JPH1126584A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH1126584A
JPH1126584A JP19512297A JP19512297A JPH1126584A JP H1126584 A JPH1126584 A JP H1126584A JP 19512297 A JP19512297 A JP 19512297A JP 19512297 A JP19512297 A JP 19512297A JP H1126584 A JPH1126584 A JP H1126584A
Authority
JP
Japan
Prior art keywords
film
insulating film
trench
connection hole
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19512297A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yamamura
育弘 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP19512297A priority Critical patent/JPH1126584A/en
Publication of JPH1126584A publication Critical patent/JPH1126584A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device, having a trench isolation structure and a method for manufacturing the device which simultaneously increase the yield and integration. SOLUTION: At least the inner side surfaces in the openings of trenches 32 are covered with an SiN film 42 having an etching characteristic different from that of an SiO2 film 44 as an interlayer insulating film. Accordingly, even if a connection hole 45 extends on an isolation region, exposure of the side surfaces of an Si substrate 31 facing the trenches 32 can be prevented when forming a connection hole 45. Further, occurrence of leak current between wiring formed in the connection hole 45 and a well 34 can be prevented. Further, the area of a diffusion layer 43 can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願の発明は、トレンチ素子
分離構造を有する半導体装置及びその製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a trench element isolation structure and a method of manufacturing the same.

【0002】[0002]

【従来の技術】図4は、トレンチ素子分離構造を有して
おり且つソース/ドレインに対する接続孔がゲート電極
に対して自己整合的に形成されているMISトランジス
タの一従来例を示している。この一従来例のMISトラ
ンジスタでは、Si基板11に素子分離用のトレンチ1
2が設けられており、このトレンチ12がSiO2 膜1
3で埋められている。
2. Description of the Related Art FIG. 4 shows a conventional MIS transistor having a trench element isolation structure and having a source / drain connection hole formed in self-alignment with a gate electrode. In this conventional MIS transistor, a trench 1 for element isolation is formed in a Si substrate 11.
2 are provided, and the trench 12 is formed of the SiO 2 film 1
Filled with three.

【0003】Si基板11にはウェル14が設けられて
おり、素子活性領域の表面にはSiO2 膜15等から成
るゲート絶縁膜が設けられている。SiO2 膜15、1
3等の上には多結晶Si膜16等から成るゲート電極が
設けられており、多結晶Si膜16上にはオフセット絶
縁膜としてのSiN膜17が積層されている。
A well 14 is provided in the Si substrate 11, and a gate insulating film made of an SiO 2 film 15 or the like is provided on the surface of the element active region. SiO 2 film 15, 1
A gate electrode made of a polycrystalline Si film 16 or the like is provided on 3 or the like, and a SiN film 17 as an offset insulating film is laminated on the polycrystalline Si film 16.

【0004】多結晶Si膜16及びSiN膜17の両側
の素子活性領域には低濃度の拡散層21が設けられてお
り、多結晶Si膜16及びSiN膜17の側面にはSi
N膜22から成る側壁保護膜が設けられている。SiN
膜22及びSiO2 膜13に囲まれている素子活性領域
には高濃度の拡散層23が設けられており、拡散層2
1、23でLDD構造のソース/ドレインが構成されて
いる。
A low-concentration diffusion layer 21 is provided in the device active region on both sides of the polycrystalline Si film 16 and the SiN film 17, and a Si layer is formed on the side surfaces of the polycrystalline Si film 16 and the SiN film 17.
A sidewall protection film made of an N film 22 is provided. SiN
A high concentration diffusion layer 23 is provided in an element active region surrounded by the film 22 and the SiO 2 film 13.
The source / drain of the LDD structure is constituted by 1, 23.

【0005】Si基板11上にはSiO2 膜24から成
る層間絶縁膜が設けられており、SiNの除去速度がS
iO2 の除去速度よりも遅い条件でSiO2 膜24がエ
ッチングされて、拡散層23に対する接続孔25が多結
晶Si膜16に対して自己整合的に形成されている。
[0005] An interlayer insulating film made of a SiO 2 film 24 is provided on the Si substrate 11, and the removal speed of SiN is S
The SiO 2 film 24 is etched under conditions slower than the removal rate of iO 2 , and a connection hole 25 for the diffusion layer 23 is formed in a self-aligned manner with the polycrystalline Si film 16.

【0006】つまり、接続孔25を形成するためのリソ
グラフィにおけるマスクの合わせずれ等によって拡散層
23に対する接続孔25の位置がずれて、側壁保護膜で
あるSiN膜22上やオフセット絶縁膜であるSiN膜
17上にまで接続孔25が広がっても、これらのSiN
膜22、17のエッチングが抑制されて、多結晶Si膜
16は露出しない。このため、接続孔25内に形成され
る配線(図示せず)とゲート電極である多結晶Si膜1
6との短絡が防止されている。
That is, the position of the connection hole 25 with respect to the diffusion layer 23 is displaced due to misalignment of a mask in lithography for forming the connection hole 25, and the SiN film 22 serving as a sidewall protection film and the SiN film serving as an offset insulating film Even if the connection hole 25 spreads over the film 17, these SiN
The etching of the films 22 and 17 is suppressed, and the polycrystalline Si film 16 is not exposed. Therefore, the wiring (not shown) formed in the connection hole 25 and the polycrystalline Si film 1 serving as the gate electrode are formed.
6 is prevented.

【0007】[0007]

【発明が解決しようとする課題】ところが、上述の様に
拡散層23に対する接続孔25の位置がずれて接続孔2
5がトレンチ12上にまで広がると、トレンチ12を埋
めているSiO2 膜13と層間絶縁膜であるSiO2
24とでは除去速度に差がないので、接続孔25を形成
する際のSiO2 膜24に対するオーバエッチングによ
ってSiO2 膜13もエッチングされて、トレンチ12
の拡散層23側の内側面を露出させる凹部26がSiO
2 膜13に形成される。
However, as described above, the position of the connection hole 25 with respect to the diffusion layer 23 is shifted, and
When 5 extends to over the trench 12, since there is no difference in removal rates in the SiO 2 film 24 is a SiO 2 film 13 and the interlayer insulating film that fills the trench 12, SiO 2 at the time of forming the connecting hole 25 The SiO 2 film 13 is also etched by the over-etching of the
The concave portion 26 exposing the inner surface on the side of the diffusion layer 23 is made of SiO.
Two films 13 are formed.

【0008】そして、深い凹部26が形成されると、拡
散層23の側面のみならずウェル14の側面も露出す
る。このため、拡散層23とウェル14とが逆バイアス
されていても、接続孔25内に形成される配線とウェル
14との間でリーク電流が発生するので、歩留りが低く
なる。
When the deep recess 26 is formed, not only the side surface of the diffusion layer 23 but also the side surface of the well 14 are exposed. For this reason, even if the diffusion layer 23 and the well 14 are reverse-biased, a leak current occurs between the wiring formed in the connection hole 25 and the well 14, so that the yield is reduced.

【0009】そこで、従来は、拡散層23に対する接続
孔25の位置がずれてもトレンチ12上にまでは接続孔
25が広がらない様に、拡散層23の面積を広くしてい
た。しかし、この様に拡散層23の面積を広くすると、
MISトランジスタの集積度を高めることができない。
Therefore, conventionally, the area of the diffusion layer 23 has been increased so that the connection hole 25 does not spread over the trench 12 even if the position of the connection hole 25 with respect to the diffusion layer 23 is shifted. However, when the area of the diffusion layer 23 is increased in this way,
The integration degree of the MIS transistor cannot be increased.

【0010】つまり、従来は、接続孔25内に形成され
る配線とウェル14との間におけるリーク電流の発生を
防止して歩留りを高めることと集積度を高めることとの
両方を同時には実現することができなかった。従って、
本願の発明は、歩留りと集積度との両方を同時に高める
ことができるトレンチ素子分離構造の半導体装置及びそ
の製造方法を提供することを目的としている。
In other words, conventionally, it is possible to simultaneously prevent the occurrence of a leak current between the wiring formed in the connection hole 25 and the well 14 to increase the yield and to increase the degree of integration at the same time. I couldn't do that. Therefore,
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device having a trench element isolation structure and a method for manufacturing the same, which can simultaneously increase both the yield and the degree of integration.

【0011】[0011]

【課題を解決するための手段】請求項1に係る半導体装
置は、半導体基板に素子分離用のトレンチが設けられて
おり、前記半導体基板上に層間絶縁膜が設けられている
半導体装置において、前記層間絶縁膜とはエッチング特
性の異なる絶縁膜で少なくとも前記トレンチの開口部に
おける内側面が覆われていることを特徴としている。
According to a first aspect of the present invention, there is provided a semiconductor device in which a trench for element isolation is provided in a semiconductor substrate and an interlayer insulating film is provided on the semiconductor substrate. It is characterized in that at least the inner side surface at the opening of the trench is covered with an insulating film having different etching characteristics from the interlayer insulating film.

【0012】請求項1に係る半導体装置では、素子分離
用のトレンチの開口部における内側面を覆っている絶縁
膜と層間絶縁膜とでエッチング特性が互いに異なるの
で、半導体基板に対する接続孔を層間絶縁膜に形成する
際に、絶縁膜の除去速度が層間絶縁膜の除去速度よりも
遅い条件のエッチングを行えば、接続孔の位置がずれて
接続孔が素子分離領域上にまで広がっても、トレンチに
臨む半導体基板の側面の露出を防止することができる。
In the semiconductor device according to the first aspect, since the etching characteristics of the insulating film and the interlayer insulating film covering the inner side surface of the opening of the trench for element isolation are different from each other, the connection hole for the semiconductor substrate is formed by the interlayer insulating film. If the etching is performed under the condition that the removal rate of the insulating film is lower than the removal rate of the interlayer insulating film when forming the film, even if the position of the connection hole is shifted and the connection hole spreads over the element isolation region, the trench is formed. The exposure of the side surface of the semiconductor substrate facing the substrate can be prevented.

【0013】請求項2に係る半導体装置は、前記絶縁膜
と同一層の絶縁膜から成る側壁保護膜が前記半導体基板
上の配線の側面に設けられていることを特徴としてい
る。
A semiconductor device according to a second aspect of the present invention is characterized in that a sidewall protective film made of the same insulating film as the insulating film is provided on a side surface of the wiring on the semiconductor substrate.

【0014】請求項2に係る半導体装置では、層間絶縁
膜とはエッチング特性の異なる絶縁膜から成る側壁保護
膜が配線の側面に設けられているので、絶縁膜の除去速
度が層間絶縁膜の除去速度よりも遅い条件のエッチング
を行えば、配線に対して自己整合的に接続孔を形成する
ことができる。
In the semiconductor device according to the present invention, since the side wall protective film made of an insulating film having an etching characteristic different from that of the interlayer insulating film is provided on the side surface of the wiring, the removing speed of the insulating film is reduced. If the etching is performed under a condition lower than the speed, a connection hole can be formed in a self-aligned manner with respect to the wiring.

【0015】しかも、素子分離用のトレンチの開口部に
おける内側面を覆っている絶縁膜と配線の側壁保護膜に
なっている絶縁膜とが同一層であるので、これらの絶縁
膜を同時に形成及び加工することができる。このため、
トレンチの開口部を半導体基板の表面よりも低くするた
めの工程を追加するだけで、接続孔を配線に対して自己
整合的に形成することとトレンチに臨む半導体基板の側
面の露出を防止することとの両方を実現することができ
る。
In addition, since the insulating film covering the inner side surface of the opening of the element isolation trench and the insulating film serving as the side wall protective film of the wiring are the same layer, these insulating films can be simultaneously formed and formed. Can be processed. For this reason,
Forming a connection hole in a self-aligned manner with respect to a wiring and preventing exposure of a side surface of a semiconductor substrate facing a trench by simply adding a step for lowering an opening of a trench below a surface of a semiconductor substrate. And both can be realized.

【0016】請求項3に係る半導体装置の製造方法は、
半導体基板に素子分離用のトレンチが設けられており、
前記半導体基板上とこの半導体基板上の配線上とに層間
絶縁膜が設けられている半導体装置の製造方法におい
て、開口部が前記半導体基板の表面よりも低い前記トレ
ンチを形成する工程と、前記層間絶縁膜とはエッチング
特性の異なる絶縁膜で前記配線及び前記トレンチを覆う
工程と、前記絶縁膜を異方的にエッチングして、前記絶
縁膜から成る側壁保護膜を前記配線の側面に形成すると
共に前記トレンチのうちで少なくとも前記開口部の内側
面を覆う前記絶縁膜を残す工程とを具備することを特徴
としている。
According to a third aspect of the present invention, there is provided a method of manufacturing a semiconductor device.
A trench for element isolation is provided in the semiconductor substrate,
In a method of manufacturing a semiconductor device, wherein an interlayer insulating film is provided on the semiconductor substrate and on wiring on the semiconductor substrate, a step of forming the trench having an opening lower than a surface of the semiconductor substrate; A step of covering the wiring and the trench with an insulating film having an etching characteristic different from that of an insulating film; and forming the sidewall protective film made of the insulating film on a side surface of the wiring by etching the insulating film anisotropically. Leaving the insulating film covering at least the inner side surface of the opening in the trench.

【0017】請求項3に係る半導体装置の製造方法で
は、層間絶縁膜とはエッチング特性の異なる絶縁膜から
成る側壁保護膜を配線の側面に形成するので、半導体基
板に対する接続孔を層間絶縁膜に形成する際に、絶縁膜
の除去速度が層間絶縁膜の除去速度よりも遅い条件のエ
ッチングを行えば、配線に対して自己整合的に接続孔を
形成することができる。
In the method of manufacturing a semiconductor device according to the third aspect, since the sidewall protective film made of an insulating film having an etching characteristic different from that of the interlayer insulating film is formed on the side surface of the wiring, the connection hole for the semiconductor substrate is formed in the interlayer insulating film. At the time of formation, if etching is performed under the condition that the removal rate of the insulating film is lower than the removal rate of the interlayer insulating film, a connection hole can be formed in a self-aligned manner with respect to the wiring.

【0018】また、層間絶縁膜とはエッチング特性の異
なる絶縁膜で素子分離用のトレンチの開口部における内
側面を覆うので、半導体基板に対する接続孔を層間絶縁
膜に形成する際に、絶縁膜の除去速度が層間絶縁膜の除
去速度よりも遅い条件のエッチングを行えば、接続孔の
位置がずれて接続孔が素子分離領域上にまで広がって
も、トレンチに臨む半導体基板の側面の露出を防止する
ことができる。
Further, since the inner surface at the opening of the trench for element isolation is covered with an insulating film having an etching characteristic different from that of the interlayer insulating film, when the connection hole for the semiconductor substrate is formed in the interlayer insulating film, If etching is performed under the condition that the removal speed is lower than the removal speed of the interlayer insulating film, even if the position of the connection hole is shifted and the connection hole spreads over the element isolation region, exposure of the side surface of the semiconductor substrate facing the trench is prevented. can do.

【0019】しかも、同一層の絶縁膜を同時にエッチン
グすることによって、配線の側壁保護膜にする絶縁膜と
素子分離用のトレンチの開口部における内側面を覆う絶
縁膜とを形成するので、開口部が半導体基板の表面より
も低いトレンチを形成するだけで、接続孔を配線に対し
て自己整合的に形成することとトレンチに臨む半導体基
板の側面の露出を防止することとの両方を実現すること
ができる。
In addition, by simultaneously etching the same layer of insulating film, an insulating film serving as a sidewall protection film for the wiring and an insulating film covering the inner side surface of the opening of the trench for element isolation are formed. Only forms a trench lower than the surface of the semiconductor substrate and realizes both the formation of the connection hole in a self-aligned manner with respect to the wiring and the prevention of the exposure of the side surface of the semiconductor substrate facing the trench. Can be.

【0020】[0020]

【発明の実施の形態】以下、トレンチ素子分離構造を有
しており且つソース/ドレインに対する接続孔がゲート
電極に対して自己整合的に形成されているMISトラン
ジスタ及びその製造方法に適用した本願の発明の一実施
形態を、図1〜3を参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An MIS transistor having a trench element isolation structure and having a source / drain connection hole formed in a self-aligned manner with a gate electrode and a method of manufacturing the same will be described below. An embodiment of the present invention will be described with reference to FIGS.

【0021】本実施形態のMISトランジスタを製造す
るためには、図2(a)に示す様に、Si基板31上に
SiN膜(図示せず)を形成し、このSiN膜を貫通す
る素子分離用のトレンチ32をSi基板31に形成す
る。そして、トレンチ32内を含むSi基板31上の全
面にSiO2 膜33を堆積させ、SiN膜をストッパに
した化学的機械的研磨でSiO2 膜33をトレンチ32
内にのみ残す。
In order to manufacture the MIS transistor of this embodiment, as shown in FIG. 2A, an SiN film (not shown) is formed on a Si substrate 31, and an element isolation penetrating the SiN film is formed. Trench 32 is formed in Si substrate 31. Then, depositing a SiO 2 film 33 on the entire surface of the Si substrate 31 including the trenches 32, a trench a SiO 2 film 33 by chemical mechanical polishing in which the SiN film as a stopper 32
Leave only within.

【0022】その後、SiN膜を除去し、Si基板31
にウェル34を形成した後、ゲート絶縁膜としてのSi
2 膜35等を素子活性領域の表面に形成する。そし
て、多結晶Si膜36とオフセット絶縁膜としてのSi
N膜37とをSiO2 膜35、33上に順次に堆積さ
せ、ゲート電極のパターンのレジスト38をマスクにし
てSiN膜37及び多結晶Si膜36をエッチングす
る。
Thereafter, the SiN film is removed and the Si substrate 31 is removed.
After the well 34 is formed, Si as a gate insulating film is formed.
An O 2 film 35 and the like are formed on the surface of the element active region. Then, the polycrystalline Si film 36 and Si as an offset insulating film are formed.
An N film 37 is sequentially deposited on the SiO 2 films 35 and 33, and the SiN film 37 and the polycrystalline Si film 36 are etched using the resist 38 of the gate electrode pattern as a mask.

【0023】次に、図2(b)に示す様に、レジスト3
8を残したままRIEでSiO2 膜33、35を異方的
にエッチングして、トレンチ32内のSiO2 膜33の
表面をSi基板31の表面よりも低くする。
Next, as shown in FIG.
The SiO 2 films 33 and 35 are anisotropically etched by RIE while leaving 8, so that the surface of the SiO 2 film 33 in the trench 32 is lower than the surface of the Si substrate 31.

【0024】次に、図2(c)に示す様に、レジスト3
8を除去し、SiN膜37及びSiO2 膜33をマスク
にした不純物のイオン注入を行って、多結晶Si膜36
及びSiN膜37の両側の素子活性領域にLDD構造の
ソース/ドレイン用の低濃度の拡散層41を形成する。
そして、トレンチ32内を含むSi基板31上の全面に
SiN膜42をCVD法で堆積させる。
Next, as shown in FIG.
8 is removed and impurities are ion-implanted using the SiN film 37 and the SiO 2 film 33 as a mask to form a polycrystalline Si film 36.
Then, a low-concentration diffusion layer 41 for source / drain having an LDD structure is formed in the element active region on both sides of the SiN film 37.
Then, an SiN film 42 is deposited on the entire surface of the Si substrate 31 including the inside of the trench 32 by the CVD method.

【0025】次に、図3(a)に示す様に、RIEでS
iN膜42の全面を異方的にエッチングして、多結晶S
i膜36及びSiN膜37の側面にSiN膜42から成
る側壁保護膜を形成すると同時に、SiO2 膜33より
も上部のトレンチ32をSiN膜42から成る側壁保護
膜で埋める。つまり、トレンチ32の内部はSiO2
33で埋め、SiO2 膜33よりも上部のトレンチ32
の開口部はSiN膜42で埋める。
Next, as shown in FIG.
The entire surface of the iN film 42 is anisotropically etched to form a polycrystalline S
At the same time as forming the sidewall protection film made of the SiN film on the side surfaces of the i film and the SiN film 37, the trench 32 above the SiO 2 film 33 is filled with the sidewall protection film made of the SiN film. That is, the inside of the trench 32 is filled with the SiO 2 film 33, and the trench 32 above the SiO 2 film 33 is filled.
Is filled with a SiN film 42.

【0026】次に、図3(b)に示す様に、SiN膜3
7、42をマスクにした不純物のイオン注入を行って、
SiN膜42に囲まれている素子活性領域にLDD構造
のソース/ドレイン用の高濃度の拡散層43を形成す
る。そして、図3(c)に示す様に、CVD法でSi基
板31上にSiO2 膜44を堆積させて、層間絶縁膜を
形成する。
Next, as shown in FIG.
Impurity ion implantation using masks 7 and 42 as a mask
In the element active region surrounded by the SiN film 42, a high concentration diffusion layer 43 for source / drain having an LDD structure is formed. Then, as shown in FIG. 3C, an SiO 2 film 44 is deposited on the Si substrate 31 by a CVD method to form an interlayer insulating film.

【0027】次に、拡散層43に対する接続孔のパター
ンの開口を有するレジスト(図示せず)をリソグラフィ
でSiO2 膜44上に形成し、このレジストをマスクに
して、図1に示す様に、下記の条件のRIEでSiO2
膜44を異方的にエッチングして接続孔45を形成す
る。
Next, a resist (not shown) having an opening of a connection hole pattern for the diffusion layer 43 is formed on the SiO 2 film 44 by lithography, and using this resist as a mask, as shown in FIG. SiO 2 by RIE under the following conditions
The connection hole 45 is formed by anisotropically etching the film 44.

【0028】接続孔を形成するためのRIEの条件 ガス:C4 8 /CO/Ar=10/200/200s
ccm 圧力:5Pa 高周波電力:1600W
RIE conditions for forming connection holes Gas: C 4 F 8 / CO / Ar = 10/200 / 200s
ccm Pressure: 5Pa High frequency power: 1600W

【0029】上記のRIEの条件ではSiNの除去速度
がSiO2 の除去速度よりも遅いので、拡散層43に対
する接続孔45が多結晶Si膜36及び素子分離領域の
両方に対して自己整合的に形成される。つまり、接続孔
45の位置がずれて、多結晶Si膜36や素子分離領域
上にまで接続孔45が広がっても、SiN膜37、42
のエッチングが抑制されて、多結晶Si膜36のみなら
ずSiO2 膜33も露出しない。
Under the above RIE conditions, the removal rate of SiN is lower than the removal rate of SiO 2 , so that the connection hole 45 for the diffusion layer 43 is self-aligned with both the polycrystalline Si film 36 and the element isolation region. It is formed. That is, even if the position of the connection hole 45 is shifted and the connection hole 45 spreads over the polycrystalline Si film 36 and the element isolation region, the SiN films 37 and 42
Is suppressed, so that not only the polycrystalline Si film 36 but also the SiO 2 film 33 are not exposed.

【0030】このため、図4に示した一従来例の様には
トレンチ32の拡散層43側の内側面を露出させる凹部
がトレンチ32内のSiN膜42に形成されず、接続孔
45内に形成される配線(図示せず)とウェル34との
短絡が防止される。
For this reason, unlike the conventional example shown in FIG. 4, a recess for exposing the inner surface of the trench 32 on the diffusion layer 43 side is not formed in the SiN film 42 in the trench 32, but in the connection hole 45. A short circuit between the formed wiring (not shown) and the well 34 is prevented.

【0031】ところで、以上の実施形態では、SiN膜
37及び多結晶Si膜36をゲート電極のパターンにエ
ッチングした後で且つ低濃度の拡散層41を形成する前
に、トレンチ32内のSiO2 膜33をエッチングして
いるが、SiO2 膜33のエッチングは、SiN膜37
及び多結晶Si膜36をゲート電極のパターンにエッチ
ングした後で且つSiN膜42の堆積前であればいつで
もよく、例えば、低濃度の拡散層41を形成した後に行
ってもよい。
In the above embodiment, the SiO 2 film in the trench 32 is formed after the SiN film 37 and the polycrystalline Si film 36 are etched into the pattern of the gate electrode and before the low concentration diffusion layer 41 is formed. 33, the SiO 2 film 33 is etched by the SiN film 37.
After the polycrystalline Si film 36 is etched into the pattern of the gate electrode and before the deposition of the SiN film 42, it may be performed at any time, for example, after the low concentration diffusion layer 41 is formed.

【0032】なお、SiN膜37及び多結晶Si膜36
をゲート電極のパターンにエッチングした後にトレンチ
32内のSiO2 膜33をエッチングするのは、トレン
チ32内のSiO2 膜33をエッチングした後に多結晶
Si膜36等の堆積及びエッチングを行うと、トレンチ
32と素子活性領域との境界部で多結晶Si膜36に段
差部が形成され、この段差部において電界集中が生じ
て、狭チャネル効果等による特性の異常が生じるからで
ある。
The SiN film 37 and the polycrystalline Si film 36
The etching of the SiO 2 film 33 in the trench 32 after etching the gate electrode pattern is performed by etching and depositing the polycrystalline Si film 36 and the like after etching the SiO 2 film 33 in the trench 32. This is because a step is formed in the polycrystalline Si film 36 at the boundary between the element 32 and the element active region, and electric field concentration occurs in this step, causing anomalies in characteristics due to the narrow channel effect and the like.

【0033】また、以上の実施形態では、トレンチ32
の内部をSiO2 膜33で埋め、SiO2 膜33よりも
上部のトレンチ32の開口部のみをSiN膜42で埋め
ているが、トレンチ32の全体をSiN膜42で埋めて
もよく、また、CVD法や熱酸化法等でトレンチ32の
内面に絶縁膜を形成した後に多結晶Si膜等の導電膜や
絶縁膜でトレンチ32を埋めてもよい。
In the above embodiment, the trench 32
Is filled with the SiO 2 film 33 and only the opening of the trench 32 above the SiO 2 film 33 is filled with the SiN film 42. However, the entire trench 32 may be filled with the SiN film 42. After forming an insulating film on the inner surface of the trench 32 by a CVD method, a thermal oxidation method, or the like, the trench 32 may be filled with a conductive film such as a polycrystalline Si film or an insulating film.

【0034】更に、以上の実施形態では、トレンチ32
の開口部をSiN膜42で埋めているが、必ずしもトレ
ンチ32の開口部の全面がSiN膜42で埋められてい
る必要はなく、少なくともトレンチ32の開口部におけ
る内側面が、SiN膜42から成る側壁保護膜で覆われ
ていればよい。また、以上の実施形態は、MISトラン
ジスタ及びその製造方法に本願の発明を適用したもので
あるが、本願の発明はMISトランジスタ以外の半導体
装置及びその製造方法にも適用することができる。
Further, in the above embodiment, the trench 32
Is filled with the SiN film 42, but the entire surface of the opening of the trench 32 does not necessarily need to be filled with the SiN film 42, and at least the inner side surface of the opening of the trench 32 is made of the SiN film 42. What is necessary is just to be covered with the side wall protective film. In the above embodiments, the invention of the present application is applied to a MIS transistor and a method of manufacturing the same. However, the invention of the present application can be applied to a semiconductor device other than the MIS transistor and a method of manufacturing the same.

【0035】[0035]

【発明の効果】請求項1に係る半導体装置では、半導体
基板に対する接続孔の位置がずれて接続孔が素子分離領
域上にまで広がっても、素子分離用のトレンチに臨む半
導体基板の側面の露出を防止することができるので、接
続孔内に形成される配線と半導体基板との間におけるリ
ーク電流の発生を防止することができて、歩留りを高め
ることができる。
In the semiconductor device according to the first aspect, even if the position of the connection hole with respect to the semiconductor substrate is shifted and the connection hole is extended to the element isolation region, the side surface of the semiconductor substrate facing the isolation trench is exposed. Therefore, it is possible to prevent the occurrence of a leak current between the wiring formed in the connection hole and the semiconductor substrate, and it is possible to increase the yield.

【0036】また、この様に、半導体基板に対する接続
孔が素子分離領域上にまで広がっても、接続孔内に形成
される配線と半導体基板との間におけるリーク電流の発
生を防止することができるので、接続孔内に形成される
配線と接続されるべき半導体基板の領域を縮小すること
ができて、集積度を高めることができる。
As described above, even if the connection hole for the semiconductor substrate extends over the element isolation region, it is possible to prevent the occurrence of a leakage current between the wiring formed in the connection hole and the semiconductor substrate. Therefore, the area of the semiconductor substrate to be connected to the wiring formed in the connection hole can be reduced, and the degree of integration can be increased.

【0037】請求項2に係る半導体装置では、トレンチ
の開口部を半導体基板の表面よりも低くするための工程
を追加するだけで、接続孔を配線に対して自己整合的に
形成することとトレンチに臨む半導体基板の側面の露出
を防止することとの両方を実現することができるので、
製造コストの増大を抑制しつつ歩留りの向上と集積度の
更なる向上とを達成することができる。
In the semiconductor device according to the second aspect, the connection hole is formed in a self-aligned manner with respect to the wiring by merely adding a step for lowering the opening of the trench below the surface of the semiconductor substrate. To prevent the exposure of the side surface of the semiconductor substrate facing the
It is possible to achieve an improvement in yield and a further increase in integration while suppressing an increase in manufacturing cost.

【0038】請求項3に係る半導体装置の製造方法で
は、開口部が半導体基板の表面よりも低いトレンチを形
成するだけで、接続孔を配線に対して自己整合的に形成
することとトレンチに臨む半導体基板の側面の露出を防
止することとの両方を実現することができるので、製造
コストの増大を抑制しつつ集積度及び歩留りの高い半導
体装置を製造することができる。
In the method of manufacturing a semiconductor device according to the third aspect, only by forming a trench whose opening is lower than the surface of the semiconductor substrate, the connection hole is formed in a self-aligned manner with respect to the wiring and faces the trench. Since it is possible to both prevent exposure of the side surface of the semiconductor substrate, it is possible to manufacture a semiconductor device having a high degree of integration and a high yield while suppressing an increase in manufacturing cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願の発明の一実施形態としてのMISトラン
ジスタの側断面図である。
FIG. 1 is a side sectional view of a MIS transistor as one embodiment of the present invention.

【図2】一実施形態としてのMISトランジスタの製造
方法の前半を工程順に示す側断面図である。
FIG. 2 is a side sectional view showing the first half of a method for manufacturing a MIS transistor as one embodiment in the order of steps;

【図3】一実施形態としてのMISトランジスタの製造
方法の後半を工程順に示す側断面図である。
FIG. 3 is a side sectional view showing the latter half of the method of manufacturing the MIS transistor as one embodiment in the order of steps;

【図4】本願の発明の一従来例としてのMISトランジ
スタの側断面図である。
FIG. 4 is a side sectional view of a MIS transistor as a conventional example of the present invention.

【符号の説明】[Explanation of symbols]

31…Si基板(半導体基板)、32…トレンチ、36
…多結晶Si膜(配線)、42…SiN膜(絶縁膜)、
44…SiO2 膜(層間絶縁膜)
31: Si substrate (semiconductor substrate), 32: trench, 36
... polycrystalline Si film (wiring), 42 ... SiN film (insulating film)
44: SiO 2 film (interlayer insulating film)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板に素子分離用のトレンチが設
けられており、前記半導体基板上に層間絶縁膜が設けら
れている半導体装置において、 前記層間絶縁膜とはエッチング特性の異なる絶縁膜で少
なくとも前記トレンチの開口部における内側面が覆われ
ていることを特徴とする半導体装置。
In a semiconductor device having a trench for element isolation provided in a semiconductor substrate and an interlayer insulating film provided on the semiconductor substrate, at least an insulating film having an etching characteristic different from that of the interlayer insulating film. A semiconductor device, wherein an inner side surface of an opening of the trench is covered.
【請求項2】 前記絶縁膜と同一層の絶縁膜から成る側
壁保護膜が前記半導体基板上の配線の側面に設けられて
いることを特徴とする請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein a side wall protective film made of the same insulating film as the insulating film is provided on a side surface of the wiring on the semiconductor substrate.
【請求項3】 半導体基板に素子分離用のトレンチが設
けられており、前記半導体基板上とこの半導体基板上の
配線上とに層間絶縁膜が設けられている半導体装置の製
造方法において、 開口部が前記半導体基板の表面よりも低い前記トレンチ
を形成する工程と、 前記層間絶縁膜とはエッチング特性の異なる絶縁膜で前
記配線及び前記トレンチを覆う工程と、 前記絶縁膜を異方的にエッチングして、前記絶縁膜から
成る側壁保護膜を前記配線の側面に形成すると共に前記
トレンチのうちで少なくとも前記開口部の内側面を覆う
前記絶縁膜を残す工程とを具備することを特徴とする半
導体装置の製造方法。
3. The method of manufacturing a semiconductor device, wherein a trench for element isolation is provided in a semiconductor substrate, and an interlayer insulating film is provided on the semiconductor substrate and on wiring on the semiconductor substrate. Forming the trench lower than the surface of the semiconductor substrate, covering the wiring and the trench with an insulating film having an etching characteristic different from that of the interlayer insulating film, and etching the insulating film anisotropically. Forming a sidewall protective film made of the insulating film on the side surface of the wiring and leaving the insulating film covering at least the inner side surface of the opening in the trench. Manufacturing method.
JP19512297A 1997-07-04 1997-07-04 Semiconductor device and its manufacture Pending JPH1126584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19512297A JPH1126584A (en) 1997-07-04 1997-07-04 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19512297A JPH1126584A (en) 1997-07-04 1997-07-04 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH1126584A true JPH1126584A (en) 1999-01-29

Family

ID=16335865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19512297A Pending JPH1126584A (en) 1997-07-04 1997-07-04 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH1126584A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232677A (en) * 2010-06-18 2010-10-14 Renesas Electronics Corp Method of manufacturing semiconductor device
JP2012028789A (en) * 2011-08-15 2012-02-09 Renesas Electronics Corp Semiconductor device
US9322939B2 (en) 2009-09-08 2016-04-26 Koninklijke Philips N.V. Imaging measurement system with a printed photodetector array
JP2020524907A (en) * 2017-06-22 2020-08-20 東京エレクトロン株式会社 Embedded power rail

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9322939B2 (en) 2009-09-08 2016-04-26 Koninklijke Philips N.V. Imaging measurement system with a printed photodetector array
JP2010232677A (en) * 2010-06-18 2010-10-14 Renesas Electronics Corp Method of manufacturing semiconductor device
JP2012028789A (en) * 2011-08-15 2012-02-09 Renesas Electronics Corp Semiconductor device
JP2020524907A (en) * 2017-06-22 2020-08-20 東京エレクトロン株式会社 Embedded power rail

Similar Documents

Publication Publication Date Title
US6093621A (en) Method of forming shallow trench isolation
US6821858B2 (en) Semiconductor devices and methods for manufacturing the same
KR100278996B1 (en) Method of forming a contact of a semiconductor device
KR20000013397A (en) Manufacturing method of trench isolation
JP2745970B2 (en) Method for manufacturing semiconductor device
JPH1126584A (en) Semiconductor device and its manufacture
KR100327422B1 (en) Method of fabricating for semiconductor device
JPH098135A (en) Manufacture of semiconductor device
JP3061025B2 (en) Method for manufacturing semiconductor device
KR100273320B1 (en) Silicide Formation Method of Semiconductor Device_
KR101231251B1 (en) Method for manufacturing transistor of metal oxide semiconductor type
EP0445836B1 (en) Semiconductor device having MOS transistor and method of producing the same
JP3001588B2 (en) Semiconductor device and manufacturing method thereof
US6580088B2 (en) Semiconductor devices and methods for manufacturing the same
KR100672672B1 (en) Method for Forming Semi-conductor Device
JPH0665221B2 (en) Method for manufacturing semiconductor device
JPH05226466A (en) Manufacture of semiconductor device
KR20000039307A (en) Method for forming contact of semiconductor device
KR100762224B1 (en) Method for manufacturing transistor of semiconductor device
KR20000027911A (en) Method of forming contact of semiconductor device
KR100223825B1 (en) Method of forming an element isolation region in a semiconductor device
JPH1041379A (en) Manufacture of semiconductor device
JPH05259446A (en) Manufacture of semiconductor device
JPH06140420A (en) Manufacture of semiconductor device
KR19990029508A (en) A method of forming a narrow silicon thermal oxide side insulating region in a semiconductor substrate, and a MOS semiconductor device manufactured by the method