JPH09318882A - Stereomicroscope - Google Patents

Stereomicroscope

Info

Publication number
JPH09318882A
JPH09318882A JP8135339A JP13533996A JPH09318882A JP H09318882 A JPH09318882 A JP H09318882A JP 8135339 A JP8135339 A JP 8135339A JP 13533996 A JP13533996 A JP 13533996A JP H09318882 A JPH09318882 A JP H09318882A
Authority
JP
Japan
Prior art keywords
optical system
image
magnification
variable
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8135339A
Other languages
Japanese (ja)
Other versions
JP3645655B2 (en
Inventor
Toyoji Hanzawa
豊治 榛澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP13533996A priority Critical patent/JP3645655B2/en
Priority to DE19718102A priority patent/DE19718102B4/en
Publication of JPH09318882A publication Critical patent/JPH09318882A/en
Application granted granted Critical
Publication of JP3645655B2 publication Critical patent/JP3645655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens
    • G02B21/20Binocular arrangements
    • G02B21/22Stereoscopic arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microscoopes, Condenser (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a stereomicroscope where the change of a stereoscopic effect caused by variable power is little, whose constitution is simple and which is excellent in workability by arranging a light shielding member shielding light on the outside of the pupil of the center image of visual field on an object side from an image- formation point at the time of setting the highest magnification. SOLUTION: This microscope is equipped with an objective lens 1 common to right and left, the light shielding member 2, a variable power relay optical system 3 coaxial with the lens 1 and having the image-formation point I inside, and aperture diaphragms 4L and 4R for observing left and right. Left and right image-formation optical systems 5L and 5R coaxial with the aperture diaphragms 4L and 4R form an image so that the image can be stereoscopically observed with both eyes, and left and right oculars 6L and 6R enlarge the formed image. An observation optical axis decided by a pair of aperture diaphragms 4L and 4R passes place different from the optical axis of the optical system 3. Then, the light shielding member 2 shielding the light on the outside of the pupil of the center image of the visual field decided by a pair of aperture diaphragms 4L and 4R is arranged on the object side from the point I at the time of setting the highest magnification.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、対物レンズと、少
なくとも一つの結像面を含んでいて対物レンズと同軸の
左右共通の一つの変倍光学系と、変倍光学系の後方に配
置されていて各々が開口絞りと結像レンズと接眼レンズ
を含む左右一対の観察光学系とを備え、開口絞りによっ
て決定される観察光軸が変倍光学系の光軸と異なったと
ころを通るようになっている実体顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an objective lens, one variable-power optical system that includes at least one image-forming plane and is coaxial with the objective lens, and is disposed behind the variable-power optical system. Each has an aperture stop, a pair of left and right observation optical systems including an imaging lens and an eyepiece lens, and the observation optical axis determined by the aperture stop passes through a position different from the optical axis of the variable power optical system. About the stereo microscope becoming.

【0002】[0002]

【従来の技術】実体顕微鏡は、物体像を拡大して立体的
な情報が得られることから、小さなものの組立てや各種
の手術などに使用されている。そして、より難しい作業
を可能にするため、複数人が像を同時に観察でき且つ自
由な方向から観察できるような実体顕微鏡が望まれてい
る。この要求に応じるため、従来、左右の目で見る夫々
の像を作る光束を一つの変倍系を通すようにした実体顕
微鏡が提案されており、これにより、変倍系の後方に設
けられた左右光路用の開口絞りを変倍系の光軸の周りに
回転させることにより、観察方向を自由に変えられるよ
うになった。
2. Description of the Related Art Stereomicroscopes are used for assembling small objects and for various kinds of operations because they can obtain stereoscopic information by enlarging an object image. Then, in order to enable more difficult work, there is a demand for a stereomicroscope that allows a plurality of people to observe images at the same time and observe from any direction. In order to meet this demand, conventionally, a stereomicroscope has been proposed in which light beams that form the respective images seen by the left and right eyes pass through a single variable power system. By rotating the aperture stop for the left and right optical paths around the optical axis of the variable power system, the viewing direction can be freely changed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この光
学系には、変倍すると立体感が変化するという問題点が
あった。この問題点を解決するための方法が、特開平4
−76514号に開示されている。この方法では、変倍
に従って立体感の補正を行う光学部材が設けられてい
て、この光学部材を変倍操作に従って動かすことによ
り、立体感の補正を行うというものであるが、倍率と立
体感を連動させる機構は設計が難しく、製作が困難であ
るという問題があった。又、立体感調整のための機構は
大きく、小型化し難いため物体と観察者の位置が離れ、
作業しずらくなるという問題があった。
However, this optical system has a problem that the stereoscopic effect changes when the magnification is changed. A method for solving this problem is disclosed in Japanese Unexamined Patent Publication
-76514. In this method, an optical member for correcting the stereoscopic effect according to the magnification change is provided, and the stereoscopic effect is corrected by moving the optical member according to the magnification change operation. There is a problem in that the interlocking mechanism is difficult to design and difficult to manufacture. Also, since the mechanism for adjusting the stereoscopic effect is large and it is difficult to downsize it, the position of the object and the observer are separated,
There was a problem that it became difficult to work.

【0004】本発明は、従来の技術の有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころは、変倍による立体感の変化が小さく、構成が簡単
で且つ作業性の良い実体顕微鏡を提供しようとするもの
である。
The present invention has been made in view of the above problems of the prior art. The object of the present invention is to reduce the change in stereoscopic effect due to zooming, to make the structure simple and to improve workability. It is intended to provide a good stereo microscope.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明による実体顕微鏡は、対物レンズと、少なく
とも一つの結像点を含んでいて対物レンズと同軸の左右
共通の一つの変倍光学系と、この変倍光学系の後方に配
置されていて各々が開口絞りと結像レンズと接眼レンズ
を含む左右一対の観察光学系とを備え、上記一対の開口
絞りによって決定される観察光軸が変倍光学系の光軸と
異なったところを通るようになっている実体顕微鏡にお
いて、上記一対の開口絞りにより決定される視野中心像
の瞳の外側を遮光する遮光部材が、少なくとも最高倍率
設定時には、上記結像点よりも物体側に配置されるよう
にしたことを特徴としている。
In order to achieve the above object, a stereoscopic microscope according to the present invention comprises an objective lens and one variable magnification which is coaxial with the objective lens and is common to the left and right. Observation light determined by the pair of aperture stops, which includes an optical system and a pair of left and right observation optical systems which are arranged behind the variable power optical system and each include an aperture stop, an imaging lens, and an eyepiece lens. In a stereomicroscope whose axis passes through a position different from the optical axis of the variable power optical system, a light blocking member that blocks the outside of the pupil of the field-of-view center image determined by the pair of aperture diaphragms has at least the maximum magnification. At the time of setting, it is characterized in that it is arranged on the object side of the image formation point.

【0006】又、本発明によれば、対物レンズと、少な
くとも一つの結像点を含んでいて対物レンズと同軸の左
右共通の一つの変倍光学系と、この変倍光学系の後方に
配置されていて各々が開口絞りと結像レンズと接眼レン
ズを含む左右一対の観察光学系とを備え、上記一対の開
口絞りによって決定される観察光軸が上記変倍光学系の
光軸と異なったところを通るようになっている実体顕微
鏡において、上記一対の開口絞りにより決定される視野
中心像の瞳の内側を遮光する遮光部材が、少なくとも最
低倍率設定時には、上記結像点よりも物体側に配置され
るようにしたことを特徴としている。
Further, according to the present invention, the objective lens, one variable magnification optical system which includes at least one image forming point and is coaxial with the objective lens, and is common to the left and right, and is disposed behind the variable magnification optical system. Each of them has an aperture stop, a pair of left and right observation optical systems including an imaging lens and an eyepiece lens, and the observation optical axis determined by the pair of aperture stops is different from the optical axis of the variable power optical system. In a stereomicroscope that is designed to pass through a place, a light blocking member that blocks the inside of the pupil of the center image of the field of view determined by the pair of aperture stops is located at the object side of the image formation point at least when the minimum magnification is set. The feature is that they are arranged.

【0007】[0007]

【発明の実施の形態】実体顕微鏡における立体感は、左
右の入射瞳位置で決まる物体面での左右光軸のなす角
(以下、内向角という)で決まる。内向角は、左右の入
射瞳の中心と物体の中心を結んだ線のなす角度で表わす
ことができる。即ち、入射瞳が円形であれば、その中心
間の距離で表わすことができる。又、瞳がケラレた場合
には、左右の瞳を結ぶ線分と瞳との交点の中点が瞳の中
心となる。尚、以下、左右の光軸に垂直な平面内で両光
軸を結ぶ方向を左右方向、この左右方向に垂直な方向を
上下方向と呼んで説明する。左右の入射瞳を左右方向の
外側から遮ると立体感が減少し、左右方向の内側から遮
るとき立体感が増大する。即ち、左右の光軸の中間を中
心として遮光範囲を拡大して瞳を夫々外側からケルと立
体感の上昇が抑えられ、左右光軸の中間を中心に縮小し
て行く瞳の内側をケルと立体感の低下が抑えられる。
BEST MODE FOR CARRYING OUT THE INVENTION The stereoscopic effect of a stereoscopic microscope is determined by the angle formed by the left and right optical axes (hereinafter referred to as the inward angle) at the object plane determined by the left and right entrance pupil positions. The inward angle can be represented by the angle formed by the line connecting the centers of the left and right entrance pupils and the center of the object. That is, if the entrance pupil is circular, it can be represented by the distance between its centers. When the pupil is vignetted, the midpoint of the intersection of the line segment connecting the left and right pupils and the pupil becomes the center of the pupil. In the following description, a direction connecting both optical axes in a plane perpendicular to the left and right optical axes will be referred to as a horizontal direction, and a direction perpendicular to the horizontal direction will be referred to as a vertical direction. When the left and right entrance pupils are blocked from the outside in the left-right direction, the stereoscopic effect is reduced, and when blocked from the inside in the left-right direction, the stereoscopic effect is increased. That is, the light-shielding range is expanded around the center of the left and right optical axes, and the pupil is suppressed from the outside by Kell and the increase in stereoscopic effect is suppressed, and the inside of the pupil that is contracted around the center of the left and right optical axes is Kell. The reduction of the three-dimensional effect can be suppressed.

【0008】本発明は、この考え方を利用して立体感の
調整を行うようにしたもので、図1乃至3を参照して、
その構成を説明する。図1において、1は左右共通の対
物レンズ、2は遮光部材、3は対物レンズと同軸で内部
に少なくとも一つの結像点Iを有する変倍リレー光学
系、4L,4Rは変倍リレー光学系の出射側に配置され
た左右観察用の開口絞り、5L,5Rは各開口絞り4
L,4Rと同軸で両眼で立体的に観察できるように像を
結像し且つ像の向きを合わせるのに用いられる左右の結
像光学系、6L,6Rは結像光学系5L,5Rで形成さ
れた像を夫々拡大する左右の接眼レンズである。尚、開
口絞り4L,4Rは、結像光学系5L,5Rの内部に夫
々設置されてもよく、又、結像光学系を構成するレンズ
のレンズ枠をもって代用されてもよい。又、この結像光
学系には、立体感が逆になるのを防ぐため、左右の光束
中に入れ替え用のプリズムやミラー等で構成される反射
光学系が含まれている。
According to the present invention, the stereoscopic effect is adjusted by utilizing this concept, and referring to FIGS.
The configuration will be described. In FIG. 1, 1 is an objective lens common to the left and right, 2 is a light-shielding member, 3 is a variable power relay optical system which is coaxial with the objective lens and has at least one image forming point I inside, 4L and 4R are variable power relay optical systems. The left and right observation aperture stops 5L and 5R arranged on the exit side of the
Left and right image forming optical systems 6L and 6R are image forming optical systems 5L and 5R which are coaxial with L and 4R and which are used to form an image so as to be stereoscopically observed by both eyes and to adjust the direction of the image. The left and right eyepieces respectively magnify the formed images. The aperture stops 4L and 4R may be installed inside the image forming optical systems 5L and 5R, respectively, or may be replaced by lens frames of lenses forming the image forming optical systems. Further, in order to prevent the stereoscopic effect from being reversed, the image forming optical system includes a reflective optical system including prisms and mirrors for replacement in the left and right light beams.

【0009】光学系を上記のように構成すると、立体感
は変倍系の倍率に比例して増大する。立体感が最大にな
る変倍系3の開口絞り4L,4Rの像を変倍系3より物
体側に形成させ、遮光部材2はその像位置付近に変倍系
3と同軸に設置される。この遮光部材2は、変倍系3の
最高倍率位置で入射瞳の外側をケル絞り(以下、立体感
減少絞りという)2a、又は変倍系3の最低倍率位置で
入射瞳の内側をケル中心遮光部材(以下、立体感向上絞
りという)2bである。立体感減少絞りにより入射瞳が
ケラレ始めた後は立体感の上昇は抑えられ、立体感向上
絞りにより入射瞳がケラレ始めた後は立体感の減少が抑
えられる。特に入射瞳の面積を30%以上遮ると、その
効果は大きい。又、変倍光学系の内部に焦点調整機能を
もたせた場合は、対物レンズ1は不要となり、遮光部材
2が変倍系3の前にあるだけの構成となる。又、ワーキ
ングディスタンス(WD)を変えることのできる対物レ
ンズは、変倍光学系と見做すことができる。
When the optical system is constructed as described above, the stereoscopic effect increases in proportion to the magnification of the variable power system. Images of the aperture diaphragms 4L and 4R of the variable power system 3 that maximize the stereoscopic effect are formed on the object side of the variable power system 3, and the light blocking member 2 is installed coaxially with the variable power system 3 near the image position. The light-shielding member 2 has a Kell diaphragm (hereinafter referred to as a stereoscopic reduction diaphragm) 2a outside the entrance pupil at the maximum magnification position of the variable power system 3 or a center of the inside of the entrance pupil at the minimum magnification position of the variable power system 3. It is a light blocking member (hereinafter referred to as a three-dimensional effect improving diaphragm) 2b. After the entrance pupil starts vignetting due to the stereoscopic reduction diaphragm, the increase in stereoscopic effect is suppressed, and after the entrance pupil begins to vignetting due to the stereoscopic effect improving diaphragm, the decrease in stereoscopic effect is suppressed. In particular, when the area of the entrance pupil is blocked by 30% or more, the effect is large. Further, when the focus adjusting function is provided inside the variable power optical system, the objective lens 1 is not necessary, and the light shielding member 2 is just in front of the variable power system 3. Further, the objective lens capable of changing the working distance (WD) can be regarded as a variable power optical system.

【0010】ところで、この光学系は全長が長くなるの
で、図2に示すように四面以上の反射面を用いて物体面
から観察者の目の位置までの距離を短くすることによ
り、作業性の良い顕微鏡となる。又、写真やテレビ等の
撮影光学系やオートフォーカスの検出系や複数の観察者
のための光路分割などのために、反射面を利用すると好
都合である。この場合、分割光学系がある部分には、ア
フォーカル光束を提供するようにした方がよい。そのた
め、変倍光学系は、変倍光学系3aと結像リレー光学系
3bとに分けられ、対物レンズ1,変倍光学系3a,結
像リレー光学系3b及び結像光学系5L,5Rを含む部
分がアフォーカル系となるように構成されている。
By the way, since this optical system has a long overall length, workability is improved by shortening the distance from the object surface to the position of the observer's eyes by using four or more reflecting surfaces as shown in FIG. It becomes a good microscope. In addition, it is convenient to use a reflecting surface for taking optical systems such as photographs and televisions, auto focus detection systems, and optical path division for a plurality of observers. In this case, it is better to provide the afocal light flux to the portion where the splitting optical system is located. Therefore, the variable power optical system is divided into a variable power optical system 3a and an imaging relay optical system 3b, and the objective lens 1, the variable power optical system 3a, the imaging relay optical system 3b, and the imaging optical systems 5L and 5R are included. The part that includes it is configured to be an afocal system.

【0011】又、結像光学系は、観察範囲と撮像範囲を
略同一にするため、変倍光学系3aより像側に分割プリ
ズム17を含んでいる。又、複数観察者の瞳位置のずれ
は小さい方がよいので、光路の分割は、結像リレー光学
系3bと結像光学系5L,5Rの間で行うのが好まし
い。又、赤外光照射によるアクティブ式のオートフォー
カスを行う場合には、赤外光と可視光とでは波長が異な
りレンズの焦点距離が変わるので、レンズ系を通さない
方がよい。そのため、光路の分割は、対物レンズ1の前
か、或いは対物レンズ1と変倍光学系3aの間で行われ
るのがよい。対物レンズ1と変倍光学系3aとの間で光
路分割を行う場合は、赤外光透過で可視光反射の特性の
良い分割素子を作るのが難しいので、可視光透過で赤外
光反射の分割素子16を設置するのがよい。
Further, the image forming optical system includes a split prism 17 on the image side of the variable power optical system 3a in order to make the observation range and the imaging range substantially the same. Further, since it is preferable that the deviation of the pupil positions of a plurality of observers is small, the division of the optical path is preferably performed between the image forming relay optical system 3b and the image forming optical systems 5L and 5R. Further, when performing active autofocusing by irradiating infrared light, it is better not to pass through the lens system because infrared light and visible light have different wavelengths and the focal length of the lens changes. Therefore, the division of the optical path is preferably performed before the objective lens 1 or between the objective lens 1 and the variable power optical system 3a. When the optical path is split between the objective lens 1 and the variable power optical system 3a, it is difficult to form a splitting element having a good characteristic of visible light reflection by transmitting infrared light, and thus it is possible to transmit infrared light by transmitting visible light. It is preferable to install the dividing element 16.

【0012】更に、この光学系では、複数人が同一の立
体感で観察方向を自由に変えられるので、より複雑な作
業を楽な姿勢で行うことができる。図3は、複数人での
観察が行える装置の一例を示している。この例は、分割
プリズム7の透過側に主観察者が、分割プリズム7の反
射側に副観察者が夫々位置するようにプリズム系が構成
されている。即ち、主観察者側には、主側プリズム8を
通して主側開口絞り9L,9Rと主側結像光学系10
L,10Rが設けられている。この主側結像光学系10
L,10Rは、主観察者の姿勢を楽にするため、左右光
軸の中間点を軸として回転可能である。この場合、主観
察者は鏡体を操作する関係で、回転角は60゜程度で十
分である。
Further, in this optical system, since a plurality of people can freely change the observation direction with the same stereoscopic effect, more complicated work can be performed in a comfortable posture. FIG. 3 shows an example of an apparatus that allows observation by a plurality of people. In this example, the prism system is configured such that the main observer is located on the transmission side of the split prism 7 and the sub-observer is located on the reflection side of the split prism 7. That is, on the main observer side, the main side aperture stops 9L and 9R and the main side imaging optical system 10 are passed through the main side prism 8.
L and 10R are provided. This main-side imaging optical system 10
L and 10R can rotate about the midpoint of the left and right optical axes as an axis in order to make the posture of the main observer easier. In this case, a rotation angle of about 60 ° is sufficient because the main observer operates the mirror body.

【0013】又、副観察者側は、分割プリズム7の反射
側に設けられた、副側プリズム10,11と、副側回転
プリズム12と、副側開口絞り13L,13Rと、副側
結像光学系14L,14Rと、図示しない副側接眼レン
ズとからなる。そして、分割プリズム7から副観察者に
至るまでの間の光学系全体を、分割プリズム7を透過す
る主側の光軸の周りに回転できるようにする。この場
合、副側は主側が回転しても動かないように構成されて
いる。又、副側のプリズム11の出射光軸を回転軸とし
て副側プリズム11より後方の光学系全体が回転できる
ようにも構成されている。さらに、副側プリズム12の
出射光軸を回転軸として、副側開口絞り13L,13R
以降の光学系が回転できるようになっている。このよう
に、副側が三軸の周りに回転できるようになっている
と、主観察者がどのように鏡体を傾けても、副観察者に
無理な観察姿勢を強いることはない。
On the sub-observer side, the sub-side prisms 10 and 11, the sub-side rotation prism 12, the sub-side aperture diaphragms 13L and 13R, and the sub-side image formation, which are provided on the reflection side of the split prism 7, are provided. The optical system 14L, 14R and a sub eyepiece lens (not shown). Then, the entire optical system from the split prism 7 to the sub-observer can be rotated around the optical axis on the main side that transmits the split prism 7. In this case, the sub side is constructed so as not to move even if the main side rotates. Further, the entire optical system behind the sub-side prism 11 can be rotated with the output optical axis of the sub-side prism 11 as a rotation axis. Further, with the output optical axis of the sub-side prism 12 as the rotation axis, the sub-side aperture stops 13L, 13R
The subsequent optical system can be rotated. In this way, if the sub-side can rotate around the three axes, no matter how the main observer tilts the mirror body, the sub-observer will not be forced to take an observing posture.

【0014】このように複数の観察者が観察できるよう
にした場合、変倍光学系から開口絞りまでの光路長を総
て同一にすることはできない。この光学系で瞳位置がず
れた場合、それは像面の左右方向の明るさの差として現
れる。立体感調整絞りによって像がケラレない限り使用
することはできるが、疲労が少なく良好な立体感が得ら
れるためには、左右方向で最も暗い部分と最も明るい部
分との比が1:3以内であることが必要である。従っ
て、立体感調整絞りによりケラレる像面の明るさの差が
1/3以内になるように、各観察者の開口絞りが設置さ
れる。
When a plurality of observers are allowed to observe in this way, the optical path lengths from the variable power optical system to the aperture stop cannot all be the same. When the pupil position is displaced in this optical system, it appears as a difference in brightness in the left-right direction of the image plane. It can be used as long as the image is not vignetted by the stereoscopic adjustment diaphragm, but in order to obtain good stereoscopic effect with less fatigue, the ratio between the darkest part and the brightest part in the left-right direction is within 1: 3. It is necessary to be. Therefore, the aperture stop of each observer is installed so that the difference in brightness of the image plane, which is vibrated by the stereoscopic effect adjustment stop, is within 1/3.

【0015】又、主観察者と副観察者との間で同一の物
体を見ながら、役割により観察できる範囲を変えたいと
いう要望があるが、この要望は、結像光学系に倍率を変
えるレンズ系を挿入して、倍率を切り換えることにより
達成することができる。又、主観察者側と副観察者側で
は開口絞りの位置が異なるので、共通の結像光学系を用
いて観察像位置を変えないようにするためアフォーカル
光束にする必要があるが、これは、結像光学系の前にア
フォーカル変倍レンズ15L,15Rを挿入できるよう
にすることにより、達成される。このように構成すれ
ば、アフォーカル変倍レンズの挿脱に関わらず、焦点位
置を変えずに倍率を変えることが可能となる。又、この
光学系には多数のプリズムが挿入されているため、その
製作誤差により像心が偏心するが、この偏心は、アフォ
ーカル変倍レンズ15L,15Rのレンズの一部を光軸
に垂直な方向に振ることにより補正することができる。
There is also a demand for the main observer and the sub-observer to see the same object while changing the observable range depending on the role. This demand is a lens for changing the magnification in the imaging optical system. This can be achieved by inserting the system and switching the magnification. Further, since the positions of the aperture diaphragms on the side of the main observer and on the side of the sub-observer are different, it is necessary to form an afocal light beam so as not to change the observation image position by using a common imaging optical system. Is achieved by allowing the afocal variable magnification lenses 15L and 15R to be inserted in front of the imaging optical system. According to this structure, the magnification can be changed without changing the focal position regardless of whether the afocal variable magnification lens is inserted or removed. Also, since a large number of prisms are inserted in this optical system, the image center is decentered due to manufacturing errors. This decentering causes a part of the lenses of the afocal variable magnification lenses 15L and 15R to be perpendicular to the optical axis. It can be corrected by shaking in different directions.

【0016】第1実施例 図4は本実施例の光学系の断面図であって、(a)は
0.42倍時の、(b)は0.48倍時の、(c)は
1.68倍時の状態を夫々示している。図5(a),
(b)及び(c)は本実施例における0.42倍時,
0.48倍時及び1.68倍時の球面収差特性を夫々示
す図、図6(a),(b)及び(c)は本実施例におけ
る0.42倍時,0.48倍時及び1.68倍時の非点
収差特性を夫々示す図、図7(a),(b)及び(c)
は本実施例における0.42倍時,0.48倍時及び
1.68倍時の歪曲収差特性を夫々示す図である。
First Embodiment FIG. 4 is a sectional view of the optical system of the present embodiment. (A) is 0.42 times, (b) is 0.48 times, and (c) is 1. The states at 0.68 times are shown respectively. FIG. 5 (a),
(B) and (c) are 0.42 times in the present embodiment,
6A, 6B, and 6C show spherical aberration characteristics at 0.48 times and 1.68 times, respectively, and FIGS. 6A, 6B, and 6C show 0.42 times, 0.48 times, and FIGS. 7 (a), 7 (b) and 7 (c) showing the astigmatism characteristics at 1.68 times, respectively.
6A and 6B are diagrams showing distortion aberration characteristics at 0.42 times, 0.48 times, and 1.68 times in the present example, respectively.

【0017】 [0017]

【0019】 [0019]

【0021】 倍率 D1 D2 D3 内向角 0.42 6 28.66 45.83 3 ゜ 0.84 47.08 21.12 12.29 6 ゜ 1.68 67.64 6.01 6.84 9.9 ゜ A=21 、 a=5 、 100<L<200 、 f=168 、 D=10.5 、 FN=19 一般に立体感は、内向角が1゜以上10゜以下であれ
ば、良好である。立体感調整絞りがない場合、最高倍率
で内向角が12゜となり、観察し易い顕微鏡を構成する
ことができた。
Magnification D1 D2 D3 Inward angle 0.42 6 28.66 45.83 3 ° 0.84 47.08 21.12 12.29 6 ° 1.68 67.64 6.01 6.84 9.9 ° A = 21, a = 5, 100 <L <200, f = 168, D = 10.5, FN = 19 Generally, the stereoscopic effect is good when the inward angle is 1 ° or more and 10 ° or less. When there was no stereoscopic adjustment diaphragm, the inward angle was 12 ° at the maximum magnification, and a microscope that was easy to observe could be constructed.

【0022】第2実施例 図8は本実施例の光学系の断面図であって、(a)は
0.42倍時の、(b)は0.84倍時の、(c)は
1.68倍時の状態を夫々示している。図9(a),
(b)及び(c)は本実施例における0.42倍時,
0.48倍時及び1.68倍時の球面収差特性を夫々示
す図、図10(a),(b)及び(c)は本実施例にお
ける0.42倍時,0.48倍時及び1.68倍時の非
点収差特性を夫々示す図、図11(a),(b)及び
(c)は本実施例における0.42倍時,0.48倍時
及び1.68倍時の歪曲収差特性を夫々示す図である。
Second Embodiment FIG. 8 is a sectional view of the optical system of the present embodiment, where (a) is 0.42 times, (b) is 0.84 times, and (c) is 1. The states at 0.68 times are shown respectively. FIG. 9 (a),
(B) and (c) are 0.42 times in the present embodiment,
FIGS. 10 (a), 10 (b), and 10 (c) show the spherical aberration characteristics at 0.48 times and 1.68 times, respectively, at 0.42 times, 0.48 times, and FIGS. 11A, 11B, and 11C respectively show astigmatism characteristics at 1.68 times, at 0.42 times, 0.48 times, and 1.68 times in this embodiment. FIG. 4 is a diagram showing the distortion aberration characteristics of FIG.

【0023】 [0023]

【0024】 [0024]

【0027】 倍率 D1 D2 D3 内向角 0.42 6 31.8 46.5 3 ゜ 0.84 48.3 23.2 12.8 6 ゜ 0.68 69.5 6 8.8 9.9 ゜ A=21 、 a=5 、 100<L<200 、 f=168 、 D=10.5 、 FN=19 本実施例は、第1実施例の対物レンズと変倍系の間に光
分割プリズムを挿入することができるように間隔をあ
け、且つ像面湾曲を改善したものである。
Magnification D1 D2 D3 Inward angle 0.42 6 31.8 46.5 3 ° 0.84 48.3 23.2 12.8 6 ° 0.68 69.5 6 8.8 9.9 ° A = 21, a = 5, 100 <L <200, f = 168, D = 10.5, FN = 19 In this example, a space is provided so that a light splitting prism can be inserted between the objective lens and the variable power system of the first example, and the field curvature is improved.

【0028】第3実施例 図12は本実施例の光学系の断面図であって、(a)は
ワーキングディスタンス(WD)=200で0.45倍
時の、(b)はWD=200で0.9倍時の、(c)は
WD=200で1.8倍時の、(d)はWD=300で
0.3倍時の、(e)はWD=300で0.6倍時の、
(f)はWD=300で1.2倍時の、(g)はWD=
400で0.23倍時の、(h)はWD=400で0.
45倍時の、(i)はWD=400で0.9倍時の状態
を夫々示している。図13(a),(b)及び(c)は
本実施例におけるWD=200での0.45倍時,0.
9倍時及び1.8倍時の、(d),(e)及び(f)は
WD=300での0.3倍時,0.6倍時及び1.2倍
時の、(g),(h)及び(i)はWD=400での
0.23倍時,0.45倍時及び0.9倍時の、球面収
差特性を夫々示す図である。
Third Embodiment FIG. 12 is a cross-sectional view of the optical system of the present embodiment. (A) is a working distance (WD) = 200 and 0.45 times, (b) is WD = 200. 0.9 times, (c) WD = 200 and 1.8 times, (d) WD = 300 and 0.3 times, (e) WD = 300 and 0.6 times of,
(F) is WD = 300 and 1.2 times, (g) is WD =
400, 0.23 times, (h) is WD = 400 and 0.
(I) at 45 times shows the state at WD = 400 and 0.9 times. 13 (a), 13 (b), and 13 (c) show the values of 0 ..
(D), (e) and (f) at 9 times and 1.8 times, (g) at 0.3 times, 0.6 times and 1.2 times at WD = 300 , (H) and (i) are diagrams showing spherical aberration characteristics at WD = 400 at 0.23 times, 0.45 times and 0.9 times, respectively.

【0029】図14(a),(b)及び(c)は本実施
例におけるWD=200での0.45倍時,0.9倍時
及び1.8倍時の、(d),(e)及び(f)はWD=
300での0.3倍時,0.6倍時及び1.2倍時の、
(g),(h)及び(i)はWD=400での0.23
倍,0.45倍時及び0.9倍時の、非点収差特性を夫
々示す図である。図15(a),(b)及び(c)は本
実施例におけるWD=200での0.45倍時,0.9
倍時及び1.8倍時の、(d),(e)及び(f)はW
D=300での0.3倍時,0.6倍時及び1.2倍時
の、(g),(h)及び(i)はWD=400での0.
23倍時,0.45倍時及び0.9倍時の、歪曲収差特
性を夫々示す図である。
FIGS. 14 (a), (b) and (c) show (d) and (d) at 0.45 times, 0.9 times and 1.8 times when WD = 200 in this embodiment. e) and (f) are WD =
At 300 times 0.3 times, 0.6 times and 1.2 times,
(G), (h) and (i) are 0.23 at WD = 400
It is a figure which respectively shows the astigmatism characteristic at the time of magnification, 0.45 times, and 0.9 times. FIGS. 15A, 15B, and 15C show 0.9 when 0.45 times when WD = 200 in this embodiment.
(D), (e) and (f) at the time of doubling and 1.8 times are W
(G), (h) and (i) at 0.3 times, 0.6 times and 1.2 times at D = 300 are 0.
It is a figure which respectively shows the distortion aberration characteristic at the time of 23 times, 0.45 times, and 0.9 times.

【0030】 [0030]

【0031】 r11= ∞ d11=0.5 r12= ∞ d12=22.5 n12=1.6883 ν12=56.3 r13= ∞ d13=2 r14= ∞ d14=45 n14=1.7335 ν14=51.8 r15= ∞ d15=6 r16=99.257 d16=7.5 n16=1.72916 ν16=54.7 r17=-80.62 d17=5 n17=1.85026 ν17=32.3 r18=-352.475 d18=D4 r19=-61.039 d19=2.5 n19=1.85026 ν19=32.3 r20= 41.766 d20=5.7 R 11 = ∞ d 11 = 0.5 r 12 = ∞ d 12 = 22.5 n 12 = 1.6883 ν 12 = 56.3 r 13 = ∞ d 13 = 2 r 14 = ∞ d 14 = 45 n 14 = 1.7335 ν 14 = 51.8 r 15 = ∞ d 15 = 6 r 16 = 99.257 d 16 = 7.5 n 16 = 1.72916 ν 16 = 54.7 r 17 = -80.62 d 17 = 5 n 17 = 1.85026 ν 17 = 32.3 r 18 = -352.475 d 18 = D4 r 19 = -61.039 d 19 = 2.5 n 19 = 1.85026 ν 19 = 32.3 r 20 = 41.766 d 20 = 5.7

【0032】 r21=-38.442 d21=4 n21=1.70154 ν21=41.2 r22=37.896 d22=5.3 n22=1.84666 ν22=23.8 r23=-103.392 d23=D5 r24=281.61 d24=5 n24=1.85026 ν24=32.3 r25=47.837 d25=8.9 n25=1.741 ν25=52.7 r26=-63.449 d26=D6 r27= ∞ d27=45 n27=1.51633 ν27=64.1 r28= ∞ d28=1 r29= ∞ d29=61.5 n29=1.56883 ν29=56.3 r30= ∞ d30=5 R 21 = -38.442 d 21 = 4 n 21 = 1.70154 ν 21 = 41.2 r 22 = 37.896 d 22 = 5.3 n 22 = 1.84666 ν 22 = 23.8 r 23 = -103.392 d 23 = D5 r 24 = 281.61 d 24 = 5 n 24 = 1.85026 ν 24 = 32.3 r 25 = 47.837 d 25 = 8.9 n 25 = 1.741 ν 25 = 52.7 r 26 = -63.449 d 26 = D6 r 27 = ∞ d 27 = 45 n 27 = 1.51633 ν 27 = 64.1 r 28 = ∞ d 28 = 1 r 29 = ∞ d 29 = 61.5 n 29 = 1.56883 ν 29 = 56.3 r 30 = ∞ d 30 = 5

【0033】 [0033]

【0035】 WD 倍率 D1 D2 D3 D4 D5 D6 内向角 200 0.45 285.3 28.1 9 6 28.8 48.8 2.6 ゜ 200 0.9 285.3 28.1 9 48.3 21.2 13.6 5.2 ゜ 200 1.8 285.3 28.1 9 69.4 6 7.6 8.4 ゜ 300 0.3 386.1 13.7 23.4 6 28.8 48.3 1.7 ゜ 300 0.6 386.1 13.7 23.4 48.3 21.2 13.6 3.4 ゜ 300 1.2 386.1 13.7 23.4 69.4 6 7.6 5.6 ゜ 400 0.23 486.8 6.5 30.6 6 28.8 48.3 1.3 ゜ 400 0.45 486.8 6.5 30.6 48.3 21.2 13.6 2.6 ゜ 400 0.9 486.8 6.5 30.6 69.4 6 7.6 4.2 ゜ A=21 、 a=5 、 100<L<200 、 f=210 、 D=10.5 、 FN=22 WD magnification D1 D2 D3 D4 D5 D6 Inward angle 200 0.45 285.3 28.1 9 6 28.8 48.8 2.6 ° 200 0.9 285.3 28.1 9 48.3 21.2 13.6 5.2 ° 200 1.8 285.3 28.1 9 69.4 6 7.6 8.4 ° 300 0.3 386.1 13.7 23.4 6 28.8 48.3 1.7 ° 300 0.6 386.1 13.7 23.4 48.3 21.2 13.6 3.4 ° 300 1.2 386.1 13.7 23.4 69.4 6 7.6 5.6 ° 400 0.23 486.8 6.5 30.6 6 28.8 48.3 1.3 ° 400 0.45 486.8 6.5 30.6 48.3 21.2 13.6 2.6 ° 400 0.9 486.8 6.5 30.6 69.4 6 7.6 4.2 ° A = 21, a = 5, 100 <L <200, f = 210, D = 10.5, FN = 22

【0036】又、結像レンズとして次のレンズ系が使用
された。 r1 =82.161 d1 =2.3 n1 = 1.6727 ν1 =32.1 r2 =-33.487 d2 =1.7 n2 = 1.51633 ν2 =64.1 r3 =-265.07 d3 =2.5 r4 =152.785 d4 =2.3 n4 =1.51633 ν4 =64.1 r5 =-35.508 d5 =1.8 n5 =1.7552 ν5 =27.5 r6 =97.153
The following lens system was used as the imaging lens. r 1 = 82.161 d 1 = 2.3 n 1 = 1.6727 ν 1 = 32.1 r 2 = -33.487 d 2 = 1.7 n 2 = 1.51633 ν 2 = 64.1 r 3 = -265.07 d 3 = 2.5 r 4 = 152.785 d 4 = 2.3 n 4 = 1.51633 ν 4 = 64.1 r 5 = -35.508 d 5 = 1.8 n 5 = 1.7552 ν 5 = 27.5 r 6 = 97.153

【0037】本実施例は、WDを200から400に変
えても立体感が良好に保持され、良好な像が得られた。
In this example, the three-dimensional effect was maintained well and a good image was obtained even when the WD was changed from 200 to 400.

【0038】又、アフォーカル変倍系15L,15Rの
1倍と1.5倍の場合の数値データは次の通りである。 1×の場合 r1 = ∞ d1 =2.5 n1 = 1.51823 ν1 =59 r2 =-97.568 d2 =5.7 r3 =-84.029 d3 =2.5 n3 = 1.58913 ν3 =61.2 r4 =84.029 d4 =2.9 r5 =81.935 d5 =2.3 n5 =1.51633 ν5 =64.1 r6 =-248.625
Numerical data for the afocal variable magnification systems 15L and 15R at 1 and 1.5 times are as follows. 1 × case r 1 = ∞ d 1 = 2.5 n 1 = 1.51823 ν 1 = 59 r 2 = -97.568 d 2 = 5.7 r 3 = -84.029 d 3 = 2.5 n 3 = 1.58913 ν 3 = 61.2 r 4 = 84.029 d 4 = 2.9 r 5 = 81.935 d 5 = 2.3 n 5 = 1.51633 ν 5 = 64.1 r 6 = -248.625

【0039】 1.5×の場合 r1 =33.07 d1 =2.3 n1 = 1.58913 ν1 =61.2 r2 =-33.07 d2 =1 n2 = 1.71736 ν2 =29.5 r3 =-97.903 d3 =13.2 r4 =-67.205 d4 =1.5 n4 =1.69895 ν4 =30.1 r5 =-20.316 d5 =1 n5 =1.6968 ν5 =55.5 In the case of 1.5 × r 1 = 33.07 d 1 = 2.3 n 1 = 1.58913 ν 1 = 61.2 r 2 = -33.07 d 2 = 1 n 2 = 1.71736 ν 2 = 29.5 r 3 = -97.903 d 3 = 13.2 r 4 = -67.205 d 4 = 1.5 n 4 = 1.69895 ν 4 = 30.1 r 5 = -20.316 d 5 = 1 n 5 = 1.6968 ν 5 = 55.5

【0040】上記各実施例において、r1 ,r2
3 ,・・・・はレンズ各面の曲率半径、d 1 ,d2
3 ,・・・・は各レンズの肉厚及び空気間隔、n1
2 ,n3 ,・・・・は各レンズの屈折率、ν1 ,ν2 ,ν
3 ,・・・・は各レンズのアツベ数、Aは立体感調整絞りの
径、aは開口絞りの径、Lは変倍系の最も像側にある面
から開口絞りの中心までの距離(偏心量)、FNは視野
数である。
In each of the above embodiments, r1, RTwo,
rThree, ... is the radius of curvature of each surface of the lens, d 1, DTwo,
dThree, ... is the wall thickness of each lens and the air gap, n1,
nTwo, NThree,... Is the refractive index of each lens, ν1, ΝTwo, Ν
Three, ... are the numbers of each lens, and A is the three-dimensional effect adjustment diaphragm.
Diameter, a is the diameter of the aperture stop, and L is the surface closest to the image side in the variable power system.
To the center of the aperture stop (eccentricity), FN is the field of view
Is a number.

【0041】以上説明したように、本発明による実体顕
微鏡は、特許請求の範囲に記載した特徴のほかに、下記
のような特徴も有している。
As described above, the stereoscopic microscope according to the present invention has the following features in addition to the features described in the claims.

【0042】(1)前記遮光部材により瞳の面積が30
%以上減らされる倍率がある、ことを特徴とする請求項
1又は2に記載の実体顕微鏡。
(1) The area of the pupil is 30 due to the light shielding member.
The stereomicroscope according to claim 1 or 2, wherein the magnification is reduced by at least%.

【0043】(2)前記変倍光学系から射出した光束を
分割して複数の観察者によって観察することができるよ
うにし、各観察像が前記各開口絞りによりケラレること
がないようにしたことを特徴とする請求項1,2又は上
記(1)に記載の実体顕微鏡。
(2) The light beam emitted from the variable power optical system is divided so that it can be observed by a plurality of observers, and each observation image is prevented from being vignetted by each aperture stop. The stereomicroscope according to claim 1 or 2, or the above (1).

【0044】(3)各観察像の左右方向の明るさの最小
と最大の比が1:4以内であることを特徴とする上記
(2)に記載の実体顕微鏡。
(3) The stereomicroscope according to (2) above, wherein the ratio of the minimum and maximum brightness of the observed images in the left-right direction is within 1: 4.

【0045】(4)入射光軸と前記変倍光学系の射出光
軸とを近付けるため4回以上の反射面を設けたことを特
徴とする請求項1,2又は上記(1)乃至(3)の何れ
かに記載の実体顕微鏡。
(4) The reflecting surface is provided at least four times in order to bring the incident optical axis and the outgoing optical axis of the variable power optical system close to each other, or (1) to (3) above. ) The stereoscopic microscope according to any one of 1) to 5).

【0046】(5)前記変倍光学系がアフォーカル光学
系であることを特徴とする、上記(4)に記載の実体顕
微鏡。
(5) The stereomicroscope according to (4) above, wherein the variable power optical system is an afocal optical system.

【0047】(6)前記変倍光学系が、アフォーカル変
倍光学系と一回結像のアフォーカル光学系とで構成され
ていることを特徴とする上記(4)に記載の実体顕微
鏡。
(6) The stereomicroscope according to the above (4), wherein the variable power optical system comprises an afocal variable power optical system and an afocal optical system for single-time imaging.

【0048】(7)アフォーカル部分で光束を分割する
ように配置された光分割素子を含んでいることを特徴と
する上記(6)に記載の実体顕微鏡。
(7) The stereomicroscope according to the above (6), which includes a light splitting element arranged so as to split the light beam at the afocal portion.

【0049】(8)前記各結像レンズの入射側にアフォ
ーカル変倍光学系を夫々配置したことを特徴とする請求
項1,2又は上記(1)乃至(7)の何れかに記載の実
体顕微鏡。
(8) An afocal variable-magnification optical system is arranged on the incident side of each of the imaging lenses, respectively, and any one of the above (1) to (7). Stereo microscope.

【0050】[0050]

【発明の効果】上述の如く本発明によれば、変倍光学系
以外に移動する部分がなく、変倍時に立体感の変化を適
切な範囲に抑えることのできる、左右共通の変倍光学系
を有する実体顕微鏡を提供することができる。
As described above, according to the present invention, there is no moving part other than the variable power optical system, and it is possible to suppress the change of the stereoscopic effect to an appropriate range during the variable power, which is common to the left and right. It is possible to provide a stereoscopic microscope having

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る実体顕微鏡の光学系の基本構成を
示す図である。
FIG. 1 is a diagram showing a basic configuration of an optical system of a stereoscopic microscope according to the present invention.

【図2】図1に示す光学系において全長を短くするため
の対物レンズと変倍リレー光学系部分の具体的構成を示
す斜視図である。
FIG. 2 is a perspective view showing a specific configuration of an objective lens and a variable power relay optical system portion for shortening the overall length in the optical system shown in FIG.

【図3】複数人での観察が行えるように構成した本発明
に係る実体顕微鏡の光学系の一構成例を示す図である。
FIG. 3 is a diagram showing an example of the configuration of an optical system of a stereomicroscope according to the present invention configured to allow observation by a plurality of people.

【図4】本発明の第1実施例である光学系の断面図で、
(a)は0.42倍時の、(b)は0.48倍時の、
(c)は1.68倍時の状態を夫々示す。
FIG. 4 is a cross-sectional view of an optical system that is a first embodiment of the present invention,
(A) is at 0.42 times, (b) is at 0.48 times,
(C) shows the states at 1.68 times.

【図5】(a),(b)及び(c)は、第1実施例にお
ける0.42倍時,0.48倍時及び1.68倍時の球
面収差特性を夫々示す図である。
5 (a), (b) and (c) are diagrams respectively showing spherical aberration characteristics at 0.42 times, 0.48 times and 1.68 times in the first example.

【図6】(a),(b)及び(c)は、第1実施例にお
ける0.42倍時,0.48倍時及び1.68倍時の非
点収差特性を夫々示す図である。
6 (a), (b) and (c) are diagrams respectively showing astigmatism characteristics at 0.42 times, 0.48 times and 1.68 times in the first example. .

【図7】(a),(b)及び(c)は、第1実施例にお
ける0.42倍時,0.48倍時及び1.68倍時の歪
曲収差特性を夫々示す図である。
7 (a), (b) and (c) are diagrams respectively showing distortion aberration characteristics at 0.42 times, 0.48 times and 1.68 times in the first example.

【図8】本発明の第2実施例である光学系の断面図で、
(a)は0.42倍時の、(b)は0.84倍時の、
(c)は1.68倍時の状態を夫々示す。
FIG. 8 is a cross-sectional view of an optical system that is a second embodiment of the present invention,
(A) is 0.42 times, (b) is 0.84 times,
(C) shows the states at 1.68 times.

【図9】(a),(b)及び(c)は、第2実施例にお
ける0.42倍時,0.48倍時及び1.68倍時の球
面収差特性を夫々示す図である。
9A, 9B, and 9C are diagrams showing spherical aberration characteristics at 0.42 times, 0.48 times, and 1.68 times in the second example, respectively.

【図10】(a),(b)及び(c)は、第2実施例に
おける0.42倍時,0.48倍時及び1.68倍時の
非点収差特性を夫々示す図である。
10 (a), (b) and (c) are diagrams respectively showing astigmatism characteristics at 0.42 times, 0.48 times and 1.68 times in the second example. .

【図11】(a),(b)及び(c)は、第2実施例に
おける0.42倍時,0.48倍時及び1.68倍時の
歪曲収差特性を夫々示す図である。
11 (a), (b) and (c) are diagrams respectively showing distortion aberration characteristics at 0.42 times, 0.48 times and 1.68 times in the second example.

【図12】本発明の第3実施例である光学系の断面図
で、(a)はWD=200で0.45倍時の、(b)は
WD=200で0.9倍時の、(c)はWD=200で
1.8倍時の、(d)はWD=300で0.3倍時の、
(e)はWD=300で0.6倍時の、(f)はWD=
300で1.2倍時の、(g)はWD=400で0.2
3倍時の、(h)はWD=400で0.45倍時の、
(i)はWD=400で0.9倍時の状態を夫々示す図
である。
12A and 12B are cross-sectional views of an optical system according to a third embodiment of the present invention, in which (a) is WD = 200 and 0.45 times, and (b) is WD = 200 and 0.9 times. (C) is WD = 200 at 1.8 times, (d) is WD = 300 at 0.3 times,
(E) is WD = 300 and 0.6 times, (f) is WD =
300 times 1.2 times, (g) is WD = 400 0.2
3 times, (h) is WD = 400 and 0.45 times,
(I) is a diagram showing a state when WD = 400 and 0.9 times.

【図13】(a),(b)及び(c)は、第3実施例に
おけるWD=200での0.45倍時の,0.9倍時及
び1.8倍時の、(d),(e)及び(f)はWD=3
00での0.3倍時,0.6倍時及び1.2倍時の、
(g),(h)及び(i)はWD=400での0.23
倍時,0.45倍時及び0.9倍時の、球面収差特性を
夫々示す図である。
13 (a), (b) and (c) are (d) at 0.45 times, 0.9 times and 1.8 times at WD = 200 in the third embodiment. , (E) and (f) have WD = 3
At 0.3 times, 0.6 times and 1.2 times,
(G), (h) and (i) are 0.23 at WD = 400
It is a figure which respectively shows a spherical-aberration characteristic at the time of double, 0.45 time, and 0.9 time.

【図14】(a),(b)及び(c)は、第3実施例に
おけるWD=200での0.45倍時,0.9倍時及び
1.8倍時の、(d),(e)及び(f)はWD=30
0での0.3倍時,0.6倍時及び1.2倍時の、
(g),(h)及び(i)はWD=400での0.23
倍時,0.45倍時及び0.9倍時の、非点収差特性を
夫々示す図である。
14 (a), (b) and (c) show (d), 0.45 times, 0.9 times and 1.8 times at WD = 200 in the third embodiment. WD = 30 in (e) and (f)
At 0, 0.3 times, 0.6 times and 1.2 times,
(G), (h) and (i) are 0.23 at WD = 400
It is a figure which respectively shows an astigmatism characteristic at the time of double, 0.45 time, and 0.9 time.

【図15】(a),(b)及び(c)は、第3実施例に
おけるWD=200での0.45倍時,0.9倍時及び
1.8倍時の、(d),(e)及び(f)はWD=30
0での0.3倍時,0.6倍時及び1.2倍時の、
(g),(h)及び(i)はWD=400での0.23
倍時,0.45倍時及び0.9倍時の歪曲収差特性を夫
々示す図である。
15 (a), (b) and (c) are (d), 0.45 times, 0.9 times and 1.8 times at WD = 200 in the third embodiment. WD = 30 in (e) and (f)
At 0, 0.3 times, 0.6 times and 1.2 times,
(G), (h) and (i) are 0.23 at WD = 400
It is a figure which shows the distortion aberration characteristic at the time of 2 times, 0.45 times, and 0.9 times, respectively.

【符号の説明】[Explanation of symbols]

1 対物レンズ 2 遮光部材 3 変倍リレー光学系 3a 変倍光学系 3b 結像リレー光学系 4L,4R 左右観察用の開口絞り 5L,5R 左右の結像光学系 6L,6R 左右の接眼レンズ 7,16,17 分割プリズム 8 主側プリズム 9L,9R 主側開口絞り 10,11 副側プリズム 10L,10R 主側結像光学系 12 副側回転プリズム 13L,13R 副側開口絞り 14L,14R 副側結像光学系 15L,15R アフォーカル変倍レンズ I 結像点 DESCRIPTION OF SYMBOLS 1 Objective lens 2 Light-shielding member 3 Variable magnification relay optical system 3a Variable magnification optical system 3b Image formation relay optical system 4L, 4R Left and right observation aperture diaphragms 5L, 5R Left and right image formation optical system 6L, 6R Left and right eyepieces 7, 16,17 Split prism 8 Main side prism 9L, 9R Main side aperture stop 10,11 Sub side prism 10L, 10R Main side imaging optical system 12 Sub side rotating prism 13L, 13R Sub side aperture stop 14L, 14R Sub side imaging Optical system 15L, 15R Afocal variable magnification lens I Imaging point

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 対物レンズと、少なくとも一つの結像点
を含んでいて該対物レンズと同軸の左右共通の一つの変
倍光学系と、該変倍光学系の後方に配置されていて各々
が開口絞りと結像レンズと接眼レンズを含む左右一対の
観察光学系とを備え、上記一対の開口絞りによって決定
される観察光軸が上記変倍光学系の光軸と異なったとこ
ろを通るようになっている実体顕微鏡において、上記一
対の開口絞りにより決定される視野中心像の瞳の外側を
遮光する遮光部材が、少なくとも最高倍率設定時には、
上記結像点よりも物体側に配置されるようにしたことを
特徴とする実体顕微鏡。
1. An objective lens, one variable-magnification optical system that includes at least one image-forming point and is coaxial with the objective lens, and is common to the left and right. The variable-magnification optical system is disposed behind the variable-magnification optical system. A pair of left and right observation optical systems including an aperture stop, an imaging lens, and an eyepiece lens are provided, and the observation optical axis determined by the pair of aperture stops passes through a place different from the optical axis of the variable power optical system. In a stereoscopic microscope, the light blocking member that blocks the outside of the pupil of the center image of the visual field determined by the pair of aperture stops, at least when the maximum magnification is set,
A stereomicroscope characterized in that it is arranged on the object side of the image formation point.
【請求項2】 対物レンズと、少なくとも一つの結像点
を含んでいて該対物レンズと同軸の左右共通の一つの変
倍光学系と、該変倍光学系の後方に配置されていて各々
が開口絞りと結像レンズと接眼レンズを含む左右一対の
観察光学系とを備え、上記一対の開口絞りによって決定
される観察光軸が上記変倍光学系の光軸と異なったとこ
ろを通るようになっている実体顕微鏡において、上記一
対の開口絞りにより決定される視野中心像の瞳の内側を
遮光する遮光部材が、少なくとも最低倍率設定時には、
上記結像点よりも物体側に配置されるようにしたことを
特徴とする実体顕微鏡。
2. An objective lens, one variable-magnification optical system that includes at least one image-forming point and is coaxial with the objective lens, and is common to the left and right, and is arranged behind the variable-magnification optical system. A pair of left and right observation optical systems including an aperture stop, an imaging lens, and an eyepiece lens are provided, and the observation optical axis determined by the pair of aperture stops passes through a place different from the optical axis of the variable power optical system. In a stereoscopic microscope, the light blocking member that blocks the inside of the pupil of the center image of the field of view determined by the pair of aperture stops, at least when the minimum magnification is set,
A stereomicroscope characterized in that it is arranged on the object side of the image formation point.
JP13533996A 1996-05-29 1996-05-29 Stereo microscope Expired - Fee Related JP3645655B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13533996A JP3645655B2 (en) 1996-05-29 1996-05-29 Stereo microscope
DE19718102A DE19718102B4 (en) 1996-05-29 1997-04-29 stereomicroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13533996A JP3645655B2 (en) 1996-05-29 1996-05-29 Stereo microscope

Publications (2)

Publication Number Publication Date
JPH09318882A true JPH09318882A (en) 1997-12-12
JP3645655B2 JP3645655B2 (en) 2005-05-11

Family

ID=15149467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13533996A Expired - Fee Related JP3645655B2 (en) 1996-05-29 1996-05-29 Stereo microscope

Country Status (1)

Country Link
JP (1) JP3645655B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258516A (en) * 1998-03-13 1999-09-24 Olympus Optical Co Ltd Stereomicroscope allowed to be ubserved by plural observers
JP2006158452A (en) * 2004-12-02 2006-06-22 Olympus Corp Medical three-dimensional imaging apparatus
JP2006184484A (en) * 2004-12-27 2006-07-13 Olympus Corp Binocular stereo microscope
JP2007213103A (en) * 2000-11-08 2007-08-23 Olympus Corp Microscope zoom objective lens
JP2008170803A (en) * 2007-01-12 2008-07-24 Olympus Medical Systems Corp Stereomicroscope
US7468835B2 (en) 2003-08-08 2008-12-23 Carl Zeiss Surgical Gmbh Microscopy system and method
EP2472301A3 (en) * 2009-01-29 2015-09-02 Nikon Corporation Imaging Optical System, Microscope Apparatus Including The Imaging Optical System, and Stereoscopic Microscope Apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258516A (en) * 1998-03-13 1999-09-24 Olympus Optical Co Ltd Stereomicroscope allowed to be ubserved by plural observers
JP2007213103A (en) * 2000-11-08 2007-08-23 Olympus Corp Microscope zoom objective lens
US7468835B2 (en) 2003-08-08 2008-12-23 Carl Zeiss Surgical Gmbh Microscopy system and method
US9279974B2 (en) 2003-08-08 2016-03-08 Carl Zeiss Meditic Ag Microscopy system and method
JP2006158452A (en) * 2004-12-02 2006-06-22 Olympus Corp Medical three-dimensional imaging apparatus
US7768701B2 (en) 2004-12-02 2010-08-03 Olympus Corporation Three-dimensional medical imaging apparatus
JP2006184484A (en) * 2004-12-27 2006-07-13 Olympus Corp Binocular stereo microscope
JP2008170803A (en) * 2007-01-12 2008-07-24 Olympus Medical Systems Corp Stereomicroscope
EP2472301A3 (en) * 2009-01-29 2015-09-02 Nikon Corporation Imaging Optical System, Microscope Apparatus Including The Imaging Optical System, and Stereoscopic Microscope Apparatus
US10831003B2 (en) 2009-01-29 2020-11-10 Nikon Corporation Imaging optical system, microscope apparatus including the imaging optical system, and stereoscopic microscope apparatus
US10895720B2 (en) 2009-01-29 2021-01-19 Nikon Corporation Imaging optical system, microscope apparatus including the imaging optical system, and stereoscopic microscope apparatus

Also Published As

Publication number Publication date
JP3645655B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
EP0660155B1 (en) Image display apparatus
US4601550A (en) Stereo-microscope with a common objective lens system
US5729382A (en) Large exit-pupil stereoscopic microscope
JP4197915B2 (en) Stereoscopic imaging device
EP0845692A2 (en) Optical system with a rotationally asymmetric curved surface
JPS62287213A (en) Variable tilt angle binocular lens barrel
JPH11258518A (en) Observation optical system and optical unit having the same
JP3752356B2 (en) Stereo microscope
US4634241A (en) Stereoscopic microscope
JP2001108916A (en) Solid mirror optical system
JP3689124B2 (en) Stereo microscope
JPH0760218B2 (en) Single objective binocular stereo microscope
JP3645655B2 (en) Stereo microscope
US7085045B2 (en) Stereoscopic microscope
JPH08286115A (en) Microscope with infinity correction objective lens
JP2945118B2 (en) Stereo microscope
JP2958096B2 (en) Stereo microscope
JP3454851B2 (en) Stereo microscope
JPH04355712A (en) Binocular vision device
JPH05107481A (en) Stereoscopic microscope
JP3577107B2 (en) Stereo microscope
JP3216896B2 (en) Stereo microscope
JP3072930B2 (en) Stereo microscope
JP4217405B2 (en) Stereo microscope
JP3668343B2 (en) Binocular tube with variable tilt angle for stereo microscope

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees