JPH11254524A - Polyester film and its production - Google Patents

Polyester film and its production

Info

Publication number
JPH11254524A
JPH11254524A JP35422398A JP35422398A JPH11254524A JP H11254524 A JPH11254524 A JP H11254524A JP 35422398 A JP35422398 A JP 35422398A JP 35422398 A JP35422398 A JP 35422398A JP H11254524 A JPH11254524 A JP H11254524A
Authority
JP
Japan
Prior art keywords
film
stretching
polyester film
polyester
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35422398A
Other languages
Japanese (ja)
Other versions
JP3804311B2 (en
Inventor
Tetsuya Tsunekawa
哲也 恒川
Takuji Toudaiji
卓司 東大路
Kenji Tsunashima
研二 綱島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP35422398A priority Critical patent/JP3804311B2/en
Publication of JPH11254524A publication Critical patent/JPH11254524A/en
Application granted granted Critical
Publication of JP3804311B2 publication Critical patent/JP3804311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a polyester film of high quality excellent in rigidity, tenacity and heat shrinkage characteristics and reduced in thickness irregularity and surface defect and a method for producing the same. SOLUTION: In a method for producing a polyester film by biaxially stretching a film comprising a resin based on polyester at the same time by using a simultaneous biaxial tenter of a linear motor system, micro-stretching operation setting the area draw ratio of the film to 1.0005-3.0 times is continuously repeated three times or more to obtain the polyester film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、従来のポリエステ
ルフィルムの物性・品質を大幅に向上させたポリエステ
ルフィルムおよびその製造法に関する。具体的には、剛
性、強靱性、熱収縮特性、電気特性などに優れ、かつ、
厚みむらや表面欠点も少ない、磁気記録用、各種工業材
料用フィルムとして適したポリエステルフィルムおよび
その製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyester film having greatly improved physical properties and quality of a conventional polyester film and a method for producing the same. Specifically, it has excellent rigidity, toughness, heat shrinkage properties, electrical properties, etc., and
The present invention relates to a polyester film which has little unevenness in thickness and surface defects and is suitable for films for magnetic recording and various industrial materials, and a method for producing the same.

【0002】[0002]

【従来の技術】プラスチックフィルムは、他の素材から
は得られないような大面積のフィルムの連続生産が可能
であり、その強度、耐久性、透明性、柔軟性、表面特性
の付与などの特徴を活かして、磁気記録用、農業用、包
装用、建材用などの大量に需要のある分野で用いられて
いる。中でも、二軸延伸ポリエステルフィルムは、その
優れた機械的特性、熱的特性、電気的特性、耐薬品性の
ために、さまざまな分野で利用されており、特に磁気テ
ープ用ベースフィルムとしての有用性は、他のフィルム
の追随を許さない。近年は、機材の軽量化、小型化と長
時間記録化のためにベースフィルムの一層の薄膜化が要
求され、従って、ますますの高強度化が望まれている。
また、熱転写リボン用、コンデンサ用、感熱孔版、印刷
原紙用においても薄膜化の傾向が近年非常に強く、同様
にますますの高強度化が望まれている。
2. Description of the Related Art Plastic films enable continuous production of large-area films that cannot be obtained from other materials, and are characterized by their strength, durability, transparency, flexibility, and imparting surface characteristics. Utilizing this technology, it is used in fields that are in large demand, such as for magnetic recording, agriculture, packaging, and building materials. Among them, biaxially stretched polyester films are used in various fields because of their excellent mechanical properties, thermal properties, electrical properties, and chemical resistance, and are particularly useful as base films for magnetic tape. Is unrivaled by other films. In recent years, further thinning of the base film has been demanded in order to reduce the weight and size of the equipment and to record for a long time, and thus higher strength is desired.
In recent years, there has been a very strong tendency for thin films for thermal transfer ribbons, capacitors, heat-sensitive stencils, and printing stencils, and similarly, higher strength is desired.

【0003】二軸延伸ポリエステルフィルムの高強度化
の手法としては、縦・横二方向に延伸したフィルムを再
度縦方向に延伸し、縦方向に高強度化するいわゆる再縦
延伸法が一般的である(例えば、特公昭42−9270
号公報、特公昭43−3040号公報、特開昭46−1
119号公報、特開昭46−1120号公報)。また、
さらに横方向にも強度を付与したい場合には、再縦延伸
を行なった後、再度横方向に延伸する再縦再横延伸法が
提案されている(例えば、特開昭50−133276号
公報、特開昭55−22915号公報)。また、一段目
の延伸をフィルムの縦方向に2段階以上で行い、引き続
き、フィルムの横方向に行う縦多段延伸法が提案されて
いる(例えば、特公昭52−33666号公報、特公昭
57−49377号公報)。縦多段延伸法は、高強度
化、フィルムの厚みむら改善、生産性向上を図る上で、
上記再縦延伸法、再縦再横延伸法よりも優れた方法であ
る。しかし、フィルムの高強度化を行った場合、フィル
ムの熱収縮率も高くなる、フィルム破れが多発するとい
う実用上好ましくない問題は、縦多段延伸法の場合も同
様であった。
As a technique for increasing the strength of a biaxially stretched polyester film, a so-called re-longitudinal stretching method in which a film stretched in two longitudinal and transverse directions is stretched again in the longitudinal direction to increase the strength in the longitudinal direction is generally used. (For example, Japanese Patent Publication No. 42-9270)
JP, JP-B-43-3040, JP-A-46-1
119, JP-A-46-1120). Also,
In order to further impart strength in the horizontal direction, a re-longitudinal re-horizontal stretching method has been proposed in which the film is stretched again in the transverse direction and then stretched in the transverse direction again (for example, JP-A-50-133276, JP-A-55-22915). In addition, there has been proposed a vertical multi-stage stretching method in which the first-stage stretching is performed in two or more stages in the machine direction of the film, and subsequently in the transverse direction of the film (for example, Japanese Patent Publication No. 52-33666, Japanese Patent Publication No. 57-57). No. 49377). The vertical multi-stage stretching method is intended to improve strength, improve film thickness unevenness, and improve productivity.
This is a method superior to the above-described re-longitudinal stretching method and the re-longitudinal re-horizontal stretching method. However, when the strength of the film is increased, the heat shrinkage of the film is increased and the film is frequently broken.

【0004】また、本発明に関係する製造法として、フ
ィルムの縦方向と横方向のうち、少くとも一つの方向に
ついて3回以上連続的に繰り返して延伸する微延伸繰り
返し法(超多段延伸法)の提案がなされている(特開平
8−224777号公報、特開平9−57845号公
報)。しかし、超多段延伸法は、一般に、(1) 装置が極
めて複雑になるので、微延伸の繰り返し回数を増やしに
くく、装置改造にも高額の費用を要する、(2) フィルム
の製膜コストが大変高くなる、等のことから、実用性に
欠けるという問題があった。また、前記特開平8−22
4777号公報、特開平9−57845号公報では、主
に逐次二軸延伸の場合の具体例が示されているのみで、
同時二軸延伸の場合の有効な製膜装置、プロセス条件に
ついては記載がなく、本発明で使用するリニアモーター
方式の同時二軸延伸の有効性についても一切触れられて
いない。
Further, as a production method related to the present invention, a fine stretching repetition method (extreme multi-stage stretching method) in which stretching is continuously repeated at least three times in at least one of the longitudinal direction and the transverse direction of the film. (Japanese Patent Application Laid-Open Nos. 8-224777 and 9-57845) have been proposed. However, the super multi-stage stretching method generally requires (1) an extremely complicated apparatus, so that it is difficult to increase the number of fine stretching repetitions, which requires high costs for equipment modification. There is a problem that the method is not practical because it is expensive. In addition, Japanese Patent Application Laid-Open No.
No. 4777, Japanese Unexamined Patent Publication No. 9-57845 only shows specific examples mainly in the case of sequential biaxial stretching,
There is no description about the effective film forming apparatus and process conditions in the case of simultaneous biaxial stretching, and no mention is made of the effectiveness of the simultaneous biaxial stretching of the linear motor system used in the present invention.

【0005】一方、近年、リニアモータ方式の同時二軸
テンターが開発され、その製膜速度の高さ等から注目を
集めている。従来の同時二軸延伸方式である、スクリュ
ーの溝にクリップを乗せてクリップ間隔を広げていくス
クリュー方式、パンタグラフを用いてクリップ間隔を広
げていくパンタグラフ方式等には、製膜速度が遅いこ
と、延伸倍率等の条件変更が容易でない等の問題があっ
たが、リニアモーター方式の同時二軸延伸では、これら
の問題を一挙に解決できるからである。しかし、本方式
の同時二軸延伸によって、物性・品質に優れたポリエス
テルフィルムを製造するプロセス条件は未だ不明であ
り、有効な延伸手法は未だ模索されている段階にある。
On the other hand, in recent years, a simultaneous biaxial tenter of a linear motor type has been developed and has attracted attention due to its high film forming speed. Conventional simultaneous biaxial stretching method, screw method to put the clip in the groove of the screw to increase the clip interval, pantograph method to increase the clip interval using a pantograph, etc., the film forming speed is slow, Although there were problems such as difficulty in changing the conditions such as the stretching ratio, these problems can be solved at once with the simultaneous biaxial stretching of the linear motor system. However, process conditions for producing a polyester film having excellent physical properties and quality by simultaneous biaxial stretching of this method are still unknown, and an effective stretching method is still being explored.

【0006】以上述べたように、物性、品質の高いポリ
エステルフィルムおよびその製造技術には未だ改良の余
地があり、新規技術の開発が求められているのが当該分
野の現状である。
As described above, there is still room for improvement in the polyester film having high physical properties and high quality and its production technology, and the development of a new technology is required in the present field.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、剛
性、強靱性、熱収縮特性に優れ、厚みむら、表面欠点も
少ない、高品質のポリエステルフィルムおよびその製造
法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high quality polyester film which is excellent in rigidity, toughness and heat shrinkage, has less thickness unevenness and surface defects, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明者らは、ポリエス
テルフィルムの物性、品質を極限まで高める手法につい
て鋭意検討した。その結果、リニアモーター方式の同時
二軸テンターを使用して、面積延伸倍率1.0005〜
3.0倍の微延伸を3回以上連続的に繰り返して行う
と、(1) ポリエステルフィルムのヤング率が大幅にアッ
プし、熱収縮率が小さくなる、(2) 延伸倍率がアップ
し、生産性が高まる、(3) フィルムの厚みむらが良化
し、フィルムの破れ頻度も低下する、(4) フィルムの結
晶化度が高くなりやすく、熱処理ゾーンの温度を下げて
も熱収縮率が悪化しない、等の数々の驚くべき事実を見
出し、本発明を完成させるに至った。
Means for Solving the Problems The present inventors diligently studied a method for maximizing the physical properties and quality of a polyester film. As a result, using the simultaneous biaxial tenter of the linear motor system,
When the 3.0 times fine stretching is continuously repeated 3 times or more, (1) the Young's modulus of the polyester film is greatly increased, the heat shrinkage is reduced, (2) the stretching ratio is increased, and the production is increased. (3) The film thickness unevenness is improved and the film breakage frequency is reduced, (4) The crystallinity of the film is easily increased, and the heat shrinkage does not deteriorate even if the temperature of the heat treatment zone is lowered. And many other surprising facts were found, and the present invention was completed.

【0009】すなわち、本発明は「ポリエステルを主成
分とする樹脂からなるフィルムをリニアモーター方式の
同時二軸テンターを用いて同時二軸延伸するポリエステ
ルフィルムの製造法において、フィルムの面積延伸倍率
が1.0005〜3.0倍の倍率で微延伸する操作を3
回以上連続的に繰り返すことを特徴とするポリエステル
フィルムの製造法と本製造法によるポリエステルフィル
ム」を骨子とするものである。
That is, the present invention relates to a method for producing a polyester film in which a film composed of a resin containing polyester as a main component is simultaneously biaxially stretched using a simultaneous biaxial tenter of a linear motor type. The operation of fine stretching at a magnification of 0.0005 to 3.0 times
The main feature is a method for producing a polyester film, which is repeated continuously at least twice, and a polyester film according to the production method.

【0010】[0010]

【発明の実施の形態】本発明で言うポリエステルとは、
ジオールとジカルボン酸からの縮重合により得られるポ
リマーを少なくとも80重量%含有するポリマーであ
る。ジカルボン酸とは、テレフタル酸、イソフタル酸、
フタル酸、ナフタレンジカルボン酸、アジピン酸、セバ
チン酸などで代表されるものであり、また、ジオールと
は、エチレングリコール、トリメチレングリコール、テ
トラメチレングリコール、シクロヘキサンジメタノール
などで代表されるものである。具体的には、例えば、ポ
リメチレンテレフタレート、ポリエチレンテレフタレー
ト、ポリプロピレンテレフタレート、ポリエチレンイソ
フタレート、ポリテトラメチレンテレフタレート、ポリ
エチレン−p−オキシベンゾエート、ポリ−1,4−シ
クロヘキシレンジメチレンテレフタレート、ポリエチレ
ン−2,6−ナフタレートを挙げることができる。もち
ろん、これらのポリエステルは、ホモポリマーであって
もコポリマーであってもよく、共重合成分として、例え
ば、ジエチレングリコール、ネオペンチルグリコール、
ポリアルキレングリコールなどのジオール成分、アジピ
ン酸、セバチン酸、フタル酸、イソフタル酸、2,6−
ナフタレンジカルボン酸などのジカルボン酸成分、ヒド
ロキシ安息香酸、6−ヒドロキシ−2−ナフトエ酸など
のヒドロキシカルボン酸成分を含有していてもよい。本
発明の場合、特に、ポリエチレンテレフタレート、ポリ
エチレンナフタレート(ポリエチレン−2,6−ナフタ
レート)およびこれらの共重合体および変成体が、本発
明の効果発現の観点から好ましい。また、本発明の場
合、前記ポリエステルの固有粘度は0.6以上が好まし
く、0.8以上がさらに好ましく、1.0以上が最も好
ましい。高分子量のポリエステルは、通常、高ヤング率
化に伴ってフィルムの熱収縮率も高くなるという欠点が
あるが、本発明の製造法によれば、フィルムのトータル
の面積延伸倍率が高まるのみでなく、微細構造の緩和が
効果的に進むので熱収縮率も小さくできる。
BEST MODE FOR CARRYING OUT THE INVENTION The polyester referred to in the present invention is
A polymer containing at least 80% by weight of a polymer obtained by condensation polymerization of a diol and a dicarboxylic acid. Dicarboxylic acids are terephthalic acid, isophthalic acid,
Examples thereof include phthalic acid, naphthalenedicarboxylic acid, adipic acid, and sebacic acid, and diols include ethylene glycol, trimethylene glycol, tetramethylene glycol, and cyclohexane dimethanol. Specifically, for example, polymethylene terephthalate, polyethylene terephthalate, polypropylene terephthalate, polyethylene isophthalate, polytetramethylene terephthalate, polyethylene-p-oxybenzoate, poly-1,4-cyclohexylene dimethylene terephthalate, polyethylene-2,6 -Naphthalate. Of course, these polyesters may be a homopolymer or a copolymer, and as a copolymerization component, for example, diethylene glycol, neopentyl glycol,
Diol components such as polyalkylene glycol, adipic acid, sebacic acid, phthalic acid, isophthalic acid, 2,6-
It may contain a dicarboxylic acid component such as naphthalenedicarboxylic acid and a hydroxycarboxylic acid component such as hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid. In the case of the present invention, in particular, polyethylene terephthalate, polyethylene naphthalate (polyethylene-2,6-naphthalate), and copolymers and modified products thereof are preferable from the viewpoint of achieving the effects of the present invention. In the present invention, the intrinsic viscosity of the polyester is preferably 0.6 or more, more preferably 0.8 or more, and most preferably 1.0 or more. High molecular weight polyesters usually have the disadvantage that the heat shrinkage of the film also increases with an increase in Young's modulus, but according to the production method of the present invention, not only the total area stretching ratio of the film is increased but also Since the relaxation of the fine structure proceeds effectively, the heat shrinkage can be reduced.

【0011】また、本発明のポリエステルフィルム中に
は、無機粒子や有機粒子、その他の各種添加剤、例え
ば、酸化防止剤、帯電防止剤、結晶核剤などを添加して
もかまわない。無機粒子の具体例としては、酸化ケイ
素、酸化アルミニウム、酸化マグネシウム、酸化チタン
などの酸化物、カオリン、タルク、モンモリロナイトな
どの複合酸化物、炭酸カルシウム、炭酸バリウムなどの
炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、
チタン酸バリウム、チタン酸カリウムなどのチタン酸
塩、リン酸第3カルシウム、リン酸第2カルシウム、リ
ン酸第1カルシウムなどのリン酸塩などを用いることが
できるが、これらに限定されるわけではない。また、こ
れらは、目的に応じて2種以上用いてもかまわない。有
機粒子の具体例としては、ポリスチレンもしくは架橋ポ
リスチレン粒子、スチレン・アクリル系及びアクリル系
架橋粒子、スチレン・メタクリル系及びメタクリル系架
橋粒子などのビニル系粒子、ベンゾグアナミン・ホルム
アルデヒド、シリコーン、ポリテトラフルオロエチレン
などの粒子を用いることができるが、これらに限定され
るものではなく、粒子を構成する部分のうち少なくとも
一部がポリエステルに対し不溶の有機高分子微粒子であ
れば如何なる粒子でもよい。
The polyester film of the present invention may contain inorganic particles, organic particles, and other various additives such as an antioxidant, an antistatic agent, and a crystal nucleating agent. Specific examples of the inorganic particles include oxides such as silicon oxide, aluminum oxide, magnesium oxide, and titanium oxide; composite oxides such as kaolin, talc, and montmorillonite; carbonates such as calcium carbonate and barium carbonate; calcium sulfate; and barium sulfate. Sulfates, such as
Barium titanate, titanates such as potassium titanate, and phosphates such as tricalcium phosphate, dicalcium phosphate, and monocalcium phosphate can be used, but are not limited thereto. Absent. These may be used in combination of two or more depending on the purpose. Specific examples of the organic particles include polystyrene or crosslinked polystyrene particles, vinyl particles such as styrene-acrylic and acrylic crosslinked particles, styrene-methacrylic and methacrylic crosslinked particles, benzoguanamine formaldehyde, silicone, polytetrafluoroethylene, and the like. However, the particles are not limited thereto, and any particles may be used as long as at least a part of the constituent parts of the particles is organic polymer fine particles insoluble in polyester.

【0012】また、有機粒子は、易滑性、フィルム表面
の突起形成の均一性から粒子形状が球形状で均一な粒度
分布のものが好ましい。これらの粒子の粒径、配合量、
形状などは用途、目的に応じて選ぶことが可能である
が、通常は、平均粒子径としては0.05μm以上3μ
m以下、配合量としては、0.01重量%以上10重量
%以下が好ましい。
The organic particles preferably have a spherical particle shape and a uniform particle size distribution from the viewpoint of smoothness and uniformity of formation of projections on the film surface. The particle size, blending amount of these particles,
The shape and the like can be selected according to the application and purpose, but usually the average particle diameter is 0.05 μm or more and 3 μm or more.
m or less, and the compounding amount is preferably 0.01% by weight or more and 10% by weight or less.

【0013】また、本発明のフィルムは、2層以上の積
層フィルムであっても構わない。2層以上積層された積
層フィルムの場合は、特に磁気記録媒体のベースフイル
ムにおいて、用途に応じて、磁気記録面となるフィルム
面とその反対面の表面粗さを異なる設計にする方法とし
て最適である。
The film of the present invention may be a laminated film having two or more layers. In the case of a laminated film in which two or more layers are laminated, particularly in a base film of a magnetic recording medium, it is an optimal method for designing the surface roughness of the film surface to be a magnetic recording surface and the surface roughness different from each other depending on the application. is there.

【0014】本発明でいう同時二軸延伸とは、フィルム
の縦方向、横方向に同時に配向を与えるための延伸であ
り、同時二軸テンターを用いて、フィルムの両端をクリ
ップで把持しながら搬送して、縦方向および横方向に延
伸する操作をいう。なお、ここで、フィルムの縦方向と
はフィルムの長手方向であり、横方向とはフィルムの幅
方向である。もちろん、縦方向と横方向との延伸が時間
的に同時に延伸されている部分があればよいのであっ
て、従って、横方向または縦方向に単独に先に延伸した
後に、縦方向と横方向とを同時に延伸する方法や、さら
に同時二軸延伸後に横方向または縦方向に単独にさらに
延伸する方法なども本発明の範囲に含まれる。このよう
な延伸方向や延伸倍率を自由に変更できるような延伸機
として、本発明ではリニアモータ方式の同時二軸テンタ
ーを使用する。フィルムを把持するクリップの駆動方式
は、ローラベアリング方式、スライダー方式のいずれで
あってもよい。リニアモーター式の同時二軸テンターを
用いると製膜速度、フィルム幅を従来の逐次二軸延伸
並、またはそれ以上に高めることができ、かつ延伸、熱
処理、弛緩工程でのフィルムの変形パターンを自由に変
更できることから、近年注目を集めているが、このリニ
アモータ方式の同時二軸テンターによる超多段延伸が、
物性・品質の高いポリエステルフィルムを低コストで得
る上で極めて有効であることを本発明で見出した。本発
明では、この超多段延伸を行う際の1回の同時二軸微延
伸の面積延伸倍率は1.0005〜3.0倍に設定し、
微延伸は3回以上連続的に繰り返すことが必要である。
Simultaneous biaxial stretching in the present invention refers to stretching in order to simultaneously orient the film in the longitudinal and transverse directions. The film is conveyed while holding both ends of the film with clips using a simultaneous biaxial tenter. Refers to the operation of stretching in the vertical and horizontal directions. Here, the longitudinal direction of the film is the longitudinal direction of the film, and the lateral direction is the width direction of the film. Of course, it is sufficient if there is a portion where the stretching in the longitudinal direction and the stretching in the horizontal direction are simultaneously stretched temporally.Therefore, after stretching in the transverse direction or the longitudinal direction independently first, the stretching in the longitudinal direction and the transverse direction is performed. Are also included in the scope of the present invention, for example, a method of stretching simultaneously and a method of further stretching independently in the horizontal or vertical direction after the simultaneous biaxial stretching. In the present invention, a linear motor type simultaneous biaxial tenter is used as a stretching machine capable of freely changing the stretching direction and the stretching ratio. The drive system of the clip for holding the film may be any of a roller bearing system and a slider system. Using a linear motor type simultaneous biaxial tenter can increase the film forming speed and film width to the level of conventional sequential biaxial stretching or more, and freely change the film deformation pattern in the stretching, heat treatment, and relaxation processes. Has been attracting attention in recent years, but this multi-stage stretching with simultaneous biaxial tenter of linear motor type is
The present invention has been found to be extremely effective in obtaining a polyester film having high physical properties and quality at low cost. In the present invention, the area stretching ratio of one simultaneous biaxial fine stretching at the time of performing this super multi-stage stretching is set to be 0.0005 to 3.0 times,
Fine stretching needs to be repeated continuously three times or more.

【0015】ここで、面積延伸倍率とは、フィルムの縦
方向の延伸倍率と横方向の延伸倍率の積である。1回の
同時二軸微延伸による面積延伸倍率が3.0倍を越える
と本発明で目的とする効果が得られにくく、また1.0
005未満であることは実用上の必須要件ではない。こ
の1回の微延伸による面積延伸倍率は、1.005〜
2.0倍がより好ましく、1.01〜1.5倍がさらに
好ましい。同時二軸微延伸の繰り返しの回数は、10回
以上、10000回未満が好ましく、50回以上、10
00回未満がさらに好ましい。このように微延伸を連続
的に繰り返すと、フィルム中におけるポリエステル鎖の
絡み合いが解れるためか、(1) 構造・体積緩和が加速
し、高ヤング率かつ低熱収率のフィルムが得られやすく
なる、(2) トータルの面積延伸倍率がアップして、フィ
ルムの生産性が向上し、コストダウンが図れる、等の効
果が得られるので好ましい。なお、3回以上繰返す微延
伸の各倍率は同じであっても異なっていてもよく、また
縦方向と横方向の各々の延伸倍率も所望のフィルム物性
をもとに適宜選択できる。また、前記のように縦方向ま
たは横方向のいずれか一方を微延伸してもよい。
Here, the area stretching ratio is the product of the longitudinal stretching ratio and the transverse stretching ratio of the film. If the area stretching ratio by one simultaneous biaxial fine stretching exceeds 3.0 times, it is difficult to obtain the effect aimed at by the present invention, and 1.0
Being less than 005 is not a practical requirement. The area stretching ratio by this one fine stretching is 1.005 to
2.0 times is more preferable, and 1.01 to 1.5 times is still more preferable. The number of repetitions of simultaneous biaxial fine stretching is preferably 10 times or more and less than 10,000 times, and 50 times or more and 10 times or less.
More preferably less than 00 times. If the micro-stretching is continuously repeated in this way, probably because the entanglement of the polyester chains in the film is released, (1) the structure and volume relaxation are accelerated, and a film with high Young's modulus and low heat yield is easily obtained. (2) It is preferable because effects such as an increase in total area stretching ratio, an improvement in film productivity and a reduction in cost can be obtained. The respective magnifications of the fine stretching repeated three or more times may be the same or different, and the respective stretching magnifications in the machine direction and the transverse direction can be appropriately selected based on the desired film properties. Further, as described above, one of the longitudinal direction and the lateral direction may be slightly stretched.

【0016】フィルムに対して同時二軸微延伸を施す場
合の延伸温度は、特に限定されないが、未延伸フィルム
に対して微延伸を施す場合は、(ポリエステルのガラス
転移温度Tg+10)℃〜(Tg+120)℃に保つこ
とが好ましく、(Tg+20)℃〜(Tg+80)℃が
より好ましい。 延伸温度がTg+10℃未満では、延
伸による配向が進みすぎて高倍率まで延伸しにくくなる
ので好ましくない。一方、 延伸温度がTg+120℃
を越えると、構造緩和に必要な微少配向をポリマー鎖に
与えることが難しくなり、また延伸工程でもオリゴマー
の飛散が激しくなるので好ましくない。なお、本発明で
は、各延伸温度条件下、張力−歪み曲線の降伏点に達す
るまでの延伸倍率で同時二軸微延伸を施すことが好まし
い。かかる条件では、延伸張力と歪みが1対1に対応す
るため、延伸によるフィルムの厚み均質性がほとんど悪
化せず、高品質のポリエステルフィルムが得られやすく
なるからである。フィルムの構造を固定化するために、
( Tg+120)℃以上、融点未満の温度条件下で行
う熱処理では、本発明の同時二軸微延伸が有効であり、
この熱処理微延伸はフィルムの機械物性を高める上で好
ましい。
The stretching temperature when performing simultaneous biaxial fine stretching on the film is not particularly limited, but when performing fine stretching on an unstretched film, the glass transition temperature of the polyester Tg + 10) ° C. to (Tg + 120). ) ° C, preferably (Tg + 20) ° C to (Tg + 80) ° C. When the stretching temperature is lower than Tg + 10 ° C., the orientation by stretching is excessively advanced, and it is difficult to stretch to a high magnification, which is not preferable. On the other hand, the stretching temperature is Tg + 120 ° C
If it exceeds, it is difficult to give the polymer chains the fine orientation necessary for relaxing the structure, and the oligomers are liable to scatter in the stretching step, which is not preferable. In the present invention, it is preferable to perform simultaneous biaxial fine stretching at a stretching ratio until the yield point of the tension-strain curve is reached under each stretching temperature condition. Under these conditions, since the stretching tension and the strain correspond one-to-one, the thickness uniformity of the film hardly deteriorates due to the stretching, and a high-quality polyester film is easily obtained. To fix the structure of the film,
In the heat treatment performed under a temperature condition of (Tg + 120) ° C. or higher and lower than the melting point, the simultaneous biaxial fine stretching of the present invention is effective.
This heat-treating fine stretching is preferable from the viewpoint of increasing the mechanical properties of the film.

【0017】本発明では、ポリエステルを主たる成分と
する樹脂からなる未延伸フィルムに対して、延伸、熱処
理を施して二軸配向ポリエステルフィルムを得るまでの
いずれの工程で微延伸を繰り返してもよいが、未延伸フ
ィルムの結晶化度が3%以上、30%未満になるまでの
工程または前記熱処理工程で微延伸を3回以上連続的に
繰り返すことが好ましい。ここで、未延伸フィルムと
は、十分乾燥された原料ペレットを押出機に供給し、T
型口金により、回転する金属製キャスティングドラム上
にシート状に押し出し、冷却固化せしめたもの、もしく
は未乾燥ペレットをベント式押出機に供給し同様にして
得られたものをいう。
In the present invention, fine stretching may be repeated in any step until a biaxially oriented polyester film is obtained by performing stretching and heat treatment on an unstretched film made of a resin containing polyester as a main component. It is preferable to repeat the fine stretching three or more times continuously in the step until the crystallinity of the unstretched film becomes 3% or more and less than 30% or in the heat treatment step. Here, the unstretched film refers to a sufficiently dried raw material pellet supplied to an extruder,
This refers to a material extruded into a sheet shape on a rotating metal casting drum by a die and cooled and solidified, or a material obtained by supplying undried pellets to a vent-type extruder in the same manner.

【0018】未延伸フィルムが体積緩和を起こして結晶
化度が高くなる前の初期の延伸工程で微延伸を連続的に
繰り返すことが好ましいが、同時二軸微延伸を3段階以
上連続的に繰り返しても、結晶化度が3%未満である場
合は、その後の同時二軸延伸で発生する応力歪みの除去
が難しくなって、延伸倍率を高めにくくなる傾向がある
のみでなく、フィルムのヤング率低下、熱収縮率の増大
が激しくなりやすいので好ましくない。
It is preferable to repeat fine stretching continuously in the initial stretching step before the unstretched film undergoes volume relaxation to increase the crystallinity, but the simultaneous biaxial fine stretching is continuously repeated in three or more steps. However, when the degree of crystallinity is less than 3%, it is difficult to remove the stress strain generated in the subsequent simultaneous biaxial stretching, which tends to make it difficult to increase the stretching ratio, and the Young's modulus of the film. This is not preferred because the decrease and the increase in the heat shrinkage rate tend to be severe.

【0019】未延伸フィルムに対して、本発明の微延伸
を連続的に繰返した後のフィルムの結晶化度は5%以
上、25%未満がより好ましく、10%以上、20%未
満がさらに好ましい。結晶化度が30%を越えた後のフ
ィルムについては、微延伸を繰り返してもよいが、一段
で高倍率延伸しても構わない。添加物の影響等により結
晶化しやすい原料の場合、一段階で高倍率に延伸する方
が微延伸を繰り返すよりも、物性・品質に優れたフィル
ムを得る上で好ましい場合がある。また、フィルムの結
晶化度が30%を越えたフィルムは、微延伸により体積
緩和が進みやすく、高倍率延伸する前に結晶化してしま
い、高ヤング率化しにくくなる傾向があるので、その場
合には一段階で高倍率延伸するなどの工夫が必要であ
る。
The crystallinity of the unstretched film after continuously repeating the fine stretching of the present invention is preferably 5% or more and less than 25%, more preferably 10% or more and less than 20%. . After the crystallinity exceeds 30%, the film may be repeatedly stretched finely, but may be stretched in one step at a high magnification. In the case of a raw material that tends to crystallize due to the effects of additives, it may be preferable to stretch the film at a high magnification in one step to obtain a film having excellent physical properties and quality, rather than repeating fine stretching. Further, a film having a degree of crystallinity of more than 30% tends to undergo volume relaxation due to fine stretching, tends to crystallize before stretching at a high magnification, and tends to have a low Young's modulus. In such a case, it is necessary to devise a method such as stretching at a high magnification in one step.

【0020】本発明のフィルムの縦方向(MD方向)の
ヤング率(YMD)と横方向(TD方向)のヤング率
(YTD)の和、すなわち、トータルヤング率は、使用
する原料にもよるが、8〜30GPaである。トータル
ヤング率が8GPa未満ではフィルムとしての実用性に
乏しく、また30GPaを越えることは大変困難であ
り、この場合、フィルム破れが多発するので好ましくな
い。トータルヤング率のより好ましい範囲は10〜25
GPaであり、特に好ましくは12〜22GPaであ。
縦方向と横方向のヤング率のバランス関係は、縦横二方
向の各々のトータル倍率を適宜変更することによりコン
トロールできる。
The sum of the Young's modulus (YMD) in the machine direction (MD direction) and the Young's modulus (YTD) in the transverse direction (TD direction) of the film of the present invention, that is, the total Young's modulus depends on the raw materials used. , 8 to 30 GPa. If the total Young's modulus is less than 8 GPa, the practicality as a film is poor, and if it exceeds 30 GPa, it is very difficult. A more preferable range of the total Young's modulus is 10 to 25.
GPa, particularly preferably 12 to 22 GPa.
The balance between the Young's modulus in the vertical direction and the horizontal direction can be controlled by appropriately changing the total magnification in each of the vertical and horizontal directions.

【0021】本発明で得られるフィルムの熱収縮率は、
多くの場合、縦方向と横方向の100℃、30分の熱収
縮率の和が2%未満である。熱収縮率の和のより好まし
い範囲は1%未満で、さらに好ましくは0.5%未満で
ある。本発明で開示する製造法によれば、熱収縮率を大
きくすることなく、縦方向と横方向のヤング率を高めや
すくなる。すなわち、縦方向と横方向のヤング率の和が
8〜30GPaであり、かつ、100℃、30分の熱収
縮率の和が2%未満のポリエステルフィルムが得られや
すくなる。
The heat shrinkage of the film obtained in the present invention is as follows:
In many cases, the sum of the heat shrinkage in the vertical and horizontal directions at 100 ° C. for 30 minutes is less than 2%. A more preferred range of the sum of the heat shrinkage rates is less than 1%, and more preferably less than 0.5%. According to the manufacturing method disclosed in the present invention, the Young's modulus in the vertical and horizontal directions can be easily increased without increasing the heat shrinkage. That is, it is easy to obtain a polyester film in which the sum of the Young's modulus in the longitudinal direction and the transverse direction is 8 to 30 GPa and the sum of the heat shrinkage rates at 100 ° C. for 30 minutes is less than 2%.

【0022】本発明の製造法によれば、ポリエステルの
構造緩和が進みやすいため、二軸延伸・熱処理後のフィ
ルムの結晶化度が高くなりやすい。前記のように、フィ
ルムの結晶化度は、使用する原料、延伸倍率、熱処理の
温度条件等にもよるが、本発明では30〜90%であ
る。工業的に使用可能な製造法によって、結晶化度が5
0%以上のフィルムを得ることは通常容易でないが、こ
のようなフィルムが本発明によれば比較的容易に得られ
るのである。
According to the production method of the present invention, the structure of the polyester is easily relaxed, so that the crystallinity of the film after biaxial stretching and heat treatment tends to be high. As described above, the crystallinity of the film is 30 to 90% in the present invention, though it depends on the raw material used, the stretching ratio, the temperature condition of the heat treatment, and the like. The degree of crystallinity is 5 depending on the industrially usable production method.
Obtaining films of 0% or more is usually not easy, but such films are relatively easy to obtain according to the present invention.

【0023】また、本発明の製造法によれば、フィルム
の結晶化度が高くなりやすいため、必ずしも200℃以
上の温度で熱処理する必要がなくなる。熱処理の温度を
低下させると、テンター内でのオリゴマー汚れや飛散、
フィルム表面のオリゴマー量も少なくなるので、表面欠
点の低減等の点で有利である。ヤング率が高く、熱収縮
率の小さい、高品質のポリエステルフィルムを得る上で
好ましい結晶化度の範囲は、40〜80%であり、さら
に好ましくは45〜70%である。結晶化度が30%未
満では、構造の固定化が不十分な場合が多く、フィルム
の熱収縮率が高くなるので好ましくない。また、結晶化
度が90%を越えると、フィルム破れの多発、各種フィ
ルム用途における加工適性の低下を招くので好ましくな
い。
Further, according to the production method of the present invention, since the crystallinity of the film tends to be high, it is not always necessary to perform the heat treatment at a temperature of 200 ° C. or more. When the temperature of the heat treatment is lowered, oligomer contamination and scattering in the tenter,
Since the amount of oligomer on the film surface is reduced, it is advantageous in terms of reduction of surface defects. The preferred range of crystallinity for obtaining a high-quality polyester film having a high Young's modulus and a small heat shrinkage is 40 to 80%, and more preferably 45 to 70%. If the crystallinity is less than 30%, the structure is often insufficiently fixed, and the heat shrinkage of the film becomes high, which is not preferable. On the other hand, if the crystallinity exceeds 90%, the film is frequently broken and the workability in various film uses is undesirably reduced.

【0024】本発明におけるフィルムの全体厚みは、フ
ィルムの用途、使用目的に応じて適宜選択できる。通常
磁気材料用途では1μm以上20μm以下が好ましく、
中でもディジタルビデオ用塗布型磁気記録媒体用途では
2μm以上8μm以下、ディジタルビデオ用蒸着型磁気
記録媒体用途では3μm以上9μm以下が好ましい。ま
た、工業材料用途の中では、熱転写リボン用途では1μ
m以上6μm以下、コンデンサ用途では0.5μm以上
15μm以下、感熱孔版原紙用途では0.5μm以上5
μm以下であることが好ましい。
The total thickness of the film in the present invention can be appropriately selected according to the use and purpose of the film. Usually, for magnetic material applications, it is preferably 1 μm or more and 20 μm or less,
In particular, the thickness is preferably 2 μm or more and 8 μm or less for digital video coating magnetic recording media, and 3 μm or more and 9 μm or less for digital video evaporation magnetic recording media. Also, among industrial materials, 1μ for thermal transfer ribbon
m to 6 μm, 0.5 μm to 15 μm for capacitors, and 0.5 μm to 5 for heat-sensitive stencil paper.
It is preferably not more than μm.

【0025】次に、本発明のポリエステルフィルムの製
造法の具体的な例について説明するが、本発明はかかる
例に限定されるものでないことは無論である。
Next, specific examples of the method for producing the polyester film of the present invention will be described, but it is needless to say that the present invention is not limited to such examples.

【0026】ポリエステルとして、固有粘度が0.65
のポリエチレンテレフタレートのペレットを真空下で1
80℃に加熱し十分に乾燥して、270〜300℃の温
度に加熱された押出機に供給し、T型口金よりシート状
に押し出す。この溶融されたシートを、表面温度10〜
40℃に冷却されたドラム上に静電気力で密着させて冷
却固化し、実質的に非晶状態の未延伸キャストフィルム
を得る。このときの未延伸フィルムの端部と中央部の厚
みの比率(端部の厚み/中央部の厚み)は、1以上、1
0以下であり、好ましくは1以上、5未満、さらに好ま
しくは1以上、3未満である。前記厚みの比率が1未満
であったり、10を越えるとフィルム破れまたはクリッ
プ外れが多発するので好ましくない。次いで、この未延
伸フィルムを、リニアモーター方式の同時二軸延伸テン
ターに該フィルムの両端部をクリップで把持して導き、
予熱ゾーンで90〜150℃に加熱し、フィルムの面積
延伸倍率が1.0005〜3倍の同時二軸微延伸を少な
くとも3回以上連続的に行う。このとき、フイルム端部
を把持するクリップの温度は、80〜160℃の温度範
囲に設定するのが好ましい。微延伸工程での延伸温度
は、90〜150℃の温度範囲内に保つことが好ましい
が、いったん冷却して、フィルムの結晶化を抑えながら
微延伸してもかまわない。また、分子量が高い原料や結
晶化しにくい原料の場合には、延伸温度を200℃まで
高めることも好ましく行うことができる。また、延伸工
程の後半、すなわち面配向係数が0.15以上のフィル
ムの延伸工程では、延伸温度を2段階以上で徐々に高め
ながら延伸することが好ましい。以上のように同時二軸
延伸を施して、フィルムのトータルの面積延伸倍率を2
0〜150倍に同時二軸延伸する。次いで、二軸延伸さ
れたポリエステルフィルムに平面性、寸法安定性を付与
するために、200℃以上、融点未満の温度範囲で熱処
理を施し、熱固定温度からの冷却過程で、好ましくは1
00〜200℃の温度範囲で縦および横方向に、好まし
くは各方向に対して1〜6%の範囲で弛緩処理を行う。
この際、熱処理工程で同時二軸微延伸を繰り返して行う
ことも、結晶のサイズを大きくしてフィルムのヤング率
を高める上で好ましく行うことができる。その後、フィ
ルムを室温まで、必要なら縦および横方向に弛緩処理を
施しながら、フィルムを冷やして巻き取り、目的とする
ポリエステルフィルムを得る。なお、本発明では、フィ
ルムの表面特性を付与するため、例えば、易接着性、易
滑性、離型性、制電性を付与するために、フィルムの同
時二軸延伸の前または後の工程で、ポリエステルフィル
ムの表面に塗材をコーテングすることも好ましく行うこ
とができる。
The polyester has an intrinsic viscosity of 0.65
Polyethylene terephthalate pellets under vacuum
The mixture is heated to 80 ° C., dried sufficiently, supplied to an extruder heated to a temperature of 270 to 300 ° C., and extruded from a T-type die into a sheet. This melted sheet is subjected to a surface temperature of 10
It is brought into close contact with a drum cooled to 40 ° C. by electrostatic force and solidified by cooling to obtain a substantially amorphous unstretched cast film. At this time, the ratio of the thickness of the end portion and the center portion of the unstretched film (the thickness of the end portion / the thickness of the center portion) is 1 or more,
0 or less, preferably 1 or more and less than 5, more preferably 1 or more and less than 3. If the ratio of the thickness is less than 1 or more than 10, film breakage or clip detachment frequently occurs, which is not preferable. Next, the unstretched film is guided to a simultaneous biaxial stretching tenter of a linear motor system by grasping both ends of the film with clips,
The film is heated to 90 to 150 ° C. in the preheating zone, and the simultaneous biaxial fine stretching in which the area stretching ratio of the film is 0.0005 to 3 times is continuously performed at least three times. At this time, it is preferable that the temperature of the clip for gripping the film end is set in a temperature range of 80 to 160 ° C. The stretching temperature in the fine stretching step is preferably kept within a temperature range of 90 to 150 ° C., but the film may be cooled once and finely stretched while suppressing crystallization of the film. In addition, in the case of a raw material having a high molecular weight or a raw material that is hardly crystallized, it is preferable to increase the stretching temperature to 200 ° C. In the latter half of the stretching step, that is, in the step of stretching a film having a plane orientation coefficient of 0.15 or more, it is preferable to perform stretching while gradually increasing the stretching temperature in two or more stages. The simultaneous biaxial stretching is performed as described above, and the total area stretching ratio of the film is 2
It is simultaneously biaxially stretched 0 to 150 times. Next, in order to impart flatness and dimensional stability to the biaxially stretched polyester film, a heat treatment is performed at a temperature in the range of 200 ° C. or higher and lower than the melting point.
The relaxation treatment is carried out in the vertical and horizontal directions in a temperature range of 00 to 200 ° C., preferably in the range of 1 to 6% in each direction.
At this time, the simultaneous biaxial fine stretching in the heat treatment step can be preferably repeated in order to increase the crystal size and increase the Young's modulus of the film. Thereafter, the film is cooled and wound up to room temperature, if necessary, while being subjected to relaxation treatment in the vertical and horizontal directions, to obtain a desired polyester film. In the present invention, in order to impart surface properties of the film, for example, in order to impart easy adhesion, easy slip, release properties, antistatic properties, the process before or after the simultaneous biaxial stretching of the film It is also preferable to coat a coating material on the surface of the polyester film.

【0027】[0027]

【物性値の評価法】(1)固有粘度[η] オルトクロロフェノール中、25℃で測定した溶液粘度
から下式から計算される値を用いる。すなわち、 ηsp/C=[η]+K[η]2・C ここで、ηsp=(溶液粘度/溶媒粘度)−1であり、
Cは、溶媒100mlあたりの溶解ポリマ重量(g/1
00ml、通常1.2)、Kはハギンス定数(0.34
3とする)である。また、溶液粘度、溶媒粘度はオスト
ワルド粘度計を用いて測定した。単位は[dl/g]で
示す。
[Evaluation method of physical properties] (1) Intrinsic viscosity [η] The value calculated from the following formula from the solution viscosity measured in orthochlorophenol at 25 ° C is used. That is, ηsp / C = [η] + K [η] 2 · C, where ηsp = (solution viscosity / solvent viscosity) −1,
C is the weight of the dissolved polymer per 100 ml of solvent (g / 1
00 ml, usually 1.2), and K is the Haggins constant (0.34
3). The solution viscosity and the solvent viscosity were measured using an Ostwald viscometer. The unit is indicated by [dl / g].

【0028】(2)ガラス転移温度Tg、融解温度Tm 示差走査熱量計として、セイコー電子工業(株)製“ロ
ボットDSC−RDC220”を用い、データー解析装
置として、同社製“ディスクセッション”SSC/52
00を用いて測定した。測定サンプルとして約5mg採
取し、室温から昇温速度20℃/分で300℃まで加熱
したときに得られる熱カーブより、Tg、Tmを求め
た。
(2) Glass transition temperature Tg, melting temperature Tm A "Robot DSC-RDC220" manufactured by Seiko Instruments Inc. is used as a differential scanning calorimeter, and "Disk Session" SSC / 52 manufactured by the company is used as a data analyzer.
00 was measured. About 5 mg of a measurement sample was collected, and Tg and Tm were determined from a heat curve obtained when the sample was heated from room temperature to 300 ° C. at a rate of temperature increase of 20 ° C./min.

【0029】(3)ヤング率 ASTM−D882に規定された方法に従って測定し
た。オリエンテック(株)製フィルム強伸度自動測定装
置“テンシロンAMF/RTA−100”を用いて、試
料フィルムを幅10mm、試長間100mm、引張り速
度200mm/分で引っ張った。得られた張力−歪曲線
の立上がりの接線の勾配からヤング率を求めた。測定は
23℃、65%RHの雰囲気下で行った。
(3) Young's modulus Measured according to the method specified in ASTM-D882. The sample film was pulled at a width of 10 mm, a test length of 100 mm, and a pulling speed of 200 mm / min using an automatic film strength / elongation measuring device “Tensilon AMF / RTA-100” manufactured by Orientec Co., Ltd. The Young's modulus was determined from the slope of the rising tangent of the obtained tension-strain curve. The measurement was performed in an atmosphere of 23 ° C. and 65% RH.

【0030】(4)熱収縮率 JIS−C−2318に規定された方法に従って測定し
た。フィルムを幅10mm、測定長約200mmとなる
ように2本のラインを引き、この2本のライン間の距離
を正確に測定しこれをL0とする。このサンプルを10
0℃のオーブン中に30分間、無荷重下で放置後、再び
2本のライン間の距離を測定しこれをL1とし、下式に
より熱収縮率を求める。
(4) Heat Shrinkage Ratio Heat shrinkage ratio was measured according to the method specified in JIS-C-2318. Two lines are drawn on the film so as to have a width of 10 mm and a measurement length of about 200 mm, and the distance between these two lines is accurately measured, and is defined as L0. 10 samples of this
After being left in an oven at 0 ° C. for 30 minutes under no load, the distance between the two lines is measured again, and this is set to L1, and the heat shrinkage is calculated by the following equation.

【0031】 熱収縮率(%)={(L0−L1)/L0}×100 (5) 結晶化度 JIS−K−7112に規定された方法に従って、密度
勾配から求めた。臭化ナトリウム水溶液による密度勾配
管を作成し、25℃におけるフィルムの密度を測定す
る。この密度dから、下式を用いて結晶化度を求めた。
Heat shrinkage (%) = {(L0−L1) / L0} × 100 (5) Crystallinity The crystallinity was determined from the density gradient according to the method specified in JIS-K-7112. A density gradient tube using an aqueous sodium bromide solution is prepared, and the density of the film at 25 ° C. is measured. From this density d, the crystallinity was determined using the following equation.

【0032】結晶化度(%)=((d−da)/(dc
−da))x100 ここで、daは非晶密度、dcは完全結晶密度であり、
ポリエチレンテレフタレートの場合、文献値よりda=
1.335、dc=1.455g/cm3 とした。
Crystallinity (%) = ((d−da) / (dc)
−da)) × 100 where da is an amorphous density, dc is a perfect crystal density,
In the case of polyethylene terephthalate, da =
1.335, dc = 1.455 g / cm 3 .

【0033】(6)面配向係数 JIS−K−7105に規定された方法に従って、屈折
率を測定した。光源をナトリウムランプとして、フィル
ムの屈折率(縦方向:Na、横方向: Nb、厚み方
向:Nc)をアッベ式屈折計(アタゴ製)により求め、
下式より面配向係数Fを算出した。マウント液はヨウ化
メチレンを用い、23℃、65%RHの雰囲気下で測定
した。
(6) Plane Orientation Coefficient The refractive index was measured according to the method specified in JIS-K-7105. Using a sodium lamp as a light source, the refractive index of the film (vertical direction: Na, horizontal direction: Nb, thickness direction: Nc) was determined by an Abbe refractometer (manufactured by Atago).
The plane orientation coefficient F was calculated from the following equation. The mounting solution was measured using methylene iodide in an atmosphere of 23 ° C. and 65% RH.

【0034】F=[( Na+ Nb )/2]−Nc (7)破れ頻度 真空乾燥したポリエチレンテレフタレートをT型口金か
ら、静電気力でキャスティングドラム上に密着させて冷
却固化せしめて、キャストフィルムを得、リニアモータ
方式の同時二軸テンターによる製膜に伴うフィルム破れ
を観察して、次の基準で判定した。
F = [(Na + Nb) / 2] -Nc (7) Breakage frequency Vacuum-dried polyethylene terephthalate is tightly adhered to the casting drum from a T-type die by electrostatic force and cooled and solidified to obtain a cast film. The film was broken by the simultaneous biaxial tenter of the linear motor type during film formation, and the film was judged according to the following criteria.

【0035】 ◎:フィルム破れが皆無である場合 ○:フィルム破れが極まれに生じる場合 △:フィルム破れが時々生じる場合 ×:フィルム破れが頻発する場合 (8)フィルムの長手方向厚みむら アンリツ株式会社製フィルムシックネステスター「KG
601A」および電子マイクロメータ「K306C」を
用い、フィルムの縦方向に30mm幅、10m長にサン
プリングしたフィルムを連続的に厚みを測定する。フィ
ルムの搬送速度は3m/分とした。10m長での厚み最
大値Tmax(μm)、最小値Tmin(μm)から、 R=Tmax―Tmin を求め、Rと10m長の平均厚みTave(μm)か
ら、次式により厚みむらを求めた。
◎: When there is no film tearing ○: When the film tearing occurs very rarely Δ: When the film tearing occurs occasionally ×: When the film tearing occurs frequently (8) Unevenness in the thickness direction of the film manufactured by Anritsu Corporation Film Thickness Tester "KG
601A "and an electronic micrometer" K306C "are used to continuously measure the thickness of a film sampled 30 mm wide and 10 m long in the longitudinal direction of the film. The transport speed of the film was 3 m / min. From the maximum thickness value Tmax (μm) and the minimum value Tmin (μm) at a length of 10 m, R = Tmax−Tmin was determined, and from R and the average thickness Tave (μm) of the 10-m length, thickness unevenness was determined by the following equation.

【0036】厚みむら(%)=(R/Tave)x10
Uneven thickness (%) = (R / Tave) × 10
0

【0037】[0037]

【実施例】以下に、本発明を実施例、比較例に基づいて
説明する。
The present invention will be described below based on examples and comparative examples.

【0038】実施例1(表1) ポリエチレンテレフタレート(固有粘度0.65、ガラ
ス転移温度75℃、融点255℃、平均径0.3μmの
球状架橋ポリスチレン粒子0.1重量%配合)のペレッ
トを180℃で3時間真空乾燥した後に、280℃に加
熱された押出機に供給して溶融押出し、Tダイよりシー
ト状に吐出した。さらにこのシートを表面温度25℃の
冷却ドラム上に静電気力で密着させて冷却固化し、未延
伸キャストフィルムを得た。この未延伸フィルムの両端
部をクリップで把持して、リニアモーター方式の同時二
軸延伸テンターに導き、フィルム温度を100℃に加熱
し、トータル面積倍率1.082倍(縦倍率:1.04
倍、横倍率:1.04倍)の同時二軸微延伸を連続的に
50回行った。その後、210℃の温度で熱固定を施
し、120℃の冷却ゾーンで縦方向に2%、横方向に2
%の弛緩率で弛緩処理を行い、フィルムを室温に徐冷し
て巻取った。フィルム厚みは押出量を調節して9μmに
合わせた。なお、延伸時のクリップ温度は100℃とし
た。ここで得られたフィルムはトータルの面積倍率が約
50倍に達し、結晶化度が58%と高く、高ヤング率と
低熱収縮率を両立する、厚みむらも少ない高品質のフィ
ルムであった。なお、製膜時のフィルム破れは少なく、
高物性、高品質のフィルムが極めて安定に得られた。
Example 1 (Table 1) 180 pellets of polyethylene terephthalate (containing 0.1% by weight of spherical crosslinked polystyrene particles having an intrinsic viscosity of 0.65, a glass transition temperature of 75 ° C., a melting point of 255 ° C. and an average diameter of 0.3 μm) were mixed. After vacuum drying at 3 ° C. for 3 hours, the mixture was supplied to an extruder heated to 280 ° C., melt-extruded, and discharged from a T-die into a sheet. Further, this sheet was brought into close contact with a cooling drum having a surface temperature of 25 ° C. by electrostatic force and cooled and solidified to obtain an unstretched cast film. Both ends of the unstretched film are gripped with clips and guided to a simultaneous biaxial stretching tenter of a linear motor type, the film temperature is heated to 100 ° C., and the total area magnification is 1.082 times (vertical magnification: 1.04 times).
(Double magnification, transverse magnification: 1.04 times) at the same time. Thereafter, heat setting is performed at a temperature of 210 ° C., and 2% in the vertical direction and 2% in the horizontal direction in the cooling zone of 120 ° C.
%, And the film was gradually cooled to room temperature and wound up. The film thickness was adjusted to 9 μm by adjusting the extrusion amount. In addition, the clip temperature at the time of extending | stretching was 100 degreeC. The film obtained here was a high quality film having a total area magnification of about 50 times, a high degree of crystallinity of 58%, a high Young's modulus and a low heat shrinkage, and little thickness unevenness. In addition, film tearing during film formation is small,
A film with high physical properties and high quality was obtained very stably.

【0039】実施例2〜5、比較例1(表1) 同時二軸微延伸の倍率、繰り返し回数、トータルの面積
倍率を変更する以外は実施例1と同様に製膜し、二軸延
伸ポリエステルフィルムを得た。ここで、微延伸の繰り
返し回数が3回および2回の実施例2および比較例1の
場合には、微延伸後にさらに同時二軸延伸を一段階で施
し、フィルムのトータル面積倍率を25倍とした。微延
伸を繰り返す回数を3回以上とし、さらに増やしていく
と、フィルムの破れ頻度が低下し、トータル面積延伸倍
率が高まる傾向が見られた。また、微延伸の繰り返し回
数を増やして高倍率延伸すると、フィルムの結晶化度が
高まり、高剛性、低熱収縮性で厚みむらも小さい高品質
のフィルムが得られた。
Examples 2 to 5, Comparative Example 1 (Table 1) A film was formed in the same manner as in Example 1 except that the simultaneous biaxial fine stretching magnification, the number of repetitions, and the total area magnification were changed. A film was obtained. Here, in the case of Example 2 and Comparative Example 1 in which the number of repetitions of fine stretching is three and two, simultaneous biaxial stretching is further performed in one stage after fine stretching, and the total area magnification of the film is 25 times. did. When the number of times of fine stretching was repeated three times or more and further increased, the frequency of film tearing decreased, and the total area stretching ratio tended to increase. Further, when the number of repetitions of the fine stretching was increased and the stretching was performed at a high magnification, the crystallinity of the film was increased, and a high-quality film having high rigidity, low heat shrinkage and small thickness unevenness was obtained.

【0040】[0040]

【表1】 比較例2〜4(表2) 同時二軸微延伸を行なわずに、フィルムを延伸した以外
は実施例1と同様に製膜し、二軸延伸ポリエステルフィ
ルムを得た。フィルム温度が100℃の温度条件下、同
時二軸テンターで縦方向に4.3倍に延伸した後、横方
向に4.3倍に延伸した場合、およびフィルムを縦およ
び横方向に各々4.3倍の倍率で同時二軸延伸した場合
には、ヤング率が小さく、熱収縮率が大きなフィルムし
か得られず、フィルムの厚みむらも大きかった(比較例
2、3)。また、フィルムを縦方向と横方向に各々4.
0倍の倍率で同時二軸延伸した後、さらに、縦方向と横
方向に各々1.2倍の倍率で同時二軸延伸した場合に
は、フィルム破れが多発し、フィルムの熱収縮率が大き
くなった(比較例4)。
[Table 1] Comparative Examples 2 to 4 (Table 2) A biaxially stretched polyester film was obtained in the same manner as in Example 1 except that the film was stretched without performing simultaneous biaxial fine stretching. When the film temperature is 100 ° C., the film is stretched 4.3 times in the machine direction by a simultaneous biaxial tenter, and then stretched 4.3 times in the transverse direction. When the film was simultaneously biaxially stretched at a magnification of 3 times, only a film having a small Young's modulus and a large heat shrinkage was obtained, and the thickness unevenness of the film was also large (Comparative Examples 2 and 3). In addition, the film is placed in the longitudinal direction and the lateral direction, respectively.
After simultaneous biaxial stretching at a magnification of 0, and further, simultaneous biaxial stretching at a magnification of 1.2 times each in the machine direction and the transverse direction, film tearing occurs frequently and the heat shrinkage of the film is large. (Comparative Example 4).

【0041】[0041]

【表2】 実施例5〜9(表3) 本実施例では、微延伸後の到達結晶度を変えて製膜した
例を示す。微延伸の倍率と繰り返し回数を変更し、連続
的に微延伸を繰り返した後に一段階で同時二軸延伸して
トータルの面積倍率を50倍に設定する以外は実施例1
と同様に製膜して二軸延伸ポリエステルフィルムを得
た。ここで、1回の同時二軸延微伸による縦方向および
横方向の倍率は等倍とした。同時二軸微延伸後のフィル
ムの結晶化度が2%および34%の時には、ヤング率が
低下し、熱収縮率が高くなった。
[Table 2] Examples 5 to 9 (Table 3) In this example, an example is shown in which a film is formed by changing the ultimate crystallinity after fine stretching. Example 1 except that the magnification and the number of repetitions of the fine stretching were changed, and the fine stretching was continuously repeated, followed by simultaneous biaxial stretching in one stage to set the total area magnification to 50 times.
A biaxially stretched polyester film was obtained in the same manner as described above. Here, the magnification in the vertical and horizontal directions by one simultaneous biaxial stretching was set equal. When the crystallinity of the film after simultaneous biaxial fine stretching was 2% and 34%, the Young's modulus decreased and the heat shrinkage increased.

【0042】[0042]

【表3】 実施例10〜12(表4) 同時二軸テンター内で、フィルムの流れ方向に100
℃、140℃、210℃、250℃の温度ゾーンを設け
て、同時二軸微延伸の温度条件を変更する以外は実施例
4と同様に製膜し、二軸配向ポリエステルフィルムを得
た。210℃、240℃という高温域で同時二軸微延伸
を行うと、フィルムのヤング率が高まり、熱収縮率が低
下した。
[Table 3] Examples 10 to 12 (Table 4) In a simultaneous biaxial tenter, 100
A film was formed in the same manner as in Example 4 except that temperature zones of ° C, 140 ° C, 210 ° C, and 250 ° C were provided and the temperature conditions for simultaneous biaxial fine stretching were changed to obtain a biaxially oriented polyester film. When simultaneous biaxial fine stretching was performed in a high temperature range of 210 ° C. and 240 ° C., the Young's modulus of the film increased, and the heat shrinkage decreased.

【0043】[0043]

【表4】 実施例13、比較例5(表5) 固有粘度が1.0のポリエチレンテレフタレート(ガラ
ス転移温度74℃、融点255℃、平均径0.3μmの
球状架橋ポリスチレン粒子0.1重量%配合)をポリエ
ステル原料として使用し、同時二軸微延伸の効果を調べ
た。ここで、延伸ゾーンの温度は115℃、熱処理ゾー
ンの温度は210℃とし、延伸パターンを変更する以外
は実施例1と同様に製膜し、厚さ6.5μmの二軸配向
ポリエステルフィルムを得た。微延伸を行う場合、一回
の微延伸による面積倍率は1.082倍(縦倍率:1.
04倍、横倍率:1.04倍)として連続的に50回繰
り返した。微延伸を行わない場合は、一段階で縦・横各
方向に等倍率で同時二軸延伸を行った。比較例5の場合
とは異なり、微延伸を施した実施例13では、トータル
の面積倍率が高まり、高ヤング率で低熱収縮性のフィル
ムが得られた。
[Table 4] Example 13, Comparative Example 5 (Table 5) Polyethylene terephthalate having an intrinsic viscosity of 1.0 (containing 0.1% by weight of spherical crosslinked polystyrene particles having a glass transition temperature of 74 ° C, a melting point of 255 ° C, and an average diameter of 0.3 µm) was polyester Using it as a raw material, the effect of simultaneous biaxial fine stretching was investigated. Here, the temperature of the stretching zone was 115 ° C., the temperature of the heat treatment zone was 210 ° C., and a film was formed in the same manner as in Example 1 except that the stretching pattern was changed to obtain a biaxially oriented polyester film having a thickness of 6.5 μm. Was. When performing fine stretching, the area magnification by one fine stretching is 1.082 times (longitudinal magnification: 1.times.).
(0.4 times, lateral magnification: 1.04 times) and repeated 50 times continuously. When fine stretching was not performed, simultaneous biaxial stretching was performed in one step at the same magnification in each of the vertical and horizontal directions. Unlike the case of Comparative Example 5, in Example 13 in which fine stretching was performed, the total area magnification was increased, and a film having a high Young's modulus and low heat shrinkage was obtained.

【0044】実施例14、15、比較例6、7(表5) 固有粘度が0.65のポリエチレン−2,6−ナフタレ
ート(ガラス転移温度125℃、融点265℃、平均径
0.3μmの球状架橋ポリスチレン粒子0.1重量%配
合)およびポリエチレンテレフタレート90モル%とポ
リエチレン−2,6−ナフタレート10モル%の共重合
ポリマー(ガラス転移温度84℃、融点235℃、平均
径0.3μmの球状架橋ポリスチレン粒子0.1重量%
配合)を使用し、延伸温度を表5に示した条件に設定す
る以外は実施例13および比較例5と同様に製膜し、厚
さ6.5μmの二軸配向ポリエステルフィルムを得た。
原料として、ポリエチレン−2,6−ナフタレートや上
記共重合ポリマーを使用した場合においても、本発明の
微延伸の効果は顕著に見られた。同時二軸微延伸を繰り
返して行うと、トータル面積倍率および結晶化度が高ま
り、高ヤング率化および低熱収縮化した高品質のポリエ
ステルフィルムを安定に製膜できた。
Examples 14 and 15 and Comparative Examples 6 and 7 (Table 5) Polyethylene-2,6-naphthalate having an intrinsic viscosity of 0.65 (sphere having a glass transition temperature of 125 ° C., a melting point of 265 ° C. and an average diameter of 0.3 μm) A copolymer of 90 mol% of polyethylene terephthalate and 10 mol% of polyethylene-2,6-naphthalate (glass transition temperature: 84 ° C., melting point: 235 ° C., average diameter: 0.3 μm) 0.1% by weight of polystyrene particles
), And a biaxially oriented polyester film having a thickness of 6.5 μm was obtained in the same manner as in Example 13 and Comparative Example 5, except that the stretching temperature was set to the conditions shown in Table 5.
Even when polyethylene-2,6-naphthalate or the above copolymer was used as a raw material, the effect of the fine stretching of the present invention was remarkably observed. By repeating the simultaneous biaxial fine stretching, the total area ratio and the crystallinity were increased, and a high-quality polyester film having a high Young's modulus and a low heat shrinkage could be stably formed.

【0045】[0045]

【表5】 [Table 5]

【0046】[0046]

【発明の効果】本発明の製造法によれば、高剛性、低熱
収縮性で、かつ厚みむら、表面欠点も少ない高品質のポ
リエステルフィルムを、破れ頻度も低下させて安定製膜
できる。本発明は、磁気記録用、電気絶縁用、感熱転写
リボン用、感熱孔版印刷用、包装用など各種フィルムの
製造法として広く活用が可能であり、また、本発明によ
り、従来のポリエステルフィルムの機械特性を遙かに凌
ぐ物性と品質を有した新規なポリエステルフィルムが得
られる。
According to the production method of the present invention, a high-quality polyester film having high rigidity and low heat shrinkage and having little unevenness in thickness and few surface defects can be stably formed with a reduced frequency of tearing. INDUSTRIAL APPLICABILITY The present invention can be widely used as a method for manufacturing various films for magnetic recording, electrical insulation, thermal transfer ribbon, thermal stencil printing, packaging, and the like. A novel polyester film having physical properties and quality far exceeding properties can be obtained.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】ポリエステルを主成分とする樹脂からなる
フィルムをリニアモーター方式の同時二軸テンターを用
いて同時二軸延伸するポリエステルフィルムの製造法に
おいて、フィルムの面積延伸倍率が1.0005〜3.
0倍の倍率で微延伸する操作を3回以上連続的に繰り返
すことを特徴とするポリエステルフィルムの製造法。
1. A method for producing a polyester film, comprising simultaneously biaxially stretching a film composed of a resin containing polyester as a main component by using a simultaneous biaxial tenter of a linear motor type, wherein the area stretching ratio of the film is from 0.0005 to 3. .
A process for producing a polyester film, wherein the operation of fine stretching at a magnification of 0 is continuously repeated at least three times.
【請求項2】前記微延伸を10回以上、10000回未
満の回数で繰り返すことを特徴とする請求項1記載のポ
リエステルフィルムの製造法。
2. The method for producing a polyester film according to claim 1, wherein said fine stretching is repeated 10 times or more and less than 10,000 times.
【請求項3】未延伸フィルムに対して、前記微延伸を
(ガラス転移温度Tg+10)℃〜(Tg+120)℃
の温度範囲で行うことを特徴とする請求項1または2記
載のポリエステルフィルムの製造法。
3. The fine stretching of the unstretched film is performed at (glass transition temperature Tg + 10) ° C. to (Tg + 120) ° C.
The method for producing a polyester film according to claim 1, wherein the temperature is set in a temperature range of:
【請求項4】未延伸フィルムに対して、前記微延伸を結
晶化度が3%以上、30%未満になるまで連続的に繰り
返すことを特徴とする請求項1〜3のいずれかに記載の
ポリエステルフィルムの製造法。
4. The method according to claim 1, wherein the fine stretching is continuously repeated with respect to the unstretched film until the crystallinity becomes 3% or more and less than 30%. Manufacturing method of polyester film.
【請求項5】ポリエステルを主成分とする樹脂からなる
フィルムをリニアモーター方式の同時二軸テンターを用
いて延伸して得られるポリエステルフィルムにおいて、
フィルムの面積延伸倍率を1.0005〜3.0倍にし
て微延伸する操作を3回以上連続的に繰り返して製造さ
れたことを特徴とするポリエステルフィルム。
5. A polyester film obtained by stretching a film made of a resin containing polyester as a main component using a simultaneous biaxial tenter of a linear motor type,
A polyester film manufactured by continuously repeating the operation of fine stretching while setting the area stretching ratio of the film to 1.0005 to 3.0 times, three times or more.
【請求項6】フィルムの縦方向と横方向のヤング率の和
が8〜30GPaであり、100℃、30分の熱収縮率
の和が2%未満であることを特徴とする請求項5記載の
ポリエステルフィルム。
6. The film according to claim 5, wherein the sum of the Young's modulus in the machine direction and the transverse direction is 8 to 30 GPa, and the sum of the heat shrinkage rates at 100 ° C. for 30 minutes is less than 2%. Polyester film.
【請求項7】結晶化度が30〜90%であることを特徴
とする請求項5または6記載のポリエステルフィルム。
7. The polyester film according to claim 5, wherein the degree of crystallinity is 30 to 90%.
【請求項8】ポリエステルがポリエチレンテレフタレー
ト、ポリエチレンナフタレートまたはこれらの共重合体
または変成体であることを特徴とする請求項5〜7のい
ずれかに記載のポリエステルフィルム。
8. The polyester film according to claim 5, wherein the polyester is polyethylene terephthalate, polyethylene naphthalate, or a copolymer or modified product thereof.
JP35422398A 1997-12-18 1998-12-14 Polyester film and method for producing the same Expired - Fee Related JP3804311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35422398A JP3804311B2 (en) 1997-12-18 1998-12-14 Polyester film and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34915597 1997-12-18
JP9-349155 1997-12-18
JP35422398A JP3804311B2 (en) 1997-12-18 1998-12-14 Polyester film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11254524A true JPH11254524A (en) 1999-09-21
JP3804311B2 JP3804311B2 (en) 2006-08-02

Family

ID=26578895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35422398A Expired - Fee Related JP3804311B2 (en) 1997-12-18 1998-12-14 Polyester film and method for producing the same

Country Status (1)

Country Link
JP (1) JP3804311B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002011786A (en) * 2000-06-29 2002-01-15 Toray Ind Inc Biaxially oriented polyester film
JP2006348246A (en) * 2005-06-20 2006-12-28 Matsushita Electric Works Ltd Thermoplastic resin composition and molded article
CN102744941A (en) * 2012-07-25 2012-10-24 江苏双星彩塑新材料股份有限公司 Ultrathin antistatic PET (polyethylene glycol terephthalate) film for capacitor and manufacturing mehtod of ultrathin antistatic PET film for capacitor
CN112724433A (en) * 2019-10-28 2021-04-30 Skc株式会社 Polyester film and flexible display device including the same
JP2021066881A (en) * 2019-10-28 2021-04-30 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. Polyester film and flexible display apparatus comprising the same
JP2022090636A (en) * 2020-12-07 2022-06-17 エスケイシー・カンパニー・リミテッド Polyester based film and method for manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002011786A (en) * 2000-06-29 2002-01-15 Toray Ind Inc Biaxially oriented polyester film
JP4590693B2 (en) * 2000-06-29 2010-12-01 東レ株式会社 Biaxially oriented polyester film
JP2006348246A (en) * 2005-06-20 2006-12-28 Matsushita Electric Works Ltd Thermoplastic resin composition and molded article
CN102744941A (en) * 2012-07-25 2012-10-24 江苏双星彩塑新材料股份有限公司 Ultrathin antistatic PET (polyethylene glycol terephthalate) film for capacitor and manufacturing mehtod of ultrathin antistatic PET film for capacitor
CN112724433A (en) * 2019-10-28 2021-04-30 Skc株式会社 Polyester film and flexible display device including the same
JP2021066881A (en) * 2019-10-28 2021-04-30 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. Polyester film and flexible display apparatus comprising the same
CN112724432A (en) * 2019-10-28 2021-04-30 Skc株式会社 Polyester film and flexible display device including the same
KR20210050481A (en) * 2019-10-28 2021-05-07 에스케이씨 주식회사 Polyester film and flexible display apparatus comprising same
US11551584B2 (en) 2019-10-28 2023-01-10 Skc Co., Ltd. Polyester film and flexible display apparatus comprising same
JP2022090636A (en) * 2020-12-07 2022-06-17 エスケイシー・カンパニー・リミテッド Polyester based film and method for manufacturing the same
US11642825B2 (en) 2020-12-07 2023-05-09 Skc Co., Ltd. Polyester film and preperation method thereof

Also Published As

Publication number Publication date
JP3804311B2 (en) 2006-08-02

Similar Documents

Publication Publication Date Title
KR100550081B1 (en) Polyester film and manufacturing method
KR0158461B1 (en) Biaxially oriented polyethylene 2,6-naphthalene dicarboxylate film
JP2000202904A (en) Polyester film and manufacture thereof
JP3804311B2 (en) Polyester film and method for producing the same
JP4907903B2 (en) Biaxially oriented film, biaxially oriented laminated film and magnetic recording medium
JP3840834B2 (en) Method for producing thermoplastic resin film
JPH0832499B2 (en) Heat resistant polyester film for transfer film
JP2000071405A (en) Biaxially oriented polyester film
JP3748165B2 (en) Polyester film and method for producing the same
JP3640282B2 (en) Method for producing biaxially stretched polyester film
JP3726456B2 (en) Simultaneously biaxially stretched polyester film and method for producing the same
JPH0780928A (en) Production of plastic film
JP3740761B2 (en) Biaxially stretched polyester film and method for producing the same
JP3988228B2 (en) Biaxially oriented polyester film
JPH08174661A (en) Production of biaxially oriented polyester film
JP3692758B2 (en) Inline coating method
JP3367129B2 (en) Method for producing polyester film
JPH11129327A (en) Biaxially drawn film
JPH09295345A (en) Biaxially oriented polyester film and its manufacture
JP3781227B2 (en) Polyethylene terephthalate film and production method thereof
JP2000336183A (en) Biaxially oriented polyester film and its production
JP3238589B2 (en) Biaxially oriented laminated polyester film
JP3582671B2 (en) Method for producing biaxially oriented polyester film
JP2555707B2 (en) Process for producing polyethylene 2,6-naphthalate film
JP2000025107A (en) Biaxially oriented polyester film and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060207

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060501

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees