JPH11258516A - Stereomicroscope allowed to be ubserved by plural observers - Google Patents

Stereomicroscope allowed to be ubserved by plural observers

Info

Publication number
JPH11258516A
JPH11258516A JP10080545A JP8054598A JPH11258516A JP H11258516 A JPH11258516 A JP H11258516A JP 10080545 A JP10080545 A JP 10080545A JP 8054598 A JP8054598 A JP 8054598A JP H11258516 A JPH11258516 A JP H11258516A
Authority
JP
Japan
Prior art keywords
optical system
optical
prism
image
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10080545A
Other languages
Japanese (ja)
Other versions
JP4302199B2 (en
Inventor
Toyoji Hanzawa
豊治 榛澤
Toyohiro Kondo
豊浩 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP08054598A priority Critical patent/JP4302199B2/en
Priority to DE1999111145 priority patent/DE19911145A1/en
Publication of JPH11258516A publication Critical patent/JPH11258516A/en
Application granted granted Critical
Publication of JP4302199B2 publication Critical patent/JP4302199B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens
    • G02B21/20Binocular arrangements
    • G02B21/22Stereoscopic arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

PROBLEM TO BE SOLVED: To arrange each eye point on a position close to an object with respect to a stereomicroscope allowed to be observed by many observers by arranging a face intersecting with the light division face of a reflection member for dividing a beam emitted from a variable power optical system into a transmitted beam and a reflected beam on the inside of the beam emitted from the variable power optical system. SOLUTION: A beam exited from an afocal relay system is divided into three components, i.e., center, right and left transmission/reflection, by a three-division prism 22. The prism 22 is constituted so that the intersection lines of reflection faces of light division prisms 22L, 22R intersect with the exiting optical axis of the relay system. A beam transmitted to a main observation side through the prism 22 is made incident upon a main observation side roof prism 23. On a right sub-observation side, a beam made incident upon the prism 22R is reflected by its internal half mirror face and made incident upon a sub-observation side roof prism 28 and the movement of its image center is reduced by a wedge prism 30. A sub-observation side lens barrel 21 is arranged on the exit side of the prism 30. The left sub-observation side and the right sub-observation side are mutually sym-meterial and have the same action.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、変倍光学系を含む
共通の光学系の後方にて左右の目のための光束に分ける
左右一対の開口絞りを有し、左右の光束を左右の目で立
体観察を行なう実体顕微鏡に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a pair of left and right aperture stops behind a common optical system including a variable power optical system, which divides the left and right light beams into left and right eyes. The present invention relates to a stereoscopic microscope for performing stereoscopic observation on a microscope.

【0002】[0002]

【従来の技術】実体顕微鏡は、物体を拡大観察でき、し
かも立体的情報を得ることができるために、物体に対す
る作業を行なう際に有効であり特に手術用顕微鏡として
用いることが有効である。
2. Description of the Related Art A stereomicroscope is effective when performing an operation on an object because it can observe an object in an enlarged manner and can obtain three-dimensional information, and is particularly effective as a surgical microscope.

【0003】このような実体顕微鏡について、手術用顕
微鏡を例として述べる。
[0003] Such a stereoscopic microscope will be described using a surgical microscope as an example.

【0004】手術用顕微鏡は、より困難な手術を可能に
するため、複数の観察者が像を同時にしかも自由な方向
より観察し得る構成であることが望まれている。
[0004] Surgical microscopes are desired to have a configuration in which a plurality of observers can simultaneously observe an image from a free direction in order to enable more difficult operations.

【0005】この要求に応じるために、左右の目で見る
夫々の像を形成する光束を一つの変倍光学系を通すよう
にした手術用顕微鏡の例として、特開平4−15641
2号公報に記載されている手術用顕微鏡が知られてい
る。この従来例は、変倍光学系の後方に設けられた左右
光路用の開口絞りを変倍光学系の光軸の周りに回転させ
ることにより観察方向を自由に変えることができ、又複
数の観察者による観察が可能な構成のものである。
In order to meet this demand, Japanese Patent Laid-Open No. 4-15641 discloses an example of a surgical microscope in which light beams forming respective images viewed by the right and left eyes are passed through one variable-magnification optical system.
An operating microscope described in Japanese Patent Publication No. 2 (JP-A) No. 2 is known. In this conventional example, the observation direction can be freely changed by rotating the left and right optical path aperture stops provided behind the variable power optical system around the optical axis of the variable power optical system. It is of a configuration that allows observation by a person.

【0006】又、他の従来例として、特開平9−318
882号公報に記載された実体顕微鏡が知られている。
この従来例は、前述の変倍光学系の後方にリレー系配置
して収差を良好に補正するようにしている。そのために
長くなった光路長を反射部材を設けることにより光束を
折り曲げてアイポイントを物体側に下げるようにしてい
る。又、変倍に伴う立体感の変化を少なくするために、
絞りを開口と共役の位置におくようにしている。
Another conventional example is disclosed in Japanese Patent Application Laid-Open No. 9-318.
A stereo microscope described in Japanese Patent Publication No. 882 is known.
In this conventional example, a relay system is arranged behind the above-described variable power optical system so that aberrations can be satisfactorily corrected. For this purpose, a light member is bent by providing a reflecting member with a longer optical path length so that the eye point is lowered to the object side. Also, in order to reduce the change in the three-dimensional effect due to zooming,
The stop is placed at a position conjugate with the aperture.

【0007】図10は、自由な方向からの観察を可能に
した実体顕微鏡の一例を示す図である。図において、1
はハーフミラー、2は対物レンズ、3は立体感調整絞
り、4,5,6は夫々反射部材、7はアフォーカルズー
ム系、8は光分割部材、9は反射部材、10はリレー系
第1レンズ、11,12,13は反射部材、14はリレ
ー系第2レンズである。
FIG. 10 is a diagram showing an example of a stereomicroscope enabling observation from any direction. In the figure, 1
Is a half mirror, 2 is an objective lens, 3 is a three-dimensional adjustment diaphragm, 4, 5, and 6 are reflecting members, 7 is an afocal zoom system, 8 is a light dividing member, 9 is a reflecting member, and 10 is a relay system. Lenses, 11, 12, and 13 are reflection members, and 14 is a relay-system second lens.

【0008】このような従来の実体顕微鏡において、ハ
ーフミラー1の物体側とは反対側(図においてハーフミ
ラー1の上方)には観察物体の観察軸と同軸で照明する
ための照明装置が設けられている。この照明装置により
照明された物体よりの光束は、ハーフミラー1により反
射され対物レンズ2を通ってアフォーカル光束になる。
このアフォーカル光束は、変倍に伴う立体感の変化を抑
えるため立体感調整用絞り3と経て、反射部材4,6に
より反射されて図面上方に向かう。反射部材6の後方に
配置されている対物レンズ2と同軸のアフォーカルズー
ム系7を通った後に光分割部材8により分割される。つ
まりアフォーカルズーム系7を射出した光束は、光分割
部材8により反射され、反射部材9により反射され図面
の下方に向けられ、その後アフォーカル光束を結像させ
るリレー系の第1レンズ10により物体像を形成した
後、反射部材11,12,13により夫々反射されて物
体からの入射光軸(ハーフミラー1への入射光軸)の延
長線上を図面上方に向けられ、入射光軸にほぼ平行にな
る。これにより、光路長の長い光学系を用いた場合でも
物体位置と観察者の目の位置とを近づけることができ、
アイポイント位置を下げることができ、普通の実体顕微
鏡と同等に扱うことを可能にしている。この光学系にお
いて、リレー系の結像点付近にレンズを配置すれば瞳位
置の調整が行ないやすい。
In such a conventional stereomicroscope, an illumination device for illuminating coaxially with the observation axis of the observation object is provided on the opposite side of the half mirror 1 from the object side (above the half mirror 1 in the figure). ing. The light beam from the object illuminated by the illumination device is reflected by the half mirror 1 and passes through the objective lens 2 to become an afocal light beam.
The afocal light beam passes through the three-dimensional effect adjusting aperture 3 to suppress a change in the three-dimensional effect due to zooming, is reflected by the reflecting members 4 and 6, and travels upward in the drawing. After passing through an afocal zoom system 7 coaxial with the objective lens 2 disposed behind the reflecting member 6, the light is split by the light splitting member 8. That is, the light beam emitted from the afocal zoom system 7 is reflected by the light splitting member 8, reflected by the reflecting member 9, and directed downward in the drawing, and then the object is formed by the first lens 10 of the relay system that forms the afocal light beam. After the image is formed, the light is reflected by the reflection members 11, 12, and 13, respectively, and is directed upward in the drawing on the extension of the incident optical axis from the object (the incident optical axis to the half mirror 1), and is substantially parallel to the incident optical axis. become. Thereby, even when an optical system having a long optical path length is used, it is possible to bring the position of the object closer to the position of the eyes of the observer,
The eyepoint position can be lowered, making it possible to handle the same as a normal stereo microscope. In this optical system, the pupil position can be easily adjusted by disposing a lens near the imaging point of the relay system.

【0009】次に、本発明の実体顕微鏡のように複数の
観察者による観察を行なう中間鏡筒部分の従来例として
2人観察用に光束を分割する中間鏡筒部分に関して図1
1をもとに述べる。
Next, as a conventional example of an intermediate lens barrel portion for performing observation by a plurality of observers as in the stereomicroscope of the present invention, an intermediate lens barrel portion for splitting a light beam for two-person observation is shown in FIG.
1 will be described.

【0010】図11において、15は主観察側と副観察
側に分割するビームスプリッター、16は主観察側に設
けられたダハプリズム、17は主観察側の鏡筒である。
又18は平行四辺形のプリズム、19は3回反射のダハ
プリズム、20はイメージローテータ、21は副観察側
鏡筒で、これらにより副観察側の光学系を構成してい
る。
In FIG. 11, reference numeral 15 denotes a beam splitter which divides the beam into a main observation side and a sub observation side, 16 denotes a roof prism provided on the main observation side, and 17 denotes a lens barrel on the main observation side.
Numeral 18 denotes a parallelogram prism, numeral 19 denotes a roof prism reflecting three times, numeral 20 denotes an image rotator, numeral 21 denotes a sub-observation side lens barrel, and these constitute an optical system on the sub-observation side.

【0011】この図11に示す中間鏡筒部分において
は、1回結像リレー系を射出後の光束のうちビームスプ
リッター15に入射し、このビームスプリッターを透過
する光束は、主観察側へ向う。つまり、ビームスプリッ
ター15を透過した光束は、正立のダハプリズム16に
より正立像とされた後、主観察側鏡筒17に入射して主
観察者により観察される。
In the intermediate lens barrel portion shown in FIG. 11, of the light beams emitted from the imaging relay system once, the light beams enter the beam splitter 15, and the light beams passing through the beam splitter travel to the main observation side. That is, the luminous flux transmitted through the beam splitter 15 is converted into an erect image by the erect roof prism 16, then enters the main observation side lens barrel 17 and is observed by the main observer.

【0012】又、ビームスプリッター15にて反射され
た光束は、副観察側へ向うもので平行四辺形のプリズム
18へ入射し、これを射出後ダハプリズム19を通って
正立像になり、イメージローテーター20を通ってから
副鏡筒21に入射して副観察者にて観察される。
The light beam reflected by the beam splitter 15 is directed to the sub-observation side and is incident on a parallelogram prism 18. After exiting the beam, it passes through a roof prism 19 to become an erect image, and becomes an image rotator 20. After passing through, the light enters the auxiliary lens barrel 21 and is observed by the auxiliary observer.

【0013】以上の通りの副観察側の中間鏡筒は、主観
察側と適切な距離だけ離すために平行四辺形のプリズム
を用い、リレー系の光軸を回転軸として回転可能にし、
平行四辺形状のプリズム16とダハプリズム19との間
の光軸を回転軸として回転可能にしてダハプリズム19
より後方の光学系を回転させこれと同時にこの回転の2
倍の角度で副観察側鏡筒を回転させることにより、像の
回転なしに覗く方向を変えることができる。また開口部
は、光路長が主観察側とほぼ一致するように、主観察側
と副観察側の鏡筒19と21からはずれた位置にあり、
イメージローテータの小型化を考慮して開口部はイメー
ジローテータ20の前に設置してある。
As described above, the intermediate barrel on the sub-observation side uses a parallelogram prism to keep an appropriate distance from the main observation side, and is rotatable about the optical axis of the relay system as a rotation axis.
The roof prism 19 is made rotatable about the optical axis between the parallelogram prism 16 and the roof prism 19 as a rotation axis.
By rotating the optical system further behind, at the same time
By rotating the sub-observation side lens barrel at a double angle, the viewing direction can be changed without rotating the image. The opening is located at a position deviated from the lens barrels 19 and 21 on the main observation side and the sub observation side so that the optical path length substantially matches the main observation side,
The opening is provided in front of the image rotator 20 in consideration of miniaturization of the image rotator.

【0014】この中間鏡筒を用いれば、2人の観察者に
より同時に観察が可能である。又分割部を数段重ね配置
することにより、3人以上の観察者による同時観察も可
能になる。
By using this intermediate lens barrel, two observers can observe at the same time. In addition, by arranging the divided parts in several stages, simultaneous observation by three or more observers becomes possible.

【0015】この中間鏡筒を用いた実体顕微鏡を手術用
に用いれば複数の手術者の参加が可能である。しかし、
手術者と術部との距離は短い方が望ましい。又手術者が
3人であれば、より高度な手術が可能になり、物体と目
とが3人共近くかつ像の明るい顕微鏡が望まれる。
If a stereomicroscope using this intermediate lens barrel is used for surgery, a plurality of operators can participate. But,
It is desirable that the distance between the operator and the operation site is short. In addition, if three operators are used, more advanced surgery can be performed, and a microscope in which objects and eyes are close to each other and whose images are bright is desired.

【0016】しかし、この従来例では、これら要求を十
分に満足するとはいえない。
However, in this conventional example, it cannot be said that these requirements are sufficiently satisfied.

【0017】また目に見えない光や微弱な光から手術に
有効な情報が得られ、例えば赤外線で観察すると皮膚が
透明になり血管の位置が明確になり、又蛍光観察により
癌細胞が特有の蛍光を発することがある。これらを観察
するためにはテレビ画像が有効であり、テレビ画像は、
輪郭強調や色強調により僅かな差を強調でき判定しやす
くなる。これらテレビ画像は、複数の手術者に立体観察
できる状態で提供して手術時に作業しながら確認できる
ことが望ましい。しかもテレビ撮影位置が、作業の邪魔
にならないように配置され小型であることが望ましい。
[0017] In addition, effective information for surgery can be obtained from invisible light or weak light. For example, when observed with infrared rays, the skin becomes transparent and the position of blood vessels becomes clear. May fluoresce. Television images are effective for observing these,
A slight difference can be emphasized by contour emphasis and color emphasis, which facilitates determination. It is desirable that these television images be provided to a plurality of operators in a state where they can be stereoscopically viewed, and can be checked while working during surgery. Moreover, it is desirable that the television shooting position is arranged so as not to disturb the work and is small.

【0018】[0018]

【発明が解決しようとする課題】本発明の第1の目的
は、多数の観察者により観察を行なう実体顕微鏡で、ア
イポイントが手術面に近い位置にくるようにした実体顕
微鏡を提供することにある。
SUMMARY OF THE INVENTION It is a first object of the present invention to provide a stereomicroscope which is observed by a large number of observers, wherein the eyepoint is located at a position close to an operation surface. is there.

【0019】本発明の第2の目的は、観察者の観察方向
に合わせた立体撮像ができる実体顕微鏡を提供すること
にある。
A second object of the present invention is to provide a stereo microscope capable of performing stereoscopic imaging in accordance with an observation direction of an observer.

【0020】本発明の第3の目的は、多数の観察者によ
る観察および立体撮像を可能にし、小型な撮像装置とし
た実体顕微鏡を提供することにある。
A third object of the present invention is to provide a stereomicroscope which enables observation and stereoscopic imaging by a large number of observers, and is a small-sized imaging device.

【0021】[0021]

【課題を解決するための手段】本発明の実体顕微鏡は、
対物レンズ系と、変倍光学系と、鏡筒光学系とよりな
り、前記対物レンズ系と変倍光学系との光軸が一致しか
つ少なくとも一つの結像点を有し、前記鏡筒光学系は、
左右一対の開口絞りと結像レンズと接眼レンズとよりな
り、前記左右の開口絞りにより夫々決定される左右観察
光軸が変倍光学系の光軸と異なるところを通り、変倍光
学系からの光束を透過と反射とに分ける光分割面を有す
る反射部材を有し、前記反射部材のうちの一つの反射部
の光分割面もしくは光分割面を延長した面と他の反射部
材の光分割面もしくは光分割面を延長した面とが交差す
る面が前記変倍光学系からの光束の内側にあることを特
徴とする。
A stereo microscope according to the present invention comprises:
An objective lens system, a variable power optical system, and a lens barrel optical system, wherein the objective lens system and the variable power optical system have the same optical axis and at least one image forming point; The system is
It consists of a pair of left and right aperture stops, an imaging lens and an eyepiece, and the left and right observation optical axes determined respectively by the left and right aperture stops pass through a place different from the optical axis of the variable power optical system, from the variable power optical system. A reflecting member having a light dividing surface for dividing a light beam into transmission and reflection; a light dividing surface of one of the reflecting members or a surface obtained by extending the light dividing surface and a light dividing surface of another reflecting member; Alternatively, a plane intersecting a plane obtained by extending the light dividing plane is inside the light beam from the variable power optical system.

【0022】即ち、本発明は例えば図10に示すような
対物レンズ系と変倍光学系と更に鏡筒光学系とよりな
り、対物光学系と変倍光学系の光軸が一致しており、か
つ少なくとも一つの結像点を有し、鏡筒光学系が左右一
対の開口絞りと結像レンズと接眼レンズとよりなるもの
で、多数の観察者により同時に観察することを可能とし
たものである。
That is, the present invention comprises, for example, an objective lens system, a variable power optical system, and a lens barrel optical system as shown in FIG. 10, and the optical axes of the objective optical system and the variable power optical system coincide with each other. In addition, it has at least one imaging point, and the lens barrel optical system is composed of a pair of left and right aperture stops, an imaging lens, and an eyepiece, which enables simultaneous observation by a large number of observers. .

【0023】そのために、本発明の実体顕微鏡は、例え
ば前記図10に示す対物レンズ2とそれと同軸に設置さ
れたアフォーカル変倍系7と、1回結像アフォーカルリ
レー系10〜14からなる構成のものの、前記アフォー
カルリレー系射出後の光束を例えば図1、2に示すよう
な3分割プリズム22を用いて中央から2分して左方向
透過・反射、右方向透過・反射に3分割したものであ
る。そして左方向に反射する面と右方向に反射する面と
の交線が1回結像のアフォーカルリレー系の射出光軸と
交わるようにしたことを特徴としている。これによって
分割プリズムを小型化でき分割プリズムを透過する側で
ある主観察者のアイポイントが物体から離れないように
することができ、又全体の像の明るさの減少を少なくし
得る。また、分割プリズムによる分割を増やして更に多
くの観察者による観察を可能にした場合も、各分割面の
境界がリレー系の第2レンズ(図2におけるレンズ1
4)より射出する光束内に例えば図1の幅Dの光束内に
位置するようにすれば、同様の効果が得られる。
For this purpose, the stereo microscope of the present invention comprises, for example, the objective lens 2 shown in FIG. 10, an afocal variable power system 7 coaxially mounted with the objective lens 2, and a single-image afocal relay system 10-14. Although the light beam is emitted from the afocal relay system, the light beam is split into two parts from the center using a three-segment prism 22 as shown in FIGS. It was done. Then, an intersection line between the surface reflecting in the left direction and the surface reflecting in the right direction intersects with the exit optical axis of the afocal relay system for one-time image formation. As a result, the size of the split prism can be reduced, so that the eye point of the main observer, which is the transmission side of the split prism, is not separated from the object, and a decrease in the brightness of the entire image can be reduced. Also, in the case where the number of divisions by the division prism is increased to enable observation by a larger number of observers, the boundary of each division surface is the second lens of the relay system (the lens 1 in FIG. 2).
4) The same effect can be obtained by locating, for example, a light beam having a width D in FIG.

【0024】又、本発明の実体顕微鏡の他の構成は、前
述の通り対物レンズ、変倍光学系、鏡筒光学系等よりな
るもので、更に立体撮像系を設け、この立体撮像系によ
る立体画像が鏡筒光学系による観察像に対応するように
したことを特徴としている。
Another configuration of the stereomicroscope according to the present invention comprises an objective lens, a variable power optical system, a lens barrel optical system, etc., as described above. It is characterized in that the image corresponds to the observation image by the lens barrel optical system.

【0025】そのため、鏡筒光学系を複数設け、その観
察光学系にそれぞれに対応した立体撮像を行なうように
し撮像された立体像を観察し得るようにした。つまり、
立体テレビ光学系の前に反射回数と瞳の位置とを合わせ
る反射部材を設けた構成とし、これを副観察側の左右の
いずれかの鏡筒の代りに設置して使用する。この場合、
立体テレビ光学系を設置した鏡筒と他の鏡筒とが観察位
置が変らないように連動させることが好ましい。又テレ
ビ撮影系を図10に示す光分割部材8の透過側に配置し
て、これと主観察側鏡筒とが連動して動くようにしても
よい。このようにして、主観察側、副観察側のいずれ
も、テレビ像と観察像とを切り替えても観察位置に差が
ないようにすることができる。
For this reason, a plurality of lens barrel optical systems are provided, and a stereoscopic image corresponding to each of the observation optical systems is provided so that the captured stereoscopic image can be observed. That is,
A reflecting member for adjusting the number of reflections and the position of the pupil is provided in front of the three-dimensional television optical system, and this member is used instead of one of the left and right lens barrels on the sub-observation side. in this case,
It is preferable that the lens barrel on which the stereoscopic television optical system is installed and the other lens barrel be linked so that the observation position does not change. Further, a television photographing system may be arranged on the transmission side of the light splitting member 8 shown in FIG. 10, and this and the main observation side lens barrel may move in conjunction with each other. In this way, it is possible to ensure that there is no difference in the observation position between the television image and the observation image on both the main observation side and the sub observation side.

【0026】このように構成することにより、肉眼では
見えない光で形成された像や、暗くて確認しにくい像
や、画像処理により強調した像等を観察像と切り替え観
察し又は重ねることによって、作業上違和感なく間違え
が少なく効率的な作業が可能である。
With this configuration, an image formed by light invisible to the naked eye, an image that is dark and difficult to confirm, an image enhanced by image processing, and the like are switched with an observation image, and are observed or superimposed. Efficient work is possible with few mistakes without feeling uncomfortable in the work.

【0027】次に本発明の実体顕微鏡の他の構成で、前
述の通りの実体顕微鏡に第1の光路と第2の光路からな
る一対の光路を有する立体撮像装置を備えており、この
立体撮像装置は、光束を1回結像する結像光学系を有
し、立体撮像装置の開口絞りが鏡筒光学系の開口絞りと
ほぼ一致するようにしたことを特徴としている。
Next, in another configuration of the stereo microscope according to the present invention, the stereo microscope described above is provided with a stereoscopic imaging device having a pair of optical paths including a first optical path and a second optical path. The apparatus has an image forming optical system for forming an image of a light beam once, and the aperture stop of the stereoscopic image pickup device is made to substantially coincide with the aperture stop of the lens barrel optical system.

【0028】即ち、例えば図10に示す構成の光学系に
おける光分割部材8の透過側又は、例えば図1に示す左
右の副観察側鏡筒21のうちの一方にテレビ撮影系を取
り付けるようにしたもので、観察側の瞳と撮影系の開口
絞りとを一致させるようにする必要がある。そのため、
本発明では撮影系内部にて1回結像させて開口絞りを設
けその物体側に開口絞りの共役位置を設けるようにし
た。その際に左右の光路長とを合わせるために図5に示
す通りの構成にした。つまり光路長を調整するため両光
路の光軸が平行になる部分を設け、この光軸が平行な区
間に設けられた反射部材を移動させることにより光路長
を調整し、この移動量の2倍に光路長が延びるようにし
て大きな変更なしに光路長を調整し得るようにした。こ
の部分は、図5に示す構成では、左目用光路の反射部材
37Lの入射光軸から反射部材38Lの射出光軸までで
あり、又右目用光路の反射部材36Rの入射光軸から反
射部材37Rの射出光軸までの部分である。これにより
小型のまま調整が可能になる。更にこの構成を左右の光
学系の両方に採用すれば、平行の光軸により決まる平面
が直交するため小さい容積での配置が可能になる。
That is, for example, the television photographing system is mounted on the transmission side of the light splitting member 8 in the optical system having the configuration shown in FIG. 10, or on one of the left and right sub-observation side barrels 21 shown in FIG. It is necessary to match the pupil on the observation side with the aperture stop of the imaging system. for that reason,
In the present invention, an image is formed once in the photographing system to provide an aperture stop, and a conjugate position of the aperture stop is provided on the object side. At this time, in order to match the left and right optical path lengths, the configuration is as shown in FIG. That is, in order to adjust the optical path length, a portion where the optical axes of both optical paths are parallel to each other is provided, and the optical path length is adjusted by moving a reflecting member provided in a section where the optical axes are parallel to each other. Thus, the optical path length can be adjusted without major changes by extending the optical path length. In the configuration shown in FIG. 5, this portion extends from the incident optical axis of the reflecting member 37L in the left-eye optical path to the emission optical axis of the reflecting member 38L, and from the incident optical axis of the reflecting member 36R in the right-eye optical path to the reflecting member 37R. Up to the emission optical axis. This allows adjustment while keeping the size small. Further, if this configuration is adopted for both the left and right optical systems, the planes determined by the parallel optical axes are orthogonal to each other, so that the arrangement with a small volume becomes possible.

【0029】[0029]

【発明の実施の形態】次に本発明の実体顕微鏡の第1の
実施の形態について述べる。
Next, a first embodiment of the stereomicroscope according to the present invention will be described.

【0030】本発明の第1の実施の形態は、変倍光学系
を射出する光束を分割して複数の観察者による観察を可
能にするもので、例えば図10に示す光学系(対物レン
ズや変倍光学系等を含む光学系)のリレー系の第2レン
ズ14より射出する光束を光分割部材によって複数に分
割して多くの観察者により観察することを可能にする構
成のものである。
The first embodiment of the present invention divides a light beam emitted from a variable power optical system and enables observation by a plurality of observers. For example, the optical system shown in FIG. The light beam emitted from the second lens 14 of the relay system of the optical system (including a variable power optical system, etc.) is split into a plurality of light beams by a light splitting member and can be observed by many observers.

【0031】図1,図2は、本発明の実体顕微鏡の第1
の実施の形態で変倍光学系を射出する光を主観察側と二
つの副観察側とに分割する分割系を示し、これら図1、
2は一例として光束を3分割する分割系である。
FIGS. 1 and 2 show a first embodiment of a stereo microscope according to the present invention.
FIGS. 1 and 2 show a splitting system for splitting light emitted from a variable power optical system into a main observation side and two sub-observation sides according to the embodiment.
Reference numeral 2 denotes a division system for dividing a light beam into three as an example.

【0032】図1は副観察側を示し、14はリレー系の
第2レンズ、22L,22Rは夫々第2レンズ14より
の光束を分割するための光分割部材(光分割プリズム)
で、この分割部材により透過側つまり主観察側(図2)
と左右の反射により二つの副観察側の3方向に分割す
る。この光分割プリズム22L,22Rの反射面の交わ
る線(交線)とリレー系第2レンズ14の射出光軸とが
交わるように構成されている。これにより、左右の副観
察側に均等に光を分割することが可能になる。この光分
割プリズム22を透過する主観察側への光束は、図2に
示すように主観察側ダハプリズム23へ入射し、このダ
ハプリズム23により180°回転させる鏡筒が取付け
られる。鏡筒は結像レンズと正立光学系と眼幅調整機構
を有し、傾斜角が可変である。この状態で立体観察調整
絞りとアフォーカルズーム系の最高倍率のときの共役の
位置に開口絞り25が配置されており、最高倍率の時に
立体感が大きくなるのを抑えるようにしている。
FIG. 1 shows a sub-observation side, 14 is a second lens of a relay system, and 22L and 22R are light splitting members (light splitting prisms) for splitting a light beam from the second lens 14, respectively.
Then, the transmission side, that is, the main observation side (FIG. 2)
Then, the light is divided into three directions on two sub-observation sides by reflection on the left and right. The line (intersecting line) where the reflection surfaces of the light splitting prisms 22L and 22R intersect with the exit optical axis of the relay second lens 14 intersects. This makes it possible to divide light evenly between the left and right sub-observation sides. The light beam on the main observation side that passes through the light splitting prism 22 enters a main observation side roof prism 23 as shown in FIG. 2, and a lens barrel that is rotated by 180 ° by the roof prism 23 is attached. The lens barrel has an imaging lens, an erecting optical system, and an interpupillary distance adjusting mechanism, and the tilt angle is variable. In this state, the aperture stop 25 is disposed at a position conjugate with the stereoscopic observation adjustment stop and the highest magnification of the afocal zoom system, so that the stereoscopic effect is prevented from increasing at the highest magnification.

【0033】光分割プリズム22L,22Rで反射した
左右の副観察側は、リレー系の第2レンズ14の射出光
軸を含む面に対して対称に配置されている。
The left and right sub-observation sides reflected by the light splitting prisms 22L and 22R are disposed symmetrically with respect to a plane including the emission optical axis of the second lens 14 of the relay system.

【0034】次に、この第1の実施の形態の副観察側に
ついて更に詳細に述べる。右副観察側では、リレー系の
第2レンズ14より光分割部材22Rへ入射した光束
が、その内部のハーフミラー面にて反射された後にさら
に1回内部にて反射され光分割部材22Rの入射光軸に
対して45°傾いた方向に射出される。この光分割部材
22Rを射出した光束は、副観察側ダハプリズム28に
入射し、内部で反射面とダハ面により計3回反射された
後光分割部材22Rの入射光軸に対して垂直な方向につ
まり水平面の方向に射出される。続いて楔プリズム30
が配置されこれにより像心の移動を少なくしている。つ
まりこの楔プリズム30によりイメージローテータプリ
ズム29の加工精度不足を補い、イメージローテータプ
リズムを安価になし得る。この楔プリズム30の射出側
には副観察側鏡筒21が設けられている。
Next, the sub-observation side of the first embodiment will be described in more detail. On the right sub-observation side, the light beam incident on the light splitting member 22R from the second lens 14 of the relay system is reflected by the internal half mirror surface and then reflected once more internally and is incident on the light splitting member 22R. The light is emitted in a direction inclined by 45 ° with respect to the optical axis. The light beam emitted from the light splitting member 22R is incident on the sub-observation side roof prism 28, is internally reflected three times by the reflection surface and the roof surface, and is reflected in a direction perpendicular to the incident optical axis of the light splitting member 22R. That is, the light is emitted in the direction of the horizontal plane. Next, the wedge prism 30
Are arranged, thereby reducing the movement of the image center. That is, the wedge prism 30 compensates for the lack of processing accuracy of the image rotator prism 29, and the image rotator prism can be manufactured at low cost. A sub-observation side lens barrel 21 is provided on the exit side of the wedge prism 30.

【0035】この副観察側鏡筒21は、主観察側鏡筒と
異なり開口絞りを有していないが、それ以外は主観察側
鏡筒と同じである。開口絞りは、例えば図10に示す立
体感調整絞り3のアフォーカルズーム系7が最高倍率の
時の共役位置に設けられ、この実施の形態の光学系では
楔プリズム30と副観察側鏡筒21との間に位置してい
る。尚、左副観察側は、右副観察側と対称であって、そ
の作用は同じである。
The auxiliary observation side lens barrel 21 does not have an aperture stop unlike the main observation side lens barrel, but is otherwise the same as the main observation side lens barrel. The aperture stop is provided, for example, at a conjugate position when the afocal zoom system 7 of the stereoscopic effect adjustment stop 3 shown in FIG. 10 has the highest magnification. In the optical system of this embodiment, the wedge prism 30 and the auxiliary observation side lens barrel 21 are provided. And is located between. The left sub-observation side is symmetrical with the right sub-observation side, and the operation is the same.

【0036】又、開口絞りと鏡筒の像面とにより決まる
光軸(観察光軸)は、光分割部材22Rの主観察側光軸
よりに設定されており、図9に示す通りである。図9は
リレー系の第2レンズ14側から光分割プリズム22
L,22Rを見た図であり、主観察側の左目用開口部5
4L、右目用開口部54R、左副観察側の左右の目用の
開口部55L,55R、左右観察側の目用の開口部56
L,56Rを示している。又、リレー系の第2レンズ1
4の射出光束57は、倍率があがるにつれて立体感調整
絞りにより狭められて最高の倍率では、射出光束58に
なる。このように配置することにより、光分割部材22
L,22Rにより光束が狭められ、視野周辺の減光や像
のけられを少なくすることができる。
The optical axis (observation optical axis) determined by the aperture stop and the image plane of the lens barrel is set to be closer to the main observation side optical axis of the light splitting member 22R, as shown in FIG. FIG. 9 shows the light splitting prism 22 from the second lens 14 side of the relay system.
L, 22R, the left eye opening 5 on the main observation side.
4L, opening 54R for the right eye, openings 55L and 55R for the left and right eyes on the left sub-observation side, opening 56 for the eyes on the left and right observation side
L, 56R are shown. Also, the second lens 1 of the relay system
The outgoing light beam 57 of No. 4 is narrowed by the stereoscopic effect adjusting aperture as the magnification increases, and becomes the outgoing light beam 58 at the highest magnification. By arranging in this manner, the light splitting member 22
The light flux is narrowed by L and 22R, so that dimming around the visual field and image blurring can be reduced.

【0037】ここで図9に示すように鏡筒の光軸間隔を
Aとし、左右の副観察側の左右観察光軸を含む面の距離
をBとするとき、下記条件を満足すれば視野周辺の減光
が少ない。
Here, as shown in FIG. 9, when the distance between the optical axes of the lens barrel is A, and the distance between the surfaces including the left and right observation optical axes on the left and right sub-observation sides is B, if the following conditions are satisfied, the periphery of the field of view is satisfied. Less dimming.

【0038】0.6≦B/A≦0.8 視野周辺に多少視野周辺の減光が生じた場合でも、結像
レンズの焦点距離を長くしたり、又は接眼レンズの倍率
を上げる等して鏡筒光学系の倍率を上げることにより視
野を狭くすれば視野周辺の減光をなくすことができる。
0.6 ≦ B / A ≦ 0.8 Even if there is some dimming around the field of view, the focal length of the imaging lens is increased or the magnification of the eyepiece is increased. If the field of view is narrowed by increasing the magnification of the lens barrel optical system, dimming around the field of view can be eliminated.

【0039】また、副観察側の光学系は、イメージロー
テータプリズム29と楔プリズム30とを一体にして左
目用と右目用の二つの観察光軸の中間の軸を回転軸にし
て回転できるようになっていて、つまり図1の60に示
すように回転し得るようになっていて、第1の回転部を
構成している。また開口絞りを含む副観察側鏡筒21も
左右の観察光軸の中心を回転軸として符号60に示すよ
うに回転できるようにして、第2の回転部を構成してい
る。
Further, the optical system on the sub-observation side is constructed such that the image rotator prism 29 and the wedge prism 30 are integrated so that the optical system can be rotated with the rotation axis between the two observation optical axes for the left and right eyes. In other words, it can rotate as shown by 60 in FIG. 1 and constitutes a first rotating unit. The sub-observation-side lens barrel 21 including the aperture stop is also configured to be rotatable about the center of the left and right observation optical axes as a rotation axis as indicated by reference numeral 60, thereby forming a second rotating unit.

【0040】前記の第1の回転部の回転角α1と第2回
転部の回転角α2とを下記の関係で回転させれば像の回
転なしに鏡筒を回転させることができる。
If the rotation angle α1 of the first rotation unit and the rotation angle α2 of the second rotation unit are rotated in the following relationship, the lens barrel can be rotated without rotating the image.

【0041】α1:α2=1:2 これは、主観察側の観察者が鏡体を前後に傾けた場合の
副観察者の像補正として有効である。
Α1: α2 = 1: 2 This is effective as an image correction for the sub-observer when the observer on the main observation side tilts the mirror forward and backward.

【0042】また、光分割部材22Rと副観察側ダハプ
リズム28の間の左右の観察光軸の中間を回転軸に副観
察側ダハプリズム28から副鏡筒21までを、図1の6
7で示すように回転させることにより、観察方向を多少
変えることができる。この場合、反射面の境界は、リレ
ー系の第2レンズ14の射出光軸上にならないが、射出
光束内の反射面にはこの反射面の境界が含まれる。同様
に、光分割部材22Rの入射側の左右観察光軸の中間の
軸を回転軸に光分割部材22Rから副観察用鏡筒21ま
でを一体にして多少回転させることにより観察方向を少
し変えることができる。
Further, the rotation from the sub-observation side roof prism 28 to the sub-barrel 21 around the middle of the left and right observation optical axes between the light splitting member 22R and the sub-observation side roof prism 28 is shown in FIG.
By rotating as shown by 7, the observation direction can be changed slightly. In this case, the boundary of the reflection surface is not on the emission optical axis of the second lens 14 of the relay system, but the reflection surface in the emission light beam includes the boundary of this reflection surface. Similarly, the observation direction is slightly changed by rotating the light splitting member 22R and the sub-observation lens barrel 21 to some extent with the rotation axis about the middle axis between the left and right observation optical axes on the incident side of the light splitting member 22R. Can be.

【0043】また、左右の副観察側を一体にして、リレ
ー系の第2レンズ14の射出光軸を回転軸として図1の
68に示すように回転させることにより3人の観察位置
を変えることができる。このとき、主観察側は副観察側
の動きに連動して動かない方が好ましい。
Further, the left and right sub-observation sides are integrated, and the three observation positions are changed by rotating the output optical axis of the second lens 14 of the relay system as a rotation axis as shown at 68 in FIG. Can be. At this time, it is preferable that the main observation side does not move in conjunction with the movement of the sub observation side.

【0044】次に、本発明の実体顕微鏡の第1の実施の
形態における主観察側について、その一例としての3人
観察部(3分割)のものについて述べる。
Next, the main observation side of the stereomicroscope according to the first embodiment of the present invention will be described as an example of a three-person observation unit (three divisions).

