より、CSPに代表されるように半導体パッケージの小
型化、多ピン化、ファインピッチ化、ベアチップ実装、
電子部品の極小化等の高密度実装技術が急速に進展して
いる。それに伴って、プリント配線板の実装密度も、片
面配線、両面配線、多層化、薄膜化へと移るに従い、層
方向への高密度化という形で進展し、さらに薄膜化が進
められている。
2. Description of the Related Art Due to the rapid development of technology in the electric field, as represented by CSP, semiconductor packages have been reduced in size, the number of pins has been increased, the fine pitch has been increased, bare chip mounting,
High-density packaging technology, such as miniaturization of electronic components, is rapidly developing. Along with this, the mounting density of printed wiring boards has also progressed in the form of higher density in the layer direction with the shift to single-sided wiring, double-sided wiring, multi-layering, and thinning, and further thinning has been promoted.

【0003】このようなプリント配線板の銅パターン形
成には、一般にサブトラクティブ法と、アディティブ法
が用いられている。
[0003] A subtractive method and an additive method are generally used for forming a copper pattern on such a printed wiring board.

【0004】サブトラクティブ法は、典型的には、銅張
積層板に穴をあけた後に、穴の内部と表面に銅メッキを
行い、エッチングレジストをフォトリソ法で形成した
後、銅張基板板をエッチングして導体回路を形成する方
法である。この方法は、技術的にはほぼ完成されてお
り、低コストではあるが、エッチングの際に銅箔の厚さ
等による制約があるため、微細パターンの形成には限界
がある。また、上記サブトラクティブ法により作製され
た両面の回路基板を用いた多層プリント配線板の作製
は、両面加工のためのドリル加工の精度と、微細化限界
の面から高密度化に限界があり、製造コストの低減も困
難であった。
In the subtractive method, typically, after making a hole in a copper-clad laminate, copper plating is performed on the inside and surface of the hole, an etching resist is formed by a photolithographic method, and then the copper-clad board is removed. This is a method of forming a conductor circuit by etching. Although this method is technically almost completed and low in cost, the formation of a fine pattern is limited due to restrictions such as the thickness of the copper foil during etching. In addition, the production of a multilayer printed wiring board using a double-sided circuit board produced by the above-described subtractive method has a limit in terms of the precision of drilling for double-sided processing and a high density from the aspect of miniaturization limit, It was also difficult to reduce the manufacturing cost.

【0005】一方、アディティブ法は、典型的には、基
板上に触媒核を付与した後、非回路パターン形成部にめ
っきレジストパターンを形成し、これに無電解銅めっき
処理を行い、積層板の露出している部分に無電解銅めっ
き等による導体回路パターンを形成する方法である。こ
の方法は、微細パターンの形成は可能であるが、コスト
低減や、信頼性のさらなる向上が求められている。
[0005] On the other hand, in the additive method, typically, after a catalyst nucleus is provided on a substrate, a plating resist pattern is formed on a non-circuit pattern forming portion, and an electroless copper plating process is performed on the resist pattern to form a laminate. This is a method of forming a conductive circuit pattern on an exposed portion by electroless copper plating or the like. This method can form a fine pattern, but requires cost reduction and further improvement in reliability.

【0006】多層プリント配線板は、上記方法で作製し
た片面あるいは両面の基板を、さらにガラス布にエポキ
シ樹脂等を含侵させたBステージ状態のプリプレグと共
に加圧積層され製造される。そして、このプリプレグ
は、各層の接着剤の役割を果たす。このような多層プリ
ント配線板では、通常、一括での多層化後に、内部に無
電解めっき等を施したスルーホールを形成することによ
って各層の導体回路の接続を行っているが、スルーホー
ルの精度のさらなる向上が求められている。
A multilayer printed wiring board is manufactured by press-stacking a single-sided or double-sided substrate prepared by the above method together with a prepreg in a B-stage state in which a glass cloth is impregnated with an epoxy resin or the like. The prepreg plays the role of an adhesive for each layer. In such a multilayer printed wiring board, the conductor circuits of each layer are usually connected by forming through holes that are subjected to electroless plating or the like after collective multilayering. Further improvement is required.

【0007】近年上述のような要求を満たすものとし
て、コア基板の表面に絶縁層を介して回路パターンを積
み上げて形成するビルドアップ方式の多層プリント配線
板が注目されている。このビルドアップ方式の多層プリ
ント配線板は、銅めっき層のエッチングと感光性樹脂の
パターニングを交互に行って作製されるため高精細な配
線と任意の位置での層間接続が可能となっている。ま
た、従来のスルーホールを用いる多層プリント配線板に
比べ、スルーホールによって配線が邪魔されないために
配線ピッチが同じであっても配線密度が向上する。
In recent years, a multilayer printed wiring board of a build-up type, which is formed by stacking circuit patterns on the surface of a core substrate via an insulating layer, has been attracting attention as satisfying the above requirements. Since this multilayer printed wiring board of the build-up system is manufactured by alternately performing etching of the copper plating layer and patterning of the photosensitive resin, high-definition wiring and interlayer connection at an arbitrary position are possible. Further, compared to a conventional multilayer printed wiring board using through holes, the wiring density is improved even if the wiring pitch is the same because the wiring is not obstructed by the through holes.

【0008】しかしながら、この方式では銅めっきとフ
ォトエッチングを交互に複数回行うため、工程が煩雑と
なる。また、基板上に一層づつ積み上げる直列プロセス
のため、中間工程でトラブルが発生すると、製品の再製
が困難となり、製造コストの低減に支障を来たしてい
る。
However, in this method, since the copper plating and the photo-etching are performed alternately a plurality of times, the process becomes complicated. In addition, since a series of processes are stacked one by one on a substrate, if a trouble occurs in an intermediate step, it is difficult to remanufacture a product, which hinders a reduction in manufacturing cost.

【0009】さらに、従来の多層プリント配線板におい
ては、層間の接続がバイアホールを作製することにより
行われていたため、煩雑なフォトリソグラフィー工程が
必要であり、製造コスト低減の妨げとなっていた。
Further, in the conventional multilayer printed wiring board, since the connection between the layers is made by forming via holes, a complicated photolithography step is required, which hinders a reduction in manufacturing cost.

【0010】上記のような問題を解決するために、基板
と基板上に順次転写される複数の配線パターン層を有す
る多層プリント配線板であって、各配線パターン層が導
電層と導電層を基板あるいは下層の配線パターン層に固
定する絶縁性樹脂層を有するもの、及びその製造方法が
提案されている(特開平8−116172)。
In order to solve the above problems, there is provided a multilayer printed wiring board having a substrate and a plurality of wiring pattern layers sequentially transferred onto the substrate, wherein each wiring pattern layer comprises a conductive layer and a conductive layer. Alternatively, a device having an insulating resin layer fixed to a lower wiring pattern layer and a method of manufacturing the same have been proposed (Japanese Patent Application Laid-Open No. Hei 8-116172).

【0011】この方法により形成された転写部材を、図
2に模式的に示す。まず、導電性基板1上に、フォトレ
ジストを所定のマスクで露光し、現像することにより得
られた電気絶縁性マスクパターン2'が形成されてい
る。さらに、電気絶縁性マスクパターン2'の非マスク
部に電解めっきにより導電層3が形成されている。そし
て、該導電層3上に、電着法により絶縁性樹脂層4を選
択的に析出させたものである。このような転写用部材
を、粘接着を有する絶縁性樹脂層4を介して導電層3の
パターンを被転写材に転写し、最終的に目的のプリント
配線板等の配線パターン基板を得る。
The transfer member formed by this method is schematically shown in FIG. First, an electrically insulating mask pattern 2 ′ obtained by exposing and developing a photoresist on a conductive substrate 1 with a predetermined mask is formed. Further, a conductive layer 3 is formed on a non-mask portion of the electrically insulating mask pattern 2 'by electrolytic plating. The insulating resin layer 4 is selectively deposited on the conductive layer 3 by an electrodeposition method. With such a transfer member, the pattern of the conductive layer 3 is transferred to the transfer target material via the insulating resin layer 4 having adhesiveness, and finally, a target wiring pattern substrate such as a printed wiring board is obtained.

【0012】上記の方法においては、絶縁性樹脂層4を
形成するためには、電着法で樹脂を析出させる。その絶
縁性樹脂層4を形成するための電着液には、溶媒が含ま
れており、絶縁性樹脂層4を形成した後に乾燥を行う必
要がある。この乾燥工程に起因して、以下のような問題
を生じた。まず第一は、乾燥時に高温にさらされた絶縁
性樹脂層が軟化し、絶縁性樹脂層が導電層パターンの周
囲にはみ出してしまうブリードの問題を生じ、同時に膜
形状が大きく変化し転写後に必要な膜厚が維持できない
ということである。次に、電着によって形成された絶縁
性樹脂層4を介して導電層3のパターンを被転写基板上
に転写するさい、前記絶縁性樹脂層4が転写時の温度、
および圧力により、前記導電層3のパターンの周囲には
み出すブリードの現象を生じることである。そして、高
精細パターンを形成する場合、あるいは積層の際にはこ
のブリードが他のパターンの精度に影響を及ぼし大きな
問題となった。
In the above method, in order to form the insulating resin layer 4, the resin is deposited by an electrodeposition method. The electrodeposition liquid for forming the insulating resin layer 4 contains a solvent, and it is necessary to perform drying after forming the insulating resin layer 4. Due to this drying step, the following problems have occurred. First, the insulating resin layer exposed to high temperature during drying softens, causing the problem of bleeding in which the insulating resin layer protrudes around the conductive layer pattern. That is, it is not possible to maintain a proper film thickness. Next, when the pattern of the conductive layer 3 is transferred onto the substrate to be transferred via the insulating resin layer 4 formed by electrodeposition, the insulating resin layer 4 is heated at the time of transfer,
And the pressure causes a phenomenon of bleeding that protrudes around the pattern of the conductive layer 3. When forming a high-definition pattern or when laminating, this bleed affects the accuracy of other patterns, which is a serious problem.

【0013】[0013]

【発明が解決しようとする課題】本発明はこのような実
状のもとになされたものであって、乾燥時に高温にさら
された絶縁性樹脂層が軟化し、絶縁性樹脂層が導電層パ
ターンの周囲にはみ出してしまうブリードの問題と、電
着によって形成された絶縁性樹脂層4を介して導電層3
のパターンを被転写基板上に転写するさい、前記絶縁性
樹脂層4が転写時の温度、および圧力により、前記導電
層3のパターンの周囲にブリードする問題を解決し、高
精細パターン、あるいは積層パターンを問題無く形成で
きるような転写部材およびその製造方法を提供すべくな
されたものである。
SUMMARY OF THE INVENTION The present invention has been made under such circumstances, and the insulating resin layer exposed to a high temperature during drying softens, and the insulating resin layer forms a conductive layer pattern. Problem of bleeding which protrudes into the periphery of the conductive layer 3 through the insulating resin layer 4 formed by electrodeposition.
When the pattern is transferred onto the substrate to be transferred, the problem that the insulating resin layer 4 bleeds around the pattern of the conductive layer 3 due to the temperature and pressure at the time of transfer is solved. An object of the present invention is to provide a transfer member capable of forming a pattern without any problem and a method of manufacturing the same.

【0014】[0014]

【課題を解決するための手段】本発明の転写用部材は、
少なくとも片側表面に導電性を有する導電性基板と、該
導電性基板上に形成された少なくとも一層の導電層と、
該導電層上に形成された絶縁性樹脂層とからなり、該絶
縁性樹脂層中の溶媒含有率が50〜75%であるような
構成とした。
According to the present invention, there is provided a transfer member comprising:
A conductive substrate having conductivity on at least one surface, and at least one conductive layer formed on the conductive substrate,
The insulating resin layer was formed on the conductive layer, and the solvent content in the insulating resin layer was 50 to 75%.

【0015】さらに、本発明の転写用部材は、少なくと
も片側表面に導電性を有する導電性基板と、該導電性基
板上に形成された電気絶縁性マスクパターンと、前記導
電性基板のマスクパターンを形成した側の非マスク部に
形成された少なくとも一層の導電層と、該導電層上に形
成された絶縁性樹脂層とからなり、該絶縁性樹脂層中の
溶媒含有率が50〜75%であるような構成とした。
Further, the transfer member of the present invention comprises a conductive substrate having conductivity on at least one surface, an electrically insulating mask pattern formed on the conductive substrate, and a mask pattern of the conductive substrate. It comprises at least one conductive layer formed on the non-mask portion on the formed side, and an insulating resin layer formed on the conductive layer, wherein the solvent content in the insulating resin layer is 50 to 75%. The configuration was as follows.

【0016】そして、本発明の転写用部材の製造方法
は、少なくとも片側表面に導電性を有する導電性基板に
対して、該導電性基板に少なくとも一層の導電層を形成
する工程と、該導電層上に電着法で絶縁性樹脂層を形成
する工程と、該絶縁性樹脂層の乾燥前の軟化温度より低
い温度で、前記絶縁性樹脂層中に残留している電着溶媒
の乾燥を減圧下で行う工程を具備してなるような工程と
した。
The method for manufacturing a transfer member according to the present invention comprises the steps of forming at least one conductive layer on a conductive substrate having conductivity on at least one surface thereof; Forming an insulating resin layer on the insulating resin layer by an electrodeposition method, and drying the electrodeposition solvent remaining in the insulating resin layer at a temperature lower than the softening temperature of the insulating resin layer before drying. It was a step comprising the steps performed below.

【0017】さらに、本発明の転写用部材は、少なくと
も片側表面に導電性を有する導電性基板に対して、電気
絶縁性マスクパターンを形成する工程と、前記導電性基
板のマスクパターンを形成した側の非マスク部に少なく
とも一層の導電層を形成する工程と、該導電層上に電着
法で絶縁性樹脂層を形成する工程と、該絶縁性樹脂層の
乾燥前の軟化温度より低い温度で、前記絶縁性樹脂層中
に残留している電着溶媒の乾燥を減圧下で行う工程を具
備してなるような工程とした。
Further, the transfer member of the present invention includes a step of forming an electrically insulating mask pattern on a conductive substrate having conductivity on at least one surface, and a step of forming a mask pattern on the conductive substrate. Forming at least one conductive layer on the non-mask portion, forming an insulating resin layer on the conductive layer by electrodeposition, at a temperature lower than the softening temperature of the insulating resin layer before drying. And drying the electrodeposition solvent remaining in the insulating resin layer under reduced pressure.

【0018】[0018]

【発明の実施の形態】本発明の方法を方法を、図1を使
用して具体的に説明する。まず(A)、(B)に示すよ
うに、導電性基板1上に電気絶縁性フォトレジスト層2
を形成する。次いで(C)に示すように、所定のフォト
マスクを介して露光、現像を行うことにより、電気絶縁
性マスクパターン2'を形成する。さらに(D)に示す
ように、電気絶縁性マスクパターン2'の非マスク部に
電解めっきにより導電層3を形成する。そして、(E)
に示すように、該導電層3上に電着法により絶縁性樹脂
層4を選択的に析出させるものである。このように形成
された転写用部材は、最終的に粘接着を有する絶縁性樹
脂層4を介して導電層3を被転写材に転写し、目的のプ
リント配線板等の配線パターン基板を得る。このとき、
絶縁性樹脂層4を介して導電層3を被転写材に転写して
いるため、被転写材の材質は金属のような導電体でも良
く、もちろん絶縁性基板でもよい。従来のプリント配線
板の配線パターン形成方法では、基板は絶縁性基板に限
られていたため、金属基板のような導電性を有する被転
写体基板上に導電層3のパターンを形成し、回路として
使用できることは、本発明の優れた特徴の一つである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention will be described in detail with reference to FIG. First, as shown in (A) and (B), an electrically insulating photoresist layer 2 is formed on a conductive substrate 1.
To form Next, as shown in (C), an electrical insulating mask pattern 2 'is formed by performing exposure and development via a predetermined photomask. Further, as shown in (D), a conductive layer 3 is formed on the non-mask portion of the electrically insulating mask pattern 2 'by electrolytic plating. And (E)
As shown in FIG. 1, an insulating resin layer 4 is selectively deposited on the conductive layer 3 by an electrodeposition method. In the transfer member thus formed, the conductive layer 3 is finally transferred to the material to be transferred via the insulating resin layer 4 having adhesiveness to obtain a target wiring pattern substrate such as a printed wiring board. . At this time,
Since the conductive layer 3 is transferred to the material to be transferred via the insulating resin layer 4, the material of the material to be transferred may be a conductor such as a metal, or may be an insulating substrate. In the conventional method for forming a wiring pattern of a printed wiring board, the substrate is limited to an insulating substrate. Therefore, a pattern of the conductive layer 3 is formed on a transfer-receiving substrate having conductivity, such as a metal substrate, and is used as a circuit. What can be done is one of the outstanding features of the present invention.

【0019】以下、本発明の転写用部材の製造方法をよ
り一層詳しく説明する。
Hereinafter, the method for producing a transfer member of the present invention will be described in more detail.

【0020】絶縁性樹脂層の形成 本発明の転写用部材に用いられる絶縁性樹脂層は、典型
的には導電層の表面に電着法によって形成する。絶縁性
樹脂層に要求される性質は、電気絶縁性、耐熱性、粘接
着性であり、とくに電気絶縁性と耐熱性を高い次元で満
足させなければならない。本発明の転写用部材に用いら
れる絶縁樹脂層の材料は、常温あるいは加熱により粘接
着性を示すものであり、転写用部材を被転写基板に圧着
し、導電層を絶縁性樹脂層によって被転写材に固着でき
るものが好ましい。加えてはんだバンプ接続等の後工程
で高温にさらされるため、絶縁樹脂層の材料は、耐熱性
をも有するものが好ましい。また、電着液化が可能な物
質、例えばイオン性高分子化合物を用いることも好まし
い。
Formation of Insulating Resin Layer The insulating resin layer used in the transfer member of the present invention is typically formed on the surface of a conductive layer by an electrodeposition method. The properties required for the insulating resin layer are electrical insulation, heat resistance, and adhesiveness. In particular, electrical insulation and heat resistance must be satisfied at a high level. The material of the insulating resin layer used in the transfer member of the present invention has adhesive properties at room temperature or by heating. The transfer member is pressed against the substrate to be transferred, and the conductive layer is covered with the insulating resin layer. Those that can be fixed to the transfer material are preferable. In addition, since the insulating resin layer is exposed to a high temperature in a later step such as solder bump connection, it is preferable that the material of the insulating resin layer also has heat resistance. It is also preferable to use a substance that can be liquefied by electrodeposition, for example, an ionic polymer compound.

【0021】絶縁性樹脂層を形成するための電着液に含
有されるイオン性高分子化合物としては、例えば、天然
系樹脂、アクリル系樹脂、ポリエステル系樹脂、アルキ
ッド系樹脂、マレイン化油系樹脂、ポリブタジエン系樹
脂、エポキシ系樹脂、ポリアミド系樹脂、ポリイミド系
樹脂等が挙げられる。アニオン性高分子化合物としては
カルボキシル基等のアニオン性基を有するものが、カチ
オン性高分子化合物としては、アミノ基等のカチオン性
基を有するものが包含される。本発明に於いては、絶縁
性樹脂層に要求される性能にしたがって最適なイオン性
高分子化合物を適宜選択することができる。また、必要
に応じてこれらのイオン性高分子化合物とともに、ロジ
ン系、テルペン系、石油樹脂系等の粘着付与剤を使用す
ることができる。
Examples of the ionic polymer compound contained in the electrodeposition solution for forming the insulating resin layer include natural resins, acrylic resins, polyester resins, alkyd resins, and maleated oil resins. , Polybutadiene resin, epoxy resin, polyamide resin, polyimide resin and the like. Examples of the anionic polymer compound include those having an anionic group such as a carboxyl group, and examples of the cationic polymer compound include those having a cationic group such as an amino group. In the present invention, an optimal ionic polymer compound can be appropriately selected according to the performance required for the insulating resin layer. If necessary, a rosin-based, terpene-based, petroleum-based tackifier or the like can be used together with these ionic polymer compounds.

【0022】上記の絶縁性樹脂層を形成するための電着
液に含有される樹脂としては、特にポリイミド樹脂が好
ましい。ポリイミド樹脂は、電気絶縁性と耐熱性を高い
レベルで満足させるため、絶縁性樹脂層とした場合の特
性が非常に優れたものとなる。
The resin contained in the electrodeposition solution for forming the insulating resin layer is preferably a polyimide resin. Since the polyimide resin satisfies electrical insulation and heat resistance at a high level, the characteristics of the polyimide resin when used as an insulating resin layer are extremely excellent.

【0023】上記の種々の高分子化合物は、溶媒を加
え、さらにアルカリ性物質又は酸性物質によって中和し
て水に可溶化された状態で、あるいは水分散した状態で
電着を行うことができる。使用可能な溶媒としては、N
−メチル−2−ピロリドン、N,N−ジメチルアセトア
ミド、N,N−ジメチルホルムアミド、ジメチルスルホ
キシド、γ−ブチロラクトン、テトラメチル尿素、ヘキ
サメチルホスホルトリアミド等の非プロトン系極性溶
媒、酢酸メチル、酢酸エチル、酢酸n−プロピル、酢酸
n−ブチル、メトキシプロピオン酸メチル、エトキシプ
ロピオン酸エチル、しゅう酸ジエチル、マロン酸ジエチ
ル、乳酸エチル、乳酸n−プロピル、乳酸n−ブチル等
のエステル類、アセトン、メチルエチルケトン、メチル
イソブチルケトン、シクロヘキサノン等のケトン類、フ
ェノール、m−クレゾール、キシレノール、ハロゲン化
フェノール等のフェノール類、ベンジルアルコール、ト
ルエン等の芳香族等が挙げられる。特にポリイミド樹脂
を使用する場合は、N−メチル−2−ピロリドンを主体
とした溶媒系が望ましい。また、中和のための酸性、あ
るいはアルカリ性物質としては、アニオン性高分子化合
物の場合は、例えばトリメチルアミン、ジエチルアミ
ン、ジメチルエタノールアミン等のアミン類、アンモニ
ア、苛性カリ等の無機アルカリで中和することができ
る。カチオン性高分子化合物の場合は、例えば、酢酸、
蟻酸、プロピオン酸、乳酸等の酸で中和することができ
る。
The above-mentioned various polymer compounds can be electrodeposited in a state of being added to a solvent and further neutralized by an alkaline substance or an acidic substance and solubilized in water, or dispersed in water. Examples of usable solvents include N
Aprotic polar solvents such as -methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethylsulfoxide, γ-butyrolactone, tetramethylurea, hexamethylphosphortriamide, methyl acetate, ethyl acetate Esters such as n-propyl acetate, n-butyl acetate, methyl methoxypropionate, ethyl ethoxypropionate, diethyl oxalate, diethyl malonate, ethyl lactate, n-propyl lactate, n-butyl lactate, acetone, methyl ethyl ketone, Examples include ketones such as methyl isobutyl ketone and cyclohexanone; phenols such as phenol, m-cresol, xylenol, and halogenated phenol; and aromatics such as benzyl alcohol and toluene. In particular, when a polyimide resin is used, a solvent system mainly containing N-methyl-2-pyrrolidone is preferable. In addition, as the acidic or alkaline substance for neutralization, in the case of an anionic polymer compound, for example, trimethylamine, diethylamine, amines such as dimethylethanolamine, ammonia, and inorganic alkali such as potassium hydroxide can be neutralized. it can. In the case of a cationic polymer compound, for example, acetic acid,
It can be neutralized with acids such as formic acid, propionic acid and lactic acid.

【0024】このようにして電着法で形成後した絶縁性
樹脂層は、溶媒を含んでいるため転写工程の前に乾燥す
ることが必要である。特に、ポリイミド樹脂を含む電着
液の場合は、ポリイミド樹脂の電着溶液中での安定性を
保つために、数種の溶媒が多量に含まれており、この乾
燥工程を厳重にコントロールすることが必要となる。
The insulating resin layer formed by the electrodeposition method as described above contains a solvent, and therefore needs to be dried before the transfer step. In particular, in the case of an electrodeposition solution containing a polyimide resin, in order to maintain the stability of the electrodeposition solution of the polyimide resin, several kinds of solvents are contained in a large amount, and this drying step should be strictly controlled. Is required.

【0025】電着後の絶縁性樹脂層の乾燥工程のうち、
重要なものの一つが、乾燥後の絶縁性樹脂層中の溶媒含
有率である。乾燥後の絶縁性樹脂層中の溶媒含有率の好
適な範囲は、50〜75wt%であり、特に好ましい範
囲は、60〜70wt%である。この乾燥後の絶縁性樹
脂層中の溶媒含有率が、50wt%を下回ると絶縁性樹
脂層中で可塑剤的な役割をしている残留電着溶媒の含有
率が少なくなるため、絶縁性樹脂の粘接着性が不足して
しまう。すると、転写用部材を使用し、絶縁性樹脂層を
介してパターンを形成した導電層を被転写基板に転写す
る場合に、転写性が不適となり、良好な転写配線パター
ンを得ることができなくなる。また、乾燥後の絶縁性樹
脂層中の溶媒含有率が、75wt%を超えると、絶縁性
樹脂層中の溶媒含有率が多すぎ、絶縁性樹脂層を介して
パターンを形成した導電層を被転写基板に転写する場合
に、絶縁性樹脂層が転写時の温度、および圧力により、
導電層のパターンの周囲にはみ出すというブリードの現
象を生じ、高精細パターンを形成する場合、あるいは積
層の際にこの転写時のブリードが他のパターン精度に影
響を及ぼし大きな問題となる。
In the drying step of the insulating resin layer after the electrodeposition,
One of the important factors is the solvent content in the insulating resin layer after drying. A preferred range of the solvent content in the insulating resin layer after drying is 50 to 75 wt%, and a particularly preferred range is 60 to 70 wt%. When the content of the solvent in the insulating resin layer after drying is less than 50 wt%, the content of the residual electrodeposition solvent serving as a plasticizer in the insulating resin layer is reduced. Of the adhesive is insufficient. Then, when the transfer layer is used to transfer the conductive layer on which the pattern is formed to the substrate to be transferred via the insulating resin layer, the transferability becomes inappropriate, and a good transfer wiring pattern cannot be obtained. When the solvent content in the insulating resin layer after drying exceeds 75 wt%, the solvent content in the insulating resin layer is too large, and the conductive layer on which the pattern is formed via the insulating resin layer is covered. When transferring to a transfer substrate, the insulating resin layer is transferred by temperature and pressure during transfer.
The phenomenon of bleeding which protrudes around the pattern of the conductive layer occurs, and when forming a high-definition pattern or when laminating, the bleeding at the time of transfer affects other pattern accuracy, which is a serious problem.

【0026】また、乾燥工程として重要なものに乾燥時
の圧力と温度もある。電着溶媒に使用される溶媒は、例
えばN−メチル−2−ピロリドンを主体としたもの等が
挙げられるが、このような溶媒は沸点が高いため、乾燥
温度を高くする必要がある。しかし、乾燥温度をむやみ
に高くて、溶媒を含んだ絶縁性樹脂層の軟化点を超える
ような温度に設定してしまうと、乾燥時に絶縁性樹脂層
が軟化し、絶縁性樹脂層が導電層パターンの周囲にはみ
出してしまうブリードを生じ、同時に膜形状が大きく変
化し転写後に必要な膜厚が維持できないという問題を引
き起こす。逆に、乾燥温度を絶縁性樹脂層の軟化点以下
に単純に設定すると、溶媒乾燥性か不適となり、絶縁性
樹脂層の適切な溶媒含有量が得られなくなってしまう。
上記問題を解決する方法として、乾燥時の雰囲気圧力を
下げ、溶媒を含んだ絶縁性樹脂層の軟化点以下の温度で
乾燥する方法をみいだした。これにより、高沸点溶媒に
おいても、ブリードなしに転写に適切な絶縁性樹脂層の
溶媒含有率を得ることが可能となった。
Also important in the drying step are the pressure and temperature during drying. Examples of the solvent used for the electrodeposition solvent include, for example, those mainly composed of N-methyl-2-pyrrolidone. However, since such a solvent has a high boiling point, it is necessary to raise the drying temperature. However, if the drying temperature is excessively high and is set to a temperature exceeding the softening point of the insulating resin layer containing the solvent, the insulating resin layer softens during drying, and the insulating resin layer becomes conductive layer. Bleeding that protrudes around the pattern occurs, and at the same time, the film shape changes greatly, causing a problem that the required film thickness cannot be maintained after transfer. Conversely, if the drying temperature is simply set to be equal to or lower than the softening point of the insulating resin layer, the solvent drying property becomes inappropriate, and an appropriate solvent content of the insulating resin layer cannot be obtained.
As a method for solving the above problem, a method has been found in which the atmospheric pressure during drying is reduced and drying is performed at a temperature lower than the softening point of the insulating resin layer containing a solvent. This makes it possible to obtain a solvent content of the insulating resin layer suitable for transfer without bleeding even with a high boiling point solvent.

【0027】具体的な乾燥圧力、温度としては、圧力1
00mmHgのとき好適な温度としては60〜120℃
である。好適範囲より温度か高いと、上述のように乾燥
時に絶縁性樹脂層が軟化し、絶縁性樹脂層が導電層パタ
ーンの周囲にはみ出してしまうブリードの問題を生じて
しまう。また、温度が好適範囲より低いと、溶媒乾燥性
が不適となり、絶縁性樹脂層の適切な溶媒含有量が得ら
れなくなってしまう。
The specific drying pressure and temperature are pressure 1
A preferable temperature at 00 mmHg is 60 to 120 ° C.
It is. If the temperature is higher than the preferable range, the insulating resin layer is softened during drying as described above, which causes a problem of bleeding in which the insulating resin layer protrudes around the conductive layer pattern. On the other hand, when the temperature is lower than the preferable range, the solvent drying property becomes inappropriate, and it becomes impossible to obtain an appropriate solvent content of the insulating resin layer.

【0028】絶縁性樹脂層の厚みは粘接着性及び必要に
おおじた絶縁性が満たされれば、特に限定されるもので
はないが、一般的には1〜100μmであり、好ましく
は10〜50μmとする。
The thickness of the insulating resin layer is not particularly limited as long as the adhesive property and the required insulating property are satisfied, but it is generally 1 to 100 μm, preferably 10 to 100 μm. It is 50 μm.

【0029】導電性基板 本発明の転写用部材に用いられる導電性基板の材料は、
銅または導電性基板であれば特に制限されないが、具体
的な材質の例を挙げるとステンレス、銅、銅合金、コバ
ール等が挙げられる。
The material of the conductive substrate used in the transfer member of the conductive substrate present invention,
The material is not particularly limited as long as it is copper or a conductive substrate, and specific examples of the material include stainless steel, copper, copper alloy, and Kovar.

【0030】このような導電性基板の厚さは特に制限さ
れないが、通常、0.05〜1.0mm程度が好まし
い。また、主に本発明の転写用部材は被転写体に圧着
し、導電層を粘接着性を有する絶縁性樹脂層によって被
転写物に固着させることによって、配線パターンを転写
することによって使用する。そのため、転写によって導
電性基板の表面形状が反映された表面を有する導電層が
得られる。よって、導電性基板の表面粗さは、接触式表
面粗さ計で測定したときの中心線平均粗さRa=0.0
1〜0.3μmと比較的小さい粗度を有することが好ま
しく、特にRa=0.01〜0.15μmの粗度を有す
る導電性基板が好ましい。
The thickness of such a conductive substrate is not particularly limited, but is preferably about 0.05 to 1.0 mm. In addition, the transfer member of the present invention is used by transferring a wiring pattern by pressing the transfer member to the transfer object and fixing the conductive layer to the transfer object by an insulating resin layer having an adhesive property. . Therefore, a conductive layer having a surface on which the surface shape of the conductive substrate is reflected by the transfer is obtained. Therefore, the surface roughness of the conductive substrate is determined by measuring the center line average roughness Ra = 0.0 when measured with a contact surface roughness meter.
The conductive substrate preferably has a relatively small roughness of 1 to 0.3 μm, and particularly preferably has a roughness of Ra = 0.01 to 0.15 μm.

【0031】また、導電性基板上に必要に応じてNi−
Pめっき層を形成してもよい。このNi−Pめっき層
は、被転写部材に導電層のパターンを絶縁性樹脂層を介
して転写する際に、導電層と導電性基板の界面ので適切
な剥離を生じる密着性を得、かつ同時に転写用部材を作
製する工程中で導電層が導電性基板より剥離しない程度
の密着性を付与する、つまり導電層と導電性基板に適度
な密着性を付与することを目的とするものである。
Further, if necessary, Ni-
A P plating layer may be formed. This Ni-P plating layer obtains adhesiveness that causes appropriate separation at the interface between the conductive layer and the conductive substrate when the pattern of the conductive layer is transferred to the member to be transferred via the insulating resin layer, and at the same time, An object is to provide an adhesive property such that the conductive layer does not peel off from the conductive substrate during the step of manufacturing the transfer member, that is, to provide an appropriate adhesive property between the conductive layer and the conductive substrate.

【0032】電気絶縁性マスクパターンの形成 本発明の転写用部材に用いられる電気絶縁性マスクパタ
ーンの形成方法及び材料は、絶縁性を有する層をパター
ニングすることが可能であれば、特に限定されない。こ
の方法としては、例えばフォトレジスト、スクリーン印
刷、精密ディスペンスが挙げられる。この内、微細パタ
ーンを形成するのに有利なフォトレジストを使用するこ
とが好ましい。また、後の工程において耐酸性、耐溶剤
性、耐電圧性等が要求される場合があるため、このよう
な特性を有するものを使用することがより好ましい。特
に好ましい具体例としては、環化ゴム系フォトレジス
ト、熱硬化性を有するアクリル系レジスト、メラミン系
レジスト、水溶性コロイド系フォトレジスト等が挙げら
れる。
Formation of Electrically Insulating Mask Pattern The method and material for forming the electrically insulating mask pattern used for the transfer member of the present invention are not particularly limited as long as the insulating layer can be patterned. This method includes, for example, photoresist, screen printing, and precision dispensing. Among them, it is preferable to use a photoresist that is advantageous for forming a fine pattern. Further, since acid resistance, solvent resistance, voltage resistance, and the like may be required in a later step, it is more preferable to use one having such characteristics. Particularly preferred specific examples include a cyclized rubber-based photoresist, a thermosetting acrylic-based resist, a melamine-based resist, and a water-soluble colloid-based photoresist.

【0033】本発明の転写用部材に用いられる電気絶縁
性マスクパターンは典型的には以下のように形成する。
導電性基板の表面にフォトレジスト層を形成する。次い
で所定パターンのフォトマスクを介してフォトレジスト
層に紫外線を照射し、続いて現像、ポストベークを行
う。かくして、導電性基板の表面に所定のパターンの電
気絶縁性マスクパターンが形成される。
The electrically insulating mask pattern used for the transfer member of the present invention is typically formed as follows.
A photoresist layer is formed on a surface of the conductive substrate. Next, the photoresist layer is irradiated with ultraviolet rays through a photomask having a predetermined pattern, followed by development and post-baking. Thus, a predetermined pattern of an electrically insulating mask pattern is formed on the surface of the conductive substrate.

【0034】導電層の形成 本発明の転写用部材に用いられる導電層の形成方法及び
材料は、通常の配線板に用いることができるものであれ
は、特に限定されるものではない。典型的な例としては
非マスク部に電着法により導電層のパターンを形成する
方法がある。電着法による導電層のパターン形成は公知
のめっき法に従って行うことができる。導電層を形成す
る材料は、好ましくは電着法で導電性薄膜が形成される
ものであり、例えば、銅、銀、金、パラジウム、ニッケ
ル、クロム、亜鉛、スズ、白金等が挙げられる。導電層
の厚さは、微細パターン形成の観点から、導体抵抗が許
される範囲で、(典型的には、レジストが薄いためキノ
コ状になるので)薄い方が好ましく、好ましくは、5〜
30μm、より好ましくは5〜20μm、特に好ましくは
5〜15μmである。
Formation of Conductive Layer The method and material for forming the conductive layer used in the transfer member of the present invention are not particularly limited as long as they can be used for ordinary wiring boards. A typical example is a method of forming a pattern of a conductive layer on a non-mask portion by an electrodeposition method. The pattern formation of the conductive layer by the electrodeposition method can be performed according to a known plating method. The material for forming the conductive layer is preferably a material on which a conductive thin film is formed by an electrodeposition method, and examples thereof include copper, silver, gold, palladium, nickel, chromium, zinc, tin, and platinum. From the viewpoint of forming a fine pattern, the thickness of the conductive layer is preferably thinner (typically because the resist is thin and thus becomes mushroom-shaped), and preferably from 5 to
It is 30 μm, more preferably 5 to 20 μm, particularly preferably 5 to 15 μm.

【0035】また、導電層上には、必要に応じてバリア
ー導電層を形成してもよい。一般に、前記導電層に銅な
どの金属を使用した場合、銅などのイオンが絶縁性樹脂
層中に溶出する現象、いわゆるイオンマイグレーション
が発生し、高温高湿度の環境で絶縁性樹脂層が10μm
程度と比較的薄い場合、絶縁性に悪影響を及ぼす可能性
がある。バリアー導電層はこのようなイオンマイグレー
ションを防止する効果をも有する。さらに、バリアー導
電層は、導電層と絶縁性樹脂層との密着性を向上させる
作用もある。バリアー導電層を形成する材料としては、
好ましくは、安定した酸化皮膜を有するマイグレーショ
ンの発生し難い金属、具体的にはニッケル、クロム、ス
ズ、スズ合金、スズ・ニッケル合金等を用いることがで
きる。この場合、ニッケル等の磁性体によって導電層を
被覆した場合には高周波特性が改善する。このバリアー
導電層の厚みは特に限定されるものではないが、好まし
くは0.5〜1.0μm程度である。
Further, a barrier conductive layer may be formed on the conductive layer as needed. In general, when a metal such as copper is used for the conductive layer, a phenomenon in which ions such as copper are eluted into the insulating resin layer, that is, ion migration occurs, and the insulating resin layer has a thickness of 10 μm in a high temperature and high humidity environment.
If it is relatively thin, the insulation may be adversely affected. The barrier conductive layer also has the effect of preventing such ion migration. Further, the barrier conductive layer also has an effect of improving the adhesion between the conductive layer and the insulating resin layer. Materials for forming the barrier conductive layer include:
Preferably, a metal having a stable oxide film and hardly causing migration, specifically, nickel, chromium, tin, a tin alloy, a tin-nickel alloy, or the like can be used. In this case, when the conductive layer is covered with a magnetic material such as nickel, the high-frequency characteristics are improved. The thickness of the barrier conductive layer is not particularly limited, but is preferably about 0.5 to 1.0 μm.

【0036】[0036]

【実施例】実施例1 ステンレス板(SUS304 厚さ0.15mm)を導
電性基板として転写用部材を以下の工程により作製し
た。
EXAMPLE 1 A transfer member was prepared by the following steps using a stainless steel plate (SUS304, thickness 0.15 mm) as a conductive substrate.

【0037】(1)電気絶縁性マスクパターンの形成 上記ステンレス板上に環化ゴム系ネガ型フォトレジスト
(東京応化工業(株)製 OMR85 35cP)を1
μmの厚さに塗布し、85℃のクリーンオーブンで30
分間プレベークした。その後、配線パターンを有するフ
ォトマスクを用い、下記条件で露光を行い、現像液(東
京応化工業(株)製 OMR現像液)で現像し、リンス
液(東京応化工業(株)製 OMRリンス液)でリンス
した。次いで、前記フォトレジストを塗布した基板を1
45℃のクリーンオーブンで30分間ポストベークし、
電気絶縁性マスクパターンを完成させた。 露光条件 密着露光機 大日本スクリーン製造(株)製 P−202−G 真空引き 30秒 露光量 30カウント
(1) Formation of Electrically Insulating Mask Pattern A cyclized rubber-based negative photoresist (OMR85 35cP manufactured by Tokyo Ohka Kogyo Co., Ltd.)
μm thickness and 85 ℃ clean oven 30
Pre-baked for minutes. After that, using a photomask having a wiring pattern, exposure is performed under the following conditions, developed with a developer (OMR developer manufactured by Tokyo Ohka Kogyo Co., Ltd.), and rinsed (OMR rinse solution manufactured by Tokyo Oka Kogyo Co., Ltd.) Rinsed. Next, the substrate coated with the photoresist is
Post bake for 30 minutes in a 45 ° C. clean oven,
An electrically insulating mask pattern was completed. Exposure conditions Contact exposure machine Dainippon Screen Mfg. Co., Ltd. P-202-G Vacuum evacuation 30 seconds Exposure 30 count

【0038】(2)導電層の形成 上記の電気絶縁性マスクパターンを形成した導電性基板
を、含リン銅陽極と対向させて下記組成の硫酸銅めっき
浴中に浸漬し、該導電性基板を陰極として、直流電源に
より2A/dm2の電流密度で25分間通電した。その
結果、該導電性基板の非マスク部上に厚さ10μmの銅
めっきからなる導電層のパターンが形成された。なお、
電気絶縁性マスクパターンと導電性基板の間への銅めっ
きの染み込みは生じなかった。 硫酸銅めっき浴の組成(浴温30℃) CuSO4・5H2O 100g/l H2SO4 180g/l HCl 0.15ml/l 光沢剤 10ml/l (Cu−Board HA MU 荏原ユージライト(株)製) 水
(2) Formation of Conductive Layer The conductive substrate on which the above-mentioned electrically insulating mask pattern was formed was immersed in a copper sulfate plating bath having the following composition in opposition to the phosphorous copper anode, and the conductive substrate was As a cathode, a current was supplied for 25 minutes at a current density of 2 A / dm 2 by a DC power supply. As a result, a conductive layer pattern of copper plating having a thickness of 10 μm was formed on the non-mask portion of the conductive substrate. In addition,
No copper plating soaked between the electrically insulating mask pattern and the conductive substrate. Composition of copper sulfate plating bath (bath temperature 30 ° C.) CuSO 4 .5H 2 O 100 g / l H 2 SO 4 180 g / l HCl 0.15 ml / l Brightener 10 ml / l (Cu-Board HA MU Ebara Ujilight Co., Ltd.) ) Made water

【0039】(3)絶縁性樹脂層の形成 (ポリイミド電着液の調製) (i)ポリイミト゛ワニスの製造 1リットル容量の三つ口セパラブルフラスコにステンレ
ス鋼製イカリ攪拌器、窒素導入管及びストップコックの
付いたトラップの上に玉付き冷却管を付けた還流冷却器
を取り付けた。窒素気流を流しながら温度調整機のつい
たシリコーン浴中にセパラブルフラスコを浸積して加熱
した。反応温度は浴温で示した。
(3) Formation of Insulating Resin Layer (Preparation of Polyimide Electrodeposition Solution) (i) Preparation of Polyimid Varnish A reflux condenser equipped with a cooling tube with a ball was mounted on a trap with a cock. The separable flask was immersed and heated in a silicone bath equipped with a temperature controller while flowing a nitrogen stream. The reaction temperature was indicated by bath temperature.

【0040】3,4,3',4'−ベンゾフェノンテトラ
カルボン酸ジ無水物(以後、BDTAと呼ぶ)64.4
4g(0.2モル)、ビス(4−(3−アミノフェノキ
シ)フェニル)スルホン(m−BAPS)43.26g
(0.10モル)、γ−バレロラクトン3.00g
(0.03モル)、ピリジン4.74g(0.06モ
ル)、N−メチル−2−ピロリドン(NMP)400
g、トルエン90g、を加えて、窒素を通じながらシリ
コン浴中、室温で30分攪拌(200rpm)、ついで
昇温して180℃、1時間、200rpmに攪拌しなが
ら反応させる。トルエン−水留出分15mlを除去し、
空冷して、BTDA32.22g(0.1モル)、3,
5−ジアミノ安息香酸(DABz)15.22g(0.
1モル)、NMP119g、トルエン30gを添加し、
室温で30分攪拌した後(200rpm)、ついで昇温
して180℃に加熱攪拌しトルエン−水留出分15ml
を除去する。その後、トルエン−水留出分を系外に除き
ながら、180℃、3時間、加熱、攪拌して反応を終了
した。この操作により、20%ポリイミドワニスを得
た。酸当量(1個のCOOHあたりのポリマー量は85
1.74)は65.87である。
3,4,3 ', 4'-Benzophenonetetracarboxylic dianhydride (hereinafter referred to as BDTA) 64.4
4 g (0.2 mol), 43.26 g of bis (4- (3-aminophenoxy) phenyl) sulfone (m-BAPS)
(0.10 mol), 3.00 g of γ-valerolactone
(0.03 mol), pyridine 4.74 g (0.06 mol), N-methyl-2-pyrrolidone (NMP) 400
g and 90 g of toluene, and the mixture is stirred at room temperature for 30 minutes (200 rpm) in a silicon bath while passing nitrogen, and then heated to 180 ° C. for 1 hour with stirring at 200 rpm. Removing 15 ml of toluene-water distillate,
Air-cooled, BTDA 32.22 g (0.1 mol), 3,
15.22 g of 5-diaminobenzoic acid (DABz) (0.
1 mol), 119 g of NMP and 30 g of toluene,
After stirring at room temperature for 30 minutes (200 rpm), the temperature was raised and the mixture was heated and stirred at 180 ° C., and toluene-water distillate 15 ml
Is removed. Thereafter, while removing the toluene-water distillate outside the system, the reaction was completed by heating and stirring at 180 ° C. for 3 hours. By this operation, a 20% polyimide varnish was obtained. Acid equivalent (the amount of polymer per COOH is 85
1.74) is 65.87.

【0041】(ii)電着液の調製 得られた20%濃度ポリイミドワニスにNMPを加え、
15%ポリイミドワニスとしたもの1000gに、1−
アセトナフトン450g、トリエチルアミン6.5gを
加え、攪拌しながら水375gを滴下して、水性電着液
を調製した。そして、固形分濃度8.9%、pH7.9
の電着エマルジョン組成物を得た。
(Ii) Preparation of electrodeposition solution NMP was added to the obtained 20% concentration polyimide varnish,
To 1000 g of a 15% polyimide varnish, 1-
450 g of acetonaphthone and 6.5 g of triethylamine were added, and 375 g of water was added dropwise with stirring to prepare an aqueous electrodeposition solution. Then, the solid content concentration is 8.9% and the pH is 7.9.
Was obtained.

【0042】(電着)前記導電層のパターンを有する導
電性基板をステンレス製陰極(SUS430MA)と対
向させて上記の絶縁性樹脂層電着液中に浸漬し、該導電
性基板を陽極として、直流電流により150Vの電圧で
5分間通電し、その後水洗して絶縁性樹脂層を得た。
(Electrodeposition) A conductive substrate having the pattern of the conductive layer is immersed in the above-mentioned electrodeposition solution of the insulating resin layer facing a stainless steel cathode (SUS430MA), and the conductive substrate is used as an anode. A current of 150 V was applied for 5 minutes by a direct current, followed by washing with water to obtain an insulating resin layer.

【0043】(4)乾燥 上記の絶縁性樹脂層を圧力100mmHgの減圧下で、
温度90℃、20minの乾燥を行った。この時の絶縁
性樹脂層の膜厚は、12μmであった。その結果、乾燥
後の絶縁性樹脂層中の溶媒含有率は、65%であった。
(4) Drying The above insulating resin layer was dried under a reduced pressure of 100 mmHg.
Drying was performed at a temperature of 90 ° C. for 20 minutes. At this time, the thickness of the insulating resin layer was 12 μm. As a result, the solvent content in the dried insulating resin layer was 65%.

【0044】(5)転写 以上の工程で得られた転写用部材を厚さ30μmのステ
ンレス箔(SUS304TA)上に、210℃圧力1k
g/cm2の条件で圧着し、該導電性基板を剥離して転
写を行ったところ、パターンはすべて転写された。そし
て、転写時のブリードも、きわめて良好なレベルであっ
た。また、同様な条件で配線パターンを形成して、プリ
ント配線板を得た。
(5) Transfer The transfer member obtained in the above steps was placed on a 30 μm thick stainless steel foil (SUS304TA) at a pressure of 210 ° C. and a pressure of 1 k.
The conductive substrate was peeled off and transferred under pressure of g / cm 2 , and the pattern was transferred. The bleed at the time of transfer was also at an extremely good level. Further, a wiring pattern was formed under the same conditions to obtain a printed wiring board.

【0045】実施例2 工程(4)の乾燥時間が23minであるほかは、実施
例1と全く同様にして転写用部材を作製した。その時、
乾燥後の絶縁性樹脂層中の溶媒含有率は、60%であっ
た。
Example 2 A transfer member was prepared in exactly the same manner as in Example 1 except that the drying time in the step (4) was 23 minutes. At that time,
The solvent content in the insulating resin layer after drying was 60%.

【0046】実施例3 工程(4)の乾燥時間が18minであるほかは、実施
例1と全く同様にして転写用部材を作製した。その時、
乾燥後の絶縁性樹脂層中の溶媒含有率は、70%であっ
た。
Example 3 A transfer member was prepared in exactly the same manner as in Example 1 except that the drying time in the step (4) was 18 minutes. At that time,
The solvent content in the dried insulating resin layer was 70%.

【0047】実施例4 工程(4)の乾燥時間が28minであるほかは、実施
例1と全く同様にして転写用部材を作製した。その時、
乾燥後の絶縁性樹脂層中の溶媒含有率は、50%であっ
た。
Example 4 A transfer member was prepared in exactly the same manner as in Example 1 except that the drying time in the step (4) was 28 minutes. At that time,
The solvent content in the insulating resin layer after drying was 50%.

【0048】実施例5 工程(4)の乾燥時間が15minであるほかは、実施
例1と全く同様にして転写用部材を作製した。その時、
乾燥後の絶縁性樹脂層中の溶媒含有率は、75%であっ
た。
Example 5 A transfer member was prepared in exactly the same manner as in Example 1 except that the drying time in the step (4) was 15 minutes. At that time,
The solvent content in the dried insulating resin layer was 75%.

【0049】比較例1 工程(4)の乾燥時間が35minであるほかは、実施
例1と全く同様にして転写用部材を作製した。その時、
乾燥後の絶縁性樹脂層中の溶媒含有率は、40%であっ
た。
Comparative Example 1 A transfer member was prepared in exactly the same manner as in Example 1 except that the drying time in the step (4) was 35 minutes. At that time,
The solvent content in the insulating resin layer after drying was 40%.

【0050】比較例2 工程(4)の乾燥を行わないほかは、実施例1と全く同
様にして転写用部材を作製した。その時、乾燥後の絶縁
性樹脂層中の溶媒含有率は、80%であった。
Comparative Example 2 A transfer member was prepared in exactly the same manner as in Example 1 except that the drying in the step (4) was not performed. At that time, the solvent content in the insulating resin layer after drying was 80%.

【0051】実施例1〜5および比較例1〜2の転写用
部材を使用して、厚さ30μmのステンレス箔(SUS
304TA)上に、210℃圧力1kg/cm2の条件
で圧着し、該導電性基板を剥離して転写を行った。その
転写結果を、表1にまとめて示す。
Using the transfer members of Examples 1 to 5 and Comparative Examples 1 and 2, a 30 μm thick stainless steel foil (SUS
304TA), the conductive substrate was peeled off and transferred at 210 ° C. under a pressure of 1 kg / cm 2 . The transfer results are summarized in Table 1.

【0052】[0052]

【表1】 [Table 1]

【0053】表1より、転写時のブリートと被転写体へ
の転写性の両方の適性を満足させ、使用可能な乾燥後の
絶縁性樹脂層中の溶媒含有率は、50〜75%であっ
た。また、最も好適な範囲は、60〜70%であった。
このように、乾燥後の絶縁性樹脂層中の溶媒含有率を適
切にコントロールすることにより、被転写体への転写性
が良好で、かつ転写時のブリードの問題を生じない転写
用部材が得られることが立証された。
As shown in Table 1, the solvent content in the dried insulating resin layer that satisfies both the suitability for the bleeding during transfer and the transferability to the object to be transferred is 50 to 75%. Was. Further, the most preferable range was 60 to 70%.
As described above, by appropriately controlling the solvent content in the insulating resin layer after drying, a transfer member having good transferability to the transfer target body and free from the problem of bleeding during transfer can be obtained. It was proved that it could be done.

【0054】実施例6 工程(4)の乾燥圧力を100mmHg、乾燥温度を1
20℃とし、乾燥後の絶縁性樹脂層の溶媒含有率が65
%となるよう乾燥時間を4minとした。その他の条件
は、実施例1と全く同様にして転写用部材を作製した。
Example 6 The drying pressure in step (4) was 100 mmHg and the drying temperature was 1
20 ° C., and the solvent content of the insulating resin layer after drying is 65
%, And the drying time was 4 min. The other conditions were the same as in Example 1 to produce a transfer member.

【0055】比較例3 工程(4)の乾燥圧力を100mmHg、乾燥温度を1
30℃とし、乾燥後の絶縁性樹脂層の溶媒含有率が65
%となるよう乾燥時間を2minとした。その他の条件
は、実施例1と全く同様にして転写用部材を作製した。
Comparative Example 3 The drying pressure in step (4) was 100 mmHg and the drying temperature was 1
30 ° C., and the solvent content of the insulating resin layer after drying is 65
% And the drying time was 2 min. The other conditions were the same as in Example 1 to produce a transfer member.

【0056】比較例4 工程(4)の乾燥圧力を100mmHg、乾燥温度を4
0℃とし、乾燥後の絶縁性樹脂層の溶媒含有率が65%
となるよう乾燥時間を110minとした。その他の条
件は、実施例1と全く同様にして転写用部材を作製し
た。
Comparative Example 4 The drying pressure in step (4) was 100 mmHg and the drying temperature was 4
0 ° C., and the solvent content of the insulating resin layer after drying is 65%
The drying time was 110 minutes so that The other conditions were the same as in Example 1 to produce a transfer member.

【0057】比較例5 工程(4)の乾燥圧力を100mmHg、乾燥温度を2
0℃とし、乾燥後の絶縁性樹脂層の溶媒含有率が65%
となるよう乾燥時間を700minとした。その他の条
件は、実施例1と全く同様にして転写用部材を作製し
た。
Comparative Example 5 The drying pressure in step (4) was 100 mmHg and the drying temperature was 2
0 ° C., and the solvent content of the insulating resin layer after drying is 65%
The drying time was set to 700 minutes so that The other conditions were the same as in Example 1 to produce a transfer member.

【0058】比較例6 工程(4)の乾燥圧力を760mmHg、乾燥温度を1
30℃とし、乾燥後の絶縁性樹脂層の溶媒含有率が65
%となるよう乾燥時間を5minとした。その他の条件
は、実施例1と全く同様にして転写用部材を作製した。
Comparative Example 6 The drying pressure in step (4) was 760 mmHg and the drying temperature was 1
30 ° C., and the solvent content of the insulating resin layer after drying is 65
% And the drying time was 5 min. The other conditions were the same as in Example 1 to produce a transfer member.

【0059】比較例7 工程(4)の乾燥圧力を760mmHg、乾燥温度を1
20℃とし、乾燥後の絶縁性樹脂層の溶媒含有率が65
%となるよう乾燥時間を30minとした。その他の条
件は、実施例1と全く同様にして転写用部材を作製し
た。
Comparative Example 7 The drying pressure in step (4) was 760 mmHg and the drying temperature was 1
20 ° C., and the solvent content of the insulating resin layer after drying is 65
% And the drying time was 30 min. The other conditions were the same as in Example 1 to produce a transfer member.

【0060】比較例8 工程(4)の乾燥圧力を760mmHg、乾燥温度を9
0℃とし、乾燥後の絶縁性樹脂層の溶媒含有率が65%
となるよう乾燥時間を75minとした。その他の条件
は、実施例1と全く同様にして転写用部材を作製した。
Comparative Example 8 The drying pressure in step (4) was 760 mmHg and the drying temperature was 9
0 ° C., and the solvent content of the insulating resin layer after drying is 65%
The drying time was 75 min so that The other conditions were the same as in Example 1 to produce a transfer member.

【0061】実施例1,6および比較例3〜8で得られ
た転写用部材を使用して、厚さ30μmのステンレス箔
(SUS304TA)上に、210℃圧力1kg/cm
2の条件で圧着し、該導電性基板を剥離して転写を行っ
た。その転写結果を表2にまとめて示す。
Using the transfer members obtained in Examples 1 and 6 and Comparative Examples 3 to 8, a stainless steel foil (SUS304TA) having a thickness of 30 μm was placed at 210 ° C. and a pressure of 1 kg / cm 2.
Pressing was performed under the conditions of 2 , the conductive substrate was peeled off, and transfer was performed. The transfer results are shown in Table 2.

【0062】[0062]

【表2】 [Table 2]

【0063】表2より、絶縁樹脂層の乾燥前の軟化温度
(130℃)より低い温度で、絶縁樹脂層中に残留して
いる電着溶媒を減圧下で乾燥させることにより、乾燥時
のブリート適性と乾燥適性の両方の適性を満足させる好
適な結果(実施例6,1)が得られた。それに対し、減
圧を行わずに乾燥した場合は(乾燥圧力760mmH
g)、乾燥時のブリート適性と乾燥適性の両方の適性を
満足させるような、乾燥温度範囲は存在しなかった。
As shown in Table 2, the electrodeposition solvent remaining in the insulating resin layer was dried under reduced pressure at a temperature lower than the softening temperature (130 ° C.) of the insulating resin layer before drying, so that the bleed during drying was reduced. Suitable results (Examples 6 and 1) satisfying both the suitability and the drying suitability were obtained. On the other hand, when drying without decompression (drying pressure 760 mmH
g), there was no drying temperature range that satisfies both the suitability for burrito and the suitability for drying.

【0064】これらの実施例、比較例で使用した絶縁性
樹脂層の乾燥前の溶媒含有率は、80%であり、この時
の絶縁性樹脂層の軟化点は130℃であった。これは、
以下のような方法で測定した。線幅100μmのテスト
パターンマスクを使用し、実施例1と同様な方法で絶縁
性樹脂層形成まで行った転写用部材を、排気方向にのみ
作動する弁をつけた透明な密閉容器に封入し室温より温
度を徐々に上げながら導電層上の絶縁性樹脂層の線幅を
適時顕微鏡にて測定する。そして、ある一定の温度に達
したときに、線幅が急激に広がり、片側70μm以上づ
つ広がった温度を軟化温度とした。このとき、密閉容器
には電着溶媒と同じ組成を持つ溶媒が転写用部材とは液
体状態で直接触れないように封入され、密閉容器中は常
に電着溶媒の飽和蒸気でみたされ、軟化温度測定中に絶
縁性樹脂層中の溶媒が揮発して、溶媒含有率が変化しな
いようになっている。
The solvent content of the insulating resin layer used in these Examples and Comparative Examples before drying was 80%, and the softening point of the insulating resin layer at this time was 130 ° C. this is,
It was measured by the following method. Using a test pattern mask having a line width of 100 μm, the transfer member, which had been subjected to the formation of the insulating resin layer in the same manner as in Example 1, was sealed in a transparent airtight container equipped with a valve that operates only in the exhaust direction. While gradually increasing the temperature, the line width of the insulating resin layer on the conductive layer is measured with a microscope as needed. Then, when the temperature reached a certain temperature, the line width sharply increased, and the temperature at which the width increased by 70 μm or more on one side was defined as the softening temperature. At this time, a solvent having the same composition as the electrodeposition solvent is sealed in the closed container so as not to directly touch the transfer member in a liquid state, and the sealed container is always viewed with saturated vapor of the electrodeposition solvent, and has a softening temperature. During the measurement, the solvent in the insulating resin layer volatilizes so that the solvent content does not change.

【0065】上記表2の結果より、絶縁性樹脂層の乾燥
前の軟化点より低い温度で、減圧下で乾燥を行うことに
より、乾燥時に高温にさらされた絶縁性樹脂層が軟化し
導電層のパターンの周囲にはみ出る乾燥時のブリートの
問題と、常圧下では本発明の絶縁性樹脂層の電着溶媒と
して使用されるような高沸点溶媒を低温で乾燥しようと
した場合に適切に乾燥が行えないという乾燥適性の問題
の両方の適性を満足させ、良好な転写用部材が得られる
ことが証明された。
According to the results shown in Table 2, when the insulating resin layer was dried under reduced pressure at a temperature lower than the softening point of the insulating resin layer before drying, the insulating resin layer exposed to a high temperature during the drying softened and the conductive layer became conductive. The problem of the bleeding at the time of drying that protrudes around the pattern and the problem of proper drying when a high boiling point solvent used as an electrodeposition solvent for the insulating resin layer of the present invention is dried at a low temperature under normal pressure. It was proved that both of the problems of drying suitability, which is not possible, were satisfied, and a good transfer member was obtained.

【0066】[0066]

【発明の効果】本発明は、乾燥後の絶縁性樹脂層中の溶
媒含有率を適切にコントロールすることにより、被転写
体への転写性が良好で、かつ転写時のブリードの問題を
生じない転写用部材が得られる。また、絶縁性樹脂層の
乾燥前の軟化点より低い温度で、減圧下で乾燥を行うこ
とにより、乾燥時に高温にさらされた絶縁性樹脂層が軟
化し導電層のパターンの周囲にはみ出る乾燥時のブリー
トの問題と、常圧下では本発明の絶縁性樹脂層の電着溶
媒として使用されるような高沸点溶媒を低温で乾燥しよ
うとした場合に適切に乾燥が行えないという乾燥適性の
問題の両方の適性を満足させ、良好な転写用部材を得る
ことができる。
According to the present invention, by appropriately controlling the content of the solvent in the insulating resin layer after drying, the transferability to the object to be transferred is good and the problem of bleeding at the time of transfer does not occur. A transfer member is obtained. In addition, by performing drying under reduced pressure at a temperature lower than the softening point of the insulating resin layer before drying, the insulating resin layer exposed to a high temperature during drying softens and protrudes around the conductive layer pattern. And the problem of drying suitability that, under normal pressure, when a high boiling solvent used as an electrodeposition solvent for the insulating resin layer of the present invention is dried at a low temperature, drying cannot be performed properly. A satisfactory transfer member can be obtained by satisfying both aptitudes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の転写用部材の製造方法を示す概略説明
図である。
FIG. 1 is a schematic explanatory view showing a method for manufacturing a transfer member of the present invention.

【図2】本発明の転写用部材の構造を示す概略図であ
る。
FIG. 2 is a schematic view showing a structure of a transfer member of the present invention.

【符号の説明】[Explanation of symbols]

1.導電性基板 2.電気絶縁性フォトレジスト層 2'.電気絶縁性マスクパターン 3.導電層 4.絶縁性樹脂層 1. 1. conductive substrate Electrically insulating photoresist layer 2 '. 2. Electrical insulating mask pattern Conductive layer 4. Insulating resin layer

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】少なくとも片側表面に導電性を有する導電
性基板と、該導電性基板上に形成された少なくとも一層
の導電層と、該導電層上に形成された絶縁性樹脂層とか
らなり、 該絶縁性樹脂層中の溶媒含有率が50〜75%であるこ
とを特徴とする、転写用部材。
A conductive substrate having conductivity on at least one surface thereof, at least one conductive layer formed on the conductive substrate, and an insulating resin layer formed on the conductive layer; A transfer member, wherein the solvent content in the insulating resin layer is 50 to 75%.
【請求項2】少なくとも片側表面に導電性を有する導電
性基板と、該導電性基板上に形成された電気絶縁性マス
クパターンと、前記導電性基板のマスクパターンを形成
した側の非マスク部に形成された少なくとも一層の導電
層と、該導電層上に形成された絶縁性樹脂層とからな
り、 該絶縁性樹脂層中の溶媒含有率が50〜75%であるこ
とを特徴とする、転写用部材。
A conductive substrate having conductivity on at least one surface thereof, an electrically insulating mask pattern formed on the conductive substrate, and a non-mask portion of the conductive substrate on the side where the mask pattern is formed. Transfer comprising at least one conductive layer formed and an insulating resin layer formed on the conductive layer, wherein the solvent content in the insulating resin layer is 50 to 75%. Parts.
【請求項3】前記導電層の形成が、電着法を用いて行わ
れる、請求項1項または請求項2項に記載の転写用部
材。
3. The transfer member according to claim 1, wherein the conductive layer is formed using an electrodeposition method.
【請求項4】請求項1〜3いずれか1項に記載の転写用
部材を、金属製被転写体に転写して得られた導電性パタ
ーン転写体。
4. A conductive pattern transfer member obtained by transferring the transfer member according to claim 1 onto a metal transfer member.
【請求項5】少なくとも片側表面に導電性を有する導電
性基板に対して、該導電性基板に少なくとも一層の導電
層を形成する工程と、 該導電層上に電着法で絶縁性樹脂層を形成する工程と、 該絶縁性樹脂層の乾燥前の軟化温度より低い温度で、前
記絶縁性樹脂層中に残留している電着溶媒の乾燥を減圧
下で行う工程を具備してなる転写用部材製造方法。
5. A step of forming at least one conductive layer on a conductive substrate having conductivity on at least one surface thereof, and forming an insulating resin layer on the conductive layer by electrodeposition. Forming, and drying the electrodeposition solvent remaining in the insulating resin layer under reduced pressure at a temperature lower than the softening temperature of the insulating resin layer before drying. Member manufacturing method.
【請求項6】少なくとも片側表面に導電性を有する導電
性基板に対して、電気絶縁性マスクパターンを形成する
工程と、 前記導電性基板のマスクパターンを形成した側の非マス
ク部に少なくとも一層の導電層を形成する工程と、 該導電層上に電着法で絶縁性樹脂層を形成する工程と、 該絶縁性樹脂層の乾燥前の軟化温度より低い温度で、前
記絶縁性樹脂層中に残留している電着溶媒の乾燥を減圧
下で行う工程を具備してなる転写用部材製造方法。
6. A step of forming an electrically insulating mask pattern on a conductive substrate having conductivity on at least one side surface, and at least one layer on a non-mask portion of the conductive substrate on the side where the mask pattern is formed. A step of forming a conductive layer, a step of forming an insulating resin layer on the conductive layer by an electrodeposition method, and forming the insulating resin layer in the insulating resin layer at a temperature lower than a softening temperature of the insulating resin layer before drying. A method for producing a transfer member, comprising: a step of drying a remaining electrodeposition solvent under reduced pressure.
【請求項7】前記絶縁性樹脂層の乾燥後の溶媒含有率が
50〜75%となることを特徴とする、請求項5項また
は請求項6項に記載の転写用部材製造方法。
7. The transfer member manufacturing method according to claim 5, wherein the solvent content of the insulating resin layer after drying is 50 to 75%.
【請求項8】前記導電層の形成が、電着法を用いて行わ
れる、請求項5〜7いずれか1項に記載の転写用部材製
造方法。
8. The method according to claim 5, wherein the formation of the conductive layer is performed by using an electrodeposition method.
【請求項9】前記電気絶縁性マスクパターンの形成をフ
ォトレジストを用いて行うことを特徴とする請求項5〜
8いずれか1項に記載の転写用部材製造方法。
9. The method according to claim 5, wherein said electrically insulating mask pattern is formed using a photoresist.
8. The method for producing a transfer member according to any one of 8 above.
JP10354641A 1998-12-14 1998-12-14 Member for transfer, conductive pattern transferred body, and manufacture of member for transfer Pending JP2000183502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10354641A JP2000183502A (en) 1998-12-14 1998-12-14 Member for transfer, conductive pattern transferred body, and manufacture of member for transfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10354641A JP2000183502A (en) 1998-12-14 1998-12-14 Member for transfer, conductive pattern transferred body, and manufacture of member for transfer

Publications (1)

Publication Number Publication Date
JP2000183502A true JP2000183502A (en) 2000-06-30

Family

ID=18438929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10354641A Pending JP2000183502A (en) 1998-12-14 1998-12-14 Member for transfer, conductive pattern transferred body, and manufacture of member for transfer

Country Status (1)

Country Link
JP (1) JP2000183502A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046224A (en) * 2001-07-30 2003-02-14 Kyocera Corp Metal layer transfer film and method of manufacturing it
EP1840648A1 (en) * 2006-03-31 2007-10-03 Sony Deutschland Gmbh A method of applying a pattern of metal, metal oxide and/or semiconductor material on a substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046224A (en) * 2001-07-30 2003-02-14 Kyocera Corp Metal layer transfer film and method of manufacturing it
EP1840648A1 (en) * 2006-03-31 2007-10-03 Sony Deutschland Gmbh A method of applying a pattern of metal, metal oxide and/or semiconductor material on a substrate
WO2007112878A1 (en) * 2006-03-31 2007-10-11 Sony Deutschland Gmbh A method of applying a pattern of metal, metal oxide and/or semiconductor material on a substrate
US8236670B2 (en) 2006-03-31 2012-08-07 Sony Deutschland Gmbh Method of applying a pattern of metal, metal oxide and/or semiconductor material on a substrate

Similar Documents

Publication Publication Date Title
KR100777994B1 (en) Process to manufacture tight tolerance embedded elements for printed circuit boards
EP0710062B1 (en) Multilayer printed wiring board and its manufacture
JPH11238959A (en) Circuit board
JP2000183502A (en) Member for transfer, conductive pattern transferred body, and manufacture of member for transfer
JPS6337694A (en) Manufacture of circuit board
JP4101919B2 (en) Method for manufacturing transfer member and transfer member
JP2002009203A (en) Wiring forming method and wiring board
JPH11266070A (en) Manufacture of transfer member and printed wiring board
JPH11266069A (en) Transfer member and manufacture thereof
JPH11274695A (en) Transferring material and manufacture thereof
JP3390791B2 (en) Multilayer printed wiring board, method for manufacturing the same, transfer master used for manufacturing multilayer printed wiring board, and method for manufacturing the same
JP4287000B2 (en) Multilayer wiring board and manufacturing method thereof
JP4090559B2 (en) Multilayer wiring board manufacturing method and transfer vacuum apparatus
JP2000068628A (en) Transfer member, printed wiring board and manufacture of the transfer member
JP3265366B2 (en) Multilayer printed wiring board and method of manufacturing the same
JPH11261201A (en) Circuit board and its manufacture
JP2001085822A (en) Method for manufacturing transfer plate and the transfer plate, and method for manufacturing wiring board and the wiring board
JP4153602B2 (en) Circuit board manufacturing method, circuit board, and magnetic head suspension
JPH11274693A (en) Transferring material and manufacture thereof
JP2000091719A (en) Insulation coated member, wiring board employing it and production thereof
JPH11274724A (en) Wiring board and manufacture thereof
JP2000091741A (en) Member for transfer and manufacture thereof
JPH11261223A (en) Manufacture of multilayered wiring board and multilayered wiring board
JP2001077513A (en) Forming method of film covered wiring and wiring board
JPH11261217A (en) Multilayer wiring board and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318