JPH04355712A - Binocular vision device - Google Patents

Binocular vision device

Info

Publication number
JPH04355712A
JPH04355712A JP3131119A JP13111991A JPH04355712A JP H04355712 A JPH04355712 A JP H04355712A JP 3131119 A JP3131119 A JP 3131119A JP 13111991 A JP13111991 A JP 13111991A JP H04355712 A JPH04355712 A JP H04355712A
Authority
JP
Japan
Prior art keywords
pupil
division
optical system
eyepiece
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3131119A
Other languages
Japanese (ja)
Inventor
Toyoji Hanzawa
豊治 榛澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP3131119A priority Critical patent/JPH04355712A/en
Publication of JPH04355712A publication Critical patent/JPH04355712A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To offer the binocular view device of a microscope of a kind which obtains a normal stereoscopic image at all times for stereoscopy by pupil division. CONSTITUTION:The binocular view device is equipped with pupil dividing means 1 and 2 which is arranged behind a single objective system, but divides the pupil of said objective system into a 1st and a 2nd part, 1st and 2nd oculars 5L and 5R, an ocular lens barrel optical system which guides the pieces of luminous flux from the divided parts to the 1st and 2nd oculars 5L and 5R, and switching means 1 and 2 which switch the optical paths from the 1st and 2nd parts to the 1st and 2nd oculars.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、単一の対物系を用いて
瞳分割により立体視を行う顕微鏡装置における特に双眼
立体視装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microscope apparatus that performs stereoscopic viewing by pupil division using a single objective system, and particularly to a binocular stereoscopic viewing apparatus.

【0002】0002

【従来の技術】例えば、特に生物学分野や医学分野では
、物体を立体的に把握するという要望が高い。そしてか
かる要望に対して、左右一対の観察光学系を並列配置し
て構成した双眼実体顕微鏡が使用されている。ところが
、特に高倍率や高解像度を要求される場合や顕微鏡の大
きさに制限がある場合には、2つの光学系を併置した構
成をとることができない。又、手術用顕微鏡において術
者の観察光路と助手の観察光路とが互いに直交している
場合等においても光学系の配置に制限があって、2つの
光学系を併置した構成をとることができない。
2. Description of the Related Art For example, particularly in the fields of biology and medicine, there is a strong demand for three-dimensional understanding of objects. In order to meet this demand, a binocular stereomicroscope is being used which is constructed by arranging a pair of left and right observation optical systems in parallel. However, especially when high magnification or high resolution is required or when there is a limit to the size of the microscope, it is not possible to adopt a configuration in which two optical systems are placed side by side. Furthermore, even in cases where the observation optical path of the surgeon and the observation optical path of the assistant are orthogonal to each other in a surgical microscope, there are restrictions on the arrangement of the optical systems, and it is not possible to have a configuration in which the two optical systems are placed side by side. .

【0003】そこで従来、特開昭62−17722号公
報により開示された単対物双眼立体視顕微鏡のように立
体視を行うようにした顕微鏡が考案されている。この単
対物双眼立体視顕微鏡の構成例は図10に示した通りで
あるが、物体側から順に、対物レンズと、リレーレンズ
とを備えた対物系の背後に瞳を分割する光分割プリズム
を配置し、分割された瞳を通る光線のそれぞれは観察者
の左右の目に入り、これにより立体視が行われるという
ものである。
[0003] Conventionally, therefore, a microscope capable of performing stereoscopic vision has been devised, such as a single-objective binocular stereoscopic microscope disclosed in Japanese Patent Application Laid-Open No. 17722/1983. An example of the configuration of this single-objective binocular stereoscopic microscope is shown in FIG. 10, in which a light splitting prism that splits the pupil is placed behind an objective system that includes an objective lens and a relay lens in order from the object side. However, each of the light rays passing through the divided pupils enters the viewer's left and right eyes, resulting in stereoscopic vision.

【0004】又、瞳分割により立体視を行う方法は上記
の例の他に例えば、特開昭56−144410号公報に
より双眼顕微鏡が開示されている。そして図11はかか
る双眼顕微鏡において瞳を1回リレーするようにした場
合の接眼部付近の光学系の構成例を示しているが、図に
おいて、図示しない単対物レンズの後方に、第1リレー
レンズの前レンズ21及び後レンズ22、第2リレーレ
ンズの前後レンズ間のローテーションプリズム23、第
1ミラー24及び第2ミラー25から成り光軸と交差す
る分割線24′が入射瞳と共役な位置付近であるように
配置された第2光束分割器26、該第2光束分割器26
によって分割されたそれぞれの光束の方向を観察者の視
準方向と平行にするミラー27,28、眼幅調整のため
に光束を平行移動させる台形プリズム29,30および
接眼レンズ31,32がそれぞれ配置されている。そし
てかかる双眼顕微鏡の光学系において、第1,第2リレ
ーレンズにより1回リレーされた対物レンズの瞳を第1
ミラー24及び第2ミラー25により左右に分割して、
瞳の右側の光束は左の接眼レンズに、また瞳の左側の光
束は右の接眼レンズにそれぞれ入るようになっている。 これは、1回の瞳リレーにより瞳像が180°回転して
しまうのを補正するためであるが、このようにしないと
即ち、瞳の右側の光束を右の接眼レンズに、又、瞳の左
側の光束を左の接眼レンズに入れると立体感が実際とは
逆になって、観察物体の凹凸が反転する結果になる。
In addition to the above example, a binocular microscope is disclosed in Japanese Patent Application Laid-Open No. 144410/1983 as a method for performing stereoscopic vision by pupil division. FIG. 11 shows an example of the configuration of the optical system near the eyepiece section in the case where the pupils are relayed once in such a binocular microscope. The front lens 21 and the rear lens 22 of the lens, the rotation prism 23 between the front and rear lenses of the second relay lens, the first mirror 24, and the second mirror 25, and the position where the dividing line 24' that intersects the optical axis is conjugate with the entrance pupil. a second beam splitter 26 arranged so as to be near the second beam splitter 26;
Mirrors 27 and 28 that make the directions of the respective light beams divided by has been done. In the optical system of such a binocular microscope, the pupil of the objective lens relayed once by the first and second relay lenses is
Divided into left and right by mirror 24 and second mirror 25,
The light flux on the right side of the pupil enters the left eyepiece, and the light flux on the left side of the pupil enters the right eyepiece. This is to correct the 180° rotation of the pupil image due to one pupil relay, but if this is not done, the light flux on the right side of the pupil will be transferred to the right eyepiece, and the pupil image will be rotated by 180 degrees. If the left beam enters the left eyepiece, the three-dimensional effect will be reversed and the unevenness of the observed object will be reversed.

【0005】更に双眼顕微鏡において瞳を2回リレーす
る場合の構成を図12に示したが、この場合、第1リレ
ーレンズの後レンズ22の後方で結像した光束は第2リ
レーレンズ33に入射し、更に入射瞳と共役な位置に置
かれた光束分割器34によって左右眼用光束に分割され
る。又、瞳のリレー回数が1回でリレー光学系中に正立
プリズム35が含まれている場合の構成を図13に示し
たが、これらいずれの場合においても、瞳分割して瞳の
右側の光束は右の接眼レンズに、又、瞳の左側の光束は
左の接眼レンズに入れるようになっている。
FIG. 12 shows a configuration in which the pupil is relayed twice in a binocular microscope. In this case, the light beam formed behind the rear lens 22 of the first relay lens enters the second relay lens 33 The light beam is further divided into left and right eye light beams by a light beam splitter 34 placed at a position conjugate with the entrance pupil. In addition, although the configuration in which the pupil is relayed once and the erecting prism 35 is included in the relay optical system is shown in FIG. 13, in any of these cases, the pupil is divided and the The light flux from the left side of the pupil enters the right eyepiece, and the light flux from the left side of the pupil enters the left eyepiece.

【0006】[0006]

【発明が解決しようとする課題】ところで、従来の瞳分
割により立体視を行う方法では、特に解像度の劣化や像
面の明るさの低下等の問題があるため、一般的な鏡筒と
交換し得るようにするために、瞳分割を行うための光学
系の構成をユニット化する必要があった。しかしながら
、通常の鏡筒では瞳の左右の向きなどは問題にならない
ので、それを統一した構成になっていない。このため、
通常に顕微鏡に瞳分割装置を装着すると観察物体の凹凸
が反転する(このような状態を逆立体視と呼ぶことがあ
る)場合があり、正しい物体観察ができなくなる恐れが
ある。
[Problems to be Solved by the Invention] However, the conventional method of performing stereoscopic vision using pupil division has problems such as deterioration of resolution and reduction in brightness of the image plane, so it is necessary to replace it with a general lens barrel. In order to achieve this, it was necessary to unitize the configuration of the optical system for performing pupil division. However, with normal lens barrels, the left and right orientation of the pupils does not matter, so the structure is not unified. For this reason,
Normally, when a pupil splitting device is attached to a microscope, the unevenness of the observed object may be reversed (this situation is sometimes called inverted stereopsis), and there is a risk that correct object observation may not be possible.

【0007】本発明はかかる実情に鑑み、瞳分割による
立体視を行う場合、常に正常な立体視像を得ることがで
きる双眼立体視装置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above circumstances, it is an object of the present invention to provide a binocular stereoscopic viewing apparatus that can always obtain a normal stereoscopic image when performing stereoscopic viewing using pupil division.

【0008】[0008]

【課題を解決するための手段】本発明による双眼立体視
装置は、単一の対物系の後方に配置されるが、前記対物
系の瞳を第1・第2の部分に分割する瞳分割手段と、第
1・第2の接眼レンズと、前記分割された各々の部分か
らの光束を各別に前記第1または第2の接眼レンズに導
く接眼鏡筒光学系と、前記第1・第2の部分から前記第
1または第2の接眼レンズに至る光路を相互に切り替え
る切替え手段と、を備えている。
[Means for Solving the Problems] A binocular stereoscopic viewing apparatus according to the present invention is arranged behind a single objective system, and includes a pupil dividing means for dividing the pupil of the objective system into first and second parts. , first and second eyepieces, an eyepiece tube optical system that separately guides the luminous flux from each of the divided parts to the first or second eyepiece, and the first and second eyepieces. and switching means for mutually switching the optical path from the part to the first or second eyepiece.

【0009】[0009]

【作用】ここで先ず、分割した瞳からの光束を左右一対
の接眼レンズに入射させる際に、分割された瞳の右側の
光束が左の接眼レンズに、そして分割された瞳の左側の
光束が右の接眼レンズにそれぞれ入るように、接眼レン
ズの左右と瞳の左右とが入れ替わっている場合を入換え
分割といい、一方、これとは逆に、分割された瞳の右側
の光束を右の接眼レンズに、そして分割された瞳の左側
の光束を左の接眼レンズに入れる場合を順分割というが
、本発明によれば、入換え分割と順分割とを適宜自由に
切り換えることにより、瞳のリレー回数を調節し又は正
立プリズムを用いる等の方法によることなく、常に正常
な立体視観察を行うことができる。そして特に、かかる
入換え分割及び順分割の切換えを行う場合、分割された
一方の瞳内の適所に適当な指標を設け、接眼レンズ系を
取り外した時に観察者が右目または左目で該指標を視認
することによって、切換えが適正に行われた否かを的確
に判断し得るようにすることができる。更に入換え分割
及び順分割の切換えを自動的に行う場合には、装置の取
り付け部に順分割かまたは入換え分割かを判断するため
のピン等を設置しておくこにより、双眼立体視装置を顕
微鏡等に取り付けるときに自動的に瞳分割の方式が切り
替えられるようにすることができる。
[Operation] First, when the luminous flux from the divided pupils enters the pair of left and right eyepieces, the luminous flux on the right side of the divided pupil enters the left eyepiece, and the luminous flux on the left side of the divided pupil enters the left eyepiece. When the left and right eyepieces and the left and right pupils are swapped so that they enter the right eyepiece, it is called swapped splitting.On the other hand, on the other hand, the split light beam on the right side of the pupil is split into the right eyepiece. The case in which the left-hand luminous flux of the divided pupil is input to the left eyepiece is called forward division.According to the present invention, by freely switching between interchange division and forward division, the pupil can be divided as desired. Normal stereoscopic observation can always be performed without adjusting the number of relays or using an erecting prism. In particular, when switching between interchanging divisions and forward divisions, an appropriate index is provided at a suitable location within one of the divided pupils, and the observer can visually see the index with the right or left eye when the eyepiece system is removed. By doing so, it is possible to accurately judge whether or not the switching has been performed properly. Furthermore, if you want to automatically switch between swapping division and forward division, you can install a pin or the like on the installation part of the device to determine whether it is forward division or swapping division. The pupil division method can be automatically switched when the camera is attached to a microscope or the like.

【0010】0010

【実施例】以下、図1乃至図3に基づき、本発明による
双眼立体視装置の第一実施例を説明する。図において、
瞳分割面から接眼レンズまでの光学系の構成が示されて
いるが、図中、1,2は瞳分割ミラーで、瞳分割ミラー
1はその一端部が瞳分割線(一点鎖線)上に位置する紙
面と垂直な方向の軸の周りに回動し得るようになってい
る。又、瞳分割ミラー2はほぼその中心部が上記とは別
な紙面と垂直な方向の軸の周りに回動し得るようになっ
ている。3L ,3Rは瞳分割ミラー1,2によって分
割された光束を左右一対の観察光学系に入れるためのミ
ラー、4L ,4R は各光学系のそれぞれ結像レンズ
、5L ,5R は各光学系のそれぞれ観察用接眼レン
ズである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a binocular stereoscopic viewing apparatus according to the present invention will be described below with reference to FIGS. 1 to 3. In the figure,
The configuration of the optical system from the pupil division plane to the eyepiece is shown. In the figure, 1 and 2 are pupil division mirrors, and one end of pupil division mirror 1 is located on the pupil division line (dotted chain line). It is designed to be able to rotate around an axis perpendicular to the plane of the paper. Further, the pupil splitting mirror 2 is configured such that its center can rotate around an axis in a direction perpendicular to the plane of the drawing, which is different from the above. 3L and 3R are mirrors for inputting the luminous flux divided by the pupil splitting mirrors 1 and 2 into a pair of left and right observation optical systems, 4L and 4R are imaging lenses of each optical system, and 5L and 5R are respective lenses of each optical system. This is an observation eyepiece.

【0011】本発明による双眼立体視装置は上記のよう
に構成されているから、瞳の順分割を行う場合には瞳分
割ミラー1,2を図2に示される回動位置に持ち来たし
、これにより瞳分割ミラー1によって分割された光束(
二点鎖線により示されている)は左の光学系に入り、瞳
分割ミラー2によって分割された光束(破線により示さ
れている)は右の光学系に入る。一方、瞳の入換え分割
を行う場合には、瞳分割ミラー1,2を図2に示した状
態からそれぞれ90°回動せしめて図3に示される回動
位置に持ち来たし、これにより瞳分割ミラー1によって
分割された光束は右の光学系に入り、瞳分割ミラー2に
よって分割された光束は左の光学系に入る。
Since the binocular stereoscopic viewing apparatus according to the present invention is constructed as described above, when sequentially dividing the pupils, the pupil dividing mirrors 1 and 2 are brought to the rotating position shown in FIG. The luminous flux divided by the pupil splitting mirror 1 (
The light beam (indicated by the dashed line) enters the left optical system, and the light beam split by the pupil splitting mirror 2 (indicated by the dashed line) enters the right optical system. On the other hand, when performing pupil exchange and division, the pupil division mirrors 1 and 2 are each rotated 90 degrees from the state shown in FIG. 2 and brought to the rotational position shown in FIG. The light flux split by mirror 1 enters the right optical system, and the light flux split by pupil splitting mirror 2 enters the left optical system.

【0012】このように瞳分割ミラー1及び2を適宜回
動せしめるだけの簡単な操作により、入換え分割と順分
割とを適宜切り換えることにより、瞳のリレー回数を調
節したり又は正立プリズムを用いる等の方法によること
なく、常に正常な立体視観察を行うことができる。
[0012] In this way, by appropriately rotating the pupil dividing mirrors 1 and 2 and appropriately switching between exchange division and forward division, the number of pupil relays can be adjusted or the erecting prism can be adjusted. Normal stereoscopic observation can always be performed regardless of the method used.

【0013】図4は本発明による双眼立体視装置の第二
実施例を示す。この第二実施例では、瞳分割面に偏光方
向が互いに直交する半円形の2枚の偏光板6a,6bを
接合せしめて成る偏光板6(図7参照)が設置され、該
偏光板6の後方には光分割素子を含む左右光路分割プリ
ズム7及び観察方向調整用プリズム8L ,8R が配
置され、これにより左右一対の光路に分割される。更に
観察方向調整用プリズム8L ,8R の後方には偏光
板9L ,9R が設置されるが、これらの偏光板9L
 ,9R の偏光方向は互いに直交するようになってい
る。尚、図中、直交する偏光方向は偏光板6及び偏光板
9L ,9R において両矢印及び黒丸印によって付記
されている。上記左右光路分割プリズム7には例えば偏
光ビームスプリッタ等を用いるのが適当であり、偏光板
9L ,9R を透過する光が最大になるように偏光方
向を調整すると光量の損失が少なくて済む。そして偏光
板9L ,9R の後方には、左右一対の光学系の観察
像を形成するために結像レンズ4L ,4R 及び観察
用接眼レンズ5L ,5R設置される。上記の場合、偏
光板6は光軸の回りに回動自在に装着されている。
FIG. 4 shows a second embodiment of the binocular stereoscopic viewing apparatus according to the present invention. In this second embodiment, a polarizing plate 6 (see FIG. 7), which is made by joining two semicircular polarizing plates 6a and 6b whose polarization directions are orthogonal to each other, is installed on the pupil division plane. At the rear, a left and right optical path splitting prism 7 including a light splitting element and observation direction adjustment prisms 8L and 8R are arranged, thereby dividing the optical path into a pair of left and right optical paths. Furthermore, polarizing plates 9L and 9R are installed behind the observation direction adjustment prisms 8L and 8R, but these polarizing plates 9L
, 9R are arranged to be orthogonal to each other. In the figure, orthogonal polarization directions are indicated by double-headed arrows and black circles in the polarizing plate 6 and the polarizing plates 9L and 9R. It is appropriate to use, for example, a polarizing beam splitter as the left and right optical path splitting prism 7, and if the polarization direction is adjusted so that the light passing through the polarizing plates 9L and 9R is maximized, the loss of the amount of light can be reduced. Behind the polarizing plates 9L, 9R, imaging lenses 4L, 4R and observation eyepieces 5L, 5R are installed to form observation images of the pair of left and right optical systems. In the above case, the polarizing plate 6 is rotatably mounted around the optical axis.

【0014】第二実施例によれば、偏光板6により入射
瞳の左右を偏光方向が互いに直交するように二つに分割
すると共に偏光板9L ,9R によって偏光方向の分
離を行うことにより、瞳分割したのと実質的に同等に光
路を分割することができる。即ち、図5に示したように
順分割を行う場合には、例えば偏光板6の一方の偏光板
6a及び偏光板9L 並びに偏光板6の他方の偏光板6
b及び偏光板9R の間でそれぞれ偏光方向が一致する
ように該偏光板6を回動し、これにより偏光板6aによ
って偏光された光束は左の光学系に入り、一方、偏光板
6bによって偏光された光束は右の光学系に入る。又、
入換え分割を行う場合には、偏光板6を図5に示した状
態から180°回動せしめることにより図6に示したよ
うに、偏光板6a及び偏光板9R 並びに偏光板6b及
び偏光板9L の間でそれぞれ偏光方向が一致せしめる
ことにより行われる。
According to the second embodiment, the left and right sides of the entrance pupil are divided into two by the polarizing plate 6 so that the polarization directions are perpendicular to each other, and the polarization directions are separated by the polarizing plates 9L and 9R. The optical path can be divided in substantially the same way as the optical path is divided. That is, when performing sequential division as shown in FIG.
The polarizing plate 6 is rotated so that the polarization directions match between the polarizing plate 9R and the polarizing plate 9R, and the light beam polarized by the polarizing plate 6a enters the left optical system, while the light beam polarized by the polarizing plate 6b enters the left optical system. The resulting light flux enters the optical system on the right. or,
When performing replacement and division, the polarizing plate 6 is rotated 180 degrees from the state shown in FIG. 5, and as shown in FIG. This is done by matching the polarization directions between the two.

【0015】図8及び図9は本発明による双眼立体視装
置の第三実施例を示す。この第三実施例では、光路分割
プリズム7とこれによる分割後の光束の左右の観察方向
を調整するためのプリズム10L ,10R とにより
左右一対の観察用の光路に分割される。そして上記プリ
ズム10L ,10R のそれぞれ後方には、瞳近傍位
置において互いに連動して各光学系の光軸に関して対称
に移動し得るように構成された絞り手段11L ,11
R が設けられ、更に該絞り手段11L ,11R の
後方に結像レンズ4L ,4R 及び観察用接眼レンズ
5L ,5R 設置される。
FIGS. 8 and 9 show a third embodiment of a binocular stereoscopic viewing apparatus according to the present invention. In this third embodiment, the optical path is divided into a pair of left and right observation optical paths by the optical path splitting prism 7 and prisms 10L and 10R for adjusting the left and right observation directions of the divided light beam. At the rear of each of the prisms 10L and 10R, diaphragm means 11L and 11 are configured to be able to move symmetrically with respect to the optical axis of each optical system in conjunction with each other at a position near the pupil.
Further, imaging lenses 4L, 4R and observation eyepieces 5L, 5R are installed behind the aperture means 11L, 11R.

【0016】第三実施例によれば、順分割を行う場合、
絞り手段11L ,11R を共に、図8に示したよう
にそれぞれが配置される光学系の光軸の外方に移動せし
め、これにより瞳近傍位置で絞り手段11L ,11R
 が左右観察系で対称に偏心することにより左右光学系
に生じる視差に基づき立体視観察が可能になる。一方、
入換え分割を行う場合には、図9に示したように、絞り
手段11L ,11R を共に、それぞれが配置される
光学系の光軸の内方に移動せしめることにより、この場
合にも視差による立体視観察を行うことができる。
According to the third embodiment, when performing sequential division,
Both the diaphragm means 11L and 11R are moved to the outside of the optical axis of the optical system in which they are arranged as shown in FIG.
By symmetrically decentering the left and right observation systems, stereoscopic observation becomes possible based on the parallax generated in the left and right optical systems. on the other hand,
In the case of exchanging and dividing, as shown in FIG. 9, both the diaphragm means 11L and 11R are moved inward of the optical axis of the optical system in which they are arranged, thereby eliminating the problem caused by parallax. Stereoscopic observation can be performed.

【0017】第三実施例において、上記絞り手段11L
 ,11Rを可変絞りにすると共にその偏心量を瞳径の
範囲内で自由に変え得るように構成することにより、立
体視の際の立体感や深度を適宜変化させることができる
。この場合、絞り手段11L ,11R の開口の中心
を通り且つ視野の中心を通る軸を光軸と見做せるので、
例えば絞り径を小さくして絞りの偏心量を大きくするこ
とにより立体感が顕著になるようにすることができる。 一方、これとは逆に、開口数(NA)が大きい対物レン
ズを用いて例えば前記従来例の場合に説明した図10に
示される立体視観察を行った場合には立体感が顕著にな
り過ぎて融像しにくくなるが、このような場合、絞りの
偏心量を小さくすれば融像し易くすることができる。尚
、絞り手段11L ,11R において円形絞りを偏心
させて行うようにすることにより、前記第一実施例又は
第二実施例では瞳形状が非対称であるために生じ得る方
向の差異による解像の相違等の不都合をなくすることが
できる。
In the third embodiment, the aperture means 11L
, 11R are variable diaphragms and their eccentricity can be freely changed within the range of the pupil diameter, thereby making it possible to appropriately change the stereoscopic effect and depth during stereoscopic viewing. In this case, the axis passing through the center of the apertures of the aperture means 11L and 11R and the center of the field of view can be regarded as the optical axis.
For example, by decreasing the diameter of the aperture and increasing the amount of eccentricity of the aperture, the three-dimensional effect can be made more pronounced. On the other hand, if, on the contrary, an objective lens with a large numerical aperture (NA) is used to perform stereoscopic observation as shown in FIG. However, in such a case, it is possible to make image fusion easier by reducing the amount of eccentricity of the aperture. Incidentally, by making the circular apertures eccentric in the aperture means 11L and 11R, the difference in resolution due to the difference in direction that may occur due to the asymmetrical pupil shape in the first or second embodiment is eliminated. It is possible to eliminate such inconveniences.

【0018】[0018]

【発明の効果】上述したように本発明によれば、瞳分割
により立体視を行うようにしたこの種の光学装置におい
て、瞳分割面まで間における瞳のリレー回数を調節や又
は正立プリズムを用いる等の方法によることなく、簡単
且つ確実に正常な立体視観察を行うことができる。そし
てこのことにより、更に瞳分割部をユニット化した場合
でもそのための2種類の装置を用意しなくて済み、その
上、リレー系を装着する際に本発明装置を取り替える必
要がなくなる等の利点がある。
As described above, according to the present invention, in this type of optical device that performs stereoscopic vision by pupil division, it is possible to adjust the number of pupil relays between the pupil division planes or to use an erecting prism. Normal stereoscopic observation can be easily and reliably performed regardless of the method used. As a result, even if the pupil dividing section is made into a unit, there is no need to prepare two types of devices for that purpose, and furthermore, there is an advantage that there is no need to replace the device of the present invention when installing a relay system. be.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の双眼立体視装置の第一実施例による光
学系の要部構成図である。
FIG. 1 is a diagram illustrating a main part of an optical system according to a first embodiment of a binocular stereoscopic viewing apparatus of the present invention.

【図2】本発明の双眼立体視装置の第一実施例における
瞳の順分割を行う場合の光学系の要部構成図である。
FIG. 2 is a diagram illustrating the main part of an optical system in the case of performing sequential division of pupils in the first embodiment of the binocular stereoscopic viewing apparatus of the present invention.

【図3】本発明の双眼立体視装置の第一実施例における
瞳の入換え分割を行う場合の光学系の要部構成図である
FIG. 3 is a diagram illustrating the main part of an optical system when performing pupil exchange and division in the first embodiment of the binocular stereoscopic viewing apparatus of the present invention.

【図4】本発明の双眼立体視装置の第二実施例による光
学系の要部構成図である。
FIG. 4 is a diagram showing the main parts of an optical system according to a second embodiment of the binocular stereoscopic viewing apparatus of the present invention.

【図5】本発明の双眼立体視装置の第二実施例における
瞳の順分割を行う場合の光学系の要部構成図である。
FIG. 5 is a diagram illustrating the configuration of the main parts of an optical system when performing sequential division of pupils in a second embodiment of the binocular stereoscopic viewing apparatus of the present invention.

【図6】本発明の双眼立体視装置の第二実施例における
瞳の入換え分割を行う場合の光学系の要部構成図である
FIG. 6 is a diagram illustrating the configuration of the main parts of an optical system when performing pupil exchange and division in a second embodiment of the binocular stereoscopic viewing apparatus of the present invention.

【図7】本発明の双眼立体視装置の第二実施例にかかる
偏光板の正面図である。
FIG. 7 is a front view of a polarizing plate according to a second embodiment of the binocular stereoscopic viewing apparatus of the present invention.

【図8】本発明の双眼立体視装置の第三実施例における
瞳の順分割を行う場合の光学系の要部構成図である。
FIG. 8 is a diagram illustrating the main part of the optical system in the case of sequentially dividing the pupils in a third embodiment of the binocular stereoscopic viewing apparatus of the present invention.

【図9】本発明の双眼立体視装置の第三実施例における
瞳の入換え分割を行う場合の光学系の要部構成図である
FIG. 9 is a diagram illustrating the main part configuration of an optical system when performing pupil exchange and division in a third embodiment of the binocular stereoscopic viewing apparatus of the present invention.

【図10】従来の顕微鏡における瞳分割による立体視を
行うための光学系の構成図である。
FIG. 10 is a configuration diagram of an optical system for performing stereoscopic vision using pupil division in a conventional microscope.

【図11】従来の顕微鏡における瞳分割による立体視を
行うための他の光学系の構成図である。
FIG. 11 is a configuration diagram of another optical system for performing stereoscopic vision using pupil division in a conventional microscope.

【図12】図11に示される従来の顕微鏡の瞳分割によ
る立体視を行うための光学系の変形例をしめす図である
FIG. 12 is a diagram showing a modification of the optical system for performing stereoscopic vision by pupil division of the conventional microscope shown in FIG. 11;

【図13】図11に示される従来の顕微鏡の瞳分割によ
る立体視を行うための光学系の別の変形例をしめす図で
ある。
FIG. 13 is a diagram showing another modification of the optical system for performing stereoscopic vision using pupil division of the conventional microscope shown in FIG. 11;

【符号の説明】[Explanation of symbols]

1,2            瞳分割ミラー3L ,
3R         ミラー4L ,4R     
    結像レンズ5L ,5R         観
察用接眼レンズ6                偏
光板7                光路分割プリ
ズム8L ,8R         観察方向調整用プ
リズム9L ,9R         偏光板10L 
,10R     プリズム
1, 2 Pupil split mirror 3L,
3R Mirror 4L, 4R
Imaging lenses 5L, 5R Observation eyepiece 6 Polarizing plate 7 Optical path splitting prisms 8L, 8R Observation direction adjustment prisms 9L, 9R Polarizing plate 10L
,10R prism

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  単一の対物系の後方に配置される双眼
立体視装置において、前記対物系の瞳を第1・第2の部
分に分割する瞳分割手段と、第1・第2の接眼レンズと
、前記分割された各々の部分からの光束を各別に前記第
1または第2の接眼レンズに導く接眼鏡筒光学系と、前
記第1・第2の部分から前記第1または第2の接眼レン
ズに至る光路を相互に切り替える切替え手段と、を備え
た双眼立体視装置。
1. A binocular stereoscopic viewing apparatus disposed behind a single objective system, comprising: pupil dividing means for dividing the pupil of the objective system into first and second parts; and first and second eyepieces. a lens; an eyepiece tube optical system that separately guides the luminous flux from each of the divided parts to the first or second eyepiece; A binocular stereoscopic viewing device comprising: switching means for mutually switching optical paths leading to eyepieces.
JP3131119A 1991-06-03 1991-06-03 Binocular vision device Withdrawn JPH04355712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3131119A JPH04355712A (en) 1991-06-03 1991-06-03 Binocular vision device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3131119A JPH04355712A (en) 1991-06-03 1991-06-03 Binocular vision device

Publications (1)

Publication Number Publication Date
JPH04355712A true JPH04355712A (en) 1992-12-09

Family

ID=15050432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3131119A Withdrawn JPH04355712A (en) 1991-06-03 1991-06-03 Binocular vision device

Country Status (1)

Country Link
JP (1) JPH04355712A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348994B1 (en) 1995-03-02 2002-02-19 Carl Zeiss Jena Gmbh Method for generating a stereoscopic image of an object and an arrangement for stereoscopic viewing
WO2003040799A1 (en) * 2001-11-05 2003-05-15 Olympus Corporation Microscope for operation
US6882473B2 (en) 1995-03-02 2005-04-19 Carl Zeiss Jena Gmbh Method for generating a stereoscopic image of an object and an arrangement for stereoscopic viewing
JP2006184484A (en) * 2004-12-27 2006-07-13 Olympus Corp Binocular stereo microscope
US7990610B2 (en) * 2007-11-07 2011-08-02 Kabushiki Kaisha Topcon Stereomicroscope with repositioning assistant's microscope
JP2012113281A (en) * 2010-11-04 2012-06-14 Panasonic Corp Stereoscopic imaging optical system, imaging device and camera
KR101859197B1 (en) * 2018-01-22 2018-05-21 주식회사 연시스템즈 Real-time stereoscopic microscope

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348994B1 (en) 1995-03-02 2002-02-19 Carl Zeiss Jena Gmbh Method for generating a stereoscopic image of an object and an arrangement for stereoscopic viewing
US6882473B2 (en) 1995-03-02 2005-04-19 Carl Zeiss Jena Gmbh Method for generating a stereoscopic image of an object and an arrangement for stereoscopic viewing
WO2003040799A1 (en) * 2001-11-05 2003-05-15 Olympus Corporation Microscope for operation
US7088504B2 (en) * 2001-11-05 2006-08-08 Olympus Corporation Surgical microscope
DE10297125B4 (en) * 2001-11-05 2007-01-25 Olympus Optical Co. Ltd. Surgical microscope
JP2006184484A (en) * 2004-12-27 2006-07-13 Olympus Corp Binocular stereo microscope
US7990610B2 (en) * 2007-11-07 2011-08-02 Kabushiki Kaisha Topcon Stereomicroscope with repositioning assistant's microscope
JP2012113281A (en) * 2010-11-04 2012-06-14 Panasonic Corp Stereoscopic imaging optical system, imaging device and camera
KR101859197B1 (en) * 2018-01-22 2018-05-21 주식회사 연시스템즈 Real-time stereoscopic microscope

Similar Documents

Publication Publication Date Title
US7167304B2 (en) Binocular stereoscopic observation apparatus, electronic image stereomicroscope, electronic image stereoscopic observation apparatus, and electronic image observation apparatus
JP4991211B2 (en) Stereo microscope
US9910257B2 (en) Stereoscopic microscope
JPH08234111A (en) Stereomicroscope structure
US4634241A (en) Stereoscopic microscope
US4704012A (en) Stereoscopic microscope
EP0577268B1 (en) Optical system
JP2002365589A (en) Three-dimensional display device
JP2007065661A (en) Microscope
JP5593401B2 (en) Variable 3D stereo microscope assembly
JPH04355712A (en) Binocular vision device
JP3689124B2 (en) Stereo microscope
JP4343509B2 (en) Stereo microscope
US6348994B1 (en) Method for generating a stereoscopic image of an object and an arrangement for stereoscopic viewing
JP3645655B2 (en) Stereo microscope
US6333813B1 (en) Stereomicroscope
JPH0493912A (en) Microscope for operation
US20090109524A1 (en) Light Microscope
JP3072930B2 (en) Stereo microscope
JP4302199B2 (en) Stereo microscope that can be observed by multiple people
JP4217405B2 (en) Stereo microscope
JP3577107B2 (en) Stereo microscope
JP2583465B2 (en) Stereo microscope
JPH04156412A (en) Stereoscopic microscope
Wolf A novel beam‐splitting microscope tube for taking stereo‐pairs with full resolution Nomarski or phase contrast technique, or with epifluorescence

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903