【0045】この第1の実施の形態の主観察部は、図2
に示す通りの構成であって、図10に示すハーフミラー
1の光軸に垂直な方向(以後シフト方向と呼ぶ)にハー
フミラー1への入射光軸の延長上から接眼レンズのアイ
ポイントが離れないようにした例である。つまりハーフ
ミラー1への入射光軸から観察者の目が離れないように
した例である。接眼レンズのアイポイントは、前記入射
光軸より離れてもよいがハーフミラー2の入射光軸方向
は観察者の目に近い方が観察しながらの物体への各種作
業を行なうためには好ましいとの観察者の要望が強いこ
とによる。この第1の実施例は、この要望に沿った構成
にしたものである。即ち、主観察側のダハプリズム23
は、図1に示す副観察側のダハプリズムと同じである
が、主観察側ではこのダハプリズム23より射出する光
束を2回反射の反射プリズム24を通してシフト方向に
反射するようにしている。この反射プリズム24を射出
後に開口絞り25を設置してある。これは、立体感調整
絞りのアフォーカルズーム系の最高倍率でリレーする位
置に設置してある。この開口絞り25の像側には内部に
開口絞りがない主観察側鏡筒21が取付けられている。
The main observation section of the first embodiment is shown in FIG.
And the eye point of the eyepiece is separated from the extension of the optical axis incident on the half mirror 1 in a direction perpendicular to the optical axis of the half mirror 1 (hereinafter referred to as a shift direction) shown in FIG. This is an example in which there is not. That is, this is an example in which the observer's eyes are not separated from the optical axis of the light incident on the half mirror 1. The eye point of the eyepiece may be away from the incident optical axis, but the direction of the incident optical axis of the half mirror 2 is preferably closer to the observer's eyes in order to perform various operations on the object while observing. This is due to the strong demands of observers. The first embodiment is configured to meet this demand. That is, the roof prism 23 on the main observation side
Is the same as the roof prism on the sub-observation side shown in FIG. 1, but on the main observation side, the light beam emitted from the roof prism 23 is reflected in the shift direction through the reflection prism 24 which reflects twice. After exiting the reflection prism 24, an aperture stop 25 is provided. This is installed at the position where relaying is performed at the highest magnification of the afocal zoom system of the stereoscopic adjustment aperture. On the image side of the aperture stop 25, a main observation side lens barrel 21 having no aperture stop inside is mounted.

【0046】この主観察側の第1の実施の形態は、以上
のような構成にすることによってアイポイントが入射光
軸方向に近づき、シフト方向に離れた位置になる。
In the first embodiment on the main observation side, the eye point approaches the direction of the incident optical axis and moves away in the shift direction by adopting the above configuration.

【0047】又、左右の開口絞り25の中間の軸を回転
軸にして主観察側鏡筒21を図2に符号62にて示すよ
うに回転させることにより主観察者が任意の向きでの観
察が可能になり楽な姿勢での観察が可能である。
Further, by rotating the main observation side lens barrel 21 as indicated by reference numeral 62 in FIG. 2 with the middle axis of the left and right aperture stops 25 as the rotation axis, the main observer can observe in any direction. And observation in an easy posture is possible.

【0048】又、前述の第1の実施の形態の副観察側に
おける左右の副観察用の光束は、光分割部材(22L,
22R,)で別の面を通るので、心や同焦において差が
生じ、これを補正するためには、主観察側の反射部材2
4と鏡筒21の間にアフォーカル変倍レンズを挿入し、
この変倍レンズにより心および同焦の調整をすればよ
い。尚、後に示す第2の実施の形態においても同様であ
る。
The left and right sub-observation light beams on the sub-observation side in the first embodiment are separated by the light splitting members (22L, 22L).
22R,), there is a difference in the center and the in-focus state. To correct this, the reflection member 2 on the main observation side must be used.
Insert an afocal variable power lens between 4 and the lens barrel 21,
What is necessary is just to adjust the center and the focus with this zoom lens. The same applies to the second embodiment described later.

【0049】図3、図4は本発明の第2の実施の形態の
主観察側および副観察側の構成を示す図である。
FIGS. 3 and 4 are views showing the structure of the main observation side and the sub observation side according to the second embodiment of the present invention.

【0050】図3は、第2の実施の形態における3人観
察用を例として主観察側の光学系を示した図である。こ
の光学系は、図4に示す光分割部材31により分割され
反射された後の出射光束を2回反射のための反射面を互
いに平行に配置したものである。つまり光束出射後に二
つの反射部材(反射プリズム)26および27を配置
し、これら反射プリズムをその反射面が互いに平行にな
るように配置した。これによって、ダハプリズム23を
出射した光の光軸と平行のままアイポイント位置の調整
が可能になる。又、2回反射のプリズムを二つのプリズ
ム26,27にて構成することにより立体感調整絞りと
ほぼ共役の位置である両プリズムの間に開口絞り25を
設置し得るようにした。又開口絞り25を通過後プリズ
ム27にて反射してダハプルズム23の出射方向と平行
な方向に出射した光束の位置に主観察側鏡筒21を配置
し、この鏡筒に、第1の実施の形態と同様にアフォーカ
ル変倍レンズを設けることにより、心や同焦の調整を可
能にした。又、反射プリズム27と鏡筒とを反射プリズ
ム26の出射方向に許容範囲内で移動させることが可能
であるが、許容範囲を超えると像のけられが生ずるため
好ましくない。又開口絞り25も許容範囲内での移動が
可能であるが、許容範囲を超えると像面での左右の明る
さの差が大になる。このような鏡筒等の移動により、観
察者はアイポイントの入射光軸方向とシフト方向の位置
を自由に選ぶことができ、適切なアイポイントが得られ
る。この場合、連続な調整ではなく、反射プリズム26
と27の間に間隔を離すための特定のユニットを挿入す
ることにより調整を行なってもよい。この手段によれ
ば、突出部を有する鏡筒の干渉を防止し得る。
FIG. 3 is a diagram showing an optical system on the main observation side as an example for three-person observation in the second embodiment. In this optical system, the reflecting surfaces for reflecting the emitted light beam split and reflected by the light splitting member 31 shown in FIG. 4 twice are arranged in parallel to each other. In other words, two reflecting members (reflecting prisms) 26 and 27 are arranged after the light beam is emitted, and these reflecting prisms are arranged so that their reflecting surfaces are parallel to each other. As a result, the eye point position can be adjusted while being parallel to the optical axis of the light emitted from the roof prism 23. Further, the two-reflection prism is constituted by the two prisms 26 and 27, so that the aperture stop 25 can be provided between the two-prisms, which are substantially conjugate with the three-dimensional adjustment stop. After passing through the aperture stop 25, the main observation side lens barrel 21 is arranged at the position of the light beam reflected by the prism 27 and emitted in a direction parallel to the emission direction of the Dachpurism 23. By providing an afocal variable power lens in the same manner as in the embodiment, it is possible to adjust the center and the focus. Further, it is possible to move the reflecting prism 27 and the lens barrel in the emission direction of the reflecting prism 26 within an allowable range, but if the allowable range is exceeded, image blurring occurs, which is not preferable. Also, the aperture stop 25 can be moved within an allowable range, but if it exceeds the allowable range, the difference between left and right brightness on the image plane becomes large. By moving the lens barrel and the like, the observer can freely select the position of the eye point in the incident optical axis direction and the shift direction, and an appropriate eye point can be obtained. In this case, instead of continuous adjustment, the reflecting prism 26
The adjustment may be made by inserting a specific unit to separate the gaps between. According to this means, interference of the lens barrel having the protruding portion can be prevented.

【0051】図4は、本発明の実体顕微鏡の第2の実施
の形態における3分割式を例とした分割部(副観察側)
の光学系を示す図である。この実施の形態は、左右の副
観察側のアイポイントが低くなるようにした例で、その
ため光分割部材31より出射する光束の角度が水平に対
して30°になるようにし、又反射プリズム32と副観
察側の2回反射ダハプリズム33により、このダハプリ
ズム33より出射する光束が水平方向になるようにして
ある。又この実施の形態では、ダハプリズム33の出射
後に第1の実施の形態と同様にイメージローテータプリ
ズム29と楔プリズム30を、更に鏡筒21を配置した
構成になっている。
FIG. 4 is a sectional view (sub-observation side) of a stereoscopic microscope according to a second embodiment of the present invention, taking a three-division formula as an example.
FIG. 3 is a diagram showing an optical system of FIG. This embodiment is an example in which the eye points on the left and right sub-observation sides are lowered. Therefore, the angle of the light beam emitted from the light splitting member 31 is set to 30 ° with respect to the horizontal. The double-reflection roof prism 33 on the sub-observation side causes the light beam emitted from the roof prism 33 to be in the horizontal direction. In this embodiment, the image rotator prism 29 and the wedge prism 30 and the lens barrel 21 are further arranged after the roof prism 33 exits, similarly to the first embodiment.

【0052】以上のように、この第2の実施の形態の副
観察側は、光分割の射出角を小さくしたことにより副観
察側のアイポイントが低くなっている。又、分割プリズ
ム31の左右のハーフミラー面の交線は、リレー系第2
レンズ14の射出光軸の延長上にくるようにしてある。
この光軸を回転軸にして副観察側だけを図4の68に示
すように回転させることが出来る。この場合、反射面の
境界は、リレー系の第2レンズ14の射出光軸上になら
ないが射出光束内の反射面内にはこの反射面の境界が含
まれる。
As described above, on the sub-observation side of the second embodiment, the eye point on the sub-observation side is lowered due to the reduced exit angle of the light division. The line of intersection between the left and right half mirror surfaces of the split prism 31 is the second relay system.
It is designed to be on the extension of the emission optical axis of the lens 14.
With this optical axis as a rotation axis, only the sub-observation side can be rotated as shown by 68 in FIG. In this case, the boundary of the reflection surface does not fall on the emission optical axis of the second lens 14 of the relay system, but the reflection surface in the emission light beam includes the boundary of this reflection surface.

【0053】以上述べた第1、第2の実施の形態を示す
図1乃至図4は、いずれも一つの光軸しか図示していな
いが、いずれも左目用および右目用の光学系よりなり、
したがって左右二つの光路(光軸)を有する光学系であ
る。なお、図1や図4に示した副観察側の光学系と図2
及び図3に示した主観察側の光学系は、それぞれ自由に
組み合わせて使用することができる。また、図4の副観
察側の光学系は、回転軸69で左右に分離した構成にす
ることも可能で、この場合、副観察側の光学系の一つを
図1の副観察側の光学系に置き換えて使用することもで
きる。このように2つの光学系に分けた場合、図1と同
様に、個々の副観察側の光学系を独立して回転させるこ
とも可能になる。なお、図1においても、副観察側の光
学系の一つを図4の副観察側の光学系に置き換えること
もできる。
FIGS. 1 to 4 showing the above-described first and second embodiments each show only one optical axis, but each comprises an optical system for the left eye and the right eye.
Therefore, the optical system has two optical paths (optical axes) on the left and right. The optical system on the sub-observation side shown in FIGS.
The optical systems on the main observation side shown in FIG. 3 can be used in any combination. Further, the optical system on the sub-observation side in FIG. 4 can also be configured to be separated left and right by the rotation axis 69. In this case, one of the optical systems on the sub-observation side is replaced with the optical system on the sub-observation side in FIG. It can also be used in place of the system. When divided into two optical systems in this way, it is also possible to independently rotate the respective optical systems on the sub-observation side, as in FIG. In FIG. 1, one of the optical systems on the sub-observation side can be replaced with the optical system on the sub-observation side in FIG.

【0054】次に本発明の実体顕微鏡において、立体撮
影系を用いての立体画像を得るようにしたもので、この
立体画像が観察像に対応するようにした構成の実施の形
態である第3の実施の形態について述べる。
Next, in the stereomicroscope of the present invention, a three-dimensional image using a three-dimensional photographing system is obtained, and the third embodiment of the configuration in which this three-dimensional image corresponds to an observation image is provided. An embodiment will be described.

【0055】図5は、この本発明の実体顕微鏡の第3の
実施の形態の斜視図である。この図において34L,3
4Rは左右の観察系の結像レンズ、35L,36L,3
7L,38L,40Lおよび35R,36R,37R,
38R,40Rは夫々左右の観察系の反射部材(反射プ
リズム、全反射プリズム、反射ミラー)、39L,41
Lおよび39R,41Rは夫々左右のリレー光学系であ
る。
FIG. 5 is a perspective view of a stereoscopic microscope according to a third embodiment of the present invention. In this figure, 34L, 3
4R is an imaging lens for left and right observation systems, 35L, 36L, 3
7L, 38L, 40L and 35R, 36R, 37R,
Reference numerals 38R and 40R denote left and right reflection members (reflection prism, total reflection prism, reflection mirror) of the observation system, 39L and 41, respectively.
L and 39R, 41R are left and right relay optical systems, respectively.

【0056】図示する光学系において、左目観察用の光
路は、撮影系結像レンズ34Lを透過し、反射部材(反
射プリズム)35Lにより撮影系結像レンズ34Lの光
軸を含む面に垂直な方向に反射し、反射部材(反射プリ
ズム)36Lにより反射部材35Lの入射と射出の左目
用撮影光軸に垂直方向に反射され次に反射部材36Lに
より反射部材35Lの入射と射出の左目用撮影光軸に垂
直方向に反射し、反射部材37Lにより左目結像レンズ
34L通過の左目用撮影光軸に平行な方向に反射され、
反射部材(反射プリズム)38Lの反射面により反射部
材36Lと反射部材37Lの間の左目用撮影光軸に平行
な方向に向けられ、反射部材(反射プリズム)40Lの
反射面により反射部材35Lと反射部材36Lの間の左
目用撮影光軸に平行な方向に光束を向ける。又反射部材
(反射プリズム)42Lは、テレビカメラの位置に合わ
せて取付けた反射部材で、小型のテレビカメラを取り付
ける場合は設ける必要はなく、反射部材40Lの射出光
軸の延長上に取り付けてもよい。又59Rは左目側の撮
像面である。
In the optical system shown in the figure, the optical path for observation of the left eye passes through the imaging lens 34L and is perpendicular to the plane including the optical axis of the imaging lens 34L by the reflecting member (reflection prism) 35L. And is reflected by a reflecting member (reflecting prism) 36L in a direction perpendicular to the left-eye imaging optical axis of the incident and exit of the reflecting member 35L, and then reflected by the reflecting member 36L of the left-eye imaging optical axis of the entering and exiting of the reflecting member 35L. , And is reflected by the reflecting member 37L in a direction parallel to the left-eye imaging optical axis passing through the left-eye imaging lens 34L,
The reflecting surface of the reflecting member (reflecting prism) 38L is directed in a direction parallel to the left-eye imaging optical axis between the reflecting member 36L and the reflecting member 37L, and is reflected by the reflecting surface of the reflecting member (reflecting prism) 40L. The light beam is directed in a direction parallel to the left-eye imaging optical axis between the members 36L. The reflection member (reflection prism) 42L is a reflection member mounted in accordance with the position of the television camera, and does not need to be provided when a small television camera is mounted, and may be provided on an extension of the emission optical axis of the reflection member 40L. Good. Reference numeral 59R denotes an imaging surface on the left eye side.

【0057】一方右目用観察系は、光束が左目用結像レ
ンズ34Rを透過後反射部材35Rの反射面により反射
部材35Lと反射部材36Lの間の左目用撮影光軸と平
行であって入射する左右撮影用光軸を含む面に対し反対
方向に反射する。この面で反射された光束は、反射部材
36Rの反射面により反射部材36Lと反射部材37L
の間の左目用撮影光軸と平行で同じ向きの方向へ反射さ
れる。次に光束は、反射部材37Rの反射面により反射
部材35Rと反射部材36Rに平行で反対方向に向けら
れ、反射部材38Rにより反射部材37Lと反射部材3
8Lと平行で同じ向きに反射され、反射部材40Rによ
り反射部材40Lと反射部材42Lの間の左目用光軸と
平行で同じ向きに反射される。更に光束は、反射部材4
2Rも左目用反射部材42Lと同様にテレビカメラの大
きさによっては省略してもよい。又59Rは右目側の撮
像面である。
On the other hand, in the right-eye observation system, the light flux is transmitted through the left-eye imaging lens 34R, and is incident on the reflection surface of the reflection member 35R in parallel with the left-eye imaging optical axis between the reflection members 35L and 36L. The light is reflected in a direction opposite to a plane including the left and right photographing optical axes. The luminous flux reflected by this surface is reflected by the reflecting member 36L and the reflecting member 37L by the reflecting surface of the reflecting member 36R.
Are reflected in the same direction parallel to the left-eye imaging optical axis. Next, the light beam is directed parallel to and in opposite directions to the reflecting member 35R and the reflecting member 36R by the reflecting surface of the reflecting member 37R, and the reflecting member 37L and the reflecting member 3 are reflected by the reflecting member 38R.
The light is reflected in the same direction parallel to 8L, and is reflected by the reflecting member 40R in the same direction parallel to the optical axis for the left eye between the reflecting members 40L and 42L. Further, the light beam is reflected by the reflecting member 4.
2R may be omitted depending on the size of the television camera, similarly to the left-eye reflection member 42L. Reference numeral 59R denotes an imaging surface on the right eye side.

【0058】以上述べたように左右の撮影光学系によ
り、左右両光学系は、左右のプリズム系の回転による像
の回転は一致する。
As described above, with the left and right photographing optical systems, the rotation of the image by the rotation of the left and right prism systems in the left and right optical systems coincides with each other.

【0059】前記の左右撮影光学系のレンズ系は、立体
感調整絞り3と共役の位置に開口絞りをおく必要があ
る。したがって開口絞りの像が撮影系の外に形成される
ようにする必要がある。そのため撮影系内部にて1回結
像させ、この像を再度結像させるリレーレンズを配置す
る必要がる。そしてこの2回目の結像点にテレビ撮影系
をおき像を撮影するようにすればよい。この第1の結像
点と第2の結像点の間に開口絞りを置いて像を撮影系の
外部に出して立体感調整絞り3と共役の位置にリレーす
るものである。
In the lens system of the left and right photographing optical systems, it is necessary to provide an aperture stop at a position conjugate with the three-dimensional effect adjustment stop 3. Therefore, it is necessary to form an image of the aperture stop outside the imaging system. Therefore, it is necessary to arrange a relay lens that forms an image once inside the photographing system and forms this image again. Then, a television photographing system may be set at the second image forming point to photograph an image. An aperture stop is placed between the first image forming point and the second image forming point, an image is taken out of the photographing system, and relayed to a position conjugate with the three-dimensional effect adjusting stop 3.

【0060】上記リレー系の実施例を示す。An embodiment of the relay system will be described.

【0061】図6、図7は、このリレー系の左目用の光
路の実施例を示すもので、下記データを有する。実施例
1 r1 =52.2595 d1 =3.8000 n1 =1.52249 ν1 =59.84 r2 =-25.8263 d2 =2.2000 n2 =1.61293 ν2 =36.99 r3 =-92.6980 d3 =4.0000 r4 =∞ d4 =20.0000 n3 =1.56883 ν3 =56.36 r5 =∞ d5 =19.0000 n4 =1.56883 ν4 =56.36 r6 =∞ d6 =40.5000 r7 =∞ d7 =13.0000 n5 =1.56883 ν5 =56.36 r8 =∞ d8 =8.5000 r9 =∞ d9 =12.0000 n6 =1.56883 ν6 =56.36 r10=∞ d10=19.0000 r11=∞ d11=11.0000 n7 =1.56883 ν7 =56.36 r12=∞ d12=5.8000 r13=∞(絞り) d13=7.7000 r14=16.7708 d14=3.1404 n8 =1.69680 ν8 =55.53 r15=144.6710 d15=4.3618 r16=79.2665 d16=1.5331 n9 =1.67270 ν9 =32.10 r17=9.0778 d17=3.0000 r18=12.3898 d18=3.9647 n10=1.58913 ν10=61.14 r19=-62.1435 d19=4.0000 r20=∞ d20=21.7300 n11=1.56883 ν11=56.36 r21=∞ d21=31.5000 r22=∞(像)
FIGS. 6 and 7 show an embodiment of an optical path for the left eye of this relay system, and have the following data. Example 1 r 1 = 52.2595 d 1 = 3.8000 n 1 = 1.52249 ν 1 = 59.84 r 2 = -25.8263 d 2 = 2.2000 n 2 = 1.61293 ν 2 = 36.99 r 3 = -92.6980 d 3 = 4.0000 r 4 = ∞d 4 = 20.0000 n 3 = 1.56883 ν 3 = 56.36 r 5 = d d 5 = 19.0000 n 4 = 1.56883 ν 4 = 56.36 r 6 = d d 6 = 40.5000 r 7 = ∞ d 7 = 13.0000 n 5 = 1.56883 ν 5 = 56.36 r 8 = ∞ d 8 = 8.5000 r 9 = ∞ d 9 = 12.0000 n 6 = 1.56883 v 6 = 56.36 r 10 = ∞ d 10 = 19.0000 r 11 = ∞ d 11 = 11.0000 n 7 = 1.56883 v 7 = 56.36 r 12 = ∞ d 12 = 5.8000 r 13 = ∞ ( stop) d 13 = 7.7000 r 14 = 16.7708 d 14 = 3.1404 n 8 = 1.69680 ν 8 = 55.53 r 15 = 144.6710 d 15 = 4.3618 r 16 = 79.2665 d 16 = 1.5331 n 9 = 1.67270 ν 9 = 32.10 r 17 = 9.0778 d 17 = 3.0000 r 18 = 12.3898 d 18 = 3.9647 n 10 = 1.58913 ν 10 = 61.14 r 19 = -62.1435 d 19 = 4.0000 r 20 = ∞ d 20 = 21.7300 n 11 = 1.56 883 ν 11 = 56.36 r 21 = ∞ d 21 = 31.5000 r 22 = ∞ (image)

【0062】 実施例2 r1 =48.7360 d1 =5.0000 n1 =1.48749 ν1 =70.23 r2 =-30.5370 d2 =2.0000 n2 =1.83400 ν2 =37.16 r3 =-57.0210 d3 =4.0000 r4 =∞ d4 =20.0000 n3 =1.56883 ν3 =56.36 r5 =∞ d5 =20.0000 n4 =1.56883 ν4 =56.36 r6 =∞ d6 =30.5000 r7 =∞ d7 =12.0000 n5 =1.56883 ν5 =56.36 r8 =∞ d8 =10.0000 r9 =∞ d9 =12.0000 n6 =1.56883 ν6 =56.36 r10=∞ d10=18.0000 r11=∞ d11=2.5000 n7 =1.51633 ν7 =64.14 r12=-35.4270 d12=3.0000 r13=∞ d13=12.0000 n8 =1.56883 ν8 =56.36 r14=∞ d14=3.0000 r15=∞(絞り) d15=14.9936 r16=14.4950 d16=3.1000 n9 =1.63980 ν9 =34.46 r17=30.3850 d17=4.0121 r18=-25.5920 d18=2.0000 n10=1.72825 ν10=28.46 r19=10.6910 d19=4.5100 r20=31.4850 d20=1.4500 n11=1.80518 ν11=25.42 r21=17.0410 d21=3.3800 n12=1.81600 ν12=46.62 r22=-17.0410 d22=11.2749 r23=∞ d23=21.2450 n13=1.56883 ν13=56.36 r24=∞ d24=33.5830 r25=∞(像) リレー系の実施例1は、図6に示すもので、34Lは結
像レンズ、平面板35L,36L,37L,38L,4
0Lはいずれも図5に示す反射プリズム、41Lはリレ
ーレンズ、43Lは開口絞りである。
Example 2 r 1 = 48.7360 d 1 = 5.0000 n 1 = 1.48749 ν 1 = 70.23 r 2 = -30.5370 d 2 = 2.0000 n 2 = 1.83400 ν 2 = 37.16 r 3 = -57.0210 d 3 = 4.0000 r 4 = ∞d 4 = 20.0000 n 3 = 1.56883 ν 3 = 56.36 r 5 = ∞ d 5 = 20.0000 n 4 = 1.56883 ν 4 = 56.36 r 6 = ∞ d 6 = 30.5000 r 7 = ∞ d 7 = 12.0000 n 5 = 1.56883 ν 5 = 56.36 r 8 = ∞ d 8 = 10.0000 r 9 = ∞ d 9 = 12.0000 n 6 = 1.56883 ν 6 = 56.36 r 10 = ∞ d 10 = 18.0000 r 11 = ∞ d 11 = 2.5000 n 7 = 1.51633 ν 7 = 64.14 r 12 = -35.4270 d 12 = 3.0000 r 13 = ∞ d 13 = 12.0000 n 8 = 1.56883 ν 8 = 56.36 r 14 = ∞ d 14 = 3.0000 r 15 = ∞ (aperture) d 15 = 14.9936 r 16 = 14.4950 d 16 = 3.1000 n 9 = 1.63980 v 9 = 34.46 r 17 = 30.3850 d 17 = 4.0121 r 18 = -25.5920 d 18 = 2.0000 n 10 = 1.72825 v 10 = 28.46 r 19 = 10.691 d 19 = 4.5100 r 20 = 31.4850 d 20 = 1.4500 n 11 = 1.80518 ν 11 = 25.42 r 21 = 17.0410 d 21 = 3.3800 n 12 = 1.81600 ν 12 = 46.62 r 22 = -17.0410 d 22 = 11.2749 r 23 = ∞ d 23 = 21.2450 n 13 = 1.56883 ν 13 = 56.36 r 24 = ∞ d 24 = 33.5830 r 25 = ∞ (image) Embodiment 1 of the relay system is shown in FIG. 6, where 34L is an imaging lens, and plane plates 35L, 36L, 37L, 38L, 4
0L is a reflection prism shown in FIG. 5, 41L is a relay lens, and 43L is an aperture stop.

【0063】この実施例1は、結像レンズ34Lにより
アフォーカル系7を射出したアフォーカル光束を反射部
材35L,36Lを通った後に反射部材37Lの内部に
結像する。結像後、反射部材38L、40Lを透過後、
立体感調整絞り3と共役の位置に開口絞り43Lを設
け、その後方に反射部材37L内に形成された像を再結
像するためのリレーレンズ41Lを配置し、このリレー
レンズ41Lにより反射部材42Lを透過して撮像面5
9Lに結像させるように構成されている。
In the first embodiment, the afocal light beam emitted from the afocal system 7 by the imaging lens 34L passes through the reflecting members 35L and 36L, and then forms an image inside the reflecting member 37L. After imaging, after transmitting through the reflecting members 38L and 40L,
An aperture stop 43L is provided at a position conjugate with the three-dimensional effect adjusting stop 3, and a relay lens 41L for re-imaging an image formed in the reflection member 37L is disposed behind the aperture stop 43L. The reflection lens 42L is formed by the relay lens 41L. Through the imaging surface 5
It is configured to form an image on 9L.

【0064】右目用の観察系も左目用の観察系と構成は
同一であるが、反射部材の配置位置が左目用と若干異な
る。すなわち、実施例1では、反射部材37Rは、反射
部材37Lより7.5mm物体側にある。また、反射部
材38Rは、反射部材38Lより9.5mm像側にあ
る。一方実施例2では、37Rは、37Lより4.5m
m物体側にある。また、38Rは、38Lより13.5
mm像側にある。いずれにせよ、右目用の観察光学系と
左目用の観察光学系の反射部材の配置は、光路長を変え
ずに結像性能への影響なく図5のような配置にすること
ができる。
The observation system for the right eye has the same structure as the observation system for the left eye, but the arrangement position of the reflection member is slightly different from that for the left eye. That is, in the first embodiment, the reflecting member 37R is on the object side by 7.5 mm from the reflecting member 37L. The reflecting member 38R is 9.5 mm closer to the image than the reflecting member 38L. On the other hand, in Example 2, 37R is 4.5 m from 37L.
m object side. 38R is 13.5 more than 38L.
mm image side. In any case, the reflection members of the observation optical system for the right eye and the observation optical system for the left eye can be arranged as shown in FIG. 5 without changing the optical path length and without affecting the imaging performance.

【0065】この実施例1は、リレー系を射出する主光
線が平行ではないので、モザイクフィルタを使った単板
テレビカメラを用いるには問題がないが、3色分解プリ
ズムを使った3板テレビカメラを用いると色シェーディ
ングが発生する。
In the first embodiment, there is no problem in using a single-panel television camera using a mosaic filter because the chief rays emitted from the relay system are not parallel. Using a camera causes color shading.

【0066】リレー系の実施例2は、図7に示す構成
で、アフォーカルズーム系7を射出するアフォーカル光
束を結像レンズ34Lにより平行平板(反射部材)37
Lと38Lの中間に結像する。この光束は反射部材38
Lを通過後リレーレンズ39Lにより反射部材42Lの
後方に再結像する。この時、リレーレンズ41Lを射出
する光束はテレセントリックになっている。
In the relay system according to the second embodiment, the afocal light beam emitted from the afocal zoom system 7 is parallel-plated (reflecting member) 37 by the imaging lens 34L in the configuration shown in FIG.
An image is formed between L and 38L. This light flux is reflected by the reflection member 38.
After passing through L, an image is formed again behind the reflecting member 42L by the relay lens 39L. At this time, the light beam emitted from the relay lens 41L is telecentric.

【0067】このように、実施例2はリレーレンズ41
Lを射出する光束がテレセントリックであることを特徴
とし、これによって、干渉膜による色分解プリズムを用
いても色シェーディングの発生を抑え得る。つまりリレ
ーレンズ39Lはテレセントリックにしてかつ収差の良
好に補正された構成になっている。
As described above, in the second embodiment, the relay lens 41
The light beam emitted from L is telecentric, whereby the occurrence of color shading can be suppressed even when a color separation prism using an interference film is used. That is, the relay lens 39L is telecentric and has a configuration in which the aberration is satisfactorily corrected.

【0068】本発明の実体顕微鏡のように、立体撮影系
は、視差による左右の像のずれを除いて倍率がフォーカ
ス位置などの左右の像の差があると観察しにくくなる。
そのために左右の光学系は一般に同じものが用いられ、
したがって左右の光路長を一致させる必要がある。ま
た、テレビカメラの形状により位置が決められる等の制
限のなかで小型化する必要がある。更に本発明の光学系
は、全長が長くなりそのために、機械的な移動が少なく
てしかも光路長を十分とり得るように光学系のレイアウ
トをすることが有効である。
As in the stereomicroscope of the present invention, the stereoscopic imaging system is difficult to observe when there is a difference between the left and right images such as the focus position, except for the difference between the left and right images due to parallax.
For this purpose, the left and right optical systems are generally the same,
Therefore, the left and right optical path lengths need to be matched. In addition, it is necessary to reduce the size of the television camera, with restrictions such as the position determined by the shape of the television camera. Further, the optical system of the present invention has a longer overall length, and therefore, it is effective to lay out the optical system so that the mechanical movement is small and a sufficient optical path length can be obtained.

【0069】そのため、二つ以上の反射面を含んでいて
入射から射出までの光軸が平面上に位置し、入射と射出
の光軸が平行になり光の進行方向が逆向きになる構成に
することが好ましい。
Therefore, the optical axis from incident to outgoing is located on a plane including two or more reflecting surfaces, and the optical axes of incoming and outgoing are parallel and the traveling direction of light is opposite. Is preferred.

【0070】図5に示す光学系は、反射部材(反射プリ
ズム)36Lの射出からリレーレンズの入射までの構成
と反射部材(反射プリズム)35Rの射出から反射部材
36Rへの入射までの光軸までの区間が上記の通りの配
置になっている。これにより、反射部材を光軸方向に動
かしたとき、移動量の2倍の長さだけ光路長が変わり光
路長の調整にとって有効である。
The optical system shown in FIG. 5 has a configuration from the emission of the reflection member (reflection prism) 36L to the incidence on the relay lens and the optical axis from the emission of the reflection member (reflection prism) 35R to the incidence on the reflection member 36R. Are arranged as described above. Thus, when the reflecting member is moved in the optical axis direction, the optical path length changes by twice the moving amount, which is effective for adjusting the optical path length.

【0071】又図5に示す構成において、左目用光路
は、反射部材37Lと反射部材38Lを平行光軸方向に
移動させ、つまり矢印63、64方向に移動させ、又、
右目用光路は反射部材36Rと反射部材37Rとを移動
させ、つまり矢印65、66方向に移動させ、この部分
を調整箇所として使用することも有効である。更に、左
右の撮影光路で前記平面を直交させるようにすれば立体
的突出を小さく抑えることができ望ましい。又、反射部
材35L、36L、35R、36R等を固定とする場
合、35Lと36L、35Rと36Rは接合させること
が光学系全体の小型化等が可能になり望ましい。尚前記
リレー系の実施例はいずれも35Lと36Lおよび35
Rと36Rを接合させたものである。
In the configuration shown in FIG. 5, the optical path for the left eye moves the reflecting member 37L and the reflecting member 38L in the direction of the parallel optical axis, that is, in the directions of the arrows 63 and 64.
It is also effective to move the reflecting member 36R and the reflecting member 37R in the optical path for the right eye, that is, move the reflecting member 37R in the directions of arrows 65 and 66, and use this portion as an adjustment portion. Further, it is desirable that the planes are orthogonal to each other in the left and right photographing optical paths, so that the three-dimensional projection can be reduced. When the reflecting members 35L, 36L, 35R, 36R and the like are fixed, it is desirable to join 35L and 36L, and 35R and 36R, since it becomes possible to reduce the size of the entire optical system. The embodiments of the relay system are all 35L, 36L and 35L.
R and 36R are joined together.

【0072】この立体撮影系は、左右の目用の入射光軸
を含む面が、図10に示す光分割部材8の入射光軸と反
射した光軸とを含む面とが平行であって、かつ光分割部
材8の反射部材9の側に撮影系結像レンズ34Rが来る
ようにすれば主観察側と同じ向きに副観察側の像の向き
を合わせることができる。
In this stereoscopic imaging system, the plane including the incident optical axes for the left and right eyes is parallel to the plane including the incident optical axis and the reflected optical axis of the light splitting member 8 shown in FIG. In addition, if the imaging lens 34R is positioned on the side of the reflecting member 9 of the light dividing member 8, the image on the sub-observation side can be oriented in the same direction as the main observation side.

【0073】本発明における以上のような構成の立体撮
影系は、図10に示す光学系の光分割部材8の後方に配
置することを考えているため撮影系の反射部材による反
射は奇数回である。しかし、この撮影系を図1〜図4に
おける観察用鏡筒21位置に取り付けて撮影するとき、
撮影系に入射するまでの反射回数が偶数回であるため
に、像は裏像になり、又立体感調整絞り3と開口絞りの
位置が合わなくなり、そのため反射回数を合わせ、開口
絞りと立体感調整絞り3とを共役関係を保つために奇数
回の反射の反射部材を立体撮影系の結像レンズ34L,
34Rの前において、鏡筒の代りに取り付けられるよう
にする必要がある。
Since the stereoscopic imaging system having the above-described configuration according to the present invention is considered to be disposed behind the light dividing member 8 of the optical system shown in FIG. 10, the reflection by the reflection member of the imaging system is an odd number of times. is there. However, when this photographing system is attached to the position of the observation lens barrel 21 in FIGS.
Since the number of reflections before the light enters the photographing system is an even number, the image becomes a back image, and the position of the three-dimensional effect adjusting aperture 3 and the aperture stop are not aligned. In order to maintain a conjugate relationship with the adjustment aperture 3, the reflecting member for the odd number of reflections is provided with an imaging lens 34L,
Before 34R, it is necessary to be able to be attached instead of the lens barrel.

【0074】次に、本発明の実体顕微鏡の第4の実施の
形態である複数観察者にテレビ画像を提供するようにし
た構成の光学系について説明する。
Next, an optical system according to a fourth embodiment of the stereoscopic microscope of the present invention, which is configured to provide television images to a plurality of observers, will be described.

【0075】前述の3分割により3人の観察者により同
時に観察する本発明の光学系を利用してテレビ画像を観
察し得るようにした構成の実施の形態について述べる。
An embodiment of a configuration in which a television image can be observed by using the optical system of the present invention which is simultaneously observed by three observers by the above-described three divisions will be described.

【0076】図8は、前記テレビ画像を観察し得る構成
について示すもので、図において、44L,44Rは夫
々左右の目用の観察用結像レンズ、45L,45Rは反
射部、46L,47Lおよび46R,47Rはイメージ
ローテータ、48L,48Rおよび49L,49Rは反
射部材、50L,50Rは像挿入部材、51L,51R
は接眼レンズ、52L,52Rは表示装置、53L,5
3Rは結像レンズである。
FIG. 8 shows a structure capable of observing the television image. In the figure, reference numerals 44L and 44R denote observation imaging lenses for the left and right eyes, 45L and 45R denote reflecting portions, 46L and 47L, 46R and 47R are image rotators, 48L and 48R and 49L and 49R are reflection members, 50L and 50R are image insertion members, and 51L and 51R.
Is an eyepiece, 52L and 52R are display devices, 53L and 5
3R is an imaging lens.

【0077】図8に示す構成の観察用鏡筒は、左目側の
光学系において結像レンズ44Lにアフォーカル光束が
入射しこのレンズにて結像される。反射部材45により
入射光軸に垂直な方向に反射し、イメージローテータ4
6L,47Lに入射しその内部で5回反射した後入射光
軸の延長線上に射出する。ここでイメージローテータ4
7Lより射出した光束は、反射部材48Lに入射しその
内部で3回反射した後入射光軸と平行であって入射方向
とは逆方向に射出する。この反射プリズム48Lより射
出した光束は反射部材49Lに入射して直角方向に反射
され射出する。この反射部材49Lにて反射した後に結
像レンズ44Lによる結像点が位置する。この結像レン
ズ44Lにより形成された像は、接眼レンズ51Lによ
り左目に拡大観察される。
In the observation lens barrel having the structure shown in FIG. 8, an afocal light beam enters the image forming lens 44L in the optical system on the left eye side, and an image is formed by this lens. The light is reflected by the reflecting member 45 in a direction perpendicular to the incident optical axis, and
The light enters 6L and 47L, is reflected five times inside, and then exits on an extension of the incident optical axis. Here image rotator 4
The light beam emitted from 7L enters the reflecting member 48L, is reflected therein three times, and then exits in a direction parallel to the incident optical axis and opposite to the incident direction. The light beam emitted from the reflecting prism 48L enters the reflecting member 49L, is reflected in a right angle direction, and is emitted. After being reflected by this reflecting member 49L, the image forming point by the image forming lens 44L is located. The image formed by the imaging lens 44L is magnified and observed by the left eye by the eyepiece 51L.

【0078】又、右目の側についても全く同様の作用に
より接眼レンズ51Rを通して右目にて拡大観察され
る。
The right eye is also magnified and observed through the eyepiece 51R by the right eye by the same operation.

【0079】以上の光学系において、イメージローテー
タ46L,47Lおよび46R,47Rにより像は、正
立像になるように、イメージローテータをその光軸を回
転軸として回転することにより正立像になし得る。
In the above optical system, an image can be formed into an erect image by rotating the image rotator about its optical axis as a rotation axis so that the image is formed by the image rotators 46L and 47L and 46R and 47R.

【0080】図8においては、その構成がわかり易いよ
うに記載してあるため、この図の状態のイメージローテ
ータでは正立像にならないが、実際には回転軸のまわり
に90°回転した配置である。
In FIG. 8, since the configuration is described so as to be easily understood, the image rotator in the state shown in FIG. 8 does not form an erect image. However, the arrangement is actually rotated by 90 ° around the rotation axis.

【0081】ここで傾斜角を変化させるためにはイメー
ジローテータを回転軸のまわりに角θ回転させることに
よりイメージローテータ以降の反射部材48Lから接眼
レンズ51Lまでを同じ回転軸のまわりに2θ回転させ
ることにより像を回転させることなしに、傾角を可変に
することができる。
Here, in order to change the tilt angle, the image rotator is rotated by an angle θ around the rotation axis, so that the reflection member 48L and the eyepiece 51L after the image rotator are rotated by 2θ around the same rotation axis. Thus, the tilt angle can be changed without rotating the image.

【0082】また、接眼レンズの眼幅調整を行なうため
には、反射部材49Lから接眼レンズ51Lまでを、反
射部材29Lの入射光軸の方向に移動させることにより
行なうことができる。
In addition, in order to adjust the interpupillary distance of the eyepiece, it is possible to move from the reflecting member 49L to the eyepiece 51L in the direction of the incident optical axis of the reflecting member 29L.

【0083】又、同焦が維持されるようにするために
は、接眼レンズ51Lも眼幅調整の移動にともない光軸
方向に動くようになっている。
In order to maintain the in-focus state, the eyepiece 51L also moves in the optical axis direction with the movement of the interpupillary distance adjustment.

【0084】又、立体撮影系で撮影した画像を表示する
ために、鏡筒に表示装置52L、52Rを設置してこれ
をリレーレンズ53L、53Rにより接眼レンズ51
L、51Rの像面に合わせるように構成されている。
Further, in order to display an image photographed by the stereoscopic photographing system, display devices 52L and 52R are provided in the lens barrel, and these are mounted on the eyepiece 51 by relay lenses 53L and 53R.
It is configured to match the image planes of L and 51R.

【0085】このように像挿入部材50Lにより、撮影
系の画像をそのまま接眼レンズ51Lに観察することが
できる。又表示装置52Lは、液晶モニターのほか反射
型液晶ディスプレイでもよい。また像挿入部材50L
は、切り替えて使用する場合切替ミラー又合成する場合
はハーフミラーが用いられる。
As described above, the image of the photographing system can be directly observed on the eyepiece 51L by the image insertion member 50L. The display device 52L may be a reflective liquid crystal display in addition to the liquid crystal monitor. Also, the image insertion member 50L
In the case of switching, a switching mirror is used, and when combining, a half mirror is used.

【0086】更にテレビ撮像系は、主観察側に設ける場
合は、反射部材8の後方に配置し、又副観察側に設ける
場合は、3人観察のうちの左右で使わない方の副観察側
に取り付けるようにすればよい。この副観察側のうちの
撮影系を取り付けた副撮影系は、他の副観察側の副観察
系に像の向きを合わせるようにすることが望ましい。そ
のために、この副撮影系の前に取り付ける奇数回反射の
反射部材は、反射部材内部の光軸により形成される面
(光軸を含む面)が、副撮影系の左右の光軸を含む面と
平行になるようにすればよい。更に、副撮影系の右目用
射出光路に副撮影系の左目撮影系を合わせればよい。こ
れにより副観察側で撮影画像に切り替えても同じ向きの
像を得ることができる。この撮影画像は、実際の観察像
と開口位置の差による視差が発生するが、その差は僅か
であり実用上問題はない。
Further, when the television image pickup system is provided on the main observation side, it is arranged behind the reflecting member 8. It should be attached to the. It is desirable that the sub-photographing system to which the photographing system of the sub-observation side is attached has the image direction adjusted to the sub-observation system on the other sub-observation side. For this purpose, the reflecting member of the odd number of reflections attached in front of the sub-imaging system has a surface formed by the optical axis inside the reflecting member (a surface including the optical axis) which includes the left and right optical axes of the sub-imaging system. It may be made parallel to. Furthermore, the left-eye imaging system of the sub-imaging system may be matched to the right-eye emission optical path of the sub-imaging system. As a result, an image in the same direction can be obtained even when switching to the captured image on the sub-observation side. In this photographed image, a parallax due to a difference between an actual observation image and an opening position is generated, but the difference is slight, and there is no practical problem.

【0087】又主観察側は、鏡筒を鏡筒入射のリレー系
の第2レンズ14の射出光軸の延長上の軸を回転軸にし
て回転し、この回転と連動させて主観察側用撮影光学系
をアフォーカルズーム系7の光軸を回転軸として回転さ
せ、また副観察側は、3分割プリズムを左右の副観察側
を一体にしてリレー系の第2レンズ14射出の光軸を回
転軸として回転させることにより副撮影系と副観察系の
像の関係を維持し得る。また、反射部材28の入射光軸
を回転軸として回転させる場合、副観察系と副撮影系と
の像の向きの差がでないように左右連動して動くことが
できる。
On the main observation side, the lens barrel is rotated with an axis extending from the optical axis of the second lens 14 of the relay system for the entrance of the lens barrel as a rotation axis, and the main observation side is rotated in conjunction with this rotation. The photographing optical system is rotated with the optical axis of the afocal zoom system 7 as the rotation axis, and the sub-observation side is formed by integrating the three split prisms into the left and right sub-observation sides so that the optical axis of the second lens 14 of the relay system is emitted. By rotating as the rotation axis, the relationship between the images of the sub photographing system and the sub observation system can be maintained. When the reflection member 28 is rotated with the incident optical axis as a rotation axis, the reflection member 28 can move in a left-right manner so that the difference in image direction between the sub-observation system and the sub-photography system does not occur.

【0088】またイメージローテータ29による鏡筒の
回転は、物体側の光軸は動かないため連動機構は必要な
い。したがって、イメージローテータ29に立体撮影系
を取り付ける場合、イメージローテータ29や撮像装置
は固定させることが望ましい。
The rotation of the lens barrel by the image rotator 29 does not move the optical axis on the object side, so that an interlocking mechanism is not required. Therefore, when attaching a three-dimensional imaging system to the image rotator 29, it is desirable to fix the image rotator 29 and the imaging device.

【0089】上記のような構成にすることにより左右の
立体撮影系と画像挿入装置を取り付けても観察者のアイ
ポイントが高くなることはなく、主観察者と副観察者の
二人の観察者が共に良好な立体感でのテレビ観察像を得
ることができる。
With the above configuration, even if the left and right stereoscopic imaging systems and the image insertion device are attached, the eye point of the observer does not increase, and the two observers, the main observer and the sub-observer, are provided. However, it is possible to obtain a television observation image with a good stereoscopic effect.

【0090】本発明の実体顕微鏡において、特許請求の
範囲に記載する構成のほか、次の各項に記載する実体顕
微鏡も発明の目的を達成し得る。
In the stereomicroscope according to the present invention, in addition to the configuration described in the claims, the stereomicroscope described in the following items can also achieve the object of the invention.

【0091】(1)特許請求の範囲の請求項2に記載す
る実体顕微鏡で、前記鏡筒光学系の観察方向の変更に合
わせて前記立体撮像系の撮像方向が変化するようにした
ことを特徴とする実体顕微鏡。
(1) The stereoscopic microscope according to claim 2, wherein the imaging direction of the stereoscopic imaging system changes in accordance with a change in the observation direction of the lens barrel optical system. And a stereo microscope.

【0092】(2)前記の(1)の項に記載する実体顕
微鏡で、前記変倍系がアフォーカル変倍系とリレー系よ
りなり、少なくとも一つの立体撮影系がアフォーカル変
倍系と1回結像リレー系の間に配置された光分割部材に
より分割された光束中に配置されたことを特徴とする実
体顕微鏡。
(2) In the stereo microscope described in the above item (1), the variable power system includes an afocal variable power system and a relay system, and at least one stereoscopic photographing system includes an afocal variable power system and one. A stereomicroscope, wherein the stereoscopic microscope is arranged in a light beam split by a light splitting member arranged between the image forming relay systems.

【0093】(3)前記の(2)の項に記載する実体顕
微鏡で、前記1回結像リレー系を射出後の光束に他の撮
像系を備えた撮像装置を設け、該撮像装置と前記光分割
部材により分割された光束中の撮像系を備えた撮像装置
とが共通である実体顕微鏡。
(3) In the stereoscopic microscope described in the above item (2), an image pickup device provided with another image pickup system for a light beam emitted from the one-time image forming relay system is provided. A stereomicroscope which is common to an imaging device having an imaging system for a light beam split by a light splitting member.

【0094】(4)特許請求の範囲の請求項1に記載す
る実体顕微鏡で、前記光分割部材の光分割面又は光分割
面を延長した面が交差する位置が前記変倍光学系の光軸
と一致するようにしたことを特徴とする実体顕微鏡。
(4) In the stereomicroscope according to claim 1, the position at which the light splitting surface of the light splitting member or a surface obtained by extending the light splitting surface intersects is the optical axis of the variable power optical system. A stereomicroscope characterized in that it is made to match.

【0095】(5)前記の(4)の項に記載する実体顕
微鏡で、前記光分割部材の光分割面で反射された複数の
反射光束がそれぞれ左右の目の観察用の開口絞りによっ
て決まる光軸を共通に使用するイメージローテーターを
有していることを特徴とする実体顕微鏡。
(5) In the stereoscopic microscope described in the above item (4), a plurality of reflected light beams reflected by the light splitting surface of the light splitting member are respectively determined by the left and right eye observation aperture stops. A stereomicroscope having an image rotator that uses a common axis.

【0096】(6)特許請求の範囲の請求項3に記載す
る実体顕微鏡で、前記第1の光路と前記第2の光路がい
ずれも結像光学系を有し、前記両結像光学系が同じレン
ズにて構成され、前記立体撮像系中に像の向きおよび倍
率を一致させるための反射部材を備えたことを特徴する
実体顕微鏡。
(6) In the stereoscopic microscope according to claim 3, both the first optical path and the second optical path have an image forming optical system, and the two image forming optical systems are A stereoscopic microscope comprising the same lens and including a reflecting member for matching the direction and magnification of an image in the stereoscopic imaging system.

【0097】(7)前記の(6)の項に記載する実体顕
微鏡で、立体撮像系内部の結像点と像面との間にある開
口と像点との間にレンズを配置して撮影系がテレセント
リックであるようにした実体顕微鏡。
(7) With the stereoscopic microscope described in the above item (6), a lens is arranged between the image point and the aperture between the image point and the image plane inside the stereoscopic imaging system, and photographing is performed. A stereomicroscope whose system is telecentric.

【0098】(8)前記の(7)の項に記載する実体顕
微鏡で、立体撮像系の反射回数が奇数回と偶数回とに切
り替え得るようにしたことを特徴とする実体顕微鏡。
(8) The stereo microscope described in the above item (7), wherein the number of reflections of the stereoscopic imaging system can be switched between an odd number and an even number.

【0099】(9)特許請求の範囲の請求項3に記載す
る実体顕微鏡で、前記第1の光路と前記第2の光路がそ
れぞれ少なくとも二つの反射面を有し、前記反射面の一
つに入射する第1の光軸と、前記反射面から出射する第
2の光軸とが平行になるようにしたことを特徴とする実
体顕微鏡。
(9) In the stereoscopic microscope according to claim 3, the first optical path and the second optical path each have at least two reflecting surfaces, and one of the reflecting surfaces is provided. A stereo microscope wherein an incident first optical axis and a second optical axis emitted from the reflection surface are parallel to each other.

【0100】(10)前記の(9)の項に記載する実体
顕微鏡で、前記第1の光路における前記第1の光軸と前
記第2の光軸とを含む第1の平面と、前記第2の光路に
おける前記第1の光軸と第2の光軸を含む第2の平面と
が互いに交差するようにしたことを特徴とする実体顕微
鏡。
(10) In the stereoscopic microscope described in the item (9), the first plane including the first optical axis and the second optical axis in the first optical path; A stereomicroscope characterized in that the first optical axis and the second plane including the second optical axis in two optical paths intersect each other.

【0101】(11)前記の(10)の項に記載する実
体顕微鏡で、前記第1の平面と前記第2の平面とが直交
するようにしたことを特徴とする実体顕微鏡。
(11) The stereomicroscope according to the item (10), wherein the first plane and the second plane are orthogonal to each other.

【0102】(12)特許請求の範囲の請求項2に記載
する実体顕微鏡で、前記変倍光学系からの光束を透過と
反射とに分割する光分割面を有する光分割部材を複数有
し、前記鏡筒光学系が前記光分割部材のうちの一つに接
続され、前記立体撮像系が他の光分割部材に接続されて
いることを特徴とする実体顕微鏡。
(12) The stereo microscope according to claim 2, comprising a plurality of light splitting members having a light splitting surface for splitting a light beam from the variable power optical system into transmission and reflection. A stereo microscope, wherein the lens barrel optical system is connected to one of the light splitting members, and the stereoscopic imaging system is connected to another light splitting member.

【0103】[0103]

【発明の効果】本発明の実体顕微鏡によれば、複数の観
察者により同一の視野で同一の倍率の立体像を夫々見や
すい位置で観察でき、しかも各観察者のアイポイント
が、物体に近い位置に来るようにし得る。又本発明によ
れば小型で像の左右差の少ない観察を行なうことが可能
で、鏡筒の代りに取り付けることも可能な立体撮影装置
を備えた実体顕微鏡を実現し得る。又、この撮像装置を
備えた実体顕微鏡もアイポイントを物体に近づけること
が可能であり、複数の観察者により観察像とかわらない
テレビ画像での観察が可能である。
According to the stereoscopic microscope of the present invention, a plurality of observers can observe a stereoscopic image of the same magnification in the same field of view at an easy-to-see position, and the eye point of each observer is close to the object. To come to. Further, according to the present invention, it is possible to realize a stereoscopic microscope provided with a stereoscopic photographing device which is small, can perform observation with a small difference between left and right images, and can be attached instead of a lens barrel. In addition, the stereoscopic microscope equipped with this imaging device can also bring the eye point closer to the object, so that a plurality of observers can observe a television image which is not different from an observation image.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実体顕微鏡の第1の実施の形態の副
観察側の構成を示す図
FIG. 1 is a diagram showing a configuration on a sub-observation side of a stereoscopic microscope according to a first embodiment of the present invention;

【図2】 本発明の実体顕微鏡の第1の実施の形態の主
観察側の構成を示す図
FIG. 2 is a diagram showing a configuration on a main observation side of a stereoscopic microscope according to a first embodiment of the present invention;

【図3】 本発明の実体顕微鏡の第2の実施の形態の主
観察側の構成を示す図
FIG. 3 is a diagram showing a configuration on a main observation side according to a second embodiment of the stereo microscope of the present invention;

【図4】 本発明の実体顕微鏡の第2の実施の形態の副
観察側の構成を示す図
FIG. 4 is a diagram showing a configuration on a sub-observation side according to a second embodiment of the stereo microscope of the present invention;

【図5】 本発明の実体顕微鏡に用いる撮像系の構成を
示す図
FIG. 5 is a diagram showing a configuration of an imaging system used in the stereo microscope of the present invention.

【図6】 前記撮像系で用いるリレー系の実施例1の断
面図
FIG. 6 is a cross-sectional view of Embodiment 1 of a relay system used in the imaging system.

【図7】 前記撮像系で用いるリレー系の実施例2の断
面図
FIG. 7 is a sectional view of a second embodiment of the relay system used in the imaging system.

【図8】 テレビ画像での観察を可能にした光学系の構
成を示す図
FIG. 8 is a diagram showing a configuration of an optical system that enables observation with a television image.

【図9】 3人観察用の分割部の開口の位置関係を示す
FIG. 9 is a diagram showing a positional relationship between openings of a divided portion for three-person observation.

【図10】従来の実体顕微鏡の対物レンズからリレー系
までの構成を示す図
FIG. 10 is a diagram showing a configuration from the objective lens to the relay system of a conventional stereomicroscope.

【図11】従来の実体顕微鏡の2人観察用の分割部の構
成を示す図
FIG. 11 is a diagram showing the configuration of a conventional stereomicroscope divided unit for two-person observation.

【符号の説明】[Explanation of symbols]

21 鏡筒 22L、22R 光分割部材 23、28 ダハプリズム 25 開口絞り 29 イメージローテータ 21 lens barrel 22L, 22R light splitting member 23, 28 roof prism 25 aperture stop 29 image rotator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】対物レンズ系と、変倍光学系と、鏡筒光学
系とよりなり、前記対物レンズ系と変倍光学系との光軸
が一致しかつ少なくとも一つの結像点を有し、前記鏡筒
光学系は、左右一対の開口絞りと結像レンズと接眼レン
ズとよりなり、前記左右の開口絞りにより夫々決定され
る左右観察光軸が変倍光学系の光軸と異なるところを通
る実体顕微鏡において、前記変倍光学系からの光束を透
過と反射とに分ける光分割面を有する反射部材を有し、
前記反射部材のうちの一つの反射部の光分割面もしくは
光分割面を延長した面と他の反射部材の光分割面もしく
は光分割面を延長した面とが交差する面が前記変倍光学
系からの光束の内側にあることを特徴とする実体顕微
鏡。
1. An objective lens system, a variable power optical system, and a lens barrel optical system, wherein the objective lens system and the variable power optical system have the same optical axis and have at least one image forming point. The lens barrel optical system includes a pair of left and right aperture stops, an imaging lens, and an eyepiece, and the left and right observation optical axes determined by the left and right aperture stops are different from the optical axes of the variable power optical system. In the passing stereomicroscope, having a reflecting member having a light dividing surface that divides the light beam from the variable power optical system into transmission and reflection,
The variable optical system is a plane in which a light splitting surface or an extended light splitting surface of one of the reflecting members intersects a light splitting surface or a light extended surface of the other reflecting member. A stereomicroscope characterized by being inside a light beam from a light source.
【請求項2】対物レンズ系と、変倍光学系と、鏡筒光学
系とよりなり、前記対物レンズ系と変倍光学系とは光軸
が一致しており、かつ少なくとも一つの結像点を有し、
前記鏡筒光学系は、左右一対の開口絞りと結像レンズと
接眼レンズとよりなり、かつ前記一対の開口絞りにより
夫々決定される左右の観察光軸が前記変倍光学系の光軸
と異なるところを通る実体顕微鏡において、前記実体顕
微鏡が立体撮像系を備え該立体撮像系による立体画像が
前記鏡筒光学系による観察像に対応していることを特徴
とする実体顕微鏡。
2. An objective lens system, a variable power optical system, and a lens barrel optical system, wherein the objective lens system and the variable power optical system have the same optical axis and at least one image forming point. Has,
The lens barrel optical system includes a pair of left and right aperture stops, an imaging lens, and an eyepiece, and left and right observation optical axes determined by the pair of aperture stops are different from the optical axis of the variable power optical system. A stereomicroscope, which passes through a stereoscopic microscope, wherein the stereoscopic microscope includes a stereoscopic imaging system, and a stereoscopic image obtained by the stereoscopic imaging system corresponds to an image observed by the lens barrel optical system.
【請求項3】対物レンズ系と、変倍光学系と、鏡筒光学
系とよりなり、前記対物レンズ系と変倍光学系との光軸
が一致しかつ少なくとも一つの結像点を有し、前記鏡筒
光学系は、左右一対の開口絞りと結像レンズと接眼レン
ズとよりなり、前記左右の開口絞りにより夫々決定され
る左右観察光軸が変倍光学系の光軸と異なるところを通
る実体顕微鏡において、前記実体顕微鏡が第1の光路と
第2の光路からなる一対の光路を有する立体撮像系を備
え、前記立体撮像系が光束を1回結像する結像光学系を
有し、前記立体光学系の開口絞りが前記鏡筒光学系の開
口絞りとほぼ一致することを特徴とする実体顕微鏡。
3. An objective lens system, a variable power optical system, and a lens barrel optical system, wherein the objective lens system and the variable power optical system have the same optical axis and have at least one image forming point. The lens barrel optical system includes a pair of left and right aperture stops, an imaging lens, and an eyepiece, and the left and right observation optical axes determined by the left and right aperture stops are different from the optical axes of the variable power optical system. In the stereo microscope that passes, the stereo microscope includes a stereoscopic imaging system having a pair of optical paths including a first optical path and a second optical path, and the stereoscopic imaging system includes an imaging optical system that forms a light beam once. A stereoscopic microscope wherein the aperture stop of the stereoscopic optical system substantially matches the aperture stop of the lens barrel optical system.
JP08054598A 1998-03-13 1998-03-13 Stereo microscope that can be observed by multiple people Expired - Fee Related JP4302199B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP08054598A JP4302199B2 (en) 1998-03-13 1998-03-13 Stereo microscope that can be observed by multiple people
DE1999111145 DE19911145A1 (en) 1998-03-13 1999-03-12 Optical stereomicroscope facilitating surgical operations or fine work on objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08054598A JP4302199B2 (en) 1998-03-13 1998-03-13 Stereo microscope that can be observed by multiple people

Publications (2)

Publication Number Publication Date
JPH11258516A true JPH11258516A (en) 1999-09-24
JP4302199B2 JP4302199B2 (en) 2009-07-22

Family

ID=13721326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08054598A Expired - Fee Related JP4302199B2 (en) 1998-03-13 1998-03-13 Stereo microscope that can be observed by multiple people

Country Status (2)

Country Link
JP (1) JP4302199B2 (en)
DE (1) DE19911145A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7688503B2 (en) 2002-09-20 2010-03-30 Carl Zeiss Stiftung Microscopy system and microscopy method for plural observers
JP5011451B2 (en) * 2009-10-23 2012-08-29 オリンパスメディカルシステムズ株式会社 Stereoscopic objective optical system and endoscope

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008028482B4 (en) 2008-06-13 2021-11-25 Carl Zeiss Meditec Ag Optical observation device with multi-channel data overlay and method for overlaying electronic overlay images in an optical observation device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257446A (en) * 1990-03-07 1991-11-15 Topcon Corp Stereoscopic photographing device
JPH04324409A (en) * 1991-04-24 1992-11-13 Olympus Optical Co Ltd Microscope for operation
JPH06261913A (en) * 1993-03-12 1994-09-20 Olympus Optical Co Ltd Three-dimensional imaging device of microscope for operation
JPH06337351A (en) * 1993-05-31 1994-12-06 Olympus Optical Co Ltd Substantial microscope
JPH07140395A (en) * 1993-11-18 1995-06-02 Olympus Optical Co Ltd Stereomicroscope
JPH0824269A (en) * 1994-07-13 1996-01-30 Furoobell:Kk Medical camera
JPH09318882A (en) * 1996-05-29 1997-12-12 Olympus Optical Co Ltd Stereomicroscope

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257446A (en) * 1990-03-07 1991-11-15 Topcon Corp Stereoscopic photographing device
JPH04324409A (en) * 1991-04-24 1992-11-13 Olympus Optical Co Ltd Microscope for operation
JPH06261913A (en) * 1993-03-12 1994-09-20 Olympus Optical Co Ltd Three-dimensional imaging device of microscope for operation
JPH06337351A (en) * 1993-05-31 1994-12-06 Olympus Optical Co Ltd Substantial microscope
JPH07140395A (en) * 1993-11-18 1995-06-02 Olympus Optical Co Ltd Stereomicroscope
JPH0824269A (en) * 1994-07-13 1996-01-30 Furoobell:Kk Medical camera
JPH09318882A (en) * 1996-05-29 1997-12-12 Olympus Optical Co Ltd Stereomicroscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7688503B2 (en) 2002-09-20 2010-03-30 Carl Zeiss Stiftung Microscopy system and microscopy method for plural observers
JP5011451B2 (en) * 2009-10-23 2012-08-29 オリンパスメディカルシステムズ株式会社 Stereoscopic objective optical system and endoscope
US8345084B2 (en) 2009-10-23 2013-01-01 Olympus Medical Systems Corp. Stereoscopic image-capturing objective optical system and endoscope

Also Published As

Publication number Publication date
DE19911145A1 (en) 1999-09-16
JP4302199B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
US5539572A (en) Microscope illumination and stereo viewing
US5668661A (en) Microscope
US6751020B2 (en) Stereoscopic image pickup system
US6112033A (en) Multiple-lens image pickup apparatus for viewing in stereoscopic panoramic, and ordinary photographing modes
US4704012A (en) Stereoscopic microscope
EP0577268B1 (en) Optical system
JP4508569B2 (en) Binocular stereoscopic observation device, electronic image stereoscopic microscope, electronic image stereoscopic observation device, electronic image observation device
US6020993A (en) 3-D photo attachment for a 2-D light microscope
JP4343509B2 (en) Stereo microscope
JP2938940B2 (en) Surgical microscope
JP4302199B2 (en) Stereo microscope that can be observed by multiple people
JP2002287037A (en) Optical instrument having binocular visual inspection section
JP3454851B2 (en) Stereo microscope
JP2958096B2 (en) Stereo microscope
JP3554398B2 (en) Stereoscopic adapter for endoscope
JP3604990B2 (en) Image observation system
JP3072930B2 (en) Stereo microscope
JP3089304B2 (en) Light microscope
JP4217405B2 (en) Stereo microscope
JP2956384B2 (en) 3D image forming device
JP2583465B2 (en) Stereo microscope
JPH07311348A (en) Plural visual field-direction type endoscope
WO2021186139A1 (en) Apparatus for the optical manipulation of a pair of landscape stereoscopic images
JPS61226723A (en) Stereomicroscope
JP2001108912A (en) Stereoscopic microscope

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080123

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees