JPH07311348A - Plural visual field-direction type endoscope - Google Patents

Plural visual field-direction type endoscope

Info

Publication number
JPH07311348A
JPH07311348A JP6103084A JP10308494A JPH07311348A JP H07311348 A JPH07311348 A JP H07311348A JP 6103084 A JP6103084 A JP 6103084A JP 10308494 A JP10308494 A JP 10308494A JP H07311348 A JPH07311348 A JP H07311348A
Authority
JP
Japan
Prior art keywords
optical system
pupils
endoscope
visual field
directions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6103084A
Other languages
Japanese (ja)
Other versions
JP3668257B2 (en
Inventor
Tsutomu Takebayashi
勉 竹林
Susumu Takahashi
進 高橋
Shinichi Nakamura
信一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP10308494A priority Critical patent/JP3668257B2/en
Priority to US08/404,890 priority patent/US5743846A/en
Priority to DE19509885A priority patent/DE19509885B4/en
Priority to DE29504623U priority patent/DE29504623U1/en
Priority to DE19549456A priority patent/DE19549456B4/en
Priority to DE19549857A priority patent/DE19549857B4/en
Publication of JPH07311348A publication Critical patent/JPH07311348A/en
Priority to US09/053,094 priority patent/US6306082B1/en
Priority to US09/941,984 priority patent/US6976956B2/en
Application granted granted Critical
Publication of JP3668257B2 publication Critical patent/JP3668257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a plural visual field-direction type endoscope constituted so that there is not a movable part at the tip part and the image transmission part of the endoscope, the structure of the tip part is simple and the assembling performance thereof is excellent, an image is not deteriorated in the peripheral part and sterilization resistance is excellent by specially considering the deterioration of the sterilization resistance, the assembling performance and the picture. CONSTITUTION:The endoscope 11 is obtained by arranging an objective optical system 22 having plural visual field directions and forming one image on the tip thereof and provided with a relay lens system 23 transmitting the image or a pupil corresponding to the plural visual field directions by continuing the optical system 22. At the back part of the lens system 23 of the endoscope 11, an eyepiece optical system 24 is arranged. At the back part of the optical system 24, a camera for picking up the object images whose visual field directions are different at the position of the plural pupils P3 can be arranged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内視鏡に関し、特に複数
の視野方向を有する複数視野方向型内視鏡に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an endoscope, and more particularly to a multi-view direction endoscope having a plurality of view directions.

【0002】[0002]

【従来の技術】特開昭57−200125号公報におい
て、直視、及び側視の方向を切り換えて見ることができ
る内視鏡が開示されている。図15に示すように、対物
光学系には直視方向の光学系89と、側視方向の光学系
90を備えており、これらの光軸をハーフミラー91で
合成して1つの画像として重ね合わせている。すなわ
ち、いずれの光学系が結像した像も、後続する光学系9
2に受け渡すことができるようになっている。視野方向
の変換には、二つの手段がある。その一方の手段は、直
視または側視の方向に向けた照明照射方向を観察したい
方向に切り換えることである。また他方の手段は、直
視、側視の両方についてプリズムの物体側に設けられ且
つ電気的に光の透過/遮断を切り替えることのできる遮
光部材93,93により、直視方向、側視方向のいずれ
か一方が、観察できるようになっている。
2. Description of the Related Art Japanese Unexamined Patent Publication (Kokai) No. 57-200125 discloses an endoscope which can be viewed by switching between direct-view and side-view directions. As shown in FIG. 15, the objective optical system includes an optical system 89 in the direct-viewing direction and an optical system 90 in the side-viewing direction. These optical axes are combined by a half mirror 91 and superposed as one image. ing. That is, the images formed by any of the optical systems are the same as the subsequent optical system 9
It can be handed over to 2. There are two ways to change the view direction. One of the means is to switch the illumination irradiation direction toward the direction of direct view or side view to the direction to be observed. Further, the other means is provided with a light-shielding member 93, 93 provided on the object side of the prism for both direct view and side view and capable of electrically switching transmission / blocking of light. One is observable.

【0003】特開平2−32313号公報には二つの視
野方向をもち、視野方向の変換には偏光を利用している
内視鏡が開示されている。この内視鏡では、図16に示
すように2つの視野方向を実現するために、2つの視野
方向からの光線を合成する2つのプリズム94,95の
間に偏光装置96を設け、それぞれの視野方向の画像を
互いに直交した直線偏光でリレーレンズ系の中を伝達
し、内視鏡基端部において偏光フィルタまたはプリズム
を機械的、電気的に90゜の回動させることにより視野
方向の一方を選択して観察ができるようになっている。
Japanese Unexamined Patent Publication No. 2-32313 discloses an endoscope which has two visual field directions and uses polarized light for conversion of the visual field directions. In this endoscope, in order to realize two visual field directions as shown in FIG. 16, a polarizing device 96 is provided between two prisms 94 and 95 for combining light rays from the two visual field directions, and the respective visual fields are provided. Direction images are transmitted through the relay lens system as linearly polarized light orthogonal to each other, and one of the viewing directions is mechanically and electrically rotated by 90 ° at the base end of the endoscope. You can select and observe.

【0004】特開平2−156923号公報には、図1
7(a)に示す関節鏡が示されている。すなわち、この
関節鏡は、二つの視野方向を形成する光路を3つのプリ
ズム97,98,99により形成し、それぞれの視野方
向に対応する対物光学系の瞳の中心は、図17(b)の
100,101の位置に1つの共通な面に横方向に並ぶ
ようにしている。そして、同図(b)に示す矢印の範囲
で、プリズムより後ろにある光学系の位置を移動させる
ことにより、瞳の一方を選択する事で視野方向を切り換
えることができるようになっている。
In Japanese Patent Laid-Open No. 2-156923, there is shown in FIG.
The arthroscope shown in 7 (a) is shown. That is, in this arthroscope, an optical path forming two visual field directions is formed by three prisms 97, 98, 99, and the center of the pupil of the objective optical system corresponding to each visual field direction is shown in FIG. The common planes are arranged in the lateral direction at the positions 100 and 101. Then, by moving the position of the optical system behind the prism within the range of the arrow shown in FIG. 9B, one of the pupils can be selected to switch the visual field direction.

【0005】[0005]

【発明が解決しようとする課題】前述した内視鏡の先端
部や像伝達部に電気的、機械的な視野方向の切り換え装
置を持つものは構造が複雑となり、そのため組立性も悪
くなる。視野方向切り換えに偏光を利用したものは、偏
光装置より後ろのレンズ系を通過することにより、光軸
の付近では直線偏光は、そのままの偏光で伝わるが周辺
部では偏光軸の回転が起こるため、周辺部の像におい
て、互いに異なる視野方向からの画像が漏れ込んで画像
の劣化が起こる。
SUMMARY OF THE INVENTION The above-mentioned endoscope having an electric and mechanical visual field direction switching device at the distal end portion and the image transmitting portion has a complicated structure, which deteriorates the assembling property. When polarized light is used to switch the viewing direction, linear polarized light is transmitted as it is in the vicinity of the optical axis by passing through a lens system behind the polarizing device, but rotation of the polarization axis occurs in the peripheral area. In the peripheral image, images from different viewing directions leak and image deterioration occurs.

【0006】また、内視鏡、特に硬性鏡は滅菌を行うた
めに100゜以上の高温の水蒸気にさらされる。そのた
め硬性鏡本体に可動部を持つものは耐性上問題がある。
Further, an endoscope, particularly a rigid endoscope, is exposed to high temperature steam of 100 ° or more for sterilization. Therefore, a rigid endoscope having a movable part has a problem in durability.

【0007】本発明は、以上のような組立て性、画像の
劣化の欠点に着目してなされたもので、内視鏡の先端部
及び像伝達部に可動部がなく、先端部の構造が簡単で組
立性が良く、周辺部での画像の劣化がみられない複数視
野方向型内視鏡を提供することを目的としている。
The present invention has been made by paying attention to the drawbacks of the assembling property and the deterioration of the image as described above, and there is no movable part in the tip portion and the image transmitting portion of the endoscope, and the structure of the tip portion is simple. It is an object of the present invention to provide a multi-viewing direction endoscope which is easy to assemble and does not show image deterioration in the peripheral portion.

【0008】本発明は、以上のような滅菌耐性の欠点に
着目してなされたもので、内視鏡の先端部及び像伝達部
に可動部がなく、滅菌耐性の優れた複数視野方向型内視
鏡を提供することを目的としている。
The present invention has been made by paying attention to the deficiency of sterilization resistance as described above, and there is no movable portion at the distal end portion of the endoscope and the image transmitting portion, and the multi-viewing direction type internal endoscope having excellent sterilization resistance is provided. The purpose is to provide an endoscope.

【0009】本発明は、複数の視野方向に対応した複数
の物体像を同時に観察可能したり選択的に観察が可能と
することができるようにするために、複数の視野方向に
対応した複数の物体像を重ならずに提供することができ
る複数視野方向型内視鏡を提供することを目的としてい
る。
According to the present invention, a plurality of object images corresponding to a plurality of visual field directions can be simultaneously observed or selectively observed so that a plurality of object images corresponding to a plurality of visual field directions can be observed. An object of the present invention is to provide a multi-viewing direction endoscope that can provide object images without overlapping.

【0010】[0010]

【課題を解決するための手段】請求項1記載の発明は、
複数の視野方向と、これら視野方向に対応し且つ重なり
合わないように配置される複数の瞳とを有していて、1
又は2以上の物体像を形成する対物光学系と、前記対物
光学系からの複数の瞳が有する大きさと同等以上の大き
さに形成され、前記対物光学系からの物体像及び前記複
数の瞳を後方に伝達する伝達光学系と、を備えている。
The invention according to claim 1 is
A plurality of visual field directions and a plurality of pupils corresponding to these visual field directions and arranged so as not to overlap with each other;
Alternatively, the objective optical system for forming two or more object images and the size equal to or larger than the size of the plurality of pupils from the objective optical system are formed, and the object image from the objective optical system and the plurality of pupils are formed. And a transmission optical system for transmitting backward.

【0011】請求項2記載の発明は、請求項1記載の複
数視野方向型内視鏡において、前記複数の異なる方向か
らの光束にそれぞれ対応した複数の瞳であって、前記伝
達光学系により形成される複数の瞳を、それぞれ分離さ
せる瞳分離手段と、分離された各視野方向に対応した瞳
の範囲に含まれる光束により形成される物体像を結像す
る結像光学系とを有している。
According to a second aspect of the present invention, in the multi-view direction endoscope according to the first aspect, there are a plurality of pupils respectively corresponding to the light beams from the plurality of different directions, and the pupils are formed by the transmission optical system. A plurality of pupils that are separated from each other, and an imaging optical system that forms an object image formed by a light beam included in the range of the separated pupils corresponding to the respective visual field directions. There is.

【0012】請求項3記載の発明は、複数の視野方向と
これら視野方向に対応し且つ重なり合わないように形成
される複数の瞳とを有して物体像を形成する対物光学系
と、単一の光軸を有し且つ前記対物光学系からの物体像
及び複数の瞳を伝達する伝達光学系とを備えている複数
視野方向型内視鏡であって、前記対物光学系は、互いに
異なる方向からの光束を入射し該光束を前記伝達光学系
の光軸に沿って略平行に並列に配置した複数の略アフォ
ーカルな光束として射出する前方光学系と、前記伝達光
学系と共通の単一の光軸を有しかつ前記前方光学系から
の複数の光束を収斂させて後方に物体像を結像する後方
光学系とからなり、前記伝達光学系は、前記後方光学系
からの複数の光束に対応した複数の瞳が有する大きさと
同等以上の大きさに形成され、且つ前記後方光学系から
の物体像及び複数の瞳を後方に伝達する。
According to a third aspect of the present invention, there is provided an objective optical system having a plurality of visual field directions and a plurality of pupils corresponding to the visual field directions and formed so as not to overlap each other, and an objective optical system for forming an object image. A multi-viewing direction endoscope having a single optical axis and a transmission optical system for transmitting an object image from the objective optical system and a plurality of pupils, wherein the objective optical systems are different from each other. A front optical system for injecting a light beam from a direction and emitting the light beam as a plurality of substantially afocal light beams arranged in parallel substantially parallel to each other along the optical axis of the transfer optical system; A rear optical system having one optical axis and converging a plurality of light beams from the front optical system to form an object image rearward, and the transfer optical system includes a plurality of rear optical systems. Size equal to or larger than the size of multiple pupils corresponding to the luminous flux It is formed, and to transmit the object image and a plurality of pupils from the rear optical system backward.

【0013】請求項4記載の発明は、複数の視野方向と
これら視野方向に対応し且つ重なり合わないように形成
される複数の瞳とを有して複数の物体像を形成する対物
光学系と、単一の光軸を有する伝達光学系と、を備えて
いる複数視野方向型内視鏡であって、前記対物光学系
は、互いに異なる視野方向からの光束を入射し該光束を
前記伝達光学系の光軸に沿って略平行に並列した複数の
略アフォーカルな光束として射出する前方光学系と、前
記前方光学系からの複数の射出光を各々受けて複数の物
体像を収斂させて後方に複数の対物像をそれぞれ形成す
るために、並列に配置された複数の後方光学系とからな
り、前記伝達光学系は、前記後方光学系からの複数の光
束に対応した複数の瞳が有する大きさと同等以上の大き
さに形成され、且つ前記複数の後方光学系からの複数の
物体像及び複数の瞳を後方に伝達する。
According to a fourth aspect of the present invention, there is provided an objective optical system having a plurality of visual field directions and a plurality of pupils corresponding to the visual field directions and formed so as not to overlap each other, and to form a plurality of object images. And a transmission optical system having a single optical axis, wherein the objective optical system makes light beams incident from different visual field directions enter the transmission optical system. A front optical system that emits a plurality of substantially afocal light beams that are arranged substantially parallel to each other along the optical axis of the system, and a plurality of emitted light beams from the front optical system, respectively, to converge a plurality of object images to the rear side. A plurality of rear optical systems arranged in parallel to form a plurality of objective images respectively, and the transfer optical system has a size that a plurality of pupils corresponding to a plurality of light beams from the rear optical system have. Is formed to a size equal to or larger than Transmitting the plurality of object images and a plurality of the pupil from the serial plurality of posterior optical system backward.

【0014】請求項5記載の発明は、複数の視野方向と
この複数の視野方向に対応した複数の瞳とを有する対物
光学系と、単一の光軸を有する伝達光学系とを備えてい
る複数視野方向型内視鏡であって、前記対物光学系は、
互いに異なる方向からの複数の光束を各々入射する複数
の瞳と、前記光束のうち少なくとも一つの光路を変更さ
せて各光束を略同一の方向を向いた光束に変換するプリ
ズム光学系とを含む前方光学系と、前記前方光学系から
の複数の光束からなる物体像をほぼ同一の位置に形成す
る後方光学系と、を有し、前記伝達光学系は、前記後方
光学系からの物体像及び複数の瞳を後方に伝達する。
According to a fifth aspect of the present invention, there is provided an objective optical system having a plurality of visual field directions and a plurality of pupils corresponding to the plurality of visual field directions, and a transfer optical system having a single optical axis. A multi-view direction endoscope, wherein the objective optical system comprises:
Front including a plurality of pupils that respectively enter a plurality of light beams from different directions, and a prism optical system that changes at least one optical path of the light beams to convert each light beam into a light beam that is directed in substantially the same direction An optical system and a rear optical system that forms an object image composed of a plurality of light fluxes from the front optical system at substantially the same position, and the transfer optical system includes an object image from the rear optical system and a plurality of object images. The eyes of the person are transmitted backward.

【0015】請求項6記載の発明は、複数の視野方向と
この複数の視野方向に対応した複数の瞳とを有する対物
光学系と、単一の光軸を有する伝達光学系とを備えてい
る複数視野方向型内視鏡であって、前記対物光学系は、
互いに異なる方向に光軸を有する複数のレンズと、該複
数のレンズを透過した各光束を受け該光束を前記伝達光
学系の光軸に沿って略平行に並列した複数の光束に変換
するプリズム光学系と、を含む前方光学系と、前記前方
光学系から射出された光束を含む大きさを有して、複数
の光束を同時に像面へ結像させるため、単一の光軸且つ
射出光線に対する収斂性を有する後方光学系と、を有
し、前記伝達光学系は、前記後方光学系からの物体像及
び複数の瞳を後方に伝達する。
According to a sixth aspect of the present invention, there is provided an objective optical system having a plurality of visual field directions and a plurality of pupils corresponding to the plurality of visual field directions, and a transfer optical system having a single optical axis. A multi-view direction endoscope, wherein the objective optical system comprises:
A plurality of lenses having optical axes in mutually different directions, and prism optics for receiving each light flux transmitted through the plurality of lenses and converting the light flux into a plurality of light fluxes arranged substantially in parallel along the optical axis of the transmission optical system. A front optical system including a system and a size including a light beam emitted from the front optical system, and a plurality of light beams are simultaneously imaged on an image plane. A rear optical system having a converging property, and the transfer optical system transfers the object image from the rear optical system and the plurality of pupils rearward.

【0016】請求項7記載の発明は、複数の視野方向と
この複数の視野方向に対応した複数の瞳とを有する対物
光学系と、単一の光軸を有する伝達光学系とを備えてい
る複数視野方向型内視鏡であって、前記対物光学系は、
前記複数の瞳に分割する瞳分割手段と、分割した各瞳に
対応する光束の入射する方向を互いに異ならしめるプリ
ズム部材と、互いに異なる方向に光軸を有する複数のレ
ンズとを含む前方光学系と、複数の光束を同時に像面へ
結像させる単一の光軸を有し且つ射出光線に対する収斂
性を有する後方光学系とを有しており、前記伝達光学系
は、前記後方光学系からの物体像及び複数の瞳を後方に
伝達する。
According to a seventh aspect of the present invention, there is provided an objective optical system having a plurality of visual field directions and a plurality of pupils corresponding to the plurality of visual field directions, and a transmission optical system having a single optical axis. A multi-view direction endoscope, wherein the objective optical system comprises:
A front optical system including a pupil dividing unit that divides the pupil into a plurality of pupils, a prism member that makes incident directions of light beams corresponding to the divided pupils different from each other, and a plurality of lenses having optical axes in different directions. , A rear optical system having a single optical axis for simultaneously forming a plurality of light beams on the image plane and having a convergent property with respect to an outgoing light beam, and the transfer optical system includes a rear optical system from the rear optical system. The object image and the plurality of pupils are transmitted backward.

【0017】請求項8記載の発明は、複数の視野方向
と、これら視野方向に対応した複数の瞳と、各瞳からの
光束により同じ位置に像を結像する光学系とからなる対
物光学系を含んでいる。
According to an eighth aspect of the present invention, there is provided an objective optical system comprising a plurality of visual field directions, a plurality of pupils corresponding to these visual field directions, and an optical system for forming an image at the same position by a light beam from each pupil. Is included.

【0018】請求項9記載の発明は、負の屈折力を有す
るレンズを含む前方光学系と、正の屈折力を有するレン
ズを含む収斂性を有する後方光学系からなる対物光学系
とを含む複数視野方向内視鏡であって、前記前方光学系
は、互いに異なる方向に光軸を持つ複数のレンズと、互
いに異なる方向からの光束を受け、該光束を受け渡す伝
達光学系の光軸に沿って略平行に並列した複数の光束に
変換するプリズムとを含み、前記後方光学系は、前記前
方光学系から射出された光束を含む大きさと単一の光軸
を有し、複数の光束により同時に像面へ物体の像を形成
する。
A ninth aspect of the present invention includes a plurality of front optical systems including a lens having a negative refractive power and an objective optical system including a rear optical system having a convergent property and including a lens having a positive refractive power. A field-of-view endoscope, wherein the front optical system is provided with a plurality of lenses having optical axes in different directions, and optical axes of a transmission optical system that receives light beams from different directions and transfers the light beams. And a prism for converting into a plurality of light fluxes arranged substantially parallel to each other, the rear optical system has a size including the light flux emitted from the front optical system and a single optical axis, and a plurality of light fluxes simultaneously Form an image of an object on the image plane.

【0019】[0019]

【作用】請求項1ないし請求項7による複数視野方向型
内視鏡は、複数の視野方向と視野方向に1対1に対応し
た複数の瞳を有する対物光学系と、この対物光学系によ
り作られる1つまたは複数の像及び前記の複数の瞳の伝
達光学系を有し、伝達光学系は、前記対物光学系からこ
の伝達光学系中に形成される前記複数の瞳の大きさと比
較してほぼ同等以上に形成されており、物体像及び前記
瞳が伝達途中でケラれること無く後方に伝達される。す
なわち、伝達光学系よりも後方に重ならない複数の瞳を
得ることができ、この瞳に対応する複数の視野方向も同
時に提供されている。このため、特開平2−15692
3号公報のように、視野方向選択の為の伝達光学系に可
動部を必要としなくてもよい。
A multi-viewing direction endoscope according to any one of claims 1 to 7 includes an objective optical system having a plurality of visual field directions and a plurality of pupils corresponding to the visual field directions, and the objective optical system. A transfer optics of said one or more images and said plurality of pupils, said transfer optics being compared with the size of said plurality of pupils formed in said transfer optics from said objective optics. The object image and the pupil are formed to have substantially the same size or more, and the object image and the pupil are transmitted rearward without vignetting. That is, it is possible to obtain a plurality of pupils that do not overlap behind the transmission optical system, and a plurality of visual field directions corresponding to the pupils are simultaneously provided. For this reason, JP-A-2-15692
Unlike Japanese Patent Publication No. 3, it is not necessary to provide a movable part in the transmission optical system for selecting the visual field direction.

【0020】また、複数の視野方向と視野方向に1対1
に対応した複数の瞳を有する対物光学系を用いている。
従って、本内視鏡は、特開昭57−200125号公報
や特開平2−32313号公報の技術のような視野方向
に1対1に対応した複数の瞳を有していない場合に比
べ、対物光学系にある瞳より前に遮光手段や偏光手段な
どの視野方向切り換え手段を設けることが不必要であ
り、対物光学系の構造が簡単となり、組立性が良くな
る。
Further, there are a plurality of visual field directions and one-to-one correspondence in the visual field directions.
The objective optical system having a plurality of pupils corresponding to is used.
Therefore, the present endoscope has a plurality of pupils corresponding to one-to-one in the visual field direction as in the technique disclosed in JP-A-57-200125 and JP-A-2-323313, It is not necessary to provide a field-of-view direction switching means such as a light blocking means and a polarizing means in front of the pupil in the objective optical system, and the structure of the objective optical system is simplified and the assembling property is improved.

【0021】さらに請求項1ないし請求項7記載の内視
鏡は、偏光を用いていないので、特開平2−32313
号公報のような偏光方向の回転による周辺部の画像の劣
化は起こらない。
Further, since the endoscope according to any one of claims 1 to 7 does not use polarized light, it is disclosed in JP-A-2-32313.
The image in the peripheral portion does not deteriorate due to the rotation of the polarization direction as in the publication.

【0022】ここで、請求項1における1又は2以上の
物体像のうち、一つの物体像及び請求光3,5,6及び
7の物体像とは、複数の瞳からの像が重なりあったもの
である。厳密に一致している必要はなく、結像位置での
みほぼ重なり合って面積を小さくしており、前記伝達光
学系により伝達された複数の瞳位置のいずれかに観察者
の瞳を置いたときに視野方向の選択が可能となる。この
瞳の位置に撮像手段を配置することも可能である。ま
た、面積を小さくしているので、像位置に撮像手段を配
置したときに、必要な画像をつくる光線以外の光線を瞳
位置で遮断することで、撮像手段を移動させることなく
視野方向の選択が可能となる。また、請求項1ないし請
求項7では、複数の視野方向に対応した複数の像を選択
的に観察可能とするために、複数視野方向に対応した複
数の対物像を同時に提供することができる。
Here, of the one or more object images in claim 1, one object image and the object images of the claim lights 3, 5, 6 and 7 are images from a plurality of pupils. It is a thing. It does not have to be exactly the same, and the area is made to substantially overlap only at the image forming position to reduce the area, and when the observer's pupil is placed at any of the plurality of pupil positions transmitted by the transmission optical system. The viewing direction can be selected. It is also possible to arrange the imaging means at the position of this pupil. Further, since the area is made small, when the image pickup means is arranged at the image position, by blocking the light rays other than the light rays forming the necessary image at the pupil position, the viewing direction can be selected without moving the image pickup means. Is possible. In addition, according to the first to seventh aspects, since it is possible to selectively observe a plurality of images corresponding to a plurality of visual field directions, it is possible to simultaneously provide a plurality of objective images corresponding to a plurality of visual field directions.

【0023】請求項4における複数の瞳とは、ほぼ同一
面に重なり合ったものである。
The plurality of pupils in the fourth aspect are substantially overlapped on the same plane.

【0024】請求項2記載の複数視野方向型内視鏡は、
瞳分離手段で分離された光束を結像光学系により複数視
野に対応する複数の物体像を同時に得られる。このた
め、本項記載の内視鏡では、複数視野に対応する各物体
像を選択的に肉眼観察することや撮像手段を設けること
により各物体像を撮像し、映像信号を提供することも容
易である。そして、本項記載の内視鏡では、当該内視鏡
内には、前述した可動部や偏光を用いる必要がまったく
ないので、滅菌による高温に対する耐性にも優れてい
る。
A multi-view direction endoscope according to claim 2 is
A plurality of object images corresponding to a plurality of visual fields can be simultaneously obtained from the light flux separated by the pupil separating means by the image forming optical system. Therefore, in the endoscope described in this section, it is easy to selectively observe the object images corresponding to a plurality of visual fields with the naked eye and to provide the image signal by capturing each object image by providing the image pickup means. Is. In the endoscope described in this section, since there is no need to use the above-mentioned movable part or polarized light in the endoscope, the endoscope has excellent resistance to high temperature due to sterilization.

【0025】請求項8及び請求項9記載の複数視野方向
型内視鏡は、従来例のような視野方向選択の為の伝達光
学系自体を必要とせず、また視野方向に1対1に対応し
た複数の瞳を有していない場合に比べ、対物光学系にあ
る瞳より前に遮光手段や偏光手段などの視野方向切り換
え手段を設けることが不必要であり、光学系の構造が簡
単となり、組立性が良くなる。
The multi-viewing direction endoscope according to the eighth and ninth aspects does not require a transmission optical system itself for selecting a viewing direction unlike the conventional example, and corresponds to the viewing direction one to one. It is unnecessary to provide a visual field direction switching unit such as a light blocking unit or a polarizing unit before the pupil in the objective optical system as compared with the case where the plural pupils are not provided, and the structure of the optical system is simplified. Assembleability is improved.

【0026】[0026]

【実施例】図を参照して本発明の実施例について、以下
に説明する。図1ないし図3は第1実施例に係り、図1
(a)は複数視野方向型内視鏡の構成図、図1(b)は
明るさ絞りの構成例を示す図、図2は内視鏡装置の全体
的な構成図、図3は瞳分割を利用した対物光学系の設計
例に係る構成図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 relate to the first embodiment, and FIG.
1A is a configuration diagram of a multi-viewing direction endoscope, FIG. 1B is a diagram showing a configuration example of a brightness diaphragm, FIG. 2 is an overall configuration diagram of an endoscope device, and FIG. 3 is pupil division. It is a block diagram which concerns on the design example of the objective optical system which utilized this.

【0027】図2に示す内視鏡装置10は、挿入部2を
有し且つ視野方向が可変可能な内視鏡11と、カメラ4
と、モニタ5と、光源装置7とを有している。
An endoscope apparatus 10 shown in FIG. 2 has an endoscope 11 which has an insertion portion 2 and whose view direction is variable, and a camera 4.
And a monitor 5 and a light source device 7.

【0028】前記内視鏡11は、その挿入部2の先端部
1には、複数の視野方向をもつ対物光学系とそれぞれの
視野方向を照明するライトガイドが組み込まれている。
前記挿入部2には、前記対物光学系に続き、像や瞳の伝
達光学系であるリレーレンズ系が設けられている。前記
内視鏡11の基部3には、接眼光学系が配置され、その
接眼光学系の後ろには、カメラ4が取り付けることが可
能である。ここで、前記内視鏡11の基部3及びカメラ
4は一体式または脱着式で構成されている。カメラ4で
撮像された被写体は、最終的にモニタ5にて内視鏡画像
として観察者に観察可能に表示される。
In the endoscope 11, the distal end portion 1 of the insertion portion 2 is incorporated with an objective optical system having a plurality of visual field directions and a light guide for illuminating each visual field direction.
Following the objective optical system, the insertion section 2 is provided with a relay lens system which is an optical system for transmitting an image and a pupil. An eyepiece optical system is arranged on the base 3 of the endoscope 11, and a camera 4 can be attached behind the eyepiece optical system. Here, the base portion 3 and the camera 4 of the endoscope 11 are configured as an integral type or a detachable type. The subject imaged by the camera 4 is finally displayed on the monitor 5 as an endoscopic image so that the observer can observe it.

【0029】前記光源装置7からの照明光は、ライトガ
イドケーブル6を通し、前記基部3、挿入部2、及び先
端部1を経て各視野方向を照明する。
Illumination light from the light source device 7 passes through the light guide cable 6, passes through the base portion 3, the insertion portion 2 and the tip portion 1 and illuminates each visual field direction.

【0030】次に、内視鏡11の光学系の詳細について
説明する。本第1実施例の内視鏡の光学系については、
対物光学系は瞳分割を利用するものであり、また接眼光
学系を有した構成例となっている。
Next, details of the optical system of the endoscope 11 will be described. Regarding the optical system of the endoscope of the first embodiment,
The objective optical system uses pupil division and is an example of a configuration having an eyepiece optical system.

【0031】瞳分割方式は、基本的に一つの光軸を有す
る光学系で構成されているが、複数視野方向型とするた
め、前記光学系の前方には、複数の視野方向に対応する
レンズ群が配置されることになる。この瞳分割方式を採
用した複数視野方向型の光学系は、物体側から順に、複
数の視野方向で同一構成であり、且つそれぞれの視野方
向を向いて配置された前方レンズ群と、前記複数の視野
方向に対応した前記レ前方レンズ群の後段に複数の視野
方向からの像を形成するためのプリズムと、複数の瞳を
作るために瞳近傍に配置された複数の開口を持つ明るさ
絞りと、複数の視野方向からの光束を重なった1つの像
に結像する後方レンズ群とにより構成される。本来一つ
の光学系の光束を瞳近傍で、図1(b)に示す2つの開
口を持つ明るさ絞り21により分割し、明るさ絞り21
の一方の開口を通る光束をそのまま直視に、明るさ絞り
21の他方の開口を通る光束をプリズムにより視野方向
を斜視化したものとしている。ここで、像面上では2つ
の視野方向の像が重なって形成される。
The pupil division method is basically composed of an optical system having one optical axis, but since it is of a plural visual field direction type, a lens corresponding to plural visual field directions is provided in front of the optical system. A group will be arranged. A multiple visual field direction type optical system adopting this pupil division method has the same configuration in the plural visual field directions in order from the object side, and the front lens group arranged facing each visual field direction, A prism for forming images from a plurality of viewing directions in the latter stage of the front lens group corresponding to the viewing direction, and a brightness diaphragm having a plurality of apertures arranged in the vicinity of the pupils to form a plurality of pupils. , A rear lens group that forms light beams from a plurality of visual field directions into a single superimposed image. Originally, the light flux of one optical system is divided in the vicinity of the pupil by the aperture stop 21 having two apertures shown in FIG.
The light flux passing through one of the openings is directly viewed as it is, and the light flux passing through the other opening of the aperture stop 21 is viewed in a perspective view by a prism. Here, two images in the visual field directions are formed to overlap each other on the image plane.

【0032】具体的に図1(a)を用いて本実施例に係
る光学系の構成を説明する。図1(a)に示す光学系
は、対物光学系22と、伝達光学系としての1組のリレ
ーレンズ系23、及び接眼光学系24とにより構成され
ている。
The configuration of the optical system according to this embodiment will be specifically described with reference to FIG. The optical system shown in FIG. 1A is composed of an objective optical system 22, a set of relay lens systems 23 as a transmission optical system, and an eyepiece optical system 24.

【0033】前記対物光学系22は、最も物体に近い位
置に配置される直視方向と側視方向とをそれぞれ向いた
二つの対物レンズ25,26と、この二つの対物レンズ
25,26からの光束を異なる面で入射する第1プリズ
ム27と、前記第1プリズム27からの光束を同一面か
ら入射する第2プリズム28と、瞳を視野方向に対応し
て複数に分割するための明るさ絞り21とからなる前方
レンズ群29aを有し、この前方レンズ群29aの後方
に、前記瞳からの光束を収斂させて対物像を結像させる
ための後方レンズ群29bを配置している。図中、一点
鎖線は各視野方向つまり、対物レンズ25,26の光軸
を示している。
The objective optical system 22 is provided with two objective lenses 25 and 26 which are arranged at a position closest to the object and which respectively face in the direct-viewing direction and the side-viewing direction, and the light flux from the two objective lenses 25 and 26. Is incident on different surfaces, a second prism 28 on which the light flux from the first prism 27 is incident on the same surface, and a diaphragm 21 for dividing the pupil into a plurality of portions corresponding to the visual field direction. And a rear lens group 29b for converging the light flux from the pupil and forming an objective image behind the front lens group 29a. In the figure, the alternate long and short dash line indicates each visual field direction, that is, the optical axis of the objective lenses 25 and 26.

【0034】この光学系で直視方向の像は、以下のよう
にして形成される。直視用の対物レンズ26を通過した
光線は、第1プリズム27の面31を通過後、接合面3
2に至る。第1プリズム27側の接合面32は、有害な
フレアを防ぐため有効な光線以外は通さぬよう黒塗りさ
れ、フレア絞りとなっている。第1,第2プリズム2
7,28は、同じ硝材で作られているため、屈折率が等
しく屈折せずに面28を通過する。その後、明るさ絞り
21の下側を瞳面とし、後方レンズ群29bにより、こ
の後方レンズ群29bの光軸を中心軸とした像I1 が結
像される。
An image in the direct viewing direction is formed by this optical system as follows. The light ray that has passed through the direct-viewing objective lens 26 passes through the surface 31 of the first prism 27, and then the cemented surface 3
Up to 2. The joint surface 32 on the side of the first prism 27 is coated with black so as to prevent passage of rays other than effective rays in order to prevent harmful flare, and forms a flare stop. First and second prism 2
Since 7 and 28 are made of the same glass material, they have the same refractive index and pass through the surface 28 without refraction. Thereafter, the lower side of the aperture stop 21 is used as a pupil plane, and the rear lens group 29b forms an image I1 with the optical axis of the rear lens group 29b as the central axis.

【0035】一方、斜視方向の像は次のようにして形成
される。斜視用の対物レンズ25を通過した光線は、第
1プリズム27の面33を通過後、接合面32に至る。
このとき、斜視方向の像を形成する光線は、直視光線と
同様屈折せずに接合面を直進する。そして、第1プリズ
ム27側の接合面32は、有害なフレアを防ぐため有効
な光線以外は通さないフレア絞りとしている。直視方向
の光軸と斜視方向の光軸とが接合面のところで交わって
いるため、同じフレア絞りが両方向からの光線に対して
有効に機能する。直進した斜視方向からの光線はミラー
加工された面34で反射され、第2プリズム28側の面
32に再び至る。第2プリズム28側の面32は、瞳分
割で分離された直視光線及び斜視光線をケラない範囲で
かつ面34で反射された斜視光線をカバーする範囲でミ
ラー加工されている。従って、ケラれなく面34で反射
された斜視方向からの光線は、明るさ絞り21の上側を
通過後、直視光線同様に後方レンズ群29bにより、こ
の後方レンズ群29bの光軸を中心軸とした像I1 とな
って結像される。
On the other hand, the image in the perspective direction is formed as follows. The light ray that has passed through the oblique-viewing objective lens 25 reaches the cemented surface 32 after passing through the surface 33 of the first prism 27.
At this time, the light rays forming the image in the oblique direction go straight on the cemented surface without being refracted as in the case of the direct-viewing light rays. The joint surface 32 on the side of the first prism 27 is a flare diaphragm that allows only effective light rays to pass in order to prevent harmful flare. Since the optical axis in the direct viewing direction and the optical axis in the oblique direction intersect at the joint surface, the same flare diaphragm effectively functions for light rays from both directions. The light ray from the oblique direction that has traveled straight is reflected by the mirror-processed surface 34 and reaches the surface 32 on the second prism 28 side again. The surface 32 on the side of the second prism 28 is mirror-processed within a range in which the direct-view light rays and the oblique light rays separated by pupil division are not vignetted and in which the oblique light rays reflected by the surface 34 are covered. Therefore, the rays from the perspective direction which are reflected by the surface 34 without being eclipsed pass through the upper side of the aperture stop 21 and are then transmitted by the rear lens group 29b in the same manner as the direct-view rays, with the optical axis of the rear lens group 29b as the central axis. The formed image I1 is formed.

【0036】前記対物光学系22により作られる複数の
視野方向からの像I1 と瞳21とは、リレーレンズ系2
3により接眼光学系方向に伝達されていく。図中の符号
P2は、リレーレンズにより伝達された各視野方向に対
応する複数の瞳を示している。リレーレンズ系23と接
眼光学系24の間には像I2 が作られ、接眼光学系24
を通して、各視野方向に対応した複数の瞳P3 が得られ
る。
The images I1 and the pupil 21 from a plurality of visual fields formed by the objective optical system 22 are formed by the relay lens system 2
It is transmitted in the direction of the eyepiece optical system by 3. Reference numeral P2 in the drawing indicates a plurality of pupils corresponding to the respective visual field directions transmitted by the relay lens. An image I2 is formed between the relay lens system 23 and the eyepiece optical system 24, and the eyepiece optical system 24
Through, a plurality of pupils P3 corresponding to each visual field direction can be obtained.

【0037】観察者は、自分の瞳の位置を観察したい視
野方向の伝達された瞳の位置に動かすことにより、視野
方向を選択することができる。
The observer can select the visual field direction by moving the position of his / her pupil to the position of the transmitted pupil in the visual field direction to be observed.

【0038】本実施例は、元々対物光学系は同軸の光学
系として設計してあり、偏心光学系ではない設計であ
る。それを視野方向の異なる瞳に対してプリズムで折曲
げた構成になっている。つまり、後方レンズ群29bの
光軸を接合面32を通して延長した線上に対物レンズ2
6の光軸があり、また後方レンズ群29bの光軸を接合
面32で反射させ更に反射面34で反射させた延長線上
に対物レンズ25の光軸がある。従って、2つの負レン
ズとプリズムとからなる光学系と、その後方の光学系と
の間では光束がアフォーカルになっていなくても、リレ
ー光学系の前方に重なりあった2つの像を形成すること
ができる。
In this embodiment, the objective optical system is originally designed as a coaxial optical system, and is not a decentered optical system. It has a structure in which it is bent by a prism with respect to pupils having different viewing directions. That is, the objective lens 2 is placed on the line extending the optical axis of the rear lens group 29b through the cemented surface 32.
There are 6 optical axes, and the optical axis of the objective lens 25 is on the extension line where the optical axis of the rear lens group 29b is reflected by the cemented surface 32 and further reflected by the reflective surface 34. Therefore, even if the light beam is not afocal between the optical system including the two negative lenses and the prism and the optical system behind the optical system, two images that are overlapped in front of the relay optical system are formed. be able to.

【0039】本実施例では瞳分割を利用しているため、
もともと1つの光学系なので、少ないレンズ構成で良い
画質が得られることと、複数の瞳を決定する手段は対物
光学系の瞳位置と共役な位置であればリレー系23の瞳
P2 の位置でもそれ以外の部分でも良く、対物光学系や
伝達光学系に視野方向の切り換え装置をもたないので、
構造が簡単で組立性が良い点である。
Since pupil division is used in this embodiment,
Since it is originally one optical system, good image quality can be obtained with a small number of lens configurations, and the means for determining a plurality of pupils can be set at the position of the pupil P2 of the relay system 23 as long as it is a position conjugate with the pupil position of the objective optical system. Other parts may be used, and since the objective optical system and the transmission optical system do not have a device for switching the visual field direction,
It has a simple structure and is easy to assemble.

【0040】実際の対物光学系の設計例を図3に、そし
て、その数値データを表1に記載する。尚、図3に示す
構成は、図1において後方レンズ群29bとして示した
部分が、三つの接合レンズ29′で構成されている。
FIG. 3 shows an actual design example of the objective optical system, and Table 1 shows its numerical data. In the structure shown in FIG. 3, the portion shown as the rear lens group 29b in FIG. 1 is composed of three cemented lenses 29 '.

【0041】 以上述べたように、本実施例の構成では、結像される像
が1つとなる構成をとることにより、次のような効果を
得ることができる。すなわち、複数視野方向型内視鏡の
対物光学系は、複数の視野方向と視野方向に1対1に対
応した複数の瞳と一つの像を有し、一つの像は複数の視
野方向の像が重なったものであり、複数の視野方向の光
軸が、像の位置で伝達系の光軸と一致しており、結像に
するにあたり像より後ろの伝達光学系での伝達途中で一
つの像及び複数の瞳がケラれること無く伝達される。
[0041] As described above, in the configuration of the present embodiment, the following effects can be obtained by adopting a configuration in which only one image is formed. That is, the objective optical system of the multiple-viewing-direction endoscope has a plurality of viewing directions and a plurality of pupils corresponding to the viewing directions one by one, and one image, and one image is an image in the plurality of viewing directions. Are overlapped with each other, and the optical axes of multiple visual fields coincide with the optical axis of the transfer system at the image position. The image and the plurality of pupils are transmitted without vignetting.

【0042】このため、本実施例では、伝達光学系の後
方で視野方向の選択が可能となり、視野方向選択の為の
対物光学系や伝達光学系に可動部を必要としない。さら
に、本実施例は、対物光学系等に、視野方向の切り換え
装置を持たないので、構造が簡単で組立性も良い。また
偏光を用いていないので、偏光方向の回転による周辺部
の像の劣化もない。
Therefore, in this embodiment, the visual field direction can be selected behind the transmission optical system, and the objective optical system and the transmission optical system for selecting the visual field direction do not require a movable portion. Further, in this embodiment, since the objective optical system and the like do not have a device for switching the visual field direction, the structure is simple and the assembling is good. Further, since polarized light is not used, the image in the peripheral portion is not deteriorated by the rotation of the polarization direction.

【0043】これらの効果は、瞳分割手段が伝達光学系
や結像光学系にある場合も同様である。
These effects are the same when the pupil dividing means is provided in the transmission optical system or the image forming optical system.

【0044】図4ないし図9は本発明の第2実施例に係
り、図4(a)は偏芯光学系を利用した対物光学系を含
む複数視野方向型内視鏡の構成図、図4(b)は第2実
施例の変形例に係る内視鏡の構成図、図5は偏芯光学系
を利用し且つアフォーカル部が一部共通である対物光学
系の構成図、図6は、偏芯光学系を利用し且つ屈折によ
る斜視化を図る対物光学系の構成図、図7は偏芯光学系
を利用した対物光学系の設計例に係る構成図、図8は対
物光学系とリレーレンズ系を合わせた設計例に係る構成
図、図9は3つの視野方向を有する対物光学系の正面図
である。
FIGS. 4 to 9 relate to the second embodiment of the present invention, and FIG. 4A is a configuration diagram of a multi-viewing direction endoscope including an objective optical system using a decentered optical system. FIG. 6B is a configuration diagram of an endoscope according to a modified example of the second embodiment, FIG. 5 is a configuration diagram of an objective optical system that uses a decentered optical system, and an afocal portion is partially common, and FIG. FIG. 7 is a block diagram of an objective optical system that uses a decentered optical system and achieves a perspective view by refraction, FIG. 7 is a configuration diagram of a design example of an objective optical system that uses a decentered optical system, and FIG. FIG. 9 is a configuration diagram according to a design example in which a relay lens system is combined, and FIG. 9 is a front view of an objective optical system having three viewing directions.

【0045】本実施例の内視鏡は、対物光学系に偏芯光
学系を利用し、第1実施例の接眼光学系の代わりに結像
光学系と固体撮像素子を使用しており、光学的な視野方
向選択手段を持たない構成となっている。
The endoscope of this embodiment uses a decentered optical system as an objective optical system, and uses an image forming optical system and a solid-state image sensor instead of the eyepiece optical system of the first embodiment. It does not have a general visual field direction selection means.

【0046】図4(a)は、本実施例の内視鏡内部に配
置される光学系の構成を示している。この内視鏡の光学
系は、先端側から順に、対物光学系41と、リレーレン
ズ系42と、結像レンズ43と、瞳分離光学部材44c
及びミラー等の反射部材44a,44bと、二つのレン
ズ系45a,45bと、撮像手段としての二つの固体撮
像素子46a,46bとを有している。尚、リレーレン
ズ系は一つしか示していないが、必要に応じて複数使用
する場合もあることは当然である。また、結像レンズ4
5a,45bが前述の結像光学系を構成している。
FIG. 4A shows the configuration of the optical system arranged inside the endoscope of this embodiment. The optical system of this endoscope has an objective optical system 41, a relay lens system 42, an imaging lens 43, and a pupil separation optical member 44c in order from the tip side.
And reflection members 44a and 44b such as mirrors, two lens systems 45a and 45b, and two solid-state image pickup devices 46a and 46b as image pickup means. Although only one relay lens system is shown, it goes without saying that a plurality of relay lens systems may be used if necessary. Also, the imaging lens 4
5a and 45b constitute the above-mentioned image forming optical system.

【0047】前記対物光学系41は、前群に直視、斜視
の2つの視野方向とこれら視野方向に対応した瞳P11と
を有する互いに独立なほぼアフォーカルなレンズ群47
a,47bからなる前方光学系47を配置し、後群に前
記複数の瞳P11からの光束をケラれることなく像まで伝
達できる大きさを有し、複数の視野方向からの光束によ
り重なった一つの像I11を形成する後方レンズ系48を
配置している。
The objective optical system 41 has a substantially afocal lens group 47 which is independent of each other and has two visual field directions of a front group and a strabismus and a pupil P11 corresponding to these visual field directions.
A front optical system 47 composed of a and 47b is arranged, and the rear group has a size capable of transmitting the light beams from the plurality of pupils P11 to the image without being eclipsed, and the light beams from the plurality of visual field directions overlap each other. A rear lens system 48 is arranged which forms one image I11.

【0048】前記リレーレンズ系42は、前記瞳P11を
瞳P12として結像すると共に、像I11を像I12として結
像し、結像レンズ43に伝達するようになっている。結
像レンズ43は、リレーレンズ系42から伝達された像
と瞳を複数の反射面を有する瞳分離光学部材44c側に
伝達し、この瞳分離光学部材44cは、複数の瞳P13を
受けて、各々異なる方向つまり、反射部材44a,44
bへ向けて分離して送り出すようになっている。前記反
射部材44a,44bでは、分離された各瞳、図示例で
は、直視方向の光学系と斜視方向の光学系とに対応する
二つの瞳をそれぞれレンズ系45a,45bへ向けて各
々反射し、このレンズ系45a,45bは、各々の瞳に
対応する像を固体撮像素子46a,46bに結像するよ
うになっている。
The relay lens system 42 forms an image of the pupil P11 as a pupil P12 and an image I11 as an image I12, which is transmitted to the image forming lens 43. The imaging lens 43 transmits the image and the pupil transmitted from the relay lens system 42 to the side of the pupil separating optical member 44c having a plurality of reflecting surfaces, and the pupil separating optical member 44c receives the plurality of pupils P13, In different directions, that is, the reflecting members 44a, 44
It is designed to be separated and sent to b. In the reflecting members 44a and 44b, the separated pupils, in the illustrated example, two pupils corresponding to the optical system in the direct viewing direction and the optical system in the oblique direction are respectively reflected toward the lens systems 45a and 45b, respectively, The lens systems 45a and 45b are adapted to form an image corresponding to each pupil on the solid-state image pickup devices 46a and 46b.

【0049】前記構成において、まず、各視野方向の光
線は、前方光学系47を構成するほぼアフォーカルな二
つのレンズ群47a,47bを各々通過したあと、後方
レンズ系48により各視野方向の光軸は、曲げられ、像
I11が後方レンズ系48の光軸上に結像される。本実施
例では、斜視方向を実現するにあたり、第1実施例のプ
リズム27,28によって行われる斜視を実現したもの
と、基本構成がほぼ同様のものが使用されている。ここ
で斜視プリズムは、特開昭60−140313号公報、
特開昭50−91333号公報、特開平2−10801
3号公報に示される30゜プリズム,特開昭59−87
403号公報に示される70゜プリズム、または110
゜プリズム等を用いても良い。
In the above-mentioned structure, first, the light rays in each visual field direction pass through the two lens groups 47a and 47b which are substantially afocal constituting the front optical system 47, and then the rear lens system 48 causes the light rays in each visual field direction. The axis is bent and the image I11 is imaged on the optical axis of the rear lens system 48. In this embodiment, in realizing the perspective direction, the one having the same basic configuration as the one realizing the perspective performed by the prisms 27 and 28 of the first embodiment is used. Here, the perspective prism is described in JP-A-60-140313,
JP-A-50-91333 and JP-A-2-10801
A 30 ° prism shown in Japanese Patent Laid-Open No. 3-9, JP-A-59-87.
70 ° prism or 110 shown in Japanese Patent No. 403
A prism or the like may be used.

【0050】また、前記対物光学系41は、図5のよう
に前記実施例のプリズム27,28と同様なプリズムを
含む前方光学系47cを使用し、すなわち、直視及び斜
視の光学系を共有化しても良い。あるいは、対物光学系
41は、図6のように、瞳P1 近傍に、くさびプリズム
49を置いて、屈折を利用して斜視の実現を行っても良
い。この構成では、直視方向と斜視方向に各用いるレン
ズ群は、長さが異なるだけで、ほぼ同一のレンズ群を使
用でき、斜視用のレンズ群は、直視用のレンズ群に対し
て傾けて配置し、且つ、その後方に前記くさびプリズム
49を配置する。またあるいは、前記対物光学系41
は、図9に示すように、後方に配置するリレーレンズ系
で像や瞳のケラレが起こらない範囲ならば、視野方向を
3つにしても良いし、それ以上でも良い。図示例では、
最先端側のレンズ50,51,52が示され、それぞ0
度(直視)、30度(斜視)、70度(斜視)のレンズ
群を構成している。
Further, as the objective optical system 41, as shown in FIG. 5, a front optical system 47c including prisms similar to the prisms 27 and 28 of the embodiment is used, that is, the direct-viewing and oblique-viewing optical systems are shared. May be. Alternatively, in the objective optical system 41, as shown in FIG. 6, a wedge prism 49 may be placed in the vicinity of the pupil P1 to realize a perspective view by utilizing refraction. In this configuration, the lens groups used in the direct-viewing direction and the oblique-viewing direction can use substantially the same lens groups only with different lengths. In addition, the wedge prism 49 is arranged behind the wedge prism 49. Alternatively, the objective optical system 41
As shown in FIG. 9, three or more viewing directions may be provided as long as the relay lens system arranged behind does not cause vignetting of an image or pupil. In the example shown,
The lenses 50, 51, 52 on the frontmost side are shown, each of which is 0.
A lens group of 30 degrees (squint), 30 degrees (squint), and 70 degrees (squint) is formed.

【0051】前記対物光学系41からの光束は、図4
(a)に示すようにリレーレンズ系42により、第1実
施例と同様にリレーレンズ系の後ろに像I12を結像す
る。リレーレンズ系42の後ろに作られた像I12を形成
する各視野方向からの光線は、視野方向の異なる二つの
瞳の光束が、結像レンズ43の後方に配置された瞳分離
光学部材44cによりそれぞれ分離される。この瞳分離
光学部材44cは、リレーレンズ系42により伝達され
且つ結像レンズ43によって結像された瞳P13の位置近
傍に配置された例えばプリズムである。分離された各視
野方向の光束が、反射部材44a,44bで各々反射さ
れ、レンズ系45a,45bを経て、それぞれ撮像素子
46a,46b上に結像される。
The light flux from the objective optical system 41 is shown in FIG.
As shown in (a), the relay lens system 42 forms an image I12 behind the relay lens system as in the first embodiment. The light rays from the respective visual field directions forming the image I12 formed behind the relay lens system 42 are generated by two pupil light fluxes having different visual field directions by the pupil separation optical member 44c arranged behind the imaging lens 43. Each is separated. The pupil separation optical member 44c is, for example, a prism arranged near the position of the pupil P13 transmitted by the relay lens system 42 and imaged by the imaging lens 43. The separated luminous fluxes in the respective visual field directions are reflected by the reflecting members 44a and 44b, respectively, and are imaged on the image pickup devices 46a and 46b via the lens systems 45a and 45b.

【0052】本実施例では、瞳を結像する結像レンズ4
3により、光軸を前記リレーレンズ系42の光軸とほぼ
平行にし、物点を無限遠に結像させている。尚、像は一
つの固体撮像素子上に重ならないように結像させても良
い。
In this embodiment, the image forming lens 4 for forming an image on the pupil is formed.
3, the optical axis is made substantially parallel to the optical axis of the relay lens system 42, and the object point is imaged at infinity. The images may be formed so as not to overlap one solid-state image sensor.

【0053】本実施例によれば、前述した構成により複
数の固体撮像素子にて、視野方向の異なる像を独立に撮
像でき、対物光学系で視野の数や視野方向を容易に選択
できる。光学的視野方向の切り換え手段を持たず、すべ
ての視野方向の像を取り入れて撮像しており、図示例の
ように、複数の固体撮像素子を使用した構成にあって
は、スイッチの切り換えで各撮像素子の出力を選択し、
所定の信号処理を施して表示等をすることができる。ま
た、一つの固体撮像素子を利用した構成であれば、視野
方向の異なる各像の選択は、後段に接続する信号処理手
段により行えば良い。そして、一つの視野方向のみの画
像をモニタに映し出すことができる。
According to this embodiment, with the above-described structure, the plurality of solid-state image pickup devices can independently pick up images in different visual field directions, and the number of visual fields and the visual field directions can be easily selected by the objective optical system. An optical visual field direction switching means is not provided, and images in all visual field directions are taken in and imaged. In the configuration using a plurality of solid-state image pickup elements as shown in the figure, each switch is performed by switching the switch. Select the output of the image sensor,
Display and the like can be performed by performing predetermined signal processing. Further, in the case of the configuration using one solid-state image pickup device, each image having a different visual field direction may be selected by the signal processing means connected to the subsequent stage. Then, an image in only one visual field direction can be displayed on the monitor.

【0054】つまり、本実施例では、光学系を移動等せ
ずにあるいは光学的に視野方向の切り換えをすることな
しに、視野方向変換が実現することができる。また、信
号処理のし方によっては、視野方向の複数の像を同時に
一つまたは複数のモニタに映し出すことも可能である。
In other words, in this embodiment, the visual field direction conversion can be realized without moving the optical system or optically switching the visual field direction. Further, depending on how the signal processing is performed, it is possible to simultaneously display a plurality of images in the visual field direction on one or a plurality of monitors.

【0055】対物光学系の設計例を図7に示している。
また、対物光学系及びリレーレンズ系を合わせた設計例
を図8に示すと共に、R(レンズ面の曲率半径),d
(各面の間隔),n(屈折率),V(アッベ数)データ
を表2−1,表2−2に記載する。図中、符号54は対
物光学系、符号55はリレーレンズ系である。表2−2
は、表2−1に後続するものであり、一連の表である。
A design example of the objective optical system is shown in FIG.
A design example in which the objective optical system and the relay lens system are combined is shown in FIG. 8, and R (radius of curvature of lens surface), d
The data (distance between each surface), n (refractive index), and V (Abbe number) are shown in Table 2-1 and Table 2-2. In the figure, reference numeral 54 is an objective optical system, and reference numeral 55 is a relay lens system. Table 2-2
Is a series of tables that follow Table 2-1.

【0056】 尚、第1実施例と同様に瞳を決定する絞りは、対物光学
系でもよいし、共役なリレー系での瞳位置でも良いし、
あるいは瞳分割光学部材の近傍の瞳位置でも良い。
[0056] Incidentally, the diaphragm for determining the pupil may be the objective optical system or the pupil position in the conjugate relay system, as in the first embodiment.
Alternatively, it may be a pupil position near the pupil division optical member.

【0057】図4(b)には、本第2実施例の変形例を
示してある。本変形例では、前記結像レンズ43に代え
て設けた瞳結像レンズ56にて、発散光束又は収斂光束
として瞳像P3 を形成したあと、光束を平行にするレン
ズ57でアフォーカル光束を形成し、さらにこの光束を
結像レンズ45a,45bを介して撮像素子46a,4
6bに結像する構成になっている。本変形例では、瞳分
割光学部材としての反射プリズムを不要としている。絞
りは、図の瞳位置に配置しても良いし、リレーレンズ系
中に配置しても、あるいは対物光学系の瞳位置に配置し
ても良い。その他、第2実施例と同様の構成及び作用に
ついては、同じ符号を付して説明を省略する。
FIG. 4 (b) shows a modification of the second embodiment. In this modification, a pupil image forming lens 56 provided in place of the image forming lens 43 forms a pupil image P3 as a divergent light beam or a convergent light beam, and then a lens 57 for making the light beams parallel forms an afocal light beam. Then, this light flux is further transmitted through the imaging lenses 45a and 45b to the image pickup elements 46a and 4a.
The image is formed on 6b. In this modification, the reflection prism as the pupil division optical member is unnecessary. The diaphragm may be arranged at the pupil position in the figure, may be arranged in the relay lens system, or may be arranged at the pupil position of the objective optical system. Other configurations and operations similar to those of the second embodiment are designated by the same reference numerals and description thereof will be omitted.

【0058】図10ないし図13は本発明の第3実施例
に係り、図10は瞳切り替え装置を有する複数視野方向
型内視鏡の構成図、図11(a),(b)はイメージロ
ーテータによる視野方向の切り替え可能な複数視野方向
型内視鏡の構成図、図12は固体撮像素子等の移動によ
る視野方向の切り替え可能な複数視野方向型内視鏡の構
成図、図13(a)は対物光学系の瞳近傍に瞳切り替え
装置を設けた複数視野方向型内視鏡の構成図、図13
(b)は(a)とは異なる複数視野方向型内視鏡の構成
図である。
10 to 13 relate to the third embodiment of the present invention. FIG. 10 is a block diagram of a multi-viewing direction endoscope having a pupil switching device, and FIGS. 11 (a) and 11 (b) are image rotators. FIG. 13 is a configuration diagram of a multiple-viewing-direction endoscope in which the viewing directions can be switched according to FIG. 12, and FIG. 13 is a configuration diagram of a multi-viewing direction endoscope in which a pupil switching device is provided near the pupil of the objective optical system, FIG.
(B) is a block diagram of a multiple visual field direction endoscope different from (a).

【0059】本第3実施例の構成は、第2実施例と同様
に結像光学系と固体撮像素子を有し、さらに光学的視野
方向の切り換え手段を配置しているものである。
The structure of the third embodiment has an image forming optical system and a solid-state image pickup element as in the second embodiment, and further has a means for switching the optical visual field direction.

【0060】本実施例の対物光学系は、第1実施例の瞳
分割方式でも第2実施例のほぼアフォーカルな複数の光
学系と後方光学系とで構成されたものでも良い。本実施
例は、対物光学系の後方に配置されたリレーレンズ系の
後方に配置される光学系等の構成が前記各実施例と異な
っている。
The objective optical system of the present embodiment may be either the pupil division system of the first embodiment or the substantially afocal plural optical systems of the second embodiment and the rear optical system. This embodiment is different from the above-mentioned embodiments in the configuration of the optical system and the like arranged behind the relay lens system arranged behind the objective optical system.

【0061】図10に示すように、本実施例の光学系
は、図示しないリレーレンズ系の後方に、前記リレーレ
ンズ系で一旦結像された後、各視野方向毎に発散光束と
なった光を前記リレーレンズの光軸と平行とするための
レンズ系61と、前記レンズ系61を介して結像される
瞳の近傍に配置され且つ各瞳に対応し平行にされた各視
野方向の光束を切り替える選択手段としての瞳切り替え
装置62と、前記瞳切り替え装置62により選択された
光線を固体撮像素子64上に結像する結像レンズ系63
とを有している。
As shown in FIG. 10, the optical system of the present embodiment is a light beam which is formed as a divergent light beam in each visual field direction after being imaged once by the relay lens system behind a relay lens system (not shown). A lens system 61 for making the light beam parallel to the optical axis of the relay lens, and a light flux in each visual field direction, which is arranged in the vicinity of the pupil imaged through the lens system 61 and is parallel to each pupil. A pupil switching device 62 as a selection means for switching between the two, and an imaging lens system 63 for focusing the light beam selected by the pupil switching device 62 on a solid-state image sensor 64.
And have.

【0062】前記リレーレンズ系の後方に形成された像
I21を構成する各視野方向の光線は、レンズ系61によ
りリレーレンズ系の光軸と平行にされる。瞳位置近傍の
前記切り替え装置62により、観察者が観察したい視野
方向以外の瞳を通る光線は、遮断される。選択手段とし
ての遮断手段は、機械的に遮光板を動かしても良いし、
液晶シャッターのスイッチのon/offを用いても良
い。あるいは選択手段としては、図11(a),(b)
のようなイメージロテータ65を移動させて、視野方向
を切り換えても良い。符号66は、イメージローテータ
65により得られた光線を前記固体撮像素子64に結像
する結像レンズ系である。尚、同図(a),(b)は、
イメージローテータ65を移動させて、視野方向を切り
替える様子を示してある。
The rays of light in the respective visual field directions forming the image I21 formed behind the relay lens system are made parallel by the lens system 61 to the optical axis of the relay lens system. The switching device 62 near the pupil position blocks light rays passing through the pupil other than the visual field direction that the observer wants to observe. The blocking means as the selecting means may mechanically move the light shielding plate,
You may use the on / off of the switch of a liquid crystal shutter. Alternatively, as the selection means, the selection means shown in FIGS.
The image rotator 65 may be moved to switch the viewing direction. Reference numeral 66 is an image forming lens system for forming an image of the light beam obtained by the image rotator 65 on the solid-state image pickup device 64. The figures (a) and (b) are
It is shown that the image rotator 65 is moved to switch the visual field direction.

【0063】あるいはまた、選択手段としては、図12
に示すように、結像レンズ系65と個体撮像素子64と
を一体で、観察したい視野方向の位置に移動させて、視
野方向を切り換えるようにしても良い。選択された視野
方向の像のみが、固体撮像素子上64に結像される。
Alternatively, as the selection means, FIG.
As shown in, the imaging lens system 65 and the solid-state imaging device 64 may be integrally moved to a position in the visual field direction to be observed, and the visual field direction may be switched. Only the image in the selected visual field direction is formed on the solid-state image sensor 64.

【0064】本実施例の効果は、少ないスペースで視野
方向変換が実現できる点にある。
The effect of this embodiment is that the viewing direction conversion can be realized in a small space.

【0065】尚、対物光学系により作られる瞳と像がリ
レーレンズ系により伝達され、リレーレンズ系以後に瞳
分割手段を配置する場合は、第1実施例の明るさ絞り2
1は省略することができる。
When the pupil and the image formed by the objective optical system are transmitted by the relay lens system and the pupil dividing means is arranged after the relay lens system, the aperture stop 2 of the first embodiment is used.
1 can be omitted.

【0066】前記第2,第3実施例の構成は、撮像手段
を有しているわけであるが、第1実施例の接眼光学系に
連結可能な外付けカメラに適用することもできる。この
構成の場合、レンズ系43または61は前記接眼光学系
24に置き代えられる。
Although the structures of the second and third embodiments have the image pickup means, they can be applied to an external camera connectable to the eyepiece optical system of the first embodiment. In this case, the lens system 43 or 61 is replaced with the eyepiece optical system 24.

【0067】また、対物光学系の瞳分割を利用したも
の、偏芯光学系を利用したものと組み合わせる伝達光学
系より後の光学系は、接眼光学系、光学的視野方向の切
り換え手段を持つもの、持たないものとどれでも選択す
ることができる。
Further, the optical system after the transfer optical system combined with the one using the pupil division of the objective optical system and the one using the decentering optical system has an eyepiece optical system and a means for switching the optical visual field direction. You can choose anything you don't have.

【0068】本発明の対物光学系に瞳分割を利用したも
の、偏芯光学系を利用したもののいずれの場合も、各視
野方向の瞳近傍に必要とする視野方向以外の光線を遮断
する手段を設けることにより、伝達光学系が固体撮像素
子やイメージガイドに置き代わっても視野方向可変内視
鏡が実現できる。図13(a)に示す構成は、第1実施
例の前方レンズ群29aと同様の前方レンズ群と前記後
方レンズ系48とからなる対物光学系70の光路中に形
成される瞳近傍に、瞳の切り替え装置68を設け、固体
撮像素子69を配置した例である。瞳切り替え装置68
は液晶シャッター等がよい。また、図13(b)に示す
構成は、図5に示す前方光学系47cと同様の光学系を
含む偏芯光学系71を利用したものである。
In either case of utilizing the pupil division in the objective optical system of the present invention or utilizing the decentering optical system, a means for blocking light rays in the direction other than the visual field required near the pupil in each visual field direction is provided. By providing the endoscope, a variable viewing direction endoscope can be realized even if the transmission optical system is replaced with a solid-state image sensor or an image guide. The configuration shown in FIG. 13A has a pupil near the pupil formed in the optical path of an objective optical system 70 including a front lens group similar to the front lens group 29a of the first embodiment and the rear lens system 48. In this example, the switching device 68 is provided and the solid-state imaging device 69 is arranged. Pupil switching device 68
A liquid crystal shutter or the like is preferable. The configuration shown in FIG. 13B uses the decentering optical system 71 including the same optical system as the front optical system 47c shown in FIG.

【0069】図14(a)は第4実施例に係る複数視野
方向型内視鏡の光学系の構成図、図14(b)は一部共
通化を図った対物光学系の構成図である。
FIG. 14A is a block diagram of the optical system of the multiple-viewing direction endoscope according to the fourth embodiment, and FIG. 14B is a block diagram of an objective optical system that is partially common. .

【0070】第4実施例の対物光学系は、第1実施例の
対物光学系22に代えて、各視野毎に設けられた複数の
レンズ群から構成され、このレンズ群により像が複数形
成される構成となっている。その他、第1実施例と同様
の構成及び作用については、同じ符号を付して説明を省
略する。
The objective optical system of the fourth embodiment is composed of a plurality of lens groups provided for each visual field instead of the objective optical system 22 of the first embodiment, and a plurality of images are formed by this lens group. It is configured to. Other configurations and operations similar to those of the first embodiment are designated by the same reference numerals and description thereof will be omitted.

【0071】図14(a)に示す対物光学系73は、複
数(図示例では二つ)の独立したレンズ群から構成され
ている。前記対物光学系73の後方には、前記リレーレ
ンズ系23と接眼光学系24とが配置されている。尚、
リレーレンズ系23、接眼光学系24は、結像光学系と
固体撮像素子に代えて構成しても良い。
The objective optical system 73 shown in FIG. 14A is composed of a plurality (two in the illustrated example) of independent lens groups. Behind the objective optical system 73, the relay lens system 23 and the eyepiece optical system 24 are arranged. still,
The relay lens system 23 and the eyepiece optical system 24 may be configured in place of the imaging optical system and the solid-state image sensor.

【0072】前記対物光学系73は、図14(a)のよ
うに独立な光学系で構成しても良いし、図14(b)に
示す対物光学系73′のように、一部つまり先端側のレ
ンズを共通化しても良い。
The objective optical system 73 may be constituted by an independent optical system as shown in FIG. 14 (a), or a part, that is, a tip end, like the objective optical system 73 'shown in FIG. 14 (b). The side lens may be shared.

【0073】対物光学系で形成された複数の像I31,I
32は、伝達光学系としてのリレーレンズ系23により後
方に伝達される。接眼光学系24を有する構成では、図
14(a)のように、観察者が瞳位置74に目を置くこ
とによりそれぞれの視野方向を同時に見ることができ
る。
A plurality of images I31, I formed by the objective optical system
32 is transmitted rearward by a relay lens system 23 as a transmission optical system. With the configuration including the eyepiece optical system 24, as shown in FIG. 14A, an observer can view the respective visual field directions at the same time by placing his eyes at the pupil position 74.

【0074】一方、結像光学系と固体撮像素子により構
成されている場合は、リレーレンズ系23の後ろにでき
た複数の像を前記結像レンズにより1つの固体撮像素子
に結像する。この構成による効果は、対物光学系及び伝
達光学系から後ろの光学系は、いずれのものであっても
技術的に比較的容易に実現できる。
On the other hand, when the image forming optical system and the solid-state image pickup device are used, a plurality of images formed behind the relay lens system 23 are formed on one solid-state image pickup device by the image forming lens. The effect of this configuration can be achieved relatively easily technically regardless of whether the objective optical system or the transmission optical system is an optical system behind it.

【0075】尚、本実施例は、結像倍率を大きくし複数
の像に対応した位置に、固体撮像素子を置くことによ
り、複数の固体撮像素子上に結像させても良い。
In this embodiment, the solid-state image pickup device may be placed at a position corresponding to a plurality of images by increasing the image formation magnification so that images are formed on the plurality of solid-state image pickup devices.

【0076】[付記1] 請求項2記載の複数視野方向
型内視鏡において、前記瞳分離手段は、前記伝達光学系
により光線が射出される側であって、該伝達光学系によ
り伝達された複数の瞳の近傍に配置されている。
[Supplementary Note 1] In the multi-viewpoint direction endoscope according to claim 2, the pupil separating means is a side on which a light beam is emitted by the transmission optical system and is transmitted by the transmission optical system. It is arranged near a plurality of pupils.

【0077】[付記2] 請求項2記載の複数視野方向
型内視鏡において、前記結像光学系により結像された複
数の物体像をそれぞれ受光して撮像する複数の撮像手段
を有している。
[Supplementary Note 2] In the multi-viewing direction endoscope according to claim 2, a plurality of image pickup means for respectively receiving and picking up a plurality of object images formed by the image forming optical system are provided. There is.

【0078】[付記3] 付記2記載の複数視野方向型
内視鏡において、前記瞳分離手段は、前記伝達光学系に
より形成された複数の瞳に含まれる光束を各々異なる方
向に分離する光学部材と、この光学部材により分離され
た複数の光束を前記伝達光学系の光軸とほぼ平行な方向
に向ける反射手段とを有し、前記複数の撮像手段は、前
記反射手段で反射された光束を受けて前記結像光学系が
結像した物体像をそれぞれ撮像する。
[Supplementary Note 3] In the multi-viewing direction endoscope according to Supplementary Note 2, the pupil separating means is an optical member for separating the light beams contained in the plurality of pupils formed by the transmission optical system into different directions. And a reflecting means for directing a plurality of light fluxes separated by the optical member in a direction substantially parallel to the optical axis of the transmission optical system, and the plurality of image pickup means includes a light flux reflected by the reflecting means. The object images received and formed by the imaging optical system are respectively captured.

【0079】[付記4] 請求項3記載の複数視野方向
型内視鏡において、前記伝達光学系により伝達される物
体像を構成する光束の射出側に、前記複数の光束を前記
伝達光学系の光軸に略平行に並列した複数の光束に変換
する光学系を配置し、該複数の光束のうち一つだけを受
ける結像レンズと、この結像レンズが結像した物体像を
受けて撮像する撮像手段とを有し、この結像レンズと撮
像手段とを前記光学系の光軸と交差する方向に一体に移
動すように構成して、前記複数の光束のうち一つだけを
選択的に前記結像レンズに入射させる。
[Supplementary Note 4] In the multiple-viewing-direction endoscope according to claim 3, the plurality of light fluxes of the transmission optical system are arranged on the exit side of the light fluxes forming the object image transmitted by the transmission optical system. An optical system for arranging a plurality of light fluxes arranged substantially parallel to the optical axis is arranged, and an imaging lens for receiving only one of the plurality of light fluxes and an object image formed by the imaging lens are imaged. The imaging lens and the imaging means are configured to be integrally moved in a direction intersecting the optical axis of the optical system, and only one of the plurality of light beams is selectively selected. To the imaging lens.

【0080】[付記5] 請求項3記載の複数視野方向
型内視鏡において、前記伝達光学系により伝達される物
体像を構成する光束の射出側に、前記複数の光束を前記
伝達光学系の光軸に略平行に並列した複数の光束に変換
する光学系と、前記複数の光束のうち一つのみを選択的
に後方に伝達させるために、前記光学系の光軸と交差す
る方向に移動可能に配置されている光路切り替え手段
と、前記光路切り替え手段により選択された一つの光束
を受けて物体像を形成する結像光学系と、前記結像光学
系により結像された物体像を受けて撮像する撮像手段と
を有している。
[Supplementary Note 5] In the multiple-viewing-direction endoscope according to claim 3, the plurality of light fluxes of the transmission optical system are arranged on the exit side of the light fluxes forming the object image transmitted by the transmission optical system. An optical system for converting into a plurality of light fluxes arranged substantially parallel to the optical axis and moving in a direction intersecting the optical axis of the optical system in order to selectively transmit only one of the plurality of light fluxes rearward. An optical path switching means that is movably arranged, an image forming optical system that forms an object image by receiving one light beam selected by the optical path switching means, and an object image that is formed by the image forming optical system. And an image pickup means for picking up an image.

【0081】[付記6] 請求項3記載の複数視野方向
型内視鏡において、前記伝達光学系により伝達される物
体像を構成する光束の射出側に、前記複数の光束を前記
伝達光学系の光軸に略平行に並列した複数の光束に変換
する第1光学系と、前記複数の光束を受けて像を形成す
る第2光学系と、前記第1光学系と第2光学系との間に
設けられ、前記複数の光束のうち1つだけを選択的に透
過させる光束切り替え手段と、前記第2光学系により形
成された物体像を受けて撮像する撮像手段と、を備えて
いる。
[Supplementary Note 6] In the multiple-viewing-direction endoscope according to claim 3, the plurality of light fluxes of the transmission optical system are provided on the exit side of the light fluxes forming the object image transmitted by the transmission optical system. Between the first optical system for converting into a plurality of light fluxes arranged substantially parallel to the optical axis, the second optical system for receiving the plurality of light fluxes to form an image, and between the first optical system and the second optical system And a light beam switching unit that selectively transmits only one of the plurality of light beams, and an image pickup unit that receives and picks up an object image formed by the second optical system.

【0082】[付記7] 付記4又は付記5記載の複数
視野方向型内視鏡において、前記対物光学系または伝達
光学系のいずれかに、前記複数の異なる方向からの光束
の各々に対応する複数の瞳を設定する手段を備えてい
る。
[Supplementary Note 7] In the multiple-viewing-direction endoscope according to Supplementary Note 4 or Supplementary Note 5, a plurality of corresponding ones of the plurality of light beams from the plurality of different directions are provided in either the objective optical system or the transmission optical system. It is equipped with a means for setting the pupil.

【0083】[付記8] 請求項3または請求項4記載
の複数視野方向型内視鏡において、前記伝達光学系と共
通の光軸を有し、前記伝達光学系からの各視野方向に対
応した複数の瞳の範囲に含まれる光束により形成される
物体像を結像する結像光学系を有している。
[Supplementary Note 8] In the multi-viewing direction endoscope according to claim 3 or claim 4, the endoscope has a common optical axis with the transfer optical system and corresponds to each view direction from the transfer optical system. It has an imaging optical system for forming an object image formed by the light fluxes included in the range of a plurality of pupils.

【0084】[付記9] 付記8記載の複数視野方向型
内視鏡において、前記結像光学系により結像された複数
の物体像を、受光して撮像する一つの撮像手段を有して
いる。
[Supplementary Note 9] In the multi-view direction endoscope according to Supplementary Note 8, there is provided one image pickup means for receiving and picking up a plurality of object images formed by the image forming optical system. .

【0085】[付記10] 付記8記載の複数視野方向
型内視鏡において、前記結像光学系は、異なる視野方向
に対応する複数の物体像を肉眼観察可能に結像する接眼
光学系であるもの。付記10記載の内視鏡では、滅菌に
よる高温に対する耐性にも優れている。
[Supplementary Note 10] In the multiple-viewing-direction endoscope according to Supplementary Note 8, the image-forming optical system is an eyepiece optical system for forming a plurality of object images corresponding to different visual-field directions so as to be visually observable. thing. The endoscope described in appendix 10 is also excellent in resistance to high temperature due to sterilization.

【0086】[付記11] 付記8記載の複数視野方向
型内視鏡において、前記対物光学系または前記伝達光学
系のいずれかに、前記複数の異なる方向からの光束の各
々に対応する複数の瞳を設定する手段を備えている。
[Supplementary Note 11] In the multi-viewpoint direction endoscope according to Supplementary Note 8, a plurality of pupils corresponding to the light beams from the plurality of different directions are provided in either the objective optical system or the transmission optical system. Is provided.

【0087】[付記12] 付記10記載の複数視野方
向型内視鏡において、前記対物光学系、前記伝達光学系
または前記接眼光学系のいずれかに、前記複数の異なる
方向からの光束の各々に対応する複数の瞳を設定する手
段を備えている。
[Supplementary Note 12] In the multiple-viewing-direction endoscope according to Supplementary Note 10, one of the objective optical system, the transmission optical system, and the eyepiece optical system is provided with a plurality of light beams from different directions. A means for setting a plurality of corresponding pupils is provided.

【0088】[付記13] 請求項6又は請求項7記載
の内視鏡において、前記伝達光学系により伝達される物
体像を構成する光束の射出側に、該伝達光学系と共通の
光軸を持つ接眼光学系を配置している。付記13記載の
内視鏡では、滅菌による高温に対する耐性にも優れてい
る。
[Appendix 13] In the endoscope according to claim 6 or 7, an optical axis common to the transmission optical system is provided on the exit side of the light flux forming the object image transmitted by the transmission optical system. It has an eyepiece optical system. The endoscope described in appendix 13 is also excellent in resistance to high temperature due to sterilization.

【0089】[付記14] 請求項6又は請求項7記載
の複数視野方向型内視鏡において、前記伝達光学系によ
り伝達される物体像を構成する光束の射出側に、前記複
数の光束を伝達光学系の光軸に略平行に並列した複数の
光束に変換する光学系と、該光学系から射出された複数
の光束を各々異なる方向に向ける反射手段と、前記反射
手段により反射された各光束を物体像として結像させる
ために各々の光束の各光路中に設けられた複数の結像光
学系と、前記結像光学系で結像された各物体像を受けて
撮像する複数の撮像手段と、を備えている。付記14記
載の内視鏡では、滅菌による高温に対する耐性にも優れ
ている。
[Supplementary Note 14] In the multiple-viewing-direction endoscope according to claim 6 or 7, the plurality of light beams are transmitted to the exit side of the light beams forming the object image transmitted by the transmission optical system. An optical system for converting into a plurality of light fluxes arranged substantially parallel to the optical axis of the optical system, a reflecting means for directing the plurality of light fluxes emitted from the optical system in different directions, and respective light fluxes reflected by the reflecting means. A plurality of image forming optical systems provided in the respective optical paths of the respective light fluxes for forming an object image, and a plurality of image capturing means for receiving and capturing the respective object images formed by the image forming optical system. And are equipped with. The endoscope described in appendix 14 is also excellent in resistance to high temperature due to sterilization.

【0090】[付記15] 請求項6又は請求項7記載
の複数視野方向型内視鏡において、前記伝達光学系によ
り形成された像位置の射出側に、前記複数の光束を伝達
光学系の光軸に略平行に並列した複数の光束に変換する
光学系を配置し、前記光学系からの複数の光束のうち一
つだけを受ける結像レンズと、この結像レンズが結像し
た物体像を受けて撮像する撮像手段とを有し、この結像
レンズと撮像手段とを前記光学系の光軸と交差する方向
に一体に移動すように構成して、前記複数の光束のうち
一つだけを選択的に前記結像レンズに入射させる。
[Supplementary Note 15] In the multiple-viewing-direction endoscope according to claim 6 or 7, the plurality of light beams are transmitted from the transmission optical system to the exit side of the image position formed by the transmission optical system. An optical system for arranging a plurality of light fluxes arranged substantially parallel to the axis is arranged, and an imaging lens for receiving only one of the plurality of light fluxes from the optical system and an object image formed by the imaging lens. An image pickup means for receiving and picking up an image, and the imaging lens and the image pickup means are configured to be integrally moved in a direction intersecting the optical axis of the optical system, and only one of the plurality of light fluxes is provided. Is selectively made incident on the imaging lens.

【0091】[付記16] 請求項6又は請求項7記載
の複数視野方向型内視鏡において、前記伝達光学系によ
り形成された像位置の射出側に、前記複数の光束を伝達
光学系の光軸に略平行に並列した複数の光束に変換する
光学系と、前記光学系からの複数の光束のうち1つだけ
を後方に受け渡すために、前記光学系の光軸と交差する
方向に移動可能に配置されている光路切り替え手段と、
前記光路切り替え手段により選択され光束を受けて後方
に物体像を形成する結像光学系と、を備えている。
[Supplementary Note 16] In the multi-viewing direction endoscope according to claim 6 or 7, the plurality of light beams are transmitted to the exit side of the image position formed by the transfer optical system. An optical system for converting into a plurality of light fluxes arranged substantially parallel to the axis, and moving in a direction intersecting the optical axis of the optical system in order to transfer only one of the plurality of light fluxes from the optical system to the rear side. Optical path switching means that is arranged possible,
An image forming optical system which receives the light flux selected by the optical path switching means and forms an object image in the rear.

【0092】[付記17] 請求項8記載の複数視野方
向内視鏡において、前記対物光学系からの複数の瞳のう
ち一つを選択的に透過状態とする透過遮断切換え手段を
有している。
[Supplementary Note 17] In the multiple-viewing-direction endoscope according to claim 8, there is provided a transmission blocking switching means for selectively setting one of the plurality of pupils from the objective optical system into a transmission state. .

【0093】[付記18] 複数の視野方向を有する対
物光学系と、該対物光学系により形成された物体像を受
けて撮像する撮像手段とを有する複数視野方向型内視鏡
であって、前記対物光学系は、互いに異なる複数の方向
からの光束を受け該光束を略平行に並列した複数の光束
に変換するプリズム光学系と、各光束に対応した複数の
瞳を設定する手段と、該複数の瞳のうちの一つを選択的
に透過状態とする透過遮蔽切換え手段とを含む前方光学
系と、単一の光軸と収斂性を有する後方光学系と、から
なり、前記撮像手段は、前記透過遮蔽切換え手段により
選択され瞳に対応すると共に、前記後方光学系により形
成された物体像を撮像する。
[Supplementary Note 18] A multi-viewing direction endoscope having an objective optical system having a plurality of viewing directions and an image pickup means for receiving and picking up an object image formed by the objective optical system, The objective optical system includes a prism optical system that receives light fluxes from a plurality of mutually different directions and converts the light fluxes into a plurality of light fluxes that are arranged substantially in parallel, a means that sets a plurality of pupils corresponding to the respective light fluxes, and A front optical system including a transmission blocking switching unit that selectively sets one of the pupils of the unit to a transmissive state, and a rear optical system having a single optical axis and a converging property. The object image corresponding to the pupil selected by the transmission blocking switching unit and formed by the rear optical system is captured.

【0094】[付記19] 付記18記載の複数視野方
向型内視鏡において、前記撮像手段は固体撮像素子であ
るもの。
[Supplementary Note 19] In the multiple-viewing-direction endoscope according to Supplementary Note 18, the image pickup means is a solid-state image pickup element.

【0095】[0095]

【発明の効果】以上述べたように本発明の複数視野方向
型内視鏡によれば、内視鏡の先端部及び像伝達部に可動
部がなく、先端部の構造が簡単で組立性が良く、周辺部
での劣化のない像が得られるという効果がある。
As described above, according to the multiple-viewing-direction endoscope of the present invention, there is no movable portion at the distal end portion and the image transmitting portion of the endoscope, and the structure of the distal end portion is simple and the assembling is easy. Good, there is an effect that an image without deterioration in the peripheral portion can be obtained.

【0096】請求項2記載の発明によれば、内視鏡の先
端部及び像伝達部に可動部がなく、滅菌耐性の優れてい
るという効果がある。
According to the second aspect of the invention, there is an effect that the distal end portion of the endoscope and the image transmitting portion have no movable portion, and the sterilization resistance is excellent.

【0097】請求項1ないし請求項7記載の発明は、複
数の視野方向に対応した複数の物体像を同時に観察可能
したり選択的に観察が可能とすることができるようにす
るために、複数の視野方向に対応した複数の物体像を重
ならずに同時に提供することができるという効果があ
る。
According to the first to seventh aspects of the invention, a plurality of object images corresponding to a plurality of visual field directions can be simultaneously observed or selectively observed. There is an effect that it is possible to simultaneously provide a plurality of object images corresponding to the visual field directions of the above without overlapping.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1ないし図3は第1実施例に係り、図1
(a)は複数視野方向型内視鏡の構成図、図1(b)は
明るさ絞りの構成例を示す図。
1 to 3 relate to a first embodiment, and FIG.
FIG. 1A is a configuration diagram of a multi-viewing direction endoscope, and FIG. 1B is a diagram showing a configuration example of an aperture stop.

【図2】図2は内視鏡装置の全体的な構成図。FIG. 2 is an overall configuration diagram of an endoscope device.

【図3】図3は瞳分割を利用した対物光学系の構成図。FIG. 3 is a configuration diagram of an objective optical system using pupil division.

【図4】図4ないし図9は第2実施例に係り、図4
(a)は偏芯光学系を利用した対物光学系を含む複数視
野方向型内視鏡の構成図、図4(b)は第2実施例の変
形例に係る内視鏡の構成図。
4 to 9 relate to a second embodiment, and FIG.
FIG. 4A is a configuration diagram of a multi-viewing direction endoscope including an objective optical system that uses a decentered optical system, and FIG. 4B is a configuration diagram of an endoscope according to a modification of the second embodiment.

【図5】図5は偏芯光学系を利用し且つアフォーカル部
が一部共通である対物光学系の構成図。
FIG. 5 is a configuration diagram of an objective optical system that uses a decentered optical system and has a common afocal portion.

【図6】図6は、偏芯光学系を利用し且つ屈折による斜
視化を図る対物光学系の構成図。
FIG. 6 is a configuration diagram of an objective optical system that uses a decentered optical system and achieves a perspective view by refraction.

【図7】図7は偏芯光学系を利用した対物光学系の設計
例に係る構成図。
FIG. 7 is a configuration diagram according to a design example of an objective optical system using a decentered optical system.

【図8】図8は対物光学系とリレーレンズ系を合わせた
設計例に係る構成図。
FIG. 8 is a configuration diagram according to a design example in which an objective optical system and a relay lens system are combined.

【図9】図9は3つの視野方向を有する対物光学系の正
面図。
FIG. 9 is a front view of an objective optical system having three viewing directions.

【図10】図10ないし図13は第3実施例に係り、図
10は瞳切り替え装置を有する複数視野方向型内視鏡の
構成図。
10 to 13 relate to the third embodiment, and FIG. 10 is a configuration diagram of a multi-viewing direction endoscope having a pupil switching device.

【図11】図11(a),(b)はイメージローテータ
による視野方向の切り替え可能な複数視野方向型内視鏡
の構成図。
11A and 11B are configuration diagrams of a multiple-viewing-direction endoscope in which the viewing direction can be switched by an image rotator.

【図12】図12は固体撮像素子等の移動による視野方
向の切り替え可能な複数視野方向型内視鏡の構成図。
FIG. 12 is a configuration diagram of a multi-view direction endoscope in which the view directions can be switched by moving a solid-state image sensor or the like.

【図13】図13(a)は対物光学系の瞳近傍に瞳切り
替え装置を設けた複数視野方向型内視鏡の構成図、図1
3(b)は(a)とは異なる複数視野方向型内視鏡の構
成図。
FIG. 13A is a configuration diagram of a multiple-viewing-direction endoscope in which a pupil switching device is provided near a pupil of an objective optical system, FIG.
3B is a configuration diagram of a multi-viewing direction endoscope different from FIG.

【図14】図14(a)は第4実施例に係る複数視野方
向型内視鏡の構成図、図14(b)は対物光学系を一部
共通化した内視鏡の構成図である。
14A is a configuration diagram of a multiple-viewing-direction endoscope according to a fourth embodiment, and FIG. 14B is a configuration diagram of an endoscope in which an objective optical system is partially shared. .

【図15】図15は従来例に係る視野可変型内視鏡の構
成図。
FIG. 15 is a configuration diagram of a variable field-of-view endoscope according to a conventional example.

【図16】図16は従来例に係る視野可変型内視鏡の構
成図。
FIG. 16 is a configuration diagram of a field-of-view variable endoscope according to a conventional example.

【図17】図17は従来例に係る関節鏡の構成図。FIG. 17 is a configuration diagram of an arthroscope according to a conventional example.

【符号の説明】[Explanation of symbols]

11…内視鏡 21…明るさ絞り 22…対物光学系 23…リレーレンズ系 24…接眼光学系 29a…前方光学系 25,26…対物レンズ 27…第1プリズム 28…第2プリズム 29b…後方光学系 I1 ,I2 …対物像 P2 …瞳 11 ... Endoscope 21 ... Brightness diaphragm 22 ... Objective optical system 23 ... Relay lens system 24 ... Eyepiece optical system 29a ... Front optical system 25, 26 ... Objective lens 27 ... First prism 28 ... Second prism 29b ... Rear optical system System I1, I2 ... Objective image P2 ... Pupil

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 複数の視野方向と、これら視野方向に対
応し且つ重なり合わないように配置される複数の瞳とを
有していて、1又は2以上の物体像を形成する対物光学
系と、 前記対物光学系からの複数の瞳が有する大きさと同等以
上の大きさに形成され、前記対物光学系からの物体像及
び前記複数の瞳を後方に伝達する伝達光学系と、を備え
ていることを特徴とする複数視野方向型内視鏡。
1. An objective optical system having a plurality of visual field directions and a plurality of pupils corresponding to the visual field directions and arranged so as not to overlap each other, and forming one or more object images. A transfer optical system formed to have a size equal to or larger than a size of a plurality of pupils from the objective optical system and transmitting the object image from the objective optical system and the plurality of pupils to the rear. A multi-view direction endoscope that is characterized in that
【請求項2】 請求項1記載の複数視野方向型内視鏡に
おいて、 前記複数の異なる方向からの光束にそれぞれ対応した複
数の瞳であって、前記伝達光学系により形成される複数
の瞳を、それぞれ分離させる瞳分離手段と、 分離された各視野方向に対応した瞳の範囲に含まれる光
束により形成される物体像を結像する結像光学系とを有
している、ことを特徴としている複数視野方向型内視
鏡。
2. The multi-viewing direction endoscope according to claim 1, wherein a plurality of pupils respectively corresponding to the light beams from the plurality of different directions, the plurality of pupils formed by the transmission optical system, Characterized in that it has a pupil separating means for separating each, and an image forming optical system for forming an object image formed by a light beam included in a range of the separated pupils corresponding to respective visual field directions. Multi-view directional endoscope.
【請求項3】 複数の視野方向とこれら視野方向に対応
し且つ重なり合わないように形成される複数の瞳とを有
して物体像を形成する対物光学系と、単一の光軸を有し
且つ前記対物光学系からの物体像及び複数の瞳を伝達す
る伝達光学系とを備えている複数視野方向型内視鏡であ
って、 前記対物光学系は、互いに異なる方向からの光束を入射
し該光束を前記伝達光学系の光軸に沿って略平行に並列
に配置した複数の略アフォーカルな光束として射出する
前方光学系と、前記伝達光学系と共通の単一の光軸を有
しかつ前記前方光学系からの複数の光束を収斂させて後
方に物体像を結像する後方光学系とからなり、 前記伝達光学系は、前記後方光学系からの複数の光束に
対応した複数の瞳が有する大きさと同等以上の大きさに
形成され、且つ前記後方光学系からの物体像及び複数の
瞳を後方に伝達する、 ことを特徴とする複数視野方向型内視鏡。
3. An objective optical system having a plurality of visual field directions and a plurality of pupils corresponding to these visual field directions and formed so as not to overlap with each other to form an object image, and a single optical axis. And a multi-viewing direction endoscope including a transfer optical system for transmitting an object image from the objective optical system and a plurality of pupils, wherein the objective optical system allows light beams from different directions to enter. A front optical system that emits the light beams as a plurality of substantially afocal light beams that are arranged in parallel in parallel along the optical axis of the transmission optical system, and a single optical axis common to the transmission optical system. And a rear optical system that converges the plurality of light beams from the front optical system to form an object image in the rear, and the transfer optical system includes a plurality of light beams corresponding to the plurality of light beams from the rear optical system. The size is equal to or larger than the size of the pupil, and Transmitting the object image and a plurality of pupils from rectangular optical system in the rear, a plurality of sight endoscope characterized by.
【請求項4】 複数の視野方向とこれら視野方向に対応
し且つ重なり合わないように形成される複数の瞳とを有
して複数の物体像を形成する対物光学系と、単一の光軸
を有する伝達光学系と、を備えている複数視野方向型内
視鏡であって、 前記対物光学系は、互いに異なる視野方向からの光束を
入射し該光束を前記伝達光学系の光軸に沿って略平行に
並列した複数の略アフォーカルな光束として射出する前
方光学系と、前記前方光学系からの複数の射出光を各々
受けて複数の物体像を収斂させて後方に複数の対物像を
それぞれ形成するために、並列に配置された複数の後方
光学系とからなり、 前記伝達光学系は、前記後方光学系からの複数の光束に
対応した複数の瞳が有する大きさと同等以上の大きさに
形成され、且つ前記複数の後方光学系からの複数の物体
像及び複数の瞳を後方に伝達する、 ことを特徴とする複数視野方向型内視鏡。
4. An objective optical system having a plurality of visual field directions and a plurality of pupils corresponding to these visual field directions and formed so as not to overlap with each other to form a plurality of object images, and a single optical axis. And a transmission optical system having a plurality of visual field directions, wherein the objective optical system makes light beams incident from different visual field directions incident on the optical axis of the transmission optical system. And a front optical system that emits a plurality of substantially afocal light fluxes that are arranged substantially in parallel and that receives a plurality of emitted lights from the front optical system to converge a plurality of object images and a plurality of objective images behind. It comprises a plurality of rear optical systems arranged in parallel to form each, and the transfer optical system has a size equal to or larger than a size of a plurality of pupils corresponding to a plurality of light beams from the rear optical system. A plurality of rear optical systems Transmitting the plurality of object images and a plurality of pupils of al backwards, multiple viewing directions endoscope, characterized in that.
【請求項5】 複数の視野方向とこの複数の視野方向に
対応した複数の瞳とを有する対物光学系と、単一の光軸
を有する伝達光学系とを備えている複数視野方向型内視
鏡であって、 前記対物光学系は、互いに異なる方向からの複数の光束
を各々入射する複数の瞳と、前記光束のうち少なくとも
一つの光路を変更させて各光束を略同一の方向を向いた
光束に変換するプリズム光学系とを含む前方光学系と、
前記前方光学系からの複数の光束からなる物体像をほぼ
同一の位置に形成する後方光学系と、を有し、 前記伝達光学系は、前記後方光学系からの物体像及び複
数の瞳を後方に伝達する、 ことを特徴としている複数視野方向型内視鏡。
5. A multi-viewing direction internal view including an objective optical system having a plurality of viewing directions and a plurality of pupils corresponding to the plurality of viewing directions, and a transfer optical system having a single optical axis. A mirror, wherein the objective optical system changes the optical paths of at least one of the plurality of pupils into which a plurality of light beams from different directions are respectively incident, and directs the respective light beams in substantially the same direction. A front optical system including a prism optical system for converting into a light flux,
A rear optical system that forms an object image composed of a plurality of light beams from the front optical system at substantially the same position, and the transfer optical system rearranges the object image from the rear optical system and the plurality of pupils to the rear. A multi-view direction endoscope that is characterized in that it is transmitted to.
【請求項6】 複数の視野方向とこの複数の視野方向に
対応した複数の瞳とを有する対物光学系と、単一の光軸
を有する伝達光学系とを備えている複数視野方向型内視
鏡であって、 前記対物光学系は、互いに異なる方向に光軸を有する複
数のレンズと、該複数のレンズを透過した各光束を受け
該光束を前記伝達光学系の光軸に沿って略平行に並列し
た複数の光束に変換するプリズム光学系と、を含む前方
光学系と、前記前方光学系から射出された光束を含む大
きさを有して、複数の光束を同時に像面へ結像させるた
め、単一の光軸且つ射出光線に対する収斂性を有する後
方光学系と、を有し、 前記伝達光学系は、前記後方光学系からの物体像及び複
数の瞳を後方に伝達する、 ことを特徴としている複数視野方向型内視鏡。
6. A multi-viewing direction internal endoscope including an objective optical system having a plurality of viewing directions and a plurality of pupils corresponding to the plurality of viewing directions, and a transfer optical system having a single optical axis. The objective optical system is a mirror, and the objective optical system receives a plurality of lenses having optical axes in mutually different directions, receives each light beam transmitted through the plurality of lenses, and substantially parallels the light beams along an optical axis of the transmission optical system. A front optical system including a prism optical system for converting into a plurality of light fluxes arranged in parallel with each other, and a size including the light flux emitted from the front optical system, and simultaneously forming a plurality of light fluxes on an image plane. Therefore, a rear optical system having a single optical axis and a convergent property with respect to the emitted light beam, and the transmission optical system transmits the object image from the rear optical system and a plurality of pupils rearward. The characteristic multi-view direction endoscope.
【請求項7】 複数の視野方向とこの複数の視野方向に
対応した複数の瞳とを有する対物光学系と、単一の光軸
を有する伝達光学系とを備えている複数視野方向型内視
鏡であって、 前記対物光学系は、前記複数の瞳に分割する瞳分割手段
と、分割した各瞳に対応する光束の入射する方向を互い
に異ならしめるプリズム部材と、互いに異なる方向に光
軸を有する複数のレンズとを含む前方光学系と、 複数の光束を同時に像面へ結像させる単一の光軸を有し
且つ射出光線に対する収斂性を有する後方光学系とを有
しており、 前記伝達光学系は、前記後方光学系からの物体像及び複
数の瞳を後方に伝達する、 ことを特徴としている複数複数視野方向型内視鏡。
7. A multi-viewing direction internal view including an objective optical system having a plurality of viewing directions and a plurality of pupils corresponding to the plurality of viewing directions, and a transfer optical system having a single optical axis. The objective optical system is a mirror, and the objective optical system divides the pupil into a plurality of pupils, a prism member that makes incident directions of light beams corresponding to the divided pupils different from each other, and optical axes in different directions. A front optical system including a plurality of lenses having, and a rear optical system having a single optical axis for simultaneously forming a plurality of light beams on an image plane and having a convergent property with respect to an emitted light beam, A multiple-viewing-direction endoscope, wherein the transfer optical system transfers the object image and the plurality of pupils from the rear optical system rearward.
【請求項8】 複数の視野方向と、これら視野方向に対
応した複数の瞳と、各瞳からの光束により同じ位置に像
を結像する光学系とからなる対物光学系を含む複数視野
方向型内視鏡。
8. A multiple-viewing-direction type including an objective optical system including a plurality of viewing directions, a plurality of pupils corresponding to these viewing directions, and an optical system for forming an image at the same position by a light beam from each pupil. Endoscope.
【請求項9】 負の屈折力を有するレンズを含む前方光
学系と、正の屈折力を有するレンズを含む収斂性を有す
る後方光学系からなる対物光学系とを含む複数視野方向
内視鏡であって、 前記前方光学系は、互いに異なる方向に光軸を持つ複数
のレンズと、互いに異なる方向からの光束を受け、該光
束を受け渡す伝達光学系の光軸に沿って略平行に並列し
た複数の光束に変換するプリズムとを含み、 前記後方光学系は、前記前方光学系から射出された光束
を含む大きさと単一の光軸を有し、前記複数の光束によ
り同時に像面へ物体の像を形成する、ことを特徴として
いる複数視野方向型内視鏡。
9. A multi-view direction endoscope including a front optical system including a lens having a negative refractive power and an objective optical system including a rear optical system having a converging property including a lens having a positive refractive power. The front optical system includes a plurality of lenses having optical axes in mutually different directions, and light fluxes from different directions, and the lenses are arranged substantially parallel to each other along the optical axis of a transmission optical system that delivers the light fluxes. A rear optical system having a size and a single optical axis including the light beam emitted from the front optical system, and a plurality of light beams to convert the object to the image plane at the same time. A multi-view directional endoscope characterized in that it forms an image.
JP10308494A 1994-03-17 1994-05-17 Multi-view direction endoscope Expired - Fee Related JP3668257B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP10308494A JP3668257B2 (en) 1994-05-17 1994-05-17 Multi-view direction endoscope
US08/404,890 US5743846A (en) 1994-03-17 1995-03-16 Stereoscopic endoscope objective lens system having a plurality of front lens groups and one common rear lens group
DE29504623U DE29504623U1 (en) 1994-03-17 1995-03-17 endoscope
DE19549456A DE19549456B4 (en) 1994-03-17 1995-03-17 Stereo endoscope for microsurgery - has images provided by pair of objective lens systems fed to proximal end of endoscope by common transmission lens system
DE19509885A DE19509885B4 (en) 1994-03-17 1995-03-17 stereo endoscope
DE19549857A DE19549857B4 (en) 1994-03-17 1995-03-17 stereo endoscope
US09/053,094 US6306082B1 (en) 1994-03-17 1998-04-01 Stereoendoscope wherein images having passed through plural incident pupils are transmitted by common relay optical systems
US09/941,984 US6976956B2 (en) 1994-03-17 2001-08-30 Stereoendoscope wherein images having passed through plural incident pupils are transmitted by common relay optical systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10308494A JP3668257B2 (en) 1994-05-17 1994-05-17 Multi-view direction endoscope

Publications (2)

Publication Number Publication Date
JPH07311348A true JPH07311348A (en) 1995-11-28
JP3668257B2 JP3668257B2 (en) 2005-07-06

Family

ID=14344774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10308494A Expired - Fee Related JP3668257B2 (en) 1994-03-17 1994-05-17 Multi-view direction endoscope

Country Status (1)

Country Link
JP (1) JP3668257B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09248276A (en) * 1996-03-14 1997-09-22 Olympus Optical Co Ltd Sight line variable hard mirror device
WO2017110351A1 (en) * 2015-12-25 2017-06-29 オリンパス株式会社 Endoscope and endoscope adaptor
US11344186B2 (en) 2018-04-19 2022-05-31 Fujifilm Corporation Endoscope optical system and endoscope

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140313A (en) * 1983-12-28 1985-07-25 Olympus Optical Co Ltd Diagonally viewing optical system of hard endoscope
JPS60140312A (en) * 1983-12-28 1985-07-25 Olympus Optical Co Ltd Hard endoscope optical system
JPS63155115A (en) * 1986-12-19 1988-06-28 Olympus Optical Co Ltd Stereoscopic observing electronic endoscope
JPH01105213A (en) * 1987-10-17 1989-04-21 Toshiba Corp Endoscope instrument
JPH0232313A (en) * 1988-06-13 1990-02-02 Richard B Macanally Endoscope
JPH03282411A (en) * 1990-03-30 1991-12-12 Olympus Optical Co Ltd Endoscope observation and photography system
JPH05341205A (en) * 1992-06-09 1993-12-24 Olympus Optical Co Ltd Stereoscopic endoscope
JPH05341207A (en) * 1992-06-09 1993-12-24 Olympus Optical Co Ltd Stereoscopic endoscope device
JPH0654803A (en) * 1992-06-09 1994-03-01 Olympus Optical Co Ltd Image pickup device for stereoscopic vision endoscope
JPH0659196A (en) * 1992-06-09 1994-03-04 Olympus Optical Co Ltd Stereoscopic viewing endoscope device
JPH0659199A (en) * 1992-06-09 1994-03-04 Olympus Optical Co Ltd Stereoscopic viewing endoscope
JPH06160731A (en) * 1992-11-18 1994-06-07 Olympus Optical Co Ltd Stereoscopic endoscope device
JPH06194580A (en) * 1992-12-24 1994-07-15 Olympus Optical Co Ltd Stereoscopic viewing endoscope and its device
JPH06509425A (en) * 1991-04-18 1994-10-20 マキンリー オプティクス インコーポレイテッド Stereo video endoscope objective lens device
JPH07261099A (en) * 1994-03-17 1995-10-13 Olympus Optical Co Ltd Stereoscopic endoscope device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140312A (en) * 1983-12-28 1985-07-25 Olympus Optical Co Ltd Hard endoscope optical system
JPS60140313A (en) * 1983-12-28 1985-07-25 Olympus Optical Co Ltd Diagonally viewing optical system of hard endoscope
JPS63155115A (en) * 1986-12-19 1988-06-28 Olympus Optical Co Ltd Stereoscopic observing electronic endoscope
JPH01105213A (en) * 1987-10-17 1989-04-21 Toshiba Corp Endoscope instrument
JPH0232313A (en) * 1988-06-13 1990-02-02 Richard B Macanally Endoscope
JPH03282411A (en) * 1990-03-30 1991-12-12 Olympus Optical Co Ltd Endoscope observation and photography system
JPH06509425A (en) * 1991-04-18 1994-10-20 マキンリー オプティクス インコーポレイテッド Stereo video endoscope objective lens device
JPH05341205A (en) * 1992-06-09 1993-12-24 Olympus Optical Co Ltd Stereoscopic endoscope
JPH0654803A (en) * 1992-06-09 1994-03-01 Olympus Optical Co Ltd Image pickup device for stereoscopic vision endoscope
JPH0659196A (en) * 1992-06-09 1994-03-04 Olympus Optical Co Ltd Stereoscopic viewing endoscope device
JPH0659199A (en) * 1992-06-09 1994-03-04 Olympus Optical Co Ltd Stereoscopic viewing endoscope
JPH05341207A (en) * 1992-06-09 1993-12-24 Olympus Optical Co Ltd Stereoscopic endoscope device
JPH06160731A (en) * 1992-11-18 1994-06-07 Olympus Optical Co Ltd Stereoscopic endoscope device
JPH06194580A (en) * 1992-12-24 1994-07-15 Olympus Optical Co Ltd Stereoscopic viewing endoscope and its device
JPH07261099A (en) * 1994-03-17 1995-10-13 Olympus Optical Co Ltd Stereoscopic endoscope device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09248276A (en) * 1996-03-14 1997-09-22 Olympus Optical Co Ltd Sight line variable hard mirror device
WO2017110351A1 (en) * 2015-12-25 2017-06-29 オリンパス株式会社 Endoscope and endoscope adaptor
JPWO2017110351A1 (en) * 2015-12-25 2018-10-18 オリンパス株式会社 Endoscope and endoscope adapter
US11112595B2 (en) 2015-12-25 2021-09-07 Olympus Corporation Endoscope and adaptor for endoscope
US11344186B2 (en) 2018-04-19 2022-05-31 Fujifilm Corporation Endoscope optical system and endoscope

Also Published As

Publication number Publication date
JP3668257B2 (en) 2005-07-06

Similar Documents

Publication Publication Date Title
US6088154A (en) Operating microscope
JP4448339B2 (en) Stereoscopic rigid optical system
JP4458221B2 (en) Endoscope with variable viewing direction
EP0922985B1 (en) Composite display apparatus
JP3628717B2 (en) Stereoscopic endoscope
JP4653834B2 (en) Optical system
EP1514150B1 (en) Borescope with simultaneous video and direct viewing
JP2001117049A (en) Stereoscopic observation device and electronic picture display device
JPH06509425A (en) Stereo video endoscope objective lens device
JPH11503844A (en) Objective lens system for stereo video endoscope
JP2004309930A (en) Stereoscopic observation system
US5668661A (en) Microscope
JP2000231060A5 (en)
JP3540351B2 (en) Stereoscopic rigid endoscope
JP3668257B2 (en) Multi-view direction endoscope
JP3980672B2 (en) Stereoscopic endoscope with bent peeping direction
JPH06208061A (en) Stereoscopic endoscope
JP2004029236A (en) Image display device
JP2002287037A (en) Optical instrument having binocular visual inspection section
JPH11271639A (en) Stereoscopic microscope
JP4302199B2 (en) Stereo microscope that can be observed by multiple people
JP3554398B2 (en) Stereoscopic adapter for endoscope
JP4154022B2 (en) Viewfinder system and optical equipment using the same
JPH08308790A (en) Stereoscopic endoscopic apparatus
JP3670339B2 (en) Stereo microscope

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees