JP2000202904A - Polyester film and manufacture thereof - Google Patents
Polyester film and manufacture thereofInfo
- Publication number
- JP2000202904A JP2000202904A JP11006363A JP636399A JP2000202904A JP 2000202904 A JP2000202904 A JP 2000202904A JP 11006363 A JP11006363 A JP 11006363A JP 636399 A JP636399 A JP 636399A JP 2000202904 A JP2000202904 A JP 2000202904A
- Authority
- JP
- Japan
- Prior art keywords
- film
- stretching
- polyester film
- polyester
- ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920006267 polyester film Polymers 0.000 title claims abstract description 80
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 claims abstract description 60
- 230000005291 magnetic effect Effects 0.000 claims abstract description 35
- 229920000728 polyester Polymers 0.000 claims abstract description 25
- 238000012546 transfer Methods 0.000 claims abstract description 21
- 239000003990 capacitor Substances 0.000 claims abstract description 13
- 239000011347 resin Substances 0.000 claims abstract description 6
- 229920005989 resin Polymers 0.000 claims abstract description 6
- -1 polyethylene terephthalate Polymers 0.000 claims description 29
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 19
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 19
- 230000009477 glass transition Effects 0.000 claims description 15
- 229920001577 copolymer Polymers 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 10
- 230000002040 relaxant effect Effects 0.000 claims description 7
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 claims description 3
- 239000011112 polyethylene naphthalate Substances 0.000 claims description 3
- 238000007639 printing Methods 0.000 abstract description 10
- 230000007547 defect Effects 0.000 abstract description 5
- 239000012770 industrial material Substances 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 281
- 239000002245 particle Substances 0.000 description 26
- 230000000052 comparative effect Effects 0.000 description 21
- 238000001816 cooling Methods 0.000 description 19
- 239000010410 layer Substances 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 17
- 239000000203 mixture Substances 0.000 description 16
- 230000000704 physical effect Effects 0.000 description 15
- 238000002844 melting Methods 0.000 description 14
- 230000008018 melting Effects 0.000 description 14
- 230000000694 effects Effects 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 230000008859 change Effects 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- 239000008188 pellet Substances 0.000 description 10
- 239000004793 Polystyrene Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 229920002223 polystyrene Polymers 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- 239000006229 carbon black Substances 0.000 description 8
- 239000000835 fiber Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000012298 atmosphere Substances 0.000 description 7
- 238000009998 heat setting Methods 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N methyl ethyl ketone Substances CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N toluene Substances CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 241000519995 Stachys sylvatica Species 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000002950 deficient Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000003973 paint Substances 0.000 description 5
- 229920002635 polyurethane Polymers 0.000 description 5
- 239000004814 polyurethane Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 238000003490 calendering Methods 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000004745 nonwoven fabric Substances 0.000 description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 4
- 238000007790 scraping Methods 0.000 description 4
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 4
- 238000001291 vacuum drying Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000011146 organic particle Substances 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 230000037303 wrinkles Effects 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000010954 inorganic particle Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 125000005395 methacrylic acid group Chemical group 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 235000012771 pancakes Nutrition 0.000 description 2
- 229920001228 polyisocyanate Polymers 0.000 description 2
- 239000005056 polyisocyanate Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- KAUQJMHLAFIZDU-UHFFFAOYSA-N 6-Hydroxy-2-naphthoic acid Chemical compound C1=C(O)C=CC2=CC(C(=O)O)=CC=C21 KAUQJMHLAFIZDU-UHFFFAOYSA-N 0.000 description 1
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 241000661823 Canopus Species 0.000 description 1
- 101001024616 Homo sapiens Neuroblastoma breakpoint family member 9 Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 102100037013 Neuroblastoma breakpoint family member 9 Human genes 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- YYRMJZQKEFZXMX-UHFFFAOYSA-L calcium bis(dihydrogenphosphate) Chemical compound [Ca+2].OP(O)([O-])=O.OP(O)([O-])=O YYRMJZQKEFZXMX-UHFFFAOYSA-L 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 239000003484 crystal nucleating agent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- VEIOBOXBGYWJIT-UHFFFAOYSA-N cyclohexane;methanol Chemical compound OC.OC.C1CCCCC1 VEIOBOXBGYWJIT-UHFFFAOYSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 235000019700 dicalcium phosphate Nutrition 0.000 description 1
- 229940095079 dicalcium phosphate anhydrous Drugs 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- NZZFYRREKKOMAT-UHFFFAOYSA-N diiodomethane Chemical compound ICI NZZFYRREKKOMAT-UHFFFAOYSA-N 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical group FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000007757 hot melt coating Methods 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005058 metal casting Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 239000004200 microcrystalline wax Substances 0.000 description 1
- 235000019808 microcrystalline wax Nutrition 0.000 description 1
- 235000019691 monocalcium phosphate Nutrition 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920000874 polytetramethylene terephthalate Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003578 releasing effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 235000019731 tricalcium phosphate Nutrition 0.000 description 1
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 1
- 229940078499 tricalcium phosphate Drugs 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Magnetic Record Carriers (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、従来のポリエステ
ルフィルムの物性・品質を大幅に向上させたポリエステ
ルフィルムとその製造法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyester film having greatly improved physical properties and quality of a conventional polyester film and a method for producing the same.
【0002】具体的には、剛性、強靱性、寸法安定性、
電気特性などに優れ、かつ、厚みむらや表面欠点も少な
く、それら性質により、例えば、磁気記録媒体用、コン
デンサー用、熱転写リボン用、あるいは感熱孔版印刷原
紙用などの各種の工業材料用フィルムとして非常に適し
たポリエステルフィルムと該フィルムを製造する方法に
関するものである。[0002] Specifically, rigidity, toughness, dimensional stability,
It has excellent electrical properties, and has little unevenness in thickness and surface defects.Because of these properties, it is very useful as a film for various industrial materials such as for magnetic recording media, capacitors, thermal transfer ribbons, and heat-sensitive stencil printing paper. And a method for producing the film.
【0003】[0003]
【従来の技術】プラスチックフィルムは、他の素材から
は得られないような大面積のフィルムの連続生産が可能
であり、その強度、耐久性、透明性、柔軟性、表面特性
の付与が可能などの特徴を活かして、磁気記録媒体用、
農業用、包装用、建材用などの大量に需要のある各種分
野で用いられている。2. Description of the Related Art Plastic films enable continuous production of large-area films that cannot be obtained from other materials, and can impart strength, durability, transparency, flexibility, and surface characteristics. For magnetic recording media,
It is used in various fields that are in large demand, such as for agriculture, packaging, and building materials.
【0004】その中でも、二軸延伸ポリエステルフィル
ムは、その優れた機械的特性、熱的特性、電気的特性、
耐薬品性のために、さまざまな分野で利用されており、
特に磁気テープ用ベースフィルムとしての有用性は、他
のフィルムの追随を許さない。 該分野において、特
に、近年は、機材の軽量化、小型化と長時間記録化のた
めに、ベースフィルムの一層の薄膜化が要求されてい
る。また、熱転写リボン用、コンデンサー用、あるいは
感熱孔版印刷原紙用においても、近年、薄膜化の傾向が
非常に強い。[0004] Among them, biaxially stretched polyester film has excellent mechanical properties, thermal properties, electrical properties,
It is used in various fields for its chemical resistance.
In particular, its usefulness as a base film for a magnetic tape does not allow other films to follow. In this field, in particular, in recent years, further thinning of the base film has been required in order to reduce the weight, size, and long-time recording of equipment. In recent years, there has been a very strong tendency to reduce the thickness of thermal transfer ribbons, condensers, and heat-sensitive stencil sheets.
【0005】しかしながら、フィルムを薄膜化すると、
機械的強度が不十分となって、フィルムの腰の強さが弱
くなったり、伸びやすくなったりするため、例えば、磁
気記録媒体用では、テープダメージを受けやすくなった
り、ヘッドタッチが悪化して電磁変換特性が低下したり
する。また、フィルムを薄膜化すると、熱転写リボン用
では、印字する際のリボンの平坦性が保たれず、印字ム
ラや過転写が発生し、また、コンデンサ用では、絶縁破
壊電圧が低下するといった問題点がある。However, when a film is made thinner,
Mechanical strength is insufficient, the strength of the film's waist is weakened, or it becomes easy to stretch, for example, for magnetic recording media, it becomes susceptible to tape damage or head touch deteriorates Electromagnetic conversion characteristics may be reduced. Also, when the film is thinned, the flatness of the ribbon at the time of printing cannot be maintained for the thermal transfer ribbon, causing printing unevenness and over-transfer, and the dielectric breakdown voltage decreases for the capacitor use. There is.
【0006】このような薄膜化志向の中で、ヤング率に
代表されるような引張特性などの機械特性の向上によ
る、ますますの高強度化が望まれている。[0006] In such a tendency to reduce the thickness, it is desired to further increase the strength by improving mechanical properties such as tensile properties typified by Young's modulus.
【0007】そのため、従来から種々の方法でフィルム
の高強度化が検討されてきた。For this reason, conventionally, various methods have been studied for increasing the strength of the film.
【0008】一般に知られてきた、二軸延伸ポリエステ
ルフィルムの高強度化の手法としては、例えば、縦・横
二方向に延伸したフィルムを再度縦方向に延伸し、縦方
向に高強度化する、いわゆる再縦延伸法が一般的である
(例えば、特公昭42−9270号公報、特公昭43−
3040号公報、特開昭46−1119号公報、特開昭
46−1120号公報など)。また、さらに横方向にも
強度を付与したい場合には、上述の再縦延伸を行なった
後、再度横方向に延伸するという再縦再横延伸法が提案
されている(例えば、特開昭50−133276号公
報、特開昭55−22915号公報など)。また、一段
目の延伸をフィルムの縦方向に2段階以上で行い、引き
続き、フィルムの横方向に延伸を行う縦多段延伸法が提
案されている(例えば、特公昭52−33666号公
報、特公昭57−49377号公報など)。[0008] As a generally known technique for increasing the strength of a biaxially stretched polyester film, for example, a film stretched in two vertical and horizontal directions is stretched in the vertical direction again to increase the strength in the vertical direction. The so-called re-longitudinal stretching method is generally used (for example, Japanese Patent Publication No. 42-9270, Japanese Patent Publication No.
3040, JP-A-46-1119, JP-A-46-1120, etc.). In order to further impart strength in the horizontal direction, a re-longitudinal re-horizontal stretching method has been proposed in which the above-described re-vertical stretching is performed and then the film is stretched in the horizontal direction again (for example, Japanese Patent Application Laid-Open No. Sho 50/1985). JP-A-133276, JP-A-55-22915). In addition, a longitudinal multi-stage stretching method in which the first stage stretching is performed in two or more stages in the machine direction of the film and subsequently the film is stretched in the transverse direction has been proposed (for example, Japanese Patent Publication No. 52-33666, Japanese Patent Publication No. Sho 52-33666). 57-49377, etc.).
【0009】この縦多段延伸法は、高強度化、フィルム
の厚みむら改善、生産性の向上を図る上で、上記した再
縦延伸法、再縦再横延伸法よりも優れた方法である。し
かし、フィルムの高強度化を行った場合、フィルムの熱
収縮率も高くなる、フィルム破れが多発するという実用
上好ましくない問題を発生することは、この縦多段延伸
法の場合も同様であった。This longitudinal multi-stage stretching method is superior to the above-described re-longitudinal stretching method and the re-longitudinal re-horizontal stretching method in order to increase strength, improve film thickness unevenness, and improve productivity. However, when the strength of the film is increased, the heat shrinkage of the film is also increased, and a problem that is not practically preferred that the film is frequently broken is also the same in the case of this vertical multi-stage stretching method. .
【0010】また、後述する本発明法と似ている、従来
知られているフィルム製造方法の一つとして、フィルム
の縦方向と横方向のうち、少なくとも一つの方向につい
て3回以上連続的に繰返して延伸をする微延伸繰返し法
(超多段延伸法)の提案がある(特開平8−22477
7号公報、特開平9−57845号公報)。しかし、該
特開平8−224777号公報、該特開平9−5784
5号公報に記載されている発明においては、主に逐次二
軸延伸の場合の具体例が示されているのみで、同時二軸
延伸の場合の有効な製膜機構や装置、プロセス条件につ
いては、特別に具体的に言及するものではなく、加え
て、高倍率延伸に対応可能なことから本発明において好
ましい装置として使用を提案しているリニアモーター方
式による同時二軸延伸法の有効性についても何ら触れら
れていない。As one of the conventionally known film manufacturing methods similar to the method of the present invention described later, the film is continuously repeated at least three times in at least one of the longitudinal direction and the lateral direction of the film. There is a proposal of a fine stretching repetition method (extreme multi-stage stretching method) in which stretching is carried out by stretching (Japanese Unexamined Patent Publication No. Hei 8-22477).
No. 7, JP-A-9-57845). However, JP-A-8-224777 and JP-A-9-5784 disclose the following.
In the invention described in Japanese Patent Publication No. 5 only, a specific example in the case of sequential biaxial stretching is mainly shown, and effective film forming mechanisms, apparatuses, and process conditions in the case of simultaneous biaxial stretching are described. In addition, it is not specifically mentioned, and in addition, it is also possible to cope with high-magnification stretching, and the effectiveness of the simultaneous biaxial stretching method using a linear motor system which is proposed to be used as a preferable apparatus in the present invention is also described. Not touched at all.
【0011】一方で、近年、リニアモーター方式の同時
二軸テンターが開発され、その製膜速度の高さ等から注
目を集めている(例えば、特公昭51−33590号公
報、米国特許第4853602号明細書、米国特許第4
675582号明細書など)。On the other hand, in recent years, a simultaneous biaxial tenter of a linear motor type has been developed and has attracted attention due to its high film forming speed (for example, Japanese Patent Publication No. 51-33590, US Pat. No. 4,853,602). Specification, U.S. Pat.
No. 675582).
【0012】すなわち、従来の同時二軸延伸方式であ
る、スクリューの溝にクリップを乗せてクリップ間隔を
広げていくスクリュー方式、あるいは、パンタグラフを
用いてクリップ間隔を広げていくパンタグラフ方式等に
おいては、いずれも製膜速度が遅いこと、延伸倍率等の
条件変更が容易でないこと、また、高倍率延伸が容易で
ないこと等の問題があった。これに対し、リニアモータ
ー方式の同時二軸延伸法では、これらの問題を一挙に解
決できる可能性があるからである。That is, in a conventional simultaneous biaxial stretching method, a screw method in which a clip is placed on a screw groove to increase a clip interval, or a pantograph method in which a clip interval is increased by using a pantograph, etc. In any case, there are problems such as a low film-forming speed, difficulty in changing conditions such as stretching ratio, and difficulty in stretching at high magnification. On the other hand, the linear motor simultaneous biaxial stretching method can solve these problems at once.
【0013】上述の特公昭51−33590号公報に
は、リニアモーターによって生じる電気力によってテン
タークリップ間隔を変更して高能率生産を可能にするこ
とが開示されている。また、上述の米国特許第4,85
3,602号明細書では、リニアモーターを使用した延
伸システムが開示されており、また、上述米国特許第
4,675,582号明細書では延伸区間にそって多数
のリニアモーターを制御するのに有効なシステムについ
て開示されている。しかし、それら米国特許において
も、本発明で開示せんとする延伸方法や、該方法で得ん
とする高品質のポリエステルフィルムに関して言及され
てはいない。JP-B-51-33590 discloses that the interval between tenter clips is changed by electric force generated by a linear motor to enable high-efficiency production. Also, the above-mentioned U.S. Pat.
No. 3,602 discloses a stretching system using a linear motor, and the above-mentioned U.S. Pat. No. 4,675,582 discloses a system for controlling a large number of linear motors along a stretching section. An effective system is disclosed. However, these U.S. patents do not mention the stretching method disclosed in the present invention or the high-quality polyester film obtained by the method.
【0014】すなわち、リニアモーター方式の同時二軸
延伸によって、物性・品質に優れたポリエステルフィル
ムを製造するプロセス条件は、未だ不明であり、有効な
延伸手法は未だ模索されている段階にあった。That is, the process conditions for producing a polyester film having excellent physical properties and quality by simultaneous biaxial stretching of the linear motor system are still unknown, and an effective stretching technique has yet to be explored.
【0015】[0015]
【発明が解決しようとする課題】以上述べたように、物
性、品質の高いポリエステルフィルムを製造することを
可能とする技術には、まだ改良の余地があり、新技術の
開発が求められているのが当該分野の現状である。As described above, there is still room for improvement in the technology that enables the production of a polyester film having high physical properties and quality, and there is a need for the development of a new technology. This is the current state of the art.
【0016】本発明の課題は、機械強度、熱寸法安定性
に優れ、厚みむらも少ない、高品質のポリエステルフィ
ルムおよびその製造法を提供することである。An object of the present invention is to provide a high-quality polyester film which is excellent in mechanical strength and thermal dimensional stability and has small thickness unevenness, and a method for producing the same.
【0017】本発明の目的は、剛性、強靱性、寸法安定
性に優れ、厚みむら、表面欠点も少ない、高品質のポリ
エステルフィルムと、その製造法を提供することであ
る。An object of the present invention is to provide a high-quality polyester film which is excellent in rigidity, toughness and dimensional stability, has less thickness unevenness and surface defects, and a method for producing the same.
【0018】本発明者らは、ポリエステルフィルムの物
性、品質を極限まで高める手法について鋭意検討した。The present inventors have intensively studied a technique for maximizing the physical properties and quality of a polyester film.
【0019】[0019]
【課題を解決するための手段】その結果、同時二軸テン
ターを使用して、面積延伸倍率1.0005〜3.0倍
の微延伸する操作を3回以上含み、トータルの面積延伸
倍率を25〜150倍であるようにして延伸する、第一
の本発明のポリエステルフィルムの製造法とすることに
より、本発明の目的を達成することができることがわか
った。As a result, a simultaneous biaxial tenter is used to perform three or more times of fine stretching at an area stretching ratio of 0.0005 to 3.0 times, and the total area stretching ratio is 25%. It has been found that the object of the present invention can be achieved by employing the first method for producing a polyester film of the present invention, in which the film is stretched so as to be up to 150 times.
【0020】あるいは、延伸に続いて、弛緩する操作を
2回以上10000回未満含み、トータルの面積延伸倍
率が25〜150倍であるようにして延伸する、第二の
本発明のポリエステルフィルムの製造法とすることによ
り、本発明の目的を達成することができることがわかっ
た。Alternatively, following the stretching, the production of the second polyester film of the present invention is carried out in such a manner that the film is stretched so as to have a total area stretching ratio of 25 to 150 times, comprising two or more and less than 10,000 times a relaxation operation. It has been found that the object of the present invention can be achieved by using the method.
【0021】これらの第一の本発明法、あるいは第二の
本発明法を採用することにより、(1) ポリエステルフィ
ルムのヤング率が大幅にアップし、熱収縮率が小さくな
る、(2) 延伸倍率がアップし、生産性が高まる、(3) フ
ィルムの厚みむらが良化し、フィルムの破れ頻度も低下
する、(4) フィルムの結晶化度が高くなりやすく、熱処
理ゾーンの温度を下げても熱収縮率が悪化しない、など
の数々の驚くべき知見を見出し、本発明を完成させるに
至った。By adopting the first method of the present invention or the second method of the present invention, (1) the Young's modulus of the polyester film is greatly increased, the heat shrinkage is reduced, and (2) stretching. Magnification increases, productivity increases, (3) film thickness unevenness improves, film breakage frequency decreases, (4) film crystallinity tends to increase, even if the temperature of the heat treatment zone is lowered Numerous surprising findings such as that the heat shrinkage rate does not deteriorate have been found, and the present invention has been completed.
【0022】すなわち、本発明の骨子は、次に記載の、
第一のポリエステルフィルムの製造法、あるいは第二の
ポリエステルフィルムの製造法である。That is, the gist of the present invention is as follows:
This is a method for producing a first polyester film or a method for producing a second polyester film.
【0023】本発明の第一の方法は、ポリエステルを主
成分とする樹脂からなるフィルムを同時二軸テンターを
用いて延伸するポリエステルフィルムの製造法におい
て、フィルムの面積延伸倍率が1.0005〜3.0倍
の倍率で微延伸する操作を3回以上含み、トータルの面
積延伸倍率が25〜150倍であることを特徴とするポ
リエステルフィルムの製造法である(以下、この第一の
製造法を、「製造法(I)」と呼ぶ)。The first method of the present invention relates to a method for producing a polyester film in which a film composed of a resin containing polyester as a main component is stretched using a simultaneous biaxial tenter, wherein the stretch ratio of the film is from 0.0005 to 3%. A polyester film production method characterized by including an operation of fine stretching at a magnification of 0.0 times three times or more and a total area stretching ratio of 25 to 150 times (hereinafter, this first production method is referred to as , "Production method (I)").
【0024】そして、本発明のポリエステルフィルムの
製造法(I)は、次のような好ましい実施態様を有する
ものである。The method (I) for producing a polyester film of the present invention has the following preferred embodiments.
【0025】(a)微延伸操作を3回以上連続的に行う
こと。(A) The fine stretching operation is continuously performed three times or more.
【0026】(b)微延伸を10回以上、10000回
未満の回数で繰り返すこと。(B) Fine stretching is repeated 10 times or more and less than 10,000 times.
【0027】(c)未延伸フィルムに対して、前記微延
伸を(ガラス転移温度(Tg)+10)℃〜(Tg+1
20)℃の温度範囲で行うこと。(C) For the unstretched film, the fine stretching is performed by (glass transition temperature (Tg) +10) ° C. to (Tg + 1).
20) Perform in a temperature range of ° C.
【0028】(d)未延伸フィルムに対して、前記微延
伸を、フィルムの結晶化度が3%以上、30%未満にな
るまで連続的に繰り返すこと。(D) The fine stretching is continuously repeated with respect to the unstretched film until the crystallinity of the film becomes 3% or more and less than 30%.
【0029】本発明の第二の方法は、ポリエステルを主
成分とする樹脂からなるフィルムを同時二軸テンターを
用いて延伸して得られるポリエステルフィルムの製造法
において、フィルムを延伸した後、続いて弛緩する一連
の操作を2回以上10000回未満含み、トータルの面
積延伸倍率が25〜150倍であることを特徴とするポ
リエステルフィルムの製造法である(以下、この第二の
製造法を、「製造法(II)」と呼ぶ)。The second method of the present invention is a method for producing a polyester film obtained by stretching a film composed of a resin containing polyester as a main component by using a simultaneous biaxial tenter. This is a method for producing a polyester film, comprising a series of relaxing operations of 2 times or more and less than 10000 times, and a total area stretching ratio of 25 to 150 times (hereinafter, this second method is referred to as " Production method (II) ").
【0030】そして、本発明のポリエステルフィルムの
製造法(I)、(II)は、いずれも次の好ましい実施態
様を有するものである。The polyester film production methods (I) and (II) of the present invention both have the following preferred embodiments.
【0031】(a)クリップの駆動方式がリニアモータ
ー方式であること。(A) The drive system of the clip is a linear motor system.
【0032】また、本発明のポリエステルフィルムは、
上述の本発明の製造法(I)、あるいは(II)によって
製造されるポリエステルフィルムである。Further, the polyester film of the present invention comprises:
A polyester film produced by the production method (I) or (II) of the present invention described above.
【0033】そして、更に、該ポリエステルフィルム
は、次のような好ましい実施態様を有するものである。Further, the polyester film has the following preferred embodiments.
【0034】(a)フィルムの縦方向と横方向のヤング
率の和が8〜30GPaであり、100℃、30分の熱
収縮率の和が、2%以下であること。(A) The sum of the Young's modulus in the longitudinal and transverse directions of the film is 8 to 30 GPa, and the sum of the heat shrinkage at 100 ° C. for 30 minutes is 2% or less.
【0035】(b)結晶化度が、30〜90%であるこ
と。(B) The degree of crystallinity is 30 to 90%.
【0036】(c)ポリエステルが、ポリエチレンテレ
フタレート、ポリエチレンナフタレートまたはこれらの
共重合体または変成体であること。(C) The polyester is polyethylene terephthalate, polyethylene naphthalate, or a copolymer or modified product thereof.
【0037】(d)固有粘度が、0.6以上であるこ
と。(D) The intrinsic viscosity is 0.6 or more.
【0038】本発明にかかる該ポリエステルフィルム
は、磁気記録媒体、コンデンサー、熱転写リボン、ある
いは感熱孔版のベースフィルム等の用途において好適で
ある。The polyester film according to the present invention is suitable for applications such as a magnetic recording medium, a capacitor, a thermal transfer ribbon, and a base film of a heat-sensitive stencil.
【0039】[0039]
【発明の実施の形態】以下、本発明について更に詳細に
説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.
【0040】本発明で言うポリエステルとは、ジオール
とジカルボン酸からの縮重合により得られるポリマーを
少なくとも80重量%含有するポリマーである。ジカル
ボン酸とは、テレフタル酸、イソフタル酸、フタル酸、
ナフタレンジカルボン酸、アジピン酸、セバシン酸など
で代表されるものであり、また、ジオールとは、エチレ
ングリコール、トリメチレングリコール、テトラメチレ
ングリコール、シクロヘキサンジメタノールなどで代表
されるものである。The polyester in the present invention is a polymer containing at least 80% by weight of a polymer obtained by condensation polymerization of a diol and a dicarboxylic acid. Dicarboxylic acids are terephthalic acid, isophthalic acid, phthalic acid,
Those represented by naphthalenedicarboxylic acid, adipic acid, sebacic acid and the like, and the diols represented by ethylene glycol, trimethylene glycol, tetramethylene glycol, cyclohexane dimethanol and the like.
【0041】具体的には、例えば、ポリメチレンテレフ
タレート、ポリエチレンテレフタレート、ポリプロピレ
ンテレフタレート、ポリエチレンイソフタレート、ポリ
テトラメチレンテレフタレート、ポリエチレン−p−オ
キシベンゾエート、ポリ−1,4−シクロヘキシレンジ
メチレンテレフタレート、ポリエチレン−2,6−ナフ
タレートを挙げることができる。これらのポリエステル
は、ホモポリマーであってもコポリマーであってもよ
く、共重合成分として、例えば、ジエチレングリコー
ル、ネオペンチルグリコール、ポリアルキレングリコー
ルなどのジオール成分、アジピン酸、セバシン酸、フタ
ル酸、イソフタル酸、2,6−ナフタレンジカルボン酸
などのジカルボン酸成分、ヒドロキシ安息香酸、6ーヒ
ドロキシー2ーナフトエ酸などのヒドロキシカルボン酸
成分を含有していてもよい。Specifically, for example, polymethylene terephthalate, polyethylene terephthalate, polypropylene terephthalate, polyethylene isophthalate, polytetramethylene terephthalate, polyethylene-p-oxybenzoate, poly-1,4-cyclohexylene dimethylene terephthalate, polyethylene- 2,6-naphthalate can be mentioned. These polyesters may be homopolymers or copolymers, and as copolymerization components, for example, diol components such as diethylene glycol, neopentyl glycol, and polyalkylene glycol, adipic acid, sebacic acid, phthalic acid, and isophthalic acid And dicarboxylic acid components such as 2,6-naphthalenedicarboxylic acid, and hydroxycarboxylic acid components such as hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid.
【0042】本発明の場合、特に、ポリエチレンテレフ
タレート、ポリエチレンナフタレート(ポリエチレン−
2,6−ナフタレート)およびこれらの共重合体および
変成体が、本発明の効果をより高く発現できる点から好
ましい。In the case of the present invention, in particular, polyethylene terephthalate, polyethylene naphthalate (polyethylene-
2,6-naphthalate) and their copolymers and modified products are preferred in that the effects of the present invention can be further enhanced.
【0043】また、本発明の場合、前記ポリエステルの
固有粘度は、0.6以上が好ましく、0.8以上がさら
に好ましく、1.0以上が最も好ましい。高分子量のポ
リエステルは、通常、高ヤング率化に伴ってフィルムの
熱収縮率も高くなるという欠点があるが、本発明の製造
法によれば、フィルムのトータルの面積延伸倍率が高ま
るのみでなく、微細構造の緩和が効果的に進むので熱収
縮率も小さくできる。In the present invention, the intrinsic viscosity of the polyester is preferably 0.6 or more, more preferably 0.8 or more, and most preferably 1.0 or more. High molecular weight polyesters usually have the disadvantage that the heat shrinkage of the film also increases with an increase in Young's modulus, but according to the production method of the present invention, not only the total area stretching ratio of the film is increased but also Since the relaxation of the fine structure proceeds effectively, the heat shrinkage can be reduced.
【0044】本発明でいう「延伸」とは、フィルムの縦
方向、横方向に配向を与えるための操作であり、同時二
軸テンターを用いて、フィルムの両端をクリップで把持
しながら搬送して、縦方向および横方向から選ばれる少
なくとも一方向に対して引張る操作をいう。なお、フィ
ルムの「縦方向」とはフィルムの長手方向であり、「横
方向」とはフィルムの幅方向である。また、「同時二軸
延伸」とは、縦方向と横方向との延伸が時間的に同時に
延伸されている操作である。この「同時二軸延伸」の前
後、あるいは前または後に、更に別の延伸を行うことも
よく、例えば、横方向または縦方向に単独にあるいは逐
次に先に延伸した後に、縦方向と横方向に同時に延伸す
る方法や、さらに同時二軸延伸後に、横方向または縦方
向に単独にあるいは逐次にさらに延伸する方法なども、
本発明で排除するものではない。The term "stretching" as used in the present invention is an operation for imparting orientation in the longitudinal and lateral directions of the film. The film is conveyed while holding both ends of the film with clips using a simultaneous biaxial tenter. Refers to an operation of pulling in at least one direction selected from a vertical direction and a horizontal direction. The “longitudinal direction” of the film is the longitudinal direction of the film, and the “lateral direction” is the width direction of the film. The “simultaneous biaxial stretching” is an operation in which the stretching in the longitudinal direction and the stretching in the transverse direction are simultaneously performed temporally. Before or after, or before or after this "simultaneous biaxial stretching", it is also possible to perform further stretching, for example, after stretching alone or sequentially in the transverse or longitudinal direction, and then in the longitudinal and transverse directions Methods for simultaneous stretching, and after further simultaneous biaxial stretching, such as a method for further stretching independently or sequentially in the horizontal or vertical direction,
It is not excluded by the present invention.
【0045】このような延伸方向や延伸倍率を自由に変
更できる延伸機として、本発明ではリニアモーター方式
の同時二軸テンターを使用することが好ましいと言え
る。In the present invention, it is preferable to use a linear motor type simultaneous biaxial tenter as the stretching machine capable of freely changing the stretching direction and the stretching ratio.
【0046】上述したように、リニアモーター式の同時
二軸テンターは、(1) 製膜速度、フィルム幅を従来の逐
次二軸延伸並み、またはそれ以上に高めることができ
る、(2) 高倍率延伸に対応できる、(3) 延伸、熱処理、
弛緩工程でのフィルムの変形パターンを自由に変更でき
る、等のことから近年注目を集めている。As described above, the simultaneous biaxial tenter of the linear motor type is capable of (1) increasing the film forming speed and film width to the level of conventional biaxial stretching or more, and (2) increasing the magnification. (3) Stretching, heat treatment,
In recent years, attention has been paid to the fact that the deformation pattern of the film in the relaxation step can be freely changed.
【0047】本発明法には、このリニアモーター方式の
同時二軸テンターによる超多段延伸を採用することが、
物性、品質の高いポリエステルフィルムを低コストで得
る上で特に好ましい。In the method of the present invention, the super-multi-stage stretching using the simultaneous biaxial tenter of the linear motor system is adopted.
It is particularly preferable to obtain a polyester film having high physical properties and quality at low cost.
【0048】次に、本発明の製造法(I)について説明
する。該方法では、この超多段延伸を行う際の1回の微
延伸の面積延伸倍率は1.0005〜3.0倍に設定し
て、微延伸を3回以上含み、トータルの面積延伸倍率が
25〜150倍であることが必要である。Next, the production method (I) of the present invention will be described. In this method, the area stretching magnification of one fine stretching at the time of performing this super-multi-stage stretching is set to be 0.0005 to 3.0 times, the fine stretching is performed three times or more, and the total area stretching magnification is 25 times. It is necessary to be ~ 150 times.
【0049】ここで、「面積延伸倍率」とはフィルムの
縦方向の延伸倍率と横方向の延伸倍率の積である。本発
明において、「微延伸」とは、延伸倍率が通常よりも小
さい延伸、概して延伸倍率が面積延伸倍率でいうと、
3.0倍以下の範囲内に入るような延伸をいう。Here, the "area stretching ratio" is the product of the longitudinal stretching ratio and the transverse stretching ratio of the film. In the present invention, `` fine stretching '' refers to stretching in which the stretching ratio is smaller than usual, and generally speaking, the stretching ratio is an area stretching ratio.
It refers to stretching within the range of 3.0 times or less.
【0050】本発明においては、上述のように微延伸を
繰返すものであるが、1回の微延伸による面積延伸倍率
が3.0倍を越えると、本発明の所期の効果が得られに
くく、また1.0005倍未満であることは実用上の必
須要件ではない。In the present invention, fine stretching is repeated as described above. However, if the area stretching ratio by one fine stretching exceeds 3.0 times, the intended effect of the present invention is hardly obtained. It is not a practical requirement that the ratio be less than 1.005 times.
【0051】この1回の微延伸による面積延伸倍率は、
1.005〜2.0倍がより好ましく、1.01〜1.
5倍がさらに好ましい。製造法(I)の中に含む微延伸
の回数は、10回以上、10000回未満が好ましく、
50回以上、1000回未満がさらに好ましい。また、
該微延伸は、連続的に3回以上行うことが好ましい。最
終的なトータルの面積延伸倍率は、25〜150倍であ
ることが必要であるが、好ましくは、30〜120倍、
さらに好ましくは50〜100倍である。トータルの面
積延伸倍率が25倍未満であると、本発明の所期の効果
が得られなくなり、また150倍を超えることは実用上
困難である。The area stretching ratio in this single fine stretching is as follows:
1.00-2.0 times is more preferable, and 1.01-1.
5 times is more preferred. The number of fine stretching included in the production method (I) is preferably 10 times or more and less than 10,000 times,
More preferably 50 times or more and less than 1000 times. Also,
The fine stretching is preferably performed continuously three times or more. Although the final total area stretching ratio needs to be 25 to 150 times, preferably 30 to 120 times,
More preferably, it is 50 to 100 times. If the total area stretching ratio is less than 25 times, the desired effect of the present invention cannot be obtained, and it is practically difficult to exceed 150 times.
【0052】なお、本発明でいう「一回の微延伸」と
は、(1) 製造法(I)で示したように1回の微延伸ごと
に延伸を止める、(2) 製造法(II)で示したように延伸
後に弛緩する、(3) 延伸モード、延伸倍率、温度条件、
延伸速度などの延伸条件を変化させる、などの操作を一
区切りとして定義されるものである。In the present invention, "one fine stretching" means (1) the stretching is stopped after each fine stretching as shown in the manufacturing method (I), and (2) the manufacturing method (II) (3) stretching after stretching, stretching mode, stretching ratio, temperature condition,
An operation such as changing a stretching condition such as a stretching speed is defined as one section.
【0053】なお、上記(3) の場合、すなわち、連続的
に延伸している場合、時間と縦または横方向の倍率(ま
たは、クリップ速度)の関係は、直線的(単調増加)で
あっても、非直線的であってもよい。非直線的である場
合は、時間と縦または横方向の倍率の関係を表す曲線に
おける変曲点を微延伸の区切りとする。なお、ここで
「延伸モード」とは、「縦のみ延伸」、「横のみ延
伸」、「縦横同時延伸」の3種の延伸の態様のことをい
う。また、上記(1) において、延伸を止める場合は、延
伸に要した時間の1/100〜4/5の時間止めること
が好ましい。より好ましい延伸停止時間は、その直前の
延伸に要した時間の1/100〜3/5であり、さらに
好ましくは1/10〜1/2である。本発明において、
延伸速度は縦方向、横方向のそれぞれについて、200
0〜300000%/分が好ましく、より好ましくは5
000〜200000%/分、さらに好ましくは100
00〜100000%/分である。また、縦方向の最終
的な製膜速度は、200m/分以上が好ましく、より好
ましくは300m/分以上であり、さらに好ましくは4
00m/分以上である。上記(1)における延伸停止時間
は、その時点における延伸速度によって変化してもよ
い。In the case of the above (3), that is, in the case of continuous stretching, the relationship between the time and the magnification (or clip speed) in the vertical or horizontal direction is linear (monotonic increase). May also be non-linear. In the case of non-linearity, the inflection point in the curve representing the relationship between time and the magnification in the vertical or horizontal direction is used as a break in fine stretching. Here, the “stretching mode” refers to three types of stretching modes of “stretching only in the vertical direction”, “stretching only in the horizontal direction”, and “simultaneous stretching in the vertical and horizontal directions”. In the above (1), when the stretching is stopped, it is preferable to stop the drawing for 1/100 to 4/5 of the time required for the stretching. A more preferred stretching stop time is 1/100 to 3/5, and more preferably 1/10 to 1/2, of the time required for the immediately preceding stretching. In the present invention,
The stretching speed was 200 in each of the longitudinal and transverse directions.
It is preferably 0 to 300,000% / min, more preferably 5 to 30%.
000-200000% / min, more preferably 100
It is 00 to 100000% / min. The final film forming speed in the vertical direction is preferably 200 m / min or more, more preferably 300 m / min or more, and further preferably 4 m / min or more.
00 m / min or more. The stretching stop time in the above (1) may be changed depending on the stretching speed at that time.
【0054】本発明において、ポリエステルフィルムに
対して微延伸を施す場合の延伸温度は、特に限定されな
いが、未延伸フィルムに対して微延伸を施す場合は、
(ポリエステルのガラス転移温度(Tg)+10)℃〜
(Tg+120)℃に保つことが好ましく、(Tg+2
0)℃〜(Tg+80)℃がより好ましい。 延伸温度
が(Tg+10)℃未満では、延伸による配向が進みす
ぎて高倍率まで延伸しにくくなる。In the present invention, the stretching temperature when the fine stretching is performed on the polyester film is not particularly limited.
(Glass transition temperature (Tg) of polyester + 10) ° C.
(Tg + 120) ° C., preferably (Tg + 2
0) ° C to (Tg + 80) ° C is more preferable. If the stretching temperature is lower than (Tg + 10) ° C., the orientation by stretching is so advanced that it is difficult to stretch to a high magnification.
【0055】一方、 延伸温度が(Tg+120)℃を
越えると、構造緩和に必要な微小配向をポリマー鎖に与
えることが難しくなり、また延伸工程でもオリゴマーの
飛散が激しくなる。なお、本発明では、各延伸温度条件
下、応力−歪み曲線の降伏点に達するまでの延伸倍率で
微延伸を施すことが好ましい。かかる条件では、延伸張
力と歪みが1対1に対応するため、延伸によるフィルム
の厚みの均質性がほとんど悪化せず、高品質のポリエス
テルフィルムが得られやすくなるからである。フィルム
の構造を固定化するために、(Tg+120)℃以上、
融点未満の温度条件下で行う熱処理では、本発明の微延
伸が有効であり、この場合の好ましい面積延伸倍率は
1.5倍以下であり、さらに好ましくは1.2倍以下に
設定して微延伸を繰り返すと、フィルムの機械物性が高
まりやすい。On the other hand, when the stretching temperature exceeds (Tg + 120) ° C., it becomes difficult to give the polymer chains the fine orientation necessary for relaxing the structure, and the oligomers are scattered even in the stretching step. In the present invention, fine stretching is preferably performed at a stretching ratio until the yield point of the stress-strain curve is reached under each stretching temperature condition. Under such conditions, since the stretching tension and the strain correspond one-to-one, the uniformity of the thickness of the film due to stretching hardly deteriorates, and a high-quality polyester film is easily obtained. In order to fix the structure of the film, (Tg + 120) ° C or higher,
In the heat treatment performed at a temperature lower than the melting point, the fine stretching of the present invention is effective. In this case, the preferred area stretching ratio is 1.5 times or less, more preferably 1.2 times or less. Repeated stretching tends to increase the mechanical properties of the film.
【0056】本発明では、ポリエステルを主たる成分と
する樹脂からなる未延伸フィルムに対して、延伸、熱処
理を施して二軸配向ポリエステルフィルムを得るまでの
いずれの工程で微延伸を繰り返してもよいが、未延伸フ
ィルムの結晶化度が3%以上、30%未満になるまでの
工程または前記した熱処理工程で、微延伸を3回以上連
続的に繰り返すことが好ましいものである。ここで、未
延伸フィルムとは、十分乾燥された原料ペレットを押出
機に供給し、T型口金により、回転する金属製キャステ
ィングドラム上にシート状に押し出し、冷却固化せしめ
たもの、もしくは未乾燥ペレットをベント式押出機に供
給し同様にして得られたものをいう。In the present invention, fine stretching may be repeated in any step until a biaxially oriented polyester film is obtained by subjecting an unstretched film made of a resin mainly composed of polyester to stretching and heat treatment. It is preferable that the fine stretching is continuously repeated at least three times in the process until the crystallinity of the unstretched film becomes 3% or more and less than 30% or in the heat treatment process described above. Here, the unstretched film is obtained by feeding sufficiently dried raw material pellets to an extruder, extruding them into a sheet shape on a rotating metal casting drum with a T-type die, and cooling and solidifying the raw material pellets, or undried pellets. Is supplied to a vented extruder to obtain a similar product.
【0057】未延伸フィルムが体積緩和を起こして結晶
化度が高くなる前の初期の延伸工程で微延伸を連続的に
繰り返すことが好ましいが、微延伸を3回以上連続的に
繰り返しても、結晶化度が3%未満である場合は、その
後の同時二軸延伸で発生する歪みの除去が難しくなっ
て、延伸倍率を高めにくくなる傾向があるのみでなく、
フィルムのヤング率低下、熱収縮率の増大が激しくなり
やすい。It is preferable that the fine stretching is continuously repeated in the initial stretching step before the unstretched film undergoes volume relaxation to increase the crystallinity, but even if the fine stretching is continuously repeated three or more times, When the crystallinity is less than 3%, it is difficult to remove the strain generated in the subsequent simultaneous biaxial stretching, and it is difficult to increase the stretching ratio.
The Young's modulus of the film and the heat shrinkage tend to increase sharply.
【0058】未延伸フィルムに対して、本発明の微延伸
を連続的に繰返した後のフィルムの結晶化度は、特に、
5%以上、25%未満であることがより好ましく、10
%以上、20%未満であることがさらに好ましい。結晶
化度が30%を越えた後のフィルムについては、微延伸
を繰り返してもよいが、一段で高倍率延伸しても構わな
い。特に、添加物の影響等により結晶化しやすい原料の
場合、一段階で高倍率に延伸する方が微延伸を繰り返す
よりも、物性・品質に優れたフィルムを得る上で好まし
い場合がある。また、フィルムの結晶化度が30%を越
えたフィルムは、微延伸により体積緩和が進みやすく、
高倍率延伸する前に結晶化してしまい、高ヤング率化し
にくくなる傾向があるので、その場合には一段階で高倍
率延伸するなどの工夫が必要である。The crystallinity of the film after continuously repeating the fine stretching of the present invention with respect to the unstretched film,
More preferably, it is 5% or more and less than 25%.
% Or more and less than 20%. After the crystallinity exceeds 30%, the film may be repeatedly stretched finely, but may be stretched in one step at a high magnification. In particular, in the case of a raw material that is easily crystallized due to the effects of additives and the like, stretching at a high magnification in one step may be preferable to obtaining a film having excellent physical properties and quality, rather than repeating fine stretching. In addition, in the case of a film having a crystallinity of more than 30%, the volume is easily relaxed by fine stretching,
Since it tends to crystallize before being stretched at a high magnification and to have a low Young's modulus, it is necessary to devise a high-magnification stretching in one step in such a case.
【0059】次いで、製造法(II)について説明する。
該方法は、フィルムを延伸した後、続いて弛緩する一連
の操作を2回以上10000回未満含み、トータルの面
積延伸倍率が25〜150倍であることが必要である。Next, the production method (II) will be described.
The method involves stretching the film and then successively relaxing it two or more times and less than 10,000 times, and it is necessary that the total area stretching ratio is 25 to 150 times.
【0060】ここで、「弛緩」とは、フィルムの両端を
クリップで把持しながら搬送して、縦方向および横方向
から選ばれる少なくとも一つの方向に対してフィルムを
弛ませて応力緩和させる操作をいう。また、本発明で
は、縦方向および横方向のいずれか一方の方向に延伸し
ながら、もう一方の方向に弛緩してもよい。Here, "relaxation" refers to an operation in which the film is conveyed while holding both ends of the film with clips, and the film is relaxed in at least one direction selected from a longitudinal direction and a lateral direction to relax the stress. Say. Further, in the present invention, the film may be relaxed in the other direction while being stretched in one of the vertical direction and the horizontal direction.
【0061】本発明において、延伸と弛緩を同時に施す
場合、該操作の面積延伸倍率が1以上の場合には「延
伸」といい、1未満の場合には「弛緩」という。In the present invention, when stretching and relaxation are performed at the same time, if the area stretching ratio of the operation is 1 or more, it is called “stretching”, and if it is less than 1, it is called “relaxation”.
【0062】ここで、「面積延伸倍率」とは縦方向の寸
法変化率と横方向の寸法変化率の積であり、「寸法変化
率」とは、延伸または弛緩後の長さの元の長さに対する
比である。寸法変化率が1以上では、その値が延伸倍率
を表し、1未満では、その寸法変化率(%)と100と
の差が弛緩率(%)である。従来技術では、弛緩処理は
フィルムの延伸が完了した後、もしくは延伸・熱処理を
施した後の冷却工程で主に施されてきたが、本発明で
は、シート状に溶融押出、キャストした未延伸フィルム
に対して、延伸を施し、フィルムに配向を付与してい
き、目的とする最終延伸倍率に達するまでの途中の段階
で弛緩処理を施すことが好ましい。Here, the “area stretch ratio” is the product of the vertical dimension change rate and the horizontal dimension change rate, and the “dimensional change rate” is the original length of the length after stretching or relaxation. It is the ratio to the height. When the dimensional change rate is 1 or more, the value indicates the stretching ratio. When the dimensional change rate is less than 1, the difference between the dimensional change rate (%) and 100 is the relaxation rate (%). In the prior art, the relaxation treatment has been mainly performed in the cooling step after the stretching of the film is completed, or after the stretching and heat treatment. However, in the present invention, the unstretched film that has been melt-extruded into a sheet and cast. It is preferable that the film is stretched to impart orientation to the film, and that the film is subjected to a relaxation treatment in the middle of the process until reaching a target final stretching ratio.
【0063】このような延伸や弛緩の方向、延伸倍率、
弛緩率を自由に変更できるような延伸機として、本発明
ではリニアモーター方式の同時二軸テンターを使用する
ことが好ましいのである。リニアモーター式の同時二軸
テンターを用いる場合の特徴点は、前述のとおりであ
り、製膜速度、フィルム幅を従来の逐次二軸延伸並み、
またはそれ以上に高めることができるとともに、高倍率
延伸に対応できる、延伸、熱処理、弛緩工程でのフィル
ムの変形パターンを自由に変更できる等のことがある。
本発明には、このリニアモーター方式の同時二軸テンタ
ーを用いて、延伸と弛緩を組み合わせて製膜すること
が、物性・品質の高いポリエステルフィルムを低コスト
で得る上で特に好ましいのである。The direction of such stretching or relaxation, the stretching ratio,
In the present invention, it is preferable to use a linear motor type simultaneous biaxial tenter as a stretching machine capable of freely changing the relaxation rate. The features when using a linear motor type simultaneous biaxial tenter are as described above, and the film forming speed and film width are the same as those of conventional sequential biaxial stretching,
Alternatively, the deformation pattern of the film in the stretching, heat treatment, and relaxation steps can be freely changed, and the like.
In the present invention, it is particularly preferable to form a film by combining stretching and relaxation using this simultaneous biaxial tenter of the linear motor type in order to obtain a polyester film having high physical properties and quality at low cost.
【0064】本発明では、未延伸フィルムを高倍率まで
延伸する間のどの延伸段階で弛緩をするかは、特に限定
されないが、延伸した後、続いて弛緩する操作を2回以
上10000回未満含む操作を行う。より好ましくは、
3回以上1000回未満であり、さらに好ましくは、5
回以上100回未満である。該操作回数が1回だけでは
弛緩操作が少ないので本発明の目的とする効果が小さ
く、また、10000回以上は、実用上困難である場合
が多いので、好ましくない。また、延伸操作と弛緩操作
は、縦方向と横方向に同時に行ってもよいし、いずれか
一方向だけでもかまわない。さらに、本発明における2
回以上繰り返される一連の操作には、単に延伸と弛緩と
を交互に繰り返す操作のほかに、これらの間にさらに延
伸または弛緩が少なくとも1回入る操作、たとえば、
「−延伸−弛緩−弛緩−延伸−」あるいは「−弛緩−延
伸−延伸−弛緩−」のような一連の操作の態様も含まれ
る。In the present invention, the stretching step in which the unstretched film is relaxed during stretching to a high magnification is not particularly limited, but includes an operation of stretching and then relaxing 2 times to less than 10000 times. Perform the operation. More preferably,
3 times or more and less than 1000 times, more preferably 5 times
More than 100 times. If the number of operations is only one, the effect of the present invention is small because the number of relaxation operations is small, and if the number of operations is 10,000 or more, it is often difficult in practice, so it is not preferable. Further, the stretching operation and the relaxing operation may be performed simultaneously in the vertical direction and the horizontal direction, or may be performed in only one direction. Further, in the present invention,
In a series of operations repeated more than once, in addition to the operation of simply repeating stretching and relaxation alternately, an operation in which stretching or relaxation further enters at least once between them, for example,
A series of operation modes such as "-stretch-relax-relax-stretch-" or "-relax-stretch-stretch-relax-" are also included.
【0065】また、製造法(II)において、一回の延伸
による面積延伸倍率、および弛緩による弛緩率は、特に
限定されないが、一回の延伸による面積延伸倍率は、
1.005〜10倍であり、弛緩率は、弛緩直前の縦・
横各々の方向の長さに対して0.1〜80%であること
が好ましい。一回の延伸による面積延伸倍率は、より好
ましくは1.05〜5倍であり、さらに好ましくは1.
1〜3倍である。一回の延伸による面積延伸倍率が10
倍を越えると、本発明の目的とする効果が得られにくく
なったり、フィルム破れが多発したりする場合があり、
また、面積延伸倍率が1.005倍未満であることは実
用上の必須要件ではなく、装置の設定上困難である場合
が多いので、1.005〜10倍の範囲が好ましい。ま
た、弛緩率のより好ましい範囲は、0.5〜60%であ
り、さらに好ましくは1〜40%である。弛緩率が80
%を越えると、延伸による本発明の目的とする効果が小
さくなったり、フィルムの平面性や生産性が悪化したり
する場合があり、また、弛緩率が0.1%未満であるこ
とは装置の設定上困難である場合が多いので、0.1〜
80%の範囲が好ましい。In the production method (II), the area stretching ratio by one stretching and the relaxation ratio by relaxation are not particularly limited, but the area stretching ratio by one stretching is as follows.
1.005 to 10 times, and the relaxation rate
It is preferably 0.1 to 80% of the length in each lateral direction. The area stretching ratio by one stretching is more preferably 1.05 to 5 times, and further preferably 1.
1 to 3 times. Area stretching ratio by one stretching is 10
If it exceeds twice, it may be difficult to obtain the desired effect of the present invention, or the film may be frequently broken.
Further, it is not an essential requirement for practical use that the area stretching ratio is less than 1.005 times, and it is often difficult to set the apparatus. Therefore, the range of 1.005 to 10 times is preferable. Further, a more preferable range of the relaxation rate is 0.5 to 60%, and further preferably 1 to 40%. Relaxation rate 80
%, The intended effect of the present invention due to stretching may be reduced, or the flatness or productivity of the film may be deteriorated. It is often difficult to set
A range of 80% is preferred.
【0066】このように、製造法(I)のような微延
伸、または、製造法(II)のような延伸と弛緩操作を連
続的に繰り返すと、フィルム中におけるポリエステル鎖
の絡み合いが解れるためか、(1) 構造・体積緩和が加速
し、高ヤング率かつ低熱収率のフィルムが得られやすく
なる、(2) トータルの面積延伸倍率がアップして、フィ
ルムの生産性が向上し、コストダウンが図れる、等の効
果が得られるので好ましい。なお、複数回実施する微延
伸(製造法(I)の場合)、または延伸と弛緩(製造法
(II)の場合)の寸法変化率は、各回で同じであっても
異なっていてもよく、また縦方向と横方向の各々の延伸
倍率や弛緩率も所望のフィルム物性をもとに適宜選択で
きる。また、前記のように縦方向または横方向のいずれ
か一方を微延伸してもよい。さらに、縦方向と横方向の
各々のトータル延伸倍率の比(縦/横)は、フロッピー
ディスク用途では等方性付与のため0.9〜1.1が好
ましく、また、磁気ヘッドの回転がヘリカル方式の磁気
記録装置で使用されるビデオテープ等の用途では0.7
〜1.0であり、磁気ヘッドの回転がリニア方式の磁気
記録装置で使用されるデータテープ用途では1.0〜
1.3であることが好ましい。As described above, when fine stretching as in the production method (I) or stretching and relaxation operations as in the production method (II) are continuously repeated, the entanglement of the polyester chains in the film is released. (1) Acceleration of structure / volume relaxation facilitates the production of films with high Young's modulus and low heat yield. (2) Increases total area draw ratio, improves film productivity, and reduces costs. It is preferable because effects such as down can be obtained. The dimensional change rate of fine stretching (in the case of the manufacturing method (I)) or stretching and relaxation (in the case of the manufacturing method (II)) performed a plurality of times may be the same or different in each time, Further, the stretching ratio and the relaxation ratio in each of the longitudinal direction and the transverse direction can be appropriately selected based on desired film properties. Further, as described above, one of the longitudinal direction and the lateral direction may be slightly stretched. Further, the ratio (vertical / horizontal) of the total stretching ratio in each of the longitudinal direction and the lateral direction is preferably 0.9 to 1.1 in floppy disk applications in order to impart isotropy. For applications such as video tapes used in magnetic recording devices of the
1.01.0, and the rotation of the magnetic head is 1.0〜
It is preferably 1.3.
【0067】本発明のフィルムの縦方向(MD方向)の
ヤング率(YMD)と横方向(TD方向)のヤング率
(YTD)の和、すなわち、トータルヤング率は、使用
する原料にもよるが、8〜30GPaの範囲内が好まし
い。トータルヤング率が8GPa未満ではフィルムとし
ての実用性に乏しく、また30GPaを越えることは大
変困難な場合があり、この場合、フィルム破れが多発す
ることがある。トータルヤング率のより好ましい範囲は
10〜25GPaであり、特に好ましくは12〜22G
Paである。縦方向と横方向のヤング率のバランス関係
は、縦横二方向の各々のトータル倍率を適宜変更するこ
とによりコントロールできる。The sum of the Young's modulus (YMD) in the machine direction (MD direction) and the Young's modulus (YTD) in the transverse direction (TD direction) of the film of the present invention, that is, the total Young's modulus depends on the raw materials used. , 8 to 30 GPa. If the total Young's modulus is less than 8 GPa, the practicality as a film is poor, and if it exceeds 30 GPa, it may be very difficult. In this case, the film may be frequently broken. A more preferable range of the total Young's modulus is 10 to 25 GPa, particularly preferably 12 to 22 GPa.
Pa. The balance between the Young's modulus in the vertical direction and the horizontal direction can be controlled by appropriately changing the total magnification in each of the vertical and horizontal directions.
【0068】本発明で得られるフィルムの熱収縮率は、
多くの場合、縦方向(MD方向)と横方向(TD方向)
の100℃、30分の熱収縮率の和が2%以下が好まし
い。熱収縮率の和のより好ましい範囲は1%以下、さら
に好ましくは0.5%以下である。熱収縮率の和が2%
より大きいと、例えば、ポリエステルの加工工程、例え
ば、磁気記録媒体用における磁性層塗布工程、カレンダ
ー工程などにおいて、しわや平面性不良などが起こりや
すいので、熱収縮率の和は2%以下であることが好まし
い。本発明で開示する製造法によれば、熱収縮率を大き
くすることなく、縦方向と横方向のヤング率を高めやす
くなる。すなわち、縦方向と横方向のヤング率の和が8
〜30GPaであり、かつ、100℃、30分の熱収縮
率の和が2%以下のポリエステルフィルムが得られやす
くなる。The heat shrinkage of the film obtained in the present invention is as follows:
In most cases, vertical (MD) and horizontal (TD)
Is preferably 2% or less at 100 ° C. for 30 minutes. A more preferable range of the sum of the heat shrinkage rates is 1% or less, further preferably 0.5% or less. The sum of heat shrinkage is 2%
If it is larger, wrinkles and poor flatness are likely to occur in, for example, a polyester processing step, for example, a magnetic layer coating step for a magnetic recording medium, a calendaring step, and the like, so that the total heat shrinkage is 2% or less. Is preferred. According to the manufacturing method disclosed in the present invention, the Young's modulus in the vertical and horizontal directions can be easily increased without increasing the heat shrinkage. That is, the sum of the Young's modulus in the vertical direction and the horizontal direction is 8
To 30 GPa, and a polyester film having a total heat shrinkage of 2% or less at 100 ° C. for 30 minutes is easily obtained.
【0069】本発明の製造法によれば、ポリエステルの
構造緩和が進みやすいため、二軸延伸・熱処理後のフィ
ルムの結晶化度が高くなりやすい。前記のように、フィ
ルムの結晶化度は、使用する原料、延伸倍率、熱処理の
温度条件等にもよるが、本発明では30〜90%であ
る。工業的に使用可能な製造法によって、結晶化度が5
0%以上のフィルムを得ることは通常容易でないが、こ
のようなフィルムが本発明の製造法によれば、比較的容
易に得られるのである。According to the production method of the present invention, since the polyester is easily relaxed in structure, the crystallinity of the film after biaxial stretching and heat treatment is likely to be high. As described above, the crystallinity of the film is 30 to 90% in the present invention, though it depends on the raw material used, the stretching ratio, the temperature condition of the heat treatment, and the like. The degree of crystallinity is 5 depending on the industrially usable production method.
Obtaining a film of 0% or more is usually not easy, but such a film can be obtained relatively easily by the production method of the present invention.
【0070】また、本発明の製造法によれば、フィルム
の結晶化度が高くなりやすいため、必ずしも200℃以
上の温度で熱処理する必要がなくなる。熱処理の温度を
低下させると、テンター内でのオリゴマー汚れや飛散、
フィルム表面のオリゴマー量も少なくなるので、表面欠
点の低減等の点で有利である。ヤング率が高く、熱収縮
率の小さい、高品質のポリエステルフィルムを得る上で
好ましい結晶化度の範囲は、40〜80%であり、さら
に好ましくは45〜70%である。結晶化度が30%未
満では、構造の固定化が不十分な場合が多く、フィルム
の熱収縮率が高くなるので好ましくない。また、結晶化
度が90%を越えると、フィルム破れの多発、各種フィ
ルム用途における加工適性の低下を招く。Further, according to the production method of the present invention, since the crystallinity of the film tends to be high, it is not always necessary to perform the heat treatment at a temperature of 200 ° C. or more. When the temperature of the heat treatment is lowered, oligomer contamination and scattering in the tenter,
Since the amount of oligomer on the film surface is reduced, it is advantageous in terms of reduction of surface defects. The preferred range of crystallinity for obtaining a high-quality polyester film having a high Young's modulus and a small heat shrinkage is 40 to 80%, and more preferably 45 to 70%. If the crystallinity is less than 30%, the structure is often insufficiently fixed, and the heat shrinkage of the film becomes high, which is not preferable. On the other hand, when the crystallinity exceeds 90%, the film is frequently torn and the workability in various film applications is reduced.
【0071】また、本発明のポリエステルフィルム中に
は、本発明の効果が阻害されない範囲内で、無機粒子や
有機粒子、その他の各種の添加剤、例えば酸化防止剤、
帯電防止剤、結晶核剤などを添加してもかまわない。無
機粒子の具体例としては、酸化ケイ素、酸化アルミニウ
ム、酸化マグネシウム、酸化チタンなどの酸化物、カオ
リン、タルク、モンモリロナイトなどの複合酸化物、炭
酸カルシウム、炭酸バリウムなどの炭酸塩、硫酸カルシ
ウム、硫酸バリウムなどの硫酸塩、チタン酸バリウム、
チタン酸カリウムなどのチタン酸塩、リン酸第3カルシ
ウム、リン酸第2カルシウム、リン酸第1カルシウムな
どのリン酸塩などを用いることができるが、これらに限
定されるわけではない。また、これらは目的に応じて2
種以上が組合されて用いてもかまわない。In the polyester film of the present invention, as long as the effects of the present invention are not impaired, inorganic particles, organic particles, and other various additives such as antioxidants,
An antistatic agent and a crystal nucleating agent may be added. Specific examples of the inorganic particles include oxides such as silicon oxide, aluminum oxide, magnesium oxide, and titanium oxide; composite oxides such as kaolin, talc, and montmorillonite; carbonates such as calcium carbonate and barium carbonate; calcium sulfate; and barium sulfate. Such as sulfates, barium titanate,
A titanate such as potassium titanate, a phosphate such as tricalcium phosphate, dibasic calcium phosphate, and monobasic calcium phosphate can be used, but not limited thereto. In addition, these are 2 depending on the purpose.
More than one species may be used in combination.
【0072】有機粒子の具体例としては、ポリスチレン
もしくは架橋ポリスチレン粒子、スチレン・アクリル系
及びアクリル系架橋粒子、スチレン・メタクリル系及び
メタクリル系架橋粒子などのビニル系粒子、ベンゾグア
ナミン・ホルムアルデヒド、シリコーン、ポリテトラフ
ルオロエチレンなどの粒子を用いることができるが、こ
れらに限定されるものではなく、粒子を構成する部分の
うち少なくとも一部がポリエステルに対し不溶の有機高
分子微粒子であれば如何なる粒子でもよい。また有機粒
子は、易滑性、フィルム表面の突起形成の均一性から粒
子形状が球形状で均一な粒度分布のものが好ましい。こ
れらの粒子の粒径、配合量、形状などは用途、目的に応
じて選ぶことが可能であるが、通常は、平均粒子径とし
ては0.05μm以上3μm以下、配合量としては、
0.01重量%以上10重量%以下が好ましい。Specific examples of the organic particles include polystyrene or crosslinked polystyrene particles, vinyl particles such as styrene / acrylic / acrylic crosslinked particles, styrene / methacrylic / methacrylic crosslinked particles, benzoguanamine / formaldehyde, silicone, and polytetrafluoroethylene. Although particles such as fluoroethylene can be used, the particles are not limited thereto, and any particles may be used as long as at least a part of the particles constituting the particles is organic polymer fine particles insoluble in polyester. The organic particles preferably have a spherical particle shape and a uniform particle size distribution from the viewpoint of smoothness and uniformity of formation of projections on the film surface. The particle size, blending amount, shape, etc. of these particles can be selected according to the application and purpose, but usually, the average particle size is 0.05 μm or more and 3 μm or less, and the blending amount is
The content is preferably from 0.01% by weight to 10% by weight.
【0073】また、本発明のポリエステルフィルムは、
単一膜のものでもよいが、これに他のポリマー層、例え
ば、ポリエステル、ポリオレフィン、ポリアミド、ポリ
塩化ビニリデンおよびアクリル系ポリマーを直接あるい
は接着剤などの層を介して、2層以上とされた積層フィ
ルムであっても構わない。特に、ポリエステル層が表層
に積層された積層フィルムの場合は、特に表面特性が重
要な磁気記録媒体のベースフイルムにおいて、用途に応
じて、磁気記録面となるフィルム面とその反対面の表面
粗さを異なる設計にできる方法として有用なものであ
る。Further, the polyester film of the present invention comprises:
A single film may be used, but another polymer layer such as polyester, polyolefin, polyamide, polyvinylidene chloride and an acrylic polymer may be laminated into two or more layers directly or via a layer such as an adhesive. It may be a film. In particular, in the case of a laminated film in which a polyester layer is laminated on the surface layer, the surface roughness of the film surface to be the magnetic recording surface and the surface roughness of the opposite surface thereof, depending on the application, particularly in the base film of the magnetic recording medium whose surface characteristics are important This is useful as a method that can be used for different designs.
【0074】本発明におけるフィルムの全体厚みは、フ
ィルムの用途、使用目的に応じて適宜決定できる。The total thickness of the film in the present invention can be appropriately determined depending on the use and purpose of the film.
【0075】通常、磁気材料用途では1μm以上20μ
m以下が好ましく、中でもディジタルビデオ用塗布型磁
気記録媒体用途では2μm以上8μm以下、ディジタル
ビデオ用蒸着型磁気記録媒体用途では3μm以上9μm
以下が好ましい。また、工業材料用途の中では、熱転写
リボン用途では1μm以上6μm以下、コンデンサ用途
では0.5μm以上15μm以下、感熱孔版原紙用途で
は0.5μm以上5μm以下であることが好ましい。Normally, for magnetic materials, 1 μm or more and 20 μm
m or less, preferably 2 μm or more and 8 μm or less for digital video coating magnetic recording media, and 3 μm or more and 9 μm for digital video evaporation magnetic recording media.
The following is preferred. Further, among industrial materials, the thickness is preferably 1 μm to 6 μm for thermal transfer ribbons, 0.5 μm to 15 μm for capacitors, and 0.5 μm to 5 μm for heat-sensitive stencil paper.
【0076】次に、本発明のポリエステルフィルムの製
造法の具体的な例について説明するが、本発明はかかる
例に限定されるものでないことは無論である。ここで
は、ポリエステルとして、ポリエチレンテレフタレート
を用いた例を示すが、用いるポリエステルにより製造条
件は異なる。Next, specific examples of the method for producing the polyester film of the present invention will be described, but it goes without saying that the present invention is not limited to such examples. Here, an example is shown in which polyethylene terephthalate is used as the polyester, but the production conditions differ depending on the polyester used.
【0077】ポリエステルとして、固有粘度が0.65
のポリエチレンテレフタレートのペレットを真空下で1
80℃に加熱して3時間以上真空乾燥して、270〜3
00℃の温度に加熱された押出機に供給し、T型口金よ
りシート状に押し出す。異物や変質ポリマーを除去する
ために各種のフィルター、例えば、焼結金属、多孔性セ
ラミック、サンド、金網などの素材からなるフィルター
を用いることが好ましい。また、必要に応じて、定量供
給性を向上させるためにギアポンプを設けてもよい。こ
の溶融されたシートを、表面温度10〜40℃に冷却さ
れたドラム上に静電気力で密着させて冷却固化し、実質
的に非晶状態の未延伸キャストフィルムを得る。また、
積層フィルムの場合は、2台以上の押出機、マニホール
ドまたは合流ブロックを用いて、溶融状態のポリエステ
ルを積層したシートを押出す。このときの未延伸フィル
ムの端部と中央部の厚みの比率(端部の厚み/中央部の
厚み)は、1以上、10以下の範囲内とするのが好まし
く、より好ましくは1以上、5未満、最も好ましくは1
以上、3未満である。前記厚みの比率が1未満であった
り、10を越えるとフィルム破れまたはクリップ外れが
多発するので好ましくない。次いで、この未延伸フィル
ムを、リニアモーター方式の同時二軸延伸テンターに該
フィルムの両端部をクリップで把持して導き、予熱ゾー
ンで90〜150℃に加熱し、フィルムの面積延伸倍率
が1.0005〜3倍の微延伸を少なくとも3回以上連
続的に行う。または、別の方法として、フィルムの面積
延伸倍率が1.005〜10倍の延伸と、弛緩率が0.
1〜80%である弛緩を少なくとも2回以上連続的に繰
り返して行う。このときにいずれの場合も、フィルム端
部を把持するクリップの温度は、80〜160℃の温度
範囲に設定するのが好ましい。延伸工程での延伸温度
は、90〜150℃の温度範囲内に保つことが好ましい
が、いったん冷却して、フィルムの結晶化を抑えながら
延伸してもかまわない。また、分子量が高い原料や結晶
化しにくい原料の場合には、延伸温度を200℃まで高
めることも好ましく行うことができる。また、延伸工程
の後半、すなわち面配向係数が0.15以上のフィルム
の延伸工程では、延伸温度を2段階以上で徐々に高めな
がら延伸することが好ましい。以上のように同時二軸テ
ンターにおける延伸を施して、フィルムのトータルの面
積延伸倍率を25〜150倍に延伸する。The polyester has an intrinsic viscosity of 0.65
Polyethylene terephthalate pellets under vacuum
Heat to 80 ° C and dry under vacuum for 3 hours or more.
It is supplied to an extruder heated to a temperature of 00 ° C. and extruded from a T-type die into a sheet. It is preferable to use various filters, for example, a filter made of a material such as a sintered metal, a porous ceramic, a sand, or a wire mesh in order to remove foreign substances and a degraded polymer. Further, if necessary, a gear pump may be provided in order to improve the quantitative supply property. The melted sheet is brought into close contact with a drum cooled to a surface temperature of 10 to 40 ° C. by electrostatic force and cooled and solidified to obtain a substantially amorphous unstretched cast film. Also,
In the case of a laminated film, a sheet in which a polyester in a molten state is laminated is extruded using two or more extruders, a manifold, or a merging block. At this time, the ratio of the thickness of the end portion to the center portion of the unstretched film (the thickness of the end portion / the thickness of the center portion) is preferably in the range of 1 or more and 10 or less, more preferably 1 or more and 5 or less. Less than, most preferably 1
Above, it is less than 3. If the ratio of the thickness is less than 1 or more than 10, film breakage or clip detachment frequently occurs, which is not preferable. Next, the unstretched film is guided to a simultaneous biaxial stretching tenter of a linear motor type by gripping both ends of the film with clips, and heated to 90 to 150 ° C. in a preheating zone, so that the area stretching ratio of the film is 1. Fine stretching of 0005 to 3 times is continuously performed at least three times or more. Alternatively, as another method, stretching with an area stretching ratio of the film of 1.005 to 10 times and a relaxation rate of 0.
The relaxation of 1 to 80% is repeated at least twice continuously. At this time, in any case, it is preferable to set the temperature of the clip for gripping the edge of the film in a temperature range of 80 to 160 ° C. The stretching temperature in the stretching step is preferably maintained within a temperature range of 90 to 150 ° C., but may be once cooled and then stretched while suppressing crystallization of the film. In addition, in the case of a raw material having a high molecular weight or a raw material that is hardly crystallized, it is preferable to increase the stretching temperature to 200 ° C. In the latter half of the stretching step, that is, in the step of stretching a film having a plane orientation coefficient of 0.15 or more, it is preferable to perform stretching while gradually increasing the stretching temperature in two or more stages. As described above, the film is stretched by the simultaneous biaxial tenter to stretch the film to a total area stretching ratio of 25 to 150 times.
【0078】次いで、二軸延伸されたポリエステルフィ
ルムに平面性、寸法安定性を付与するために、180℃
以上融点未満の温度範囲で熱処理を施し、熱固定温度か
らの冷却過程で、好ましくは100〜220℃の温度範
囲で縦および横方向に、好ましくは各方向に対して1〜
6%の範囲で弛緩処理を行う。弛緩処理は1段でもよい
し、多段で行ってもよく、温度分布の変化を設けてもよ
い。この際、熱処理工程で微延伸を繰り返して行うこと
も、結晶のサイズを大きくしてフィルムのヤング率を高
める上で好ましく行うことができる。その後、フィルム
を室温まで、必要ならば、縦および横方向に弛緩処理を
施しながら、フィルムを冷やして巻き取り、目的とする
ポリエステルフィルムを得る。Next, in order to impart flatness and dimensional stability to the biaxially stretched polyester film, 180 ° C.
The heat treatment is performed in a temperature range lower than the melting point, and in the cooling process from the heat setting temperature, preferably in the vertical and horizontal directions in a temperature range of 100 to 220 ° C, preferably 1 to 1 in each direction.
Perform relaxation treatment in the range of 6%. The relaxation treatment may be performed in one stage or in multiple stages, and a change in the temperature distribution may be provided. At this time, it is also preferable to repeat the fine stretching in the heat treatment step in order to increase the crystal size and increase the Young's modulus of the film. Thereafter, the film is cooled and wound up to room temperature, if necessary, while being subjected to a relaxation treatment in the vertical and horizontal directions, to obtain a desired polyester film.
【0079】なお、本発明では、フィルムの表面特性を
付与するため、例えば易接着性、易滑性、離型性、制電
性を付与するために、フィルムの同時二軸テンターにお
ける延伸の前または後の工程で、ポリエステルフィルム
の表面に塗材をコーテングすることも好ましく行うこと
ができる。In the present invention, in order to impart surface characteristics of the film, for example, to impart easy adhesion, easy slipping, releasing property and antistatic property, the film is stretched before being stretched in a simultaneous biaxial tenter. Alternatively, it is also preferable to coat a coating material on the surface of the polyester film in a later step.
【0080】[物性値の評価法] (1)固有粘度[η]オルトクロロフェノール中、25℃
で測定した溶液粘度から下式から計算される値を用い
る。すなわち、 ηsp/C=[η]+K[η]2・C ここで、ηsp=(溶液粘度/溶媒粘度)−1であり、
Cは、溶媒100mlあたりの溶解ポリマ重量(g/1
00ml、通常1.2)、Kはハギンス定数(0.34
3とする)である。また、溶液粘度、溶媒粘度はオスト
ワルド粘度計を用いて測定した。単位は[dl/g]で
示す。[Evaluation of Physical Properties] (1) Intrinsic viscosity [η] in orthochlorophenol at 25 ° C.
The value calculated from the following formula from the solution viscosity measured in the above is used. That is, ηsp / C = [η] + K [η] 2 · C, where ηsp = (solution viscosity / solvent viscosity) −1,
C is the weight of the dissolved polymer per 100 ml of solvent (g / 1
00 ml, usually 1.2), and K is the Haggins constant (0.34
3). The solution viscosity and the solvent viscosity were measured using an Ostwald viscometer. The unit is indicated by [dl / g].
【0081】(2)ガラス転移温度Tg、融解温度Tm 示差走査熱量計として、セイコー電子工業(株)製“ロ
ボットDSC−RDC220”を用い、データー解析装
置として、同社製“ディスクセッション”SSC/52
00を用いて測定した。測定サンプルとして約5mg採
取し、室温から昇温速度20℃/分で300℃まで加熱
したときに得られる熱カーブより、Tg、Tmを求め
た。(2) Glass transition temperature Tg, melting temperature Tm As a differential scanning calorimeter, “Robot DSC-RDC220” manufactured by Seiko Denshi Kogyo Co., Ltd. was used. As a data analyzer, “Disk Session” SSC / 52 manufactured by the company was used.
00 was measured. About 5 mg of a measurement sample was collected, and Tg and Tm were determined from a heat curve obtained when the sample was heated from room temperature to 300 ° C. at a rate of temperature increase of 20 ° C./min.
【0082】(3)ヤング率 ASTM−D882に規定された方法に従って測定し
た。オリエンテック(株)製フィルム強伸度自動測定装
置“テンシロンAMF/RTA−100”を用いて、試
料フィルムを幅10mm、試長間100mm、引張り速
度200mm/分で引っ張った。得られた応力−歪曲線
の立上がりの接線の勾配からヤング率を求めた。測定は
23℃、65%RHの雰囲気下で行った。(3) Young's modulus Measured according to the method specified in ASTM-D882. The sample film was pulled at a width of 10 mm, a test length of 100 mm, and a pulling speed of 200 mm / min using an automatic film strength / elongation measuring device “Tensilon AMF / RTA-100” manufactured by Orientec Co., Ltd. The Young's modulus was determined from the slope of the rising tangent of the obtained stress-strain curve. The measurement was performed in an atmosphere of 23 ° C. and 65% RH.
【0083】(4)熱収縮率 JIS−C−2318に規定された方法に従って測定し
た。フィルムを幅10mm、測定長約200mmとなる
ように2本のラインを引き、この2本のライン間の距離
を正確に測定しこれをL0とする。このサンプルを10
0℃のオーブン中に30分間、無荷重下で放置後再び2
本のライン間の距離を測定しこれをL1とし、下式によ
り熱収縮率を求める。(4) Heat Shrinkage Ratio Heat shrinkage ratio was measured according to the method specified in JIS-C-2318. Two lines are drawn on the film so as to have a width of 10 mm and a measurement length of about 200 mm, and the distance between these two lines is accurately measured, and is defined as L0. 10 samples of this
After leaving it in a 0 ° C oven for 30 minutes under no load,
The distance between the lines of the book is measured, and this is defined as L1, and the heat shrinkage is determined by the following equation.
【0084】 熱収縮率(%)={(L0−L1)/L0}×100 (5) 結晶化度 JIS−K−7112に規定された方法に従って、密度
勾配から求めた。臭化ナトリウム水溶液による密度勾配
管を作成し、25℃におけるフィルムの密度を測定す
る。この密度dから、下式を用いて結晶化度を求めた。Heat shrinkage (%) = {(L0−L1) / L0} × 100 (5) Crystallinity The crystallinity was determined from the density gradient according to the method specified in JIS-K-7112. A density gradient tube using an aqueous sodium bromide solution is prepared, and the density of the film at 25 ° C. is measured. From this density d, the crystallinity was determined using the following equation.
【0085】結晶化度(%)=((d−da)/(dc
−da))x100 ここで、daは非晶密度、dcは完全結晶密度であり、
ポリエチレンテレフタレートの場合、文献値よりda=
1.335、dc=1.455g/cm3 とした。Crystallinity (%) = ((d−da) / (dc)
−da)) × 100 where da is an amorphous density, dc is a perfect crystal density,
In the case of polyethylene terephthalate, da =
1.335, dc = 1.455 g / cm 3 .
【0086】(6)面配向係数 JIS−K−7105に規定された方法に従って、屈折
率を測定した。光源をナトリウムランプとして、フィル
ムの屈折率(縦方向:Na、横方向: Nb、厚み方
向:Nc)をアッベ式屈折計(アタゴ製)により求め、
下式より面配向係数Fを算出した。マウント液はヨウ化
メチレンを用い、23℃、65%RHの雰囲気下で測定
した。(6) Plane Orientation Coefficient The refractive index was measured according to the method specified in JIS-K-7105. Using a sodium lamp as a light source, the refractive index of the film (vertical direction: Na, horizontal direction: Nb, thickness direction: Nc) was determined by an Abbe refractometer (manufactured by Atago).
The plane orientation coefficient F was calculated from the following equation. The mounting solution was measured using methylene iodide in an atmosphere of 23 ° C. and 65% RH.
【0087】F=[( Na+ Nb )/2]−Nc (7)破れ頻度 真空乾燥したポリエチレンテレフタレートをT型口金か
ら、静電気力でキャスティングドラム上に密着させて冷
却固化せしめて、キャストフィルムを得、リニアモータ
ー方式の同時二軸テンターによる製膜に伴うフィルム破
れを観察して、次の基準で判定した。F = [(Na + Nb) / 2] -Nc (7) Breakage frequency Vacuum-dried polyethylene terephthalate is tightly adhered to a casting drum from a T-type die by electrostatic force to cool and solidify to obtain a cast film. The film was broken by the simultaneous biaxial tenter of the linear motor type during film formation, and the film was judged according to the following criteria.
【0088】 ◎:フィルム破れが皆無である場合 ○:フィルム破れが極まれに生じる場合 △:フィルム破れが時々生じる場合 ×:フィルム破れが頻発する場合 (8) フィルムの長手方向厚みむら アンリツ株式会社製フィルムシックネステスター「KG
601A」および電子マイクロメータ「K306C」を
用い、フィルムの縦方向に30mm幅、10m長にサン
プリングしたフィルムを連続的に厚みを測定する。フィ
ルムの搬送速度は3m/分とした。10m長での厚み最
大値Tmax(μm)、最小値Tmin(μm)から、 R=Tmax−Tmin を求め、Rと10m長の平均厚みTave(μm)か
ら、次式により厚みむらを求めた。◎: When there is no film tearing ○: When the film tearing occurs very rarely Δ: When the film tearing occurs occasionally ×: When the film tearing occurs frequently (8) Film thickness unevenness in the longitudinal direction manufactured by Anritsu Corporation Film Thickness Tester "KG
601A "and an electronic micrometer" K306C "are used to continuously measure the thickness of a film sampled 30 mm wide and 10 m long in the longitudinal direction of the film. The transport speed of the film was 3 m / min. From the maximum thickness value Tmax (μm) and the minimum value Tmin (μm) at a length of 10 m, R = Tmax−Tmin was determined, and from R and the average thickness Tave (μm) at a length of 10 m, thickness unevenness was determined by the following equation.
【0089】 厚みむら(%)=(R/Tave)x100 (9)クリープコンプライアンス フィルムを幅4mmにサンプリングし、試長15mmに
なるように、真空理工(株)製TMA(TM−300
0)および加熱制御部TA−1500にセットした。Thickness unevenness (%) = (R / Tave) × 100 (9) Creep compliance The film was sampled to a width of 4 mm, and TMA (TM-300 manufactured by Vacuum Riko Co., Ltd.) was set to a test length of 15 mm.
0) and the heating controller TA-1500.
【0090】50℃、65%RHの条件下、28MPa
の荷重をフィルムにかけて、30分間保ち、そのときの
フィルム伸び量を測定した。フィルムの伸縮量(%表
示、ΔL)は、カノープス電子(株)製ADコンバータ
ADX−98Eを介して、日本電気(株)製パーソナル
コンピューターPC−9801により求め、次式からク
リープコンプライアンスを算出した。Under conditions of 50 ° C. and 65% RH, 28 MPa
Was applied to the film and kept for 30 minutes, and the film elongation at that time was measured. The amount of expansion and contraction of the film (% display, ΔL) was determined by a personal computer PC-9801 manufactured by NEC Corporation via an AD converter ADX-98E manufactured by Canopus Electronics Co., Ltd., and creep compliance was calculated from the following equation.
【0091】クリープコンプライアンス(GPa-1)=
(ΔL/100)/0.028 (10)高速削れ性 フィルムを幅1/2インチのテープ状にスリットしたも
のをテープ走行性試験機を使用して、ガイドピン(表面
粗度:Raで100nm)上を走行させる(走行速度2
50m/分、走行回数1パス、巻き付け角:60゜、走
行張力:90g)。このとき、フィルムを走行させ終わ
った後のガイドピンを肉眼で観察し、白粉の付着が見ら
れないものを○、白粉の付着が若干見られるものを△、
白粉が多く付着しているものは×と判定した。○が望ま
しいが、△でも実用的には使用可能である。Creep compliance (GPa -1 ) =
(ΔL / 100) /0.028 (10) High-speed scraping property A film obtained by slitting a film into a tape having a width of 1/2 inch was guided with a guide pin (surface roughness: 100 nm by Ra) using a tape running tester. ) Run on (running speed 2)
50 m / min, 1 pass of the number of runs, winding angle: 60 °, running tension: 90 g). At this time, the guide pin after running the film was observed with the naked eye, and the case where white powder was not observed was evaluated as ○, and the case where white powder was slightly observed was evaluated as Δ,
A sample to which a large amount of white powder was attached was determined to be x.が is desirable, but △ can be used practically.
【0092】 (11)磁気テープの電磁変換特性(C/N) 本発明のポリエステルフィルムの表面に、下記組成の磁
性塗料および非磁性塗料をエクストルージョンコーター
により重層塗布(上層は磁性塗料で塗布厚0.1μm、
非磁性下層の厚みは適宜変化させた)し、磁気配向さ
せ、乾燥させる。次いで反対面に下記組成のバックコー
ト層を形成した後、小型テストカレンダー装置(スチー
ル/スチールロール、5段)で、温度:85℃、線圧:
200kg/cmでカレンダー処理した後、60℃で、
48時間キュアリングする。上記テープ原反を8mm幅
にスリットし、パンケーキを作成した。次いで、このパ
ンケーキから長さ200m分を、カセットに組み込んで
カセットテープとした。(11) Electromagnetic Conversion Characteristics (C / N) of Magnetic Tape A magnetic paint and a non-magnetic paint having the following composition are applied on the surface of the polyester film of the present invention in a multi-layered manner by an extrusion coater (the upper layer is coated with a magnetic paint. 0.1 μm,
The thickness of the non-magnetic lower layer was appropriately changed), magnetically oriented, and dried. Next, after forming a back coat layer having the following composition on the opposite surface, a small test calender (steel / steel roll, 5 steps) was used at a temperature of 85 ° C. and a linear pressure of:
After calendering at 200 kg / cm, at 60 ° C,
Cure for 48 hours. The raw tape was slit into a width of 8 mm to prepare a pancake. Next, a 200 m length of this pancake was incorporated into a cassette to form a cassette tape.
【0093】このテープに、市販のHi8用VTR(S
ONY社製 EV−BS3000)を用いて、7MHz
+1MHzのC/N(キャリア対ノイズ比)の測定を行
った。このC/Nを市販のHi8用ビデオテープ(SO
NY社製120分MP)と比較して、+3dB以上は
○、+1以上+3dB未満は△、+1dB未満は×と判
定した。○が望ましいが、△でも実用的には使用可能で
ある。[0093] A commercially available Hi8 VTR (S
7MHz using ONY EV-BS3000)
A +1 MHz C / N (carrier to noise ratio) measurement was performed. This C / N was converted to a commercially available Hi8 video tape (SO
Compared with (NY Corp., 120 minutes MP), +3 dB or more was evaluated as ○, +1 or more and less than +3 dB as Δ, and +1 dB or less as X.が is desirable, but △ can be used practically.
【0094】 (磁性塗料の組成) ・強磁性金属粉末 : 100重量部 ・スルホン酸Na変成塩化ビニル共重合体 : 10重量部 ・スルホン酸Na変成ポリウレタン : 10重量部 ・ポリイソシアネート : 5重量部 ・ステアリン酸 : 1.5重量部 ・オレイン酸 : 1重量部 ・カーボンブラック : 1重量部 ・アルミナ : 10重量部 ・メチルエチルケトン : 75重量部 ・シクロヘキサノン : 75重量部 ・トルエン : 75重量部 (非磁性下層塗料の組成) ・酸化チタン : 100重量部 ・カーボンブラック : 10重量部 ・スルホン酸Na変成塩化ビニル共重合体 : 10重量部 ・スルホン酸Na変成ポリウレタン : 10重量部 ・メチルエチルケトン : 30重量部 ・メチルイソブチルケトン : 30重量部 ・トルエン : 30重量部 (バックコートの組成) ・カーボンブラック(平均粒径20nm) : 95重量部 ・カーボンブラック(平均粒径280nm): 10重量部 ・αアルミナ : 0.1重量部 ・酸化亜鉛 : 0.3重量部 ・スルホン酸Na変成ポリウレタン : 20重量部 ・スルホン酸Na変成塩化ビニル共重合体 : 30重量部 ・シクロヘキサノン : 200重量部 ・メチルエチルケトン : 300重量部 ・トルエン : 100重量部 (12)磁気テープの走行耐久性および保存性 本発明のポリエステルフィルムの表面に、下記組成の磁
性塗料を塗布厚さ2.0μmになるように塗布し、磁気
配向させ、乾燥させる。次いで反対面に下記組成のバッ
クコート層を形成した後、カレンダー処理した後、60
℃で、48時間キュアリングする。上記テープ原反を1
/2インチ幅にスリットし、磁気テープとして、長さ6
70m分を、カセットに組み込んでカセットテープとし
た。(Composition of Magnetic Coating) Ferromagnetic metal powder: 100 parts by weight Na-sulfonate-modified vinyl chloride copolymer: 10 parts by weight Na-sulfonate-modified polyurethane: 10 parts by weight Polyisocyanate: 5 parts by weight Stearic acid: 1.5 parts by weight-Oleic acid: 1 part by weight-Carbon black: 1 part by weight-Alumina: 10 parts by weight-Methyl ethyl ketone: 75 parts by weight-Cyclohexanone: 75 parts by weight-Toluene: 75 parts by weight (nonmagnetic lower layer) Composition of paint) ・ Titanium oxide: 100 parts by weight ・ Carbon black: 10 parts by weight ・ Na sulfonic acid modified vinyl chloride copolymer: 10 parts by weight ・ Na sulfonic acid modified polyurethane: 10 parts by weight ・ Methyl ethyl ketone: 30 parts by weight ・ Methyl Isobutyl ketone: 30 parts by weight ・ Toluene: 30 layers Parts (composition of the back coat) ・ Carbon black (average particle diameter 20 nm): 95 parts by weight ・ Carbon black (average particle diameter 280 nm): 10 parts by weight ・ α-alumina: 0.1 parts by weight ・ Zinc oxide: 0.3 parts by weight Part: Na sulfonate-modified polyurethane: 20 parts by weight-Na sulfonate-modified vinyl chloride copolymer: 30 parts by weight-Cyclohexanone: 200 parts by weight-Methyl ethyl ketone: 300 parts by weight-Toluene: 100 parts by weight (12) Running of magnetic tape Durability and Storage Property A magnetic paint having the following composition is applied to the surface of the polyester film of the present invention so as to have a coating thickness of 2.0 μm, magnetically oriented, and dried. Then, after forming a back coat layer having the following composition on the opposite surface, and then performing a calendering treatment,
Cure at 48 ° C. for 48 hours. 1 for the above tape
/ 2 inch wide slit, magnetic tape, length 6
A 70-minute portion was incorporated into a cassette to form a cassette tape.
【0095】 (磁性塗料の組成) ・強磁性金属粉末 : 100重量部 ・変成塩化ビニル共重合体 : 10重量部 ・変成ポリウレタン : 10重量部 ・ポリイソシアネート : 5重量部 ・ステアリン酸 : 1.5重量部 ・オレイン酸 : 1重量部 ・カーボンブラック : 1重量部 ・アルミナ : 10重量部 ・メチルエチルケトン : 75重量部 ・シクロヘキサノン : 75重量部 ・トルエン : 75重量部 (バックコートの組成) ・カーボンブラック(平均粒径20nm) : 95重量部 ・カーボンブラック(平均粒径280nm): 10重量部 ・αアルミナ : 0.1重量部 ・変成ポリウレタン : 20重量部 ・変成塩化ビニル共重合体 : 30重量部 ・シクロヘキサノン : 200重量部 ・メチルエチルケトン : 300重量部 ・トルエン : 100重量部 作成したカセットテープを、IBM社製Magstar
3590 MODELB1A Tape Driveを
用い、100時間走行させ、次の基準でテープの走行耐
久性を評価した。○が合格品とした。(Composition of Magnetic Coating)-Ferromagnetic metal powder: 100 parts by weight-Modified vinyl chloride copolymer: 10 parts by weight-Modified polyurethane: 10 parts by weight-Polyisocyanate: 5 parts by weight-Stearic acid: 1.5 Parts by weight-Oleic acid: 1 part by weight-Carbon black: 1 part by weight-Alumina: 10 parts by weight-Methyl ethyl ketone: 75 parts by weight-Cyclohexanone: 75 parts by weight-Toluene: 75 parts by weight (composition of the back coat)-Carbon black ( (Average particle diameter 20 nm): 95 parts by weight Carbon black (average particle diameter 280 nm): 10 parts by weight α-alumina: 0.1 part by weight Modified polyurethane: 20 parts by weight Modified vinyl chloride copolymer: 30 parts by weight Cyclohexanone: 200 parts by weight-Methyl ethyl ketone: 300 parts by weight-Tolue : 100 parts by weight The created cassette tape is inserted into Magstar manufactured by IBM.
The tape was run for 100 hours using 3590 MODELB1A Tape Drive, and the running durability of the tape was evaluated according to the following criteria. ○ was judged as a passed product.
【0096】○:テープ端面の伸び、折れ曲がりがな
く、削れ跡が見られない。:: There is no elongation or bending of the tape end face, and no scraping marks are observed.
【0097】△:テープ端面の伸び、折れ曲がりがない
が、一部削れ跡が見られる。Δ: There is no elongation or bending of the tape end face, but some scraping marks are observed.
【0098】×:テープ端面の一部が伸び、ワカメ状の
変形が見られ、削れ跡が見られる。X: A part of the tape end face is elongated, wakame-like deformation is observed, and scraping marks are observed.
【0099】また、上記作成したカセットテープをIB
M社製Magstar3590 MODELB1A T
ape Driveに、データを読み込んだ後、カセッ
トテープを40℃、80%RHの雰囲気中に100時間
保存した後、データを再生して次の基準で、テープの保
存性を評価した。○が合格品とした。Further, the cassette tape created above is stored in the IB
Magstar3590 MODELB1A T made by M company
After reading the data into the ape drive, the cassette tape was stored in an atmosphere of 40 ° C. and 80% RH for 100 hours, and then the data was reproduced to evaluate the preservability of the tape according to the following criteria. ○ was judged as a passed product.
【0100】○:トラックずれもなく、正常に再生し
た。:: Normal reproduction without track deviation.
【0101】△:テープ幅に異常がないが、一部に読み
とり不可が見られる。Δ: There is no abnormality in the tape width, but reading is impossible in some parts.
【0102】×:テープ幅に変化があり、読みとり不可
が見られる。X: The tape width has changed and reading is impossible.
【0103】(13)フロッピーディスクの耐トラッキ
ング性 A.温度変化によるトラッキングずれテスト トラッキングずれテストとしては、次のような方法を用
いる。金属薄膜をスパッタ法により基材フィルムの両面
に磁気記録層を形成してディスク状に打ち抜いた金属薄
膜よりなるフロッピーディスクを温度15℃、湿度60
%RHでリングヘッドを用いて磁気記録し、そのときの
最大出力と磁気シートの出力エンベロープを測定する。
次に、雰囲気温度40℃、湿度60%RHになるように
維持して、その温度における最大出力と出力エンベロー
プを調べ、温度15℃、湿度60%RHのときの出力エ
ンベロープと、温度40℃、湿度60%RHのときの出
力エンベロープを比較して、トラッキングの状態を判定
する。この差が小さいほど優れた耐トラッキング性を有
している。この差が3dBを超えるとトラッキングが×
であり、3dB以内のものは○として評価した。(13) Tracking Resistance of Floppy Disk A. Tracking deviation test due to temperature change The following method is used as the tracking deviation test. A magnetic recording layer is formed on both sides of a base film by sputtering a metal thin film, and a floppy disk made of a metal thin film punched out in a disk shape is heated at a temperature of 15 ° C. and a humidity of 60 ° C.
Magnetic recording is performed using a ring head at% RH, and the maximum output and the output envelope of the magnetic sheet at that time are measured.
Next, while maintaining the ambient temperature at 40 ° C. and the humidity of 60% RH, the maximum output and the output envelope at that temperature were examined, and the output envelope at a temperature of 15 ° C. and a humidity of 60% RH, and a temperature of 40 ° C. The output envelope at a humidity of 60% RH is compared to determine the tracking state. The smaller the difference, the more excellent the tracking resistance. If this difference exceeds 3 dB, the tracking becomes ×
And those within 3 dB were evaluated as ○.
【0104】B.湿度変化によるトラッキングずれテス
ト 前項と同様にして作成したフロッピーディスクを温度2
5℃、相対湿度20%の雰囲気で記録し、さらに雰囲気
条件を温度25℃、相対湿度70%に保持し、両条件に
おける出力エンベロープを比較して、トラッキングの状
態を判定する。前項と同様に、この差が3dBを超える
とトラッキングが×であり、3dB以内のものは○とし
て評価した。B. Tracking deviation test due to humidity change A floppy disk created in the same manner as
Recording is performed in an atmosphere of 5 ° C. and a relative humidity of 20%, and the atmospheric conditions are maintained at a temperature of 25 ° C. and a relative humidity of 70%. The output envelopes under both conditions are compared to determine the tracking state. As in the previous section, if the difference exceeds 3 dB, the tracking is evaluated as x, and if the difference is within 3 dB, the evaluation is evaluated as ○.
【0105】(14)フロッピーディスクの耐スクラッ
チ性 上記(13)と同様にして得られたフロッピーディスク
に磁気記録した同一トラックを相対走行速度6m/秒で
10万回以上走査し、その出力エンベロープを調べた。
評価基準は、磁性層の表面に生じた傷を確認し、かつ出
力エンベロープが不安定となったものを×とした。磁性
層の表面に傷が発生せず、かつ出力エンベロープが安定
であるものを○と評価した。(14) Scratch resistance of the floppy disk The same track magnetically recorded on the floppy disk obtained in the same manner as in the above (13) is scanned 100,000 times or more at a relative running speed of 6 m / sec. Examined.
The evaluation criteria were as follows: flaws generated on the surface of the magnetic layer were confirmed, and those in which the output envelope became unstable were evaluated as x. A sample having no scratch on the surface of the magnetic layer and having a stable output envelope was evaluated as ○.
【0106】(15)熱転写リボンの印字性 片面に融着防止層を塗布した本発明の熱転写リボン用ポ
リエステルフィルムに下記組成の熱転写インクを、塗布
厚みが3.5μmになるようにホットメルトコーターで
融着防止層とは反対面に塗工し、熱転写リボンを作成し
た。(15) Printability of Thermal Transfer Ribbon A thermal transfer ink having the following composition was applied to a polyester film for a thermal transfer ribbon of the present invention having a fusing prevention layer coated on one side by a hot melt coater so that the applied thickness was 3.5 μm. Coating was performed on the surface opposite to the anti-fusing layer to form a thermal transfer ribbon.
【0107】 (熱転写インクの組成) カルナウバワックス :60.6重量% マイクロクリスタリンワックス :18.2重量% 酢酸ビニル・エチレン共重合体 : 0.1重量% カーボンブラック :21.1重量% 作成した熱転写リボンについて、オークス社製のバーコ
ードプリンター(BC−8)で黒ベタを印字して、印字
性を評価した。○が合格品とした。(Composition of Thermal Transfer Ink) Carnauba wax: 60.6% by weight Microcrystalline wax: 18.2% by weight Vinyl acetate / ethylene copolymer: 0.1% by weight Carbon black: 21.1% by weight With respect to the thermal transfer ribbon, black solid was printed with a bar code printer (BC-8) manufactured by Oaks Co., Ltd., and printability was evaluated. ○ was judged as a passed product.
【0108】 ○:鮮明に印字 △:印字にピッチずれが生じる ×:リボンにしわが入り、印字が乱れる ××:ホットメルト塗工時にフィルムにしわが入り、熱
転写インクが均一に塗布できない。:: Clear printing △: Pitch deviation occurs in printing X: Wrinkles are formed on ribbon and printing is disturbed XX: Wrinkles are formed on the film at the time of hot melt coating, and the thermal transfer ink cannot be applied uniformly.
【0109】(16)コンデンサ用特性評価 A.絶縁抵抗 本発明のポリエステルフィルムの片面に表面抵抗値が2
Ω/□となるようにアルミニウムを真空蒸着した。その
際、長手方向に走るマージン部を有するストライプ状に
蒸着した(蒸着部の幅57mm、マージン部の幅3mm
の繰り返し)。次に各蒸着部の中央と各マージン部の中
央に刃を入れてスリットし、左もしくは右に1.5mm
幅のマージンを有する全幅30mmのテープ状の巻き取
りリールとした。得られた左右対称のマージンを有する
アルミ蒸着フィルム1対を重ね,1.5μFの容量とな
る長さに巻回した。この巻回物を120℃、20kg/
cm2 の圧力で10分間プレスして成形した。両端面に
メタリコンを溶射して電極とし、リード線を取り付けて
コンデンサーサンプルとした。次いで、ここで作成した
1.5μFのコンデンサーサンプル1000個を23
℃、65%RHの雰囲気下においてYHP社製の超絶縁
抵抗計4329Aにて印加電圧500Vでの1分値とし
て測定し、絶縁抵抗が5000MΩ未満のコンデンサー
サンプルを不良品として以下の基準で判定した。なお、
本発明においては◎、○と△を合格とした。(16) Evaluation of Characteristics for Capacitor Insulation Resistance The surface resistance of one side of the polyester film of the present invention is 2
Aluminum was vacuum-deposited so as to be Ω / □. At this time, vapor deposition was performed in a stripe shape having a margin portion running in the longitudinal direction (width of the vapor deposition portion 57 mm, width of the margin portion 3 mm
Repeat). Next, insert a blade in the center of each vapor deposition part and the center of each margin part, slit, and left or right 1.5 mm
A 30 mm-wide tape-shaped take-up reel having a width margin was used. A pair of the obtained aluminum vapor-deposited films having left-right symmetrical margins were overlapped and wound to a length having a capacity of 1.5 μF. This roll is heated at 120 ° C. and 20 kg /
It was molded by pressing at a pressure of cm 2 for 10 minutes. Metallicon was sprayed on both end surfaces to form electrodes, and lead wires were attached to obtain capacitor samples. Next, 1,000 1.5 μF capacitor samples prepared here were used for 23 samples.
The temperature was measured as a 1-minute value at an applied voltage of 500 V with a super insulation resistance meter 4329A manufactured by YHP under an atmosphere of 65 ° C. and 65% RH, and a capacitor sample having an insulation resistance of less than 5000 MΩ was determined as a defective product according to the following criteria. . In addition,
In the present invention, ◎, △, and Δ were regarded as acceptable.
【0110】 ◎:不良品が10個未満 ○:不良品が10個以上20個未満 △:不良品が20個以上50個未満 ×:不良品が50個以上 B.絶縁破壊電圧 JIS−C−2318に記載の方法に準じて、ただし、
金属蒸着を施していないフィルムを試験片として用いて
次のように評価する。◎: Less than 10 defective products ○: 10 or more and less than 20 defective products △: 20 or more and less than 50 defective products ×: 50 or more defective products Dielectric breakdown voltage According to the method described in JIS-C-2318, except that
Using a film without metal deposition as a test piece, evaluation is made as follows.
【0111】適当な大きさの金属製平板の上にゴムショ
ア硬さ約60度、厚さ約2mmのゴム板を一枚敷き、そ
の上に厚さ約6μmのアルミニウム箔を10枚重ねたも
のを下部電極とし、約50gの重さで周辺に約1mmの
丸みを持った径8mmの底面が平滑で傷のない黄銅製円
柱を上部電極とする。試験片は、あらかじめ温度20±
5℃、相対湿度65±5%の雰囲気に48時間以上放置
しておく。上部電極と下部電極の間に試験片をはさみこ
み、温度20±5℃、相対湿度65±5%の雰囲気中で
両電極間に直流電源により直流電圧を印加し、該直流電
圧を1秒間に100Vの速さで0Vから絶縁破壊するま
で上昇させる。試料50個に対し試験を行い、絶縁破壊
電圧を試験片の厚みで除したものの平均値を求め、その
値が400V/μm以上を合格(○)とする。A rubber plate having a rubber shore hardness of about 60 degrees and a thickness of about 2 mm is laid on a metal plate of an appropriate size, and 10 aluminum foils of about 6 μm thickness are stacked on the rubber plate. The lower electrode is a brass cylinder having a weight of about 50 g, a round bottom of about 1 mm, a diameter of 8 mm, and a smooth bottom surface with no damage. The test specimens were previously stored at a temperature of 20 ±
Leave in an atmosphere of 5 ° C. and a relative humidity of 65 ± 5% for 48 hours or more. A test piece is sandwiched between the upper electrode and the lower electrode, and a DC voltage is applied between both electrodes by a DC power supply in an atmosphere at a temperature of 20 ± 5 ° C. and a relative humidity of 65 ± 5%. At 0 V until the dielectric breakdown occurs. A test is performed on 50 samples, and an average value obtained by dividing the dielectric breakdown voltage by the thickness of the test piece is determined. A value of 400 V / μm or more is regarded as acceptable (○).
【0112】(17)感熱孔版用原紙の画像性 本発明のポリエステルフィルムに、酢酸ビニル系の接着
材を用いて下記方法で得られた不織布を接着し、フィル
ムの不織布側の反対面にシリコーン系離型材を塗布して
感熱孔版用原紙を得た。原紙を理想科学工業(株)製
“RISOGRAPH”GR375に供給して、黒ベタ
のものを原稿として、製版、印刷を行った。20枚の印
刷を行い、20枚目の印刷画像の白抜けと濃淡ムラの状
態を目視により、次の基準で判定した。(17) Image properties of heat-sensitive stencil base paper A non-woven fabric obtained by the following method is bonded to the polyester film of the present invention using a vinyl acetate-based adhesive, and a silicone-based non-woven fabric is bonded to the non-woven fabric side of the film. A release material was applied to obtain a heat-sensitive stencil base paper. The base paper was supplied to "RISOGRAPH" GR375 manufactured by Riso Kagaku Kogyo Co., Ltd., and plate making and printing were performed using a black solid as the original. Twenty sheets were printed, and the state of white spots and density unevenness of the twentieth printed image was visually determined based on the following criteria.
【0113】(白抜け) ○:白抜けが全くないもの △:白抜けがわずかに見られるもの ×:白抜けが目立つもの (濃淡むら) ○:むらが全くないもの △:むらがわずかに見られるもの ×:むらが目立つもの ○または△が実用上使用できるレベルである。(White spots) :: no white spots Δ: slight white spots ×: noticeable white spots (shading) ○: no spots Δ: slight spots ×: The unevenness is noticeable ○ or Δ is a practically usable level
【0114】[主体繊維の製造]ポリエチレンテレフタ
レートのチップを290℃で溶融し、孔数が900の口
金を通して285℃で吐出し、1000m/分の速度で
巻き取った。[Production of Main Fiber] A polyethylene terephthalate chip was melted at 290 ° C., discharged at 285 ° C. through a die having 900 holes, and wound up at a speed of 1000 m / min.
【0115】次に、この未延伸糸を3.8倍の倍率で8
0℃の温水中で延伸し、200℃で緊張熱処理、さらに
125℃で弛緩熱処理した後、5mmに切断し、平均繊
維径5μmで複屈折が0.20の主体繊維Aを得た。Next, this undrawn yarn was treated at a magnification of 3.8 times with 8
After stretching in hot water at 0 ° C., a tension heat treatment at 200 ° C. and a relaxation heat treatment at 125 ° C., the resultant was cut into 5 mm to obtain a main fiber A having an average fiber diameter of 5 μm and a birefringence of 0.20.
【0116】[未延伸繊維の製造]他方、ポリエチレン
テレフタレートチップを290℃で溶融し、孔数が90
0の口金を通して285℃で吐出し、5mmに切断し、
平均繊維径8μmで複屈折が0.05の未延伸繊維aを
得た。[Production of Undrawn Fiber] On the other hand, a polyethylene terephthalate chip was melted at 290 ° C.
Discharge at 285 ° C through the base of No. 0, cut to 5mm,
An undrawn fiber a having an average fiber diameter of 8 μm and a birefringence of 0.05 was obtained.
【0117】[抄紙]主体繊維Aと未延伸繊維aとを、
80:20の重量比率でパルパー中で十分混合分散せし
めた後、円網抄紙機で速度10m/分、ヤンキードライ
ヤー(表面温度130℃)で加熱乾燥した。抄上げ目付
量は8g/m2 であった。次いで金属/弾性ロール系カ
レンダー加工機で金属ロール表面温度210℃、線圧1
5kg/cmの条件下圧着することにより、厚さ25μ
mの不織布を得た。[Paper making] The main fiber A and the undrawn fiber a
After thoroughly mixing and dispersing in a pulper at a weight ratio of 80:20, the mixture was heated and dried with a Yankee dryer (surface temperature: 130 ° C.) at a speed of 10 m / min using a circular paper machine. The weight per unit area was 8 g / m 2 . Then, using a metal / elastic roll calendering machine, the metal roll surface temperature was 210 ° C and the linear pressure was 1
By pressing under the condition of 5 kg / cm, the thickness is 25 μm.
m of non-woven fabric was obtained.
【0118】[0118]
【実施例】以下に、本発明を実施例、比較例に基づいて
説明する。The present invention will be described below based on examples and comparative examples.
【0119】実施例1 ポリエチレンテレフタレート(固有粘度0.65、ガラ
ス転移温度75℃、融点255℃、平均径0.3μmの
球状架橋ポリスチレン粒子0.1重量%配合)のペレッ
トを180℃で3時間真空乾燥した後に、280℃に加
熱された押出機に供給して溶融押出し、Tダイよりシー
ト状に吐出する。さらにこのシートを表面温度25℃の
冷却ドラム上に静電気力で密着させて冷却固化し、未延
伸キャストフィルムを得る。この未延伸フィルムの両端
部をクリップで把持して、リニアモーター方式の同時二
軸延伸テンターに導き、フィルム温度を100℃に加熱
し、面積延伸倍率1.082倍(縦倍率:1.04倍、
横倍率:1.04倍)の同時二軸微延伸を連続的に50
回行う。微延伸と微延伸の間の延伸停止時間は直前の微
延伸に要する時間の1/10とする。その後、210℃
の温度で熱固定を施し、120℃の冷却ゾーンで縦方向
に2%、横方向に2%の弛緩率で弛緩処理を行い、フィ
ルムを室温に徐冷して巻取る。フィルム厚みは押出量を
調節して9μmに合わせる。なお、延伸時のクリップ温
度は100℃とする。ここで得られたフィルムはトータ
ルの面積倍率が約50倍に達し、結晶化度が58%と高
く、高ヤング率と低熱収縮率を両立する、厚みむらも少
ない高品質のフィルムである。Example 1 A pellet of polyethylene terephthalate (containing 0.1% by weight of spherical crosslinked polystyrene particles having an intrinsic viscosity of 0.65, a glass transition temperature of 75 ° C, a melting point of 255 ° C, and an average diameter of 0.3 µm) was mixed at 180 ° C for 3 hours. After vacuum drying, it is supplied to an extruder heated to 280 ° C., melt-extruded, and discharged from a T-die into a sheet. Further, this sheet is brought into close contact with a cooling drum having a surface temperature of 25 ° C. by electrostatic force to be cooled and solidified to obtain an unstretched cast film. Both ends of the unstretched film are gripped with clips and guided to a simultaneous biaxial stretching tenter of a linear motor type, the film temperature is heated to 100 ° C., and the area stretching ratio is 1.082 times (longitudinal ratio: 1.04 times). ,
(Bilateral magnification: 1.04 times)
Do it twice. The stretching stop time between the fine stretchings is set to 1/10 of the time required for the immediately preceding fine stretching. Then 210 ° C
The film is heat-set at a temperature of 120 ° C., subjected to a relaxation treatment at a cooling zone of 120 ° C. at a relaxation rate of 2% in the vertical direction and 2% in the horizontal direction, and gradually cooled to room temperature and wound up. The film thickness is adjusted to 9 μm by adjusting the extrusion amount. Note that the clip temperature at the time of stretching is 100 ° C. The film obtained here is a high-quality film having a total area magnification of about 50 times, a high degree of crystallinity of 58%, a high Young's modulus and a low heat shrinkage, and little thickness unevenness.
【0120】なお、製膜時のフィルム破れは少なく、高
物性、高品質のフィルムが極めて安定に得られる。[0120] It should be noted that film tearing during film formation is small, and a film having high physical properties and high quality can be obtained extremely stably.
【0121】実施例2〜5、比較例1、2 微延伸の倍率、繰り返し回数、トータルの面積延伸倍率
を変更する以外は実施例1と同様に製膜し、二軸延伸ポ
リエステルフィルムを得る。ここで、微延伸の繰り返し
回数が3回および2回の実施例2および比較例1の場合
には、微延伸後にさらに同時二軸延伸を一段階で施し、
フィルムのトータル面積延伸倍率を25倍とする。微延
伸を繰り返す回数を3回以上とし、さらに増やしていく
と、フィルムの破れ頻度が低下し、トータル面積延伸倍
率が高まる傾向が見られる。また、微延伸の繰り返し回
数を増やして高倍率延伸すると、フィルムの結晶化度が
高まり、高剛性、低熱収縮性で厚みむらも小さい高品質
のフィルムが得られる。微延伸の繰り返し回数やトータ
ル面積延伸倍率が、本発明の範囲を満たさないと、ヤン
グ率が小さかったり、熱収縮率が大きかったりする(比
較例1、2)。Examples 2 to 5, Comparative Examples 1 and 2 A biaxially stretched polyester film is obtained in the same manner as in Example 1, except that the fine stretching ratio, the number of repetitions, and the total area stretching ratio are changed. Here, in the case of Example 2 and Comparative Example 1 in which the number of repetitions of the fine stretching is three and two, the simultaneous biaxial stretching is further performed in one stage after the fine stretching,
The total area stretching ratio of the film is 25 times. When the number of times of fine stretching is repeated three times or more and further increased, the frequency of film tearing decreases and the total area stretching ratio tends to increase. In addition, when the stretching ratio is increased by increasing the number of times of fine stretching, the degree of crystallinity of the film is increased, and a high-quality film having high rigidity, low heat shrinkage and small thickness unevenness is obtained. If the number of repetitions of fine stretching or the total area stretching ratio does not satisfy the range of the present invention, the Young's modulus is small or the heat shrinkage is large (Comparative Examples 1 and 2).
【0122】[0122]
【表1】 比較例3〜5 微延伸を行なわずに、フィルムを延伸した以外は、実施
例1と同様に製膜し、二軸延伸ポリエステルフィルムを
得る。フィルム温度が100℃の温度条件下、同時二軸
テンターで縦方向に4.3倍に延伸した後、横方向に
4.3倍に延伸した場合、およびフィルムを縦および横
方向に各々4.3倍の倍率で同時二軸延伸した場合に
は、ヤング率が小さく、熱収縮率が大きなフィルムしか
得られず、フィルムの厚みむらも大きくなる(比較例
3、4)。また、フィルムを縦方向と横方向に各々4.
0倍の倍率で同時二軸延伸した後、さらに、縦方向と横
方向に各々1.3倍の倍率で同時二軸延伸した場合に
は、フィルム破れが多発し、フィルムの熱収縮率が大き
くなる(比較例5)。[Table 1] Comparative Examples 3 to 5 A biaxially stretched polyester film is obtained in the same manner as in Example 1, except that the film is stretched without fine stretching. When the film temperature is 100 ° C., the film is stretched 4.3 times in the machine direction by a simultaneous biaxial tenter, and then stretched 4.3 times in the transverse direction. When the film is simultaneously biaxially stretched at a magnification of 3 times, only a film having a small Young's modulus and a large heat shrinkage is obtained, and the thickness unevenness of the film is also increased (Comparative Examples 3 and 4). In addition, the film is placed in the longitudinal direction and the lateral direction, respectively.
When the film is simultaneously biaxially stretched at a magnification of 0 times and then simultaneously biaxially stretched at a magnification of 1.3 times each in the machine direction and the transverse direction, the film is frequently torn and the heat shrinkage of the film is large. (Comparative Example 5).
【0123】[0123]
【表2】 実施例6〜10 本実施例では微延伸後の到達結晶度を変えて製膜した例
を示す。微延伸の倍率と繰り返し回数を変更し、連続的
に微延伸を繰り返した後に一段階で同時二軸延伸してト
ータルの面積延伸倍率を50倍に設定する以外は実施例
1と同様に製膜して二軸延伸ポリエステルフィルムを得
る。ここで、1回の延微伸による縦方向および横方向の
倍率は等倍とする。微延伸後のフィルムの結晶化度が2
%および34%のときには、ヤング率が低下し、熱収縮
率が高くなる。[Table 2] Examples 6 to 10 This example shows an example in which a film is formed by changing the ultimate crystallinity after fine stretching. The film formation was performed in the same manner as in Example 1 except that the fine stretching was repeated and the number of repetitions was changed, and then the fine stretching was continuously repeated, followed by simultaneous biaxial stretching in one step and setting the total area stretching ratio to 50 times. To obtain a biaxially stretched polyester film. Here, the magnification in the vertical and horizontal directions by one elongation / fine elongation is made equal. The crystallinity of the film after fine stretching is 2
% And 34%, the Young's modulus decreases and the heat shrinkage increases.
【0124】[0124]
【表3】 実施例11〜13 同時二軸テンター内で、フィルムの流れ方向に100
℃、140℃、210℃、250℃の温度ゾーンを設け
て、微延伸の温度条件を変更する以外は実施例4と同様
に製膜し、二軸配向ポリエステルフィルムを得る。21
0℃、250℃という高温域で微延伸を行うと、フィル
ムのヤング率が高まり、熱収縮率が低下する。[Table 3] Examples 11 to 13 In a simultaneous biaxial tenter, 100
A biaxially oriented polyester film is obtained by forming a film in the same manner as in Example 4 except that temperature zones of 140 ° C., 140 ° C., 210 ° C., and 250 ° C. are provided, and the temperature conditions of the fine stretching are changed. 21
When fine stretching is performed in a high temperature range of 0 ° C. and 250 ° C., the Young's modulus of the film increases, and the heat shrinkage decreases.
【0125】[0125]
【表4】 実施例14 実施例1と同様にして得た未延伸フィルムの両端部をク
リップで把持して、リニアモーター方式の同時二軸延伸
テンターに導き、フィルム温度を100℃に加熱し、縦
横逐次に各々2.5倍延伸した後、面積延伸倍率1.4
4倍(縦倍率:1.2倍、横倍率:1.2倍)の微延伸
を連続的に6回行う。その際に、温度領域を150℃、
180℃、210℃と順に、温度ゾーンを設けて、それ
ぞれで2回ずつの微延伸を行う。微延伸と微延伸の間の
延伸停止時間は直前の微延伸に要する時間の1/10と
する。その後、210℃の温度で熱固定を施し、120
℃の冷却ゾーンで縦方向に2%、横方向に2%の弛緩率
で弛緩処理を行い、フィルムを室温に徐冷して巻取る。
フィルム厚みは押出量を調節して10μmに合わせる。
高ヤング率で低熱収縮性のフィルムが得られる。[Table 4] Example 14 Both ends of the unstretched film obtained in the same manner as in Example 1 were gripped with clips and led to a simultaneous biaxial stretching tenter of a linear motor system, and the film was heated to 100 ° C. After stretching by 2.5 times, the area stretching ratio is 1.4.
Fine stretching of 4 times (vertical magnification: 1.2 times, horizontal magnification: 1.2 times) is continuously performed 6 times. At that time, the temperature range was 150 ° C,
Temperature zones are provided in the order of 180 ° C. and 210 ° C., and fine stretching is performed twice for each. The stretching stop time between the fine stretchings is set to 1/10 of the time required for the immediately preceding fine stretching. Thereafter, heat set at a temperature of 210 ° C.
The film is subjected to a relaxation treatment in a cooling zone at 2 ° C. at a relaxation rate of 2% in the vertical direction and 2% in the horizontal direction, and the film is gradually cooled to room temperature and wound up.
The film thickness is adjusted to 10 μm by adjusting the extrusion amount.
A film having high Young's modulus and low heat shrinkage can be obtained.
【0126】実施例15 実施例1と同様にして得た未延伸フィルムの両端部をク
リップで把持して、リニアモーター方式の同時二軸延伸
テンターに導き、フィルム温度を115℃に加熱し、縦
方向に倍率1.04倍で微延伸を連続的に20回行った
後、80℃で同時二軸延伸を縦方向4倍、横方向5倍に
延伸する。微延伸と微延伸の間の延伸停止時間は直前の
微延伸に要する時間の1/10とする。その後、210
℃の温度で熱固定を施し、120℃の冷却ゾーンで縦方
向に2%、横方向に2%の弛緩率で弛緩処理を行い、フ
ィルムを室温に徐冷して巻取る。フィルム厚みは押出量
を調節して10μmに合わせる。高ヤング率で低熱収縮
性のフィルムが得られる。Example 15 Both ends of an unstretched film obtained in the same manner as in Example 1 were gripped with clips, and guided to a simultaneous biaxial stretching tenter of a linear motor type, and the film was heated to 115 ° C. After performing fine stretching continuously 20 times in the direction at a magnification of 1.04 times, simultaneous biaxial stretching is performed at 80 ° C. 4 times in the longitudinal direction and 5 times in the transverse direction. The stretching stop time between the fine stretchings is set to 1/10 of the time required for the immediately preceding fine stretching. Then, 210
The film is heat-set at a temperature of 0 ° C., subjected to a relaxation treatment at a cooling zone of 120 ° C. at a relaxation rate of 2% in the vertical direction and 2% in the horizontal direction, and gradually cooled to room temperature and wound up. The film thickness is adjusted to 10 μm by adjusting the extrusion amount. A film having high Young's modulus and low heat shrinkage can be obtained.
【0127】実施例16 実施例1と同様にして得た未延伸フィルムの両端部をク
リップで把持して、リニアモーター方式の同時二軸延伸
テンターに導き、フィルム温度を100℃に加熱し、面
積延伸倍率1.082倍(縦倍率:1.04倍、横倍
率:1.04倍)と横方向のみの微延伸1.04倍を交
互に10回(トータルの微延伸操作回数:20回)行っ
た後、同時二軸延伸を縦横各方向4倍に延伸する。微延
伸と微延伸の間の延伸停止時間は直前の微延伸に要する
時間の1/10とする。その後、210℃の温度で熱固
定を施し、120℃の冷却ゾーンで縦方向に2%、横方
向に2%の弛緩率で弛緩処理を行い、フィルムを室温に
徐冷して巻取る。フィルム厚みは押出量を調節して10
μmに合わせる。高ヤング率で低熱収縮性のフィルムが
得られる。Example 16 Both ends of an unstretched film obtained in the same manner as in Example 1 were gripped with clips and led to a simultaneous biaxial stretching tenter of a linear motor type, and the film was heated to 100 ° C. The stretching ratio of 1.082 times (longitudinal ratio: 1.04 times, lateral ratio: 1.04 times) and the fine stretching in the horizontal direction only 1.04 times are alternately performed 10 times (total number of fine stretching operations: 20 times) After that, simultaneous biaxial stretching is performed four times in each of the vertical and horizontal directions. The stretching stop time between the fine stretchings is set to 1/10 of the time required for the immediately preceding fine stretching. Thereafter, the film is heat-set at a temperature of 210 ° C., subjected to a relaxation treatment at a cooling zone of 120 ° C. at a relaxation rate of 2% in the vertical direction and 2% in the horizontal direction, and gradually cooled to room temperature and wound up. The film thickness is adjusted to 10
Adjust to μm. A film having high Young's modulus and low heat shrinkage can be obtained.
【0128】[0128]
【表5】 実施例17、比較例6 固有粘度が1.0のポリエチレンテレフタレート(ガラ
ス転移温度74℃、融点255℃、平均径0.3μmの
球状架橋ポリスチレン粒子0.1重量%配合)をポリエ
ステル原料として使用し、同時二軸微延伸の効果を調べ
る。ここで、延伸ゾーンの温度は115℃、熱処理ゾー
ンの温度は210℃とし、延伸パターンを変更する以外
は、実施例1と同様に製膜し、厚さ6.5μmの二軸配
向ポリエステルフィルムを得る。微延伸を行う場合、一
回の微延伸による面積倍率は1.082倍(縦倍率:
1.04倍、横倍率:1.04倍)として連続的に50
回繰り返す。微延伸と微延伸の間の延伸停止時間は直前
の微延伸に要する時間の1/10とする。微延伸を行わ
ない場合は、一段階で縦・横各方向に等倍率で同時二軸
延伸を行う。比較例6の場合とは異なり、微延伸を施し
た実施例17では、トータルの面積延伸倍率が高まり、
高ヤング率で低熱収縮性のフィルムが得られる。[Table 5] Example 17, Comparative Example 6 Polyethylene terephthalate having an intrinsic viscosity of 1.0 (containing 0.1% by weight of spherical crosslinked polystyrene particles having a glass transition temperature of 74 ° C., a melting point of 255 ° C. and an average diameter of 0.3 μm) was used as a polyester raw material. The effect of simultaneous biaxial fine stretching is examined. Here, the temperature of the stretching zone was 115 ° C., the temperature of the heat treatment zone was 210 ° C., and a film was formed in the same manner as in Example 1 except that the stretching pattern was changed. A biaxially oriented polyester film having a thickness of 6.5 μm was obtained. obtain. When performing fine stretching, the area magnification by one fine stretching is 1.082 times (longitudinal magnification:
1.04 times, lateral magnification: 1.04 times)
Repeat several times. The stretching stop time between the fine stretchings is set to 1/10 of the time required for the immediately preceding fine stretching. When fine stretching is not performed, simultaneous biaxial stretching is performed in one step at equal magnification in both longitudinal and transverse directions. Unlike the case of Comparative Example 6, in Example 17 in which fine stretching was performed, the total area stretching ratio was increased,
A film having high Young's modulus and low heat shrinkage can be obtained.
【0129】実施例18、19、比較例7、8 固有粘度が0.65のポリエチレンー2,6−ナフタレ
ート(ガラス転移温度125℃、融点265℃、平均径
0.3μmの球状架橋ポリスチレン粒子0.1重量%配
合)およびエチレンテレフタレート90モル%とエチレ
ンー2,6−ナフタレート10モル%の共重合ポリマー
(ガラス転移温度84℃、融点235℃、平均径0.3
μmの球状架橋ポリスチレン粒子0.1重量%配合)を
使用し、延伸温度を表6に示した条件に設定する以外
は、実施例17および比較例6と同様に製膜し、厚さ
6.5μmの二軸配向ポリエステルフィルムを得る。原
料として、ポリエチレンー2,6−ナフタレートや上記
共重合ポリマーを使用した場合においても、本発明の微
延伸の効果は顕著に見られた。同時二軸微延伸を繰り返
して行うと、トータル面積倍率および結晶化度が高ま
り、高ヤング率化および低熱収縮化した高品質のポリエ
ステルフィルムを安定に製膜できる。Examples 18 and 19, Comparative Examples 7 and 8 Polyethylene-2,6-naphthalate having an intrinsic viscosity of 0.65 (spherical crosslinked polystyrene particles having a glass transition temperature of 125 ° C., a melting point of 265 ° C. and an average diameter of 0.3 μm) 0.1% by weight) and a copolymer of 90 mol% of ethylene terephthalate and 10 mol% of ethylene-2,6-naphthalate (glass transition temperature: 84 ° C., melting point: 235 ° C., average diameter: 0.3)
A film was formed in the same manner as in Example 17 and Comparative Example 6 except that a stretched temperature was set to the conditions shown in Table 6 except for using 0.1 μ% by weight of spherical crosslinked polystyrene particles having a thickness of μm. A 5 μm biaxially oriented polyester film is obtained. Even when polyethylene-2,6-naphthalate or the above copolymer was used as a raw material, the effect of the fine stretching of the present invention was remarkably observed. When the simultaneous biaxial fine stretching is repeatedly performed, the total area magnification and the crystallinity increase, and a high-quality polyester film having a high Young's modulus and a low heat shrinkage can be stably formed.
【0130】[0130]
【表6】 実施例20(表7、8) 実施例1と同様にして得た未延伸フィルムの両端部をク
リップで把持して、リニアモーター方式の同時二軸延伸
テンターに導き、フィルム温度を100℃に加熱し、面
積延伸倍率2.25倍(縦倍率:1.5倍、横倍率:
1.5倍)の同時二軸延伸と、さらに続けて弛緩処理
(縦弛緩率:5%,横弛緩率:5%)を行う一連の操作
を連続的に5回行う。その後、210℃の温度で熱固定
を施した後、120℃の冷却ゾ−ンで縦方向に2%、横
方向に2%の弛緩率で弛緩処理を行い、フイルムを室温
に徐冷して巻取る。フィルム厚みは押出量を調節して1
0μmに合わせる。なお、延伸時のクリップ温度は10
0℃とする。ここで得られたフィルムはトータルの面積
延伸倍率が34.5倍に達し、高ヤング率と熱寸法安定
性を両立して、さらに厚みむらも少ない高品質のフィル
ムである。また、製膜時のフィルム破れは少なく、高物
性、高品質のフィルムが極めて安定に得られる。実施例
5と延伸倍率と繰り返し回数が同じで弛緩操作を加える
ことで、わずかにヤング率が低下するが、熱寸法安定性
が向上する。[Table 6] Example 20 (Tables 7 and 8) Both ends of an unstretched film obtained in the same manner as in Example 1 were gripped with clips and led to a simultaneous biaxial stretching tenter of a linear motor system, and the film temperature was heated to 100 ° C. And the area stretching ratio is 2.25 times (vertical ratio: 1.5 times, horizontal ratio:
A series of operations of performing simultaneous biaxial stretching (1.5 times) and subsequently performing a relaxation treatment (longitudinal relaxation rate: 5%, lateral relaxation rate: 5%) are continuously performed 5 times. Then, after heat setting at a temperature of 210 ° C., a relaxation treatment of 2% in the vertical direction and 2% in the horizontal direction is performed in a cooling zone of 120 ° C., and the film is gradually cooled to room temperature. Take up. The film thickness can be adjusted by adjusting the extrusion amount.
Adjust to 0 μm. In addition, the clip temperature during stretching is 10
0 ° C. The film obtained here is a high quality film having a total area stretching ratio of 34.5 times, achieving both high Young's modulus and thermal dimensional stability, and having less thickness unevenness. In addition, film breakage during film formation is small, and a film having high physical properties and high quality can be obtained extremely stably. By adding a relaxation operation with the same stretching ratio and number of repetitions as in Example 5, the Young's modulus is slightly reduced, but the thermal dimensional stability is improved.
【0131】実施例21〜23、比較例9 1回の微延伸の倍率、弛緩率、繰り返し回数、トータル
の面積延伸倍率を変更する以外は、実施例20と同様に
製膜し、二軸延伸ポリエステルフィルムを得る。実施例
21〜23において得られたポリエステルフィルムは、
実施例20と同様に、高ヤング率と熱寸法安定性を両立
して、さらに厚みむらも少ない高品質のフィルムであ
る。また、製膜時のフィルム破れは少なく、高物性、高
品質のフィルムが極めて安定に得られる。一方、比較例
9において得られたポリエステルフィルムは、トータル
面積延伸倍率が本発明の範囲を満たさないため、ヤング
率が小さくなる。Examples 21 to 23, Comparative Example 9 A film was formed in the same manner as in Example 20, except that the magnification of one fine stretching, the relaxation rate, the number of repetitions, and the total area stretching magnification were changed. Obtain a polyester film. The polyester films obtained in Examples 21 to 23 are
As in Example 20, it is a high-quality film that achieves both high Young's modulus and thermal dimensional stability and has less thickness unevenness. In addition, film breakage during film formation is small, and a film having high physical properties and high quality can be obtained extremely stably. On the other hand, the polyester film obtained in Comparative Example 9 has a small Young's modulus because the total area stretch ratio does not satisfy the range of the present invention.
【0132】実施例24(表7、8) 実施例1と同様にして得た未延伸フィルムを、フィルム
温度が100℃の温度条件下、同時二軸テンターでフィ
ルムを面積延伸倍率16.0倍(縦倍率:4.0倍、横
倍率:4.0倍)の同時二軸延伸と、さらに続けて弛緩
処理(縦弛緩率:5%、横弛緩率:5%)を行った後、
温度170℃で面積延伸倍率2.25倍(縦倍率:1.
5倍、横倍率:1.5倍)の同時二軸延伸と、さらに続
けて弛緩処理(縦弛緩率:5%、横弛緩率:5%)を行
う。その後、210℃の温度で熱固定を施した後、12
0℃の冷却ゾーンで縦方向に2%、横方向に2%の弛緩
率で弛緩処理を行い、フィルムを室温に徐冷して巻取
る。得られたポリエステルフィルムは、実施例20と同
様に、高ヤング率と熱寸法安定性を両立して、さらに厚
みむらも少ない高品質のフィルムである。また、製膜時
のフィルム破れは少なく、高物性、高品質のフィルムが
極めて安定に得られる。Example 24 (Tables 7 and 8) An unstretched film obtained in the same manner as in Example 1 was subjected to a simultaneous biaxial tenter at a film temperature of 100 ° C., and the area stretch ratio was 16.0 times. (Simultaneous biaxial stretching of (longitudinal magnification: 4.0 times, lateral magnification: 4.0 times)) and further relaxation treatment (longitudinal relaxation rate: 5%, lateral relaxation rate: 5%)
At a temperature of 170 ° C., an area stretching ratio of 2.25 times (longitudinal ratio: 1.25 times).
Simultaneous biaxial stretching of 5 times and a transverse magnification of 1.5 times, followed by relaxation treatment (longitudinal relaxation rate: 5%, transverse relaxation rate: 5%). Then, after heat setting at a temperature of 210 ° C., 12
The film is subjected to a relaxation treatment in a cooling zone of 0 ° C. at a relaxation rate of 2% in the vertical direction and 2% in the horizontal direction, and the film is gradually cooled to room temperature and wound up. The obtained polyester film is a high-quality film which has both high Young's modulus and thermal dimensional stability and has less thickness unevenness, as in Example 20. In addition, film breakage during film formation is small, and a film having high physical properties and high quality can be obtained extremely stably.
【0133】実施例25 実施例1と同様にして未延伸キャストフィルムを得た。
この未延伸フィルムの両端部をクリップで把持して、リ
ニアモーター方式の同時二軸延伸テンターに導き、フィ
ルム温度を100℃に加熱し、面積延伸倍率1.21倍
(縦倍率:1.1倍、横倍率:1.1倍)の同時二軸延
伸と、さらに続けて弛緩処理(縦弛緩率:5%、横弛緩
率:5%)を行う一連の操作を10回行う。そして、面
積延伸倍率1.21倍(縦倍率:1.1倍、横倍率:
1.1倍)の同時二軸延伸を2回行い、弛緩処理は行わ
ない。続けて、面積延伸倍率1.21倍(縦倍率:1.
1倍、横倍率:1.1倍)の同時二軸延伸と、さらに続
けて弛緩処理(縦弛緩率:5%、横弛緩率:5%)を行
う一連の操作を30回行う。延伸、弛緩の一連の操作の
トータルの繰り返し回数は40回であり、延伸のみの操
作のトータルの回数は2回である。その後、210℃の
温度で熱固定を施した後、120℃の冷却ゾーンで縦方
向に2%、横方向に2%の弛緩率で弛緩処理を行い、フ
ィルムを室温に徐冷して巻取る。ここで得られたフィル
ムは、高ヤング率と熱寸法安定性を両立して、さらに厚
みむらも少ない高品質のフィルムである。また、製膜時
のフィルム破れは少なく、高物性、高品質のフィルムが
極めて安定に得られる。Example 25 An unstretched cast film was obtained in the same manner as in Example 1.
Both ends of the unstretched film are gripped with clips and guided to a simultaneous biaxial stretching tenter of a linear motor type, the film temperature is heated to 100 ° C., and the area stretching ratio is 1.21 times (longitudinal ratio: 1.1 times). , A horizontal magnification of 1.1 times) and a series of operations for performing a relaxation treatment (longitudinal relaxation rate: 5%, horizontal relaxation rate: 5%) successively 10 times. Then, an area stretching ratio of 1.21 times (longitudinal ratio: 1.1 times, lateral ratio:
(1.1 times) is performed twice, and the relaxation treatment is not performed. Subsequently, an area stretching ratio of 1.21 times (longitudinal ratio: 1.
A series of operations for simultaneous biaxial stretching of 1 × and a lateral magnification of 1.1 ×, followed by a relaxation treatment (longitudinal relaxation rate: 5%, horizontal relaxation rate: 5%) are performed 30 times. The total number of repetitions of a series of stretching and relaxation operations is 40, and the total number of stretching-only operations is two. Then, after heat-setting at a temperature of 210 ° C., a relaxation treatment of 2% in the vertical direction and 2% in the horizontal direction is performed in a cooling zone of 120 ° C., and the film is gradually cooled to room temperature and wound up. . The film obtained here is a high-quality film that has both high Young's modulus and thermal dimensional stability and has less thickness unevenness. In addition, film breakage during film formation is small, and a film having high physical properties and high quality can be obtained extremely stably.
【0134】実施例26 実施例1と同様にして未延伸キャストフィルムを得る。
この未延伸フィルムの両端部をクリップで把持して、リ
ニアモーター方式の同時二軸延伸テンターに導き、フィ
ルム温度を100℃に加熱し、面積延伸倍率1.21倍
(縦倍率:1.1倍、横倍率:1.1倍)の同時二軸延
伸と、さらに続けて弛緩処理(縦弛緩率:5%、横弛緩
率:5%)を行う一連の操作を30回行う。そして、弛
緩処理(縦弛緩率:5%、横弛緩率:5%)を1回行
い、続けて、温度140℃で同様の同時二軸延伸と、さ
らに続けて弛緩処理を行う一連の操作を5回行う。そし
て、弛緩処理(縦弛緩率:5%、横弛緩率:5%)を1
回行い、続けて、温度170℃で同様の同時二軸延伸
と、さらに続けて弛緩処理を行う一連の操作を7回行
う。延伸、弛緩の一連の操作のトータルの回数は42回
であり、弛緩のみの操作のトータルの回数は2回であ
る。その後、210℃の温度で熱固定を施した後、12
0℃の冷却ゾーンで縦方向に2%、横方向に2%の弛緩
率で弛緩処理を行い、フイルムを室温に徐冷して巻取
る。ここで得られたフィルムは、高ヤング率と熱寸法安
定性を両立して、さらに厚みむらも少ない高品質のフィ
ルムである。また、製膜時のフィルム破れは少なく、高
物性、高品質のフィルムが極めて安定に得られる。Example 26 An unstretched cast film is obtained in the same manner as in Example 1.
Both ends of the unstretched film are gripped with clips and guided to a simultaneous biaxial stretching tenter of a linear motor type, the film temperature is heated to 100 ° C., and the area stretching ratio is 1.21 times (longitudinal ratio: 1.1 times). , A horizontal magnification: 1.1 times), and a series of operations for performing a relaxation treatment (longitudinal relaxation rate: 5%, lateral relaxation rate: 5%) continuously 30 times. Then, a relaxation process (longitudinal relaxation ratio: 5%, horizontal relaxation ratio: 5%) is performed once, and then, a series of operations for performing the same simultaneous biaxial stretching at a temperature of 140 ° C. and further continuing the relaxation process are performed. Perform 5 times. Then, the relaxation process (vertical relaxation rate: 5%, horizontal relaxation rate: 5%) is performed by 1
And a series of operations for performing the same simultaneous biaxial stretching at a temperature of 170 ° C. and further performing a relaxation treatment are performed seven times. The total number of operations of a series of stretching and relaxation operations is 42 times, and the total number of operations of only relaxation operations is 2 times. Then, after heat setting at a temperature of 210 ° C., 12
The film is subjected to a relaxation treatment in a cooling zone of 0 ° C. at a relaxation rate of 2% in the vertical direction and 2% in the horizontal direction, and the film is gradually cooled to room temperature and wound up. The film obtained here is a high-quality film that has both high Young's modulus and thermal dimensional stability and has less thickness unevenness. In addition, film breakage during film formation is small, and a film having high physical properties and high quality can be obtained extremely stably.
【0135】[0135]
【表7】 [Table 7]
【表8】 実施例27、28 押出機2台を用い、280℃に加熱された押出機Aに
は、ポリエチレンテレフタレート(I)(固有粘度0.
65、ガラス転移温度75℃、融解温度255℃、平均
径0.07μmの球状シリカ粒子0.16重量%配合)
のペレットを180℃で3時間真空乾燥した後に供給
し、同じく280℃に加熱された押出機Bには、ポリエ
チレンテレフタレート(II)(固有粘度0.65、ガラ
ス転移温度75℃、融解温度255℃、平均径0.3μ
mの球状架橋ポリスチレン粒子0.2重量%と平均径
0.8μmの球状架橋ポリスチレン粒子0.01重量%
配合)のペレットを180℃で3時間真空乾燥した後に
供給し、Tダイ中で合流し(積層比I/II=10/
1)、表面温度25℃のキャストドラムに静電密着させ
て、冷却固化し、積層未延伸フィルムを作成する。この
未延伸フィルムに対して、実施例27は実施例1と同様
の延伸条件で製造し、さらに実施例28は、実施例20
と同様の延伸条件にして製造する。得られた厚さ6.5
μmのフィルムに磁気記録媒体用の加工を施して、ビデ
オテープ、データテープとしての実用特性を評価する。
結果は、表9のとおり、優れた特性を有している。[Table 8] Examples 27 and 28 Using two extruders, extruder A heated to 280 ° C. was provided with polyethylene terephthalate (I) (intrinsic viscosity of 0.1).
65, glass transition temperature 75 ° C, melting temperature 255 ° C, 0.16% by weight of spherical silica particles having an average diameter of 0.07 µm)
The pellets were supplied after being vacuum-dried at 180 ° C. for 3 hours and supplied to an extruder B also heated to 280 ° C., where polyethylene terephthalate (II) (intrinsic viscosity: 0.65, glass transition temperature: 75 ° C., melting temperature: 255 ° C.) , Average diameter 0.3μ
m 0.2% by weight of spherical crosslinked polystyrene particles and 0.01% by weight of spherical crosslinked polystyrene particles having an average diameter of 0.8 μm
The blended pellets were supplied after being vacuum-dried at 180 ° C. for 3 hours, and joined in a T-die (stacking ratio I / II = 10 /
1) Electrostatically contact with a cast drum having a surface temperature of 25 ° C., solidify by cooling, and create a laminated unstretched film. For this unstretched film, Example 27 was produced under the same stretching conditions as in Example 1;
It is manufactured under the same stretching conditions as described above. Obtained thickness 6.5
A μm film is processed for a magnetic recording medium, and its practical properties as a video tape and a data tape are evaluated.
The results have excellent characteristics as shown in Table 9.
【0136】比較例10 実施例27と同様にして得た未延伸フィルムの両端部を
クリップで把持して、リニアモーター方式の同時二軸延
伸テンターに導き、フィルム温度を95℃に加熱し、縦
方向と横方向に各々3.5倍の倍率で同時二軸延伸した
後、さらに、温度110℃で縦方向と横方向に各々1.
3倍の倍率で同時二軸延伸し、210℃の温度で熱固定
を施した後、120℃の冷却ゾ−ンで縦方向に2%、横
方向に2%の弛緩率で弛緩処理を行い、フイルムを室温
に徐冷して巻取って、厚さ6.5μmのフィルムを得
る。得られたフィルムに磁気記録媒体用の加工を施した
フィルムは、表9に示したとおり、磁気記録媒体用とし
ての実用特性が本発明のフィルムと比較して劣る。Comparative Example 10 Both ends of the unstretched film obtained in the same manner as in Example 27 were gripped with clips and guided to a linear motor type simultaneous biaxial stretching tenter, and the film was heated to 95 ° C. After simultaneous biaxial stretching at a magnification of 3.5 times in the direction and the transverse direction, the film was further stretched in the longitudinal and transverse directions at a temperature of 110 ° C.
Simultaneous biaxial stretching at a magnification of 3 times, heat-setting at a temperature of 210 ° C, and a relaxation treatment of 2% in the longitudinal direction and 2% in the horizontal direction in a cooling zone at 120 ° C. The film is gradually cooled to room temperature and wound up to obtain a film having a thickness of 6.5 μm. As shown in Table 9, the film obtained by subjecting the obtained film to processing for a magnetic recording medium is inferior in practical characteristics to a magnetic recording medium as compared with the film of the present invention.
【0137】[0137]
【表9】 実施例29、30 押出機2台を用い、280℃に加熱された押出機Aに
は、ポリエチレンテレフタレート(I)(固有粘度0.
65、ガラス転移温度75℃、融解温度255℃、粒子
なし)のペレットを180℃で3時間真空乾燥した後に
供給し、同じく310℃に加熱された押出機Bには、ポ
リエチレンテレフタレート(II)(固有粘度0.65、
ガラス転移温度75℃、融解温度255℃、平均径0.
3μmの球状架橋ポリスチレン粒子6重量%配合)のペ
レットを180℃で3時間真空乾燥した後に供給し、T
ダイ中で合流し(積層比I/II=250/1)、表面温
度25℃のキャストドラムに静電密着させて、冷却固化
し、積層未延伸フィルムを作成する。実施例29は実施
例1と同様の延伸条件で製造し、さらに実施例30は実
施例20と同様の延伸条件で製造する。得られた厚さ7
5μmのフィルムに磁気記録媒体用の加工を施して、フ
ロッピーディスクとしての実用特性を評価する。結果
は、表10のとおり、優れた特性を有している。[Table 9] Examples 29 and 30 Using two extruders, polyethylene terephthalate (I) (having an intrinsic viscosity of 0. 0) was heated at 280 ° C.
65, a glass transition temperature of 75 ° C., a melting temperature of 255 ° C., and no particles) were supplied after being vacuum-dried at 180 ° C. for 3 hours, and the extruder B also heated to 310 ° C. was supplied with polyethylene terephthalate (II) (II). Intrinsic viscosity 0.65,
Glass transition temperature 75 ° C, melting temperature 255 ° C, mean diameter 0.
3 μm spherical cross-linked polystyrene particles (containing 6% by weight) were dried in vacuo at 180 ° C. for 3 hours, and supplied.
They are joined in a die (lamination ratio I / II = 250/1), electrostatically adhered to a cast drum having a surface temperature of 25 ° C., solidified by cooling, and a laminated unstretched film is prepared. Example 29 is manufactured under the same stretching conditions as in Example 1, and Example 30 is manufactured under the same stretching conditions as Example 20. The resulting thickness 7
A 5 μm film is processed for a magnetic recording medium, and the practical characteristics as a floppy disk are evaluated. The results have excellent properties as shown in Table 10.
【0138】比較例11 実施例29と同様にして得た未延伸フィルムの両端部を
クリップで把持して、リニアモーター方式の同時二軸延
伸テンターに導き、フィルム温度を95℃に加熱し、縦
方向と横方向に各々4倍の倍率で同時二軸延伸し、21
0℃の温度で熱固定を施した後、120℃の冷却ゾーン
で縦方向に2%、横方向に2%の弛緩率で弛緩処理を行
い、フィルムを室温に徐冷して巻取って、厚さ75μm
のフィルムを得る。得られたフィルムにフロッピーディ
スク用としての加工を施したフィルムは、表10に示し
たとおり、フロッピーディスク用としての実用特性が本
発明のフィルムと比較して劣る。Comparative Example 11 Both ends of an unstretched film obtained in the same manner as in Example 29 were gripped with clips and led to a simultaneous biaxial stretching tenter of a linear motor type, and the film was heated to 95 ° C. The film is simultaneously biaxially stretched in the direction and the transverse direction at a magnification of 4 times each,
After heat setting at a temperature of 0 ° C., a relaxation treatment of 2% in the vertical direction and 2% in the horizontal direction is performed in a cooling zone of 120 ° C., and the film is gradually cooled to room temperature and wound up. 75 μm thickness
To obtain a film. As shown in Table 10, the film obtained by subjecting the obtained film to processing for a floppy disk has inferior practical characteristics for a floppy disk as compared with the film of the present invention.
【0139】[0139]
【表10】 実施例31、32 ポリエチレンテレフタレート(固有粘度0.65、ガラ
ス転移温度75℃、融点255℃、平均径1.0μmの
二酸化ケイ素粒子0.2重量%配合)のペレットを18
0℃で3時間真空乾燥した後に、280℃に加熱された
押出機に供給して溶融押出し、Tダイよりシート状に吐
出する。さらにこのシートを表面温度25℃の冷却ドラ
ム上に静電気力で密着させて冷却固化し、未延伸キャス
トフィルムを得る。この未延伸フィルムの片面に融着防
止層として下記組成の塗剤を乾燥後の塗布厚みが0.5
μmになるようにグラビアコーターで塗工する。[Table 10] Examples 31 and 32 A pellet of polyethylene terephthalate (containing 0.25% by weight of silicon dioxide particles having an intrinsic viscosity of 0.65, a glass transition temperature of 75 ° C, a melting point of 255 ° C, and an average diameter of 1.0 µm) was prepared.
After vacuum drying at 0 ° C. for 3 hours, it is supplied to an extruder heated to 280 ° C., melt-extruded, and discharged from a T-die into a sheet. Further, this sheet is brought into close contact with a cooling drum having a surface temperature of 25 ° C. by electrostatic force to be cooled and solidified to obtain an unstretched cast film. On one side of this unstretched film, a coating having the following composition as a fusion-adhesion layer has a coating thickness of 0.5 after drying.
Coat with a gravure coater to a thickness of μm.
【0140】 (塗剤の組成) アクリル酸エステル :14.0重量% アミノ変性シリコーン : 5.9重量% イソシアネート : 0.1重量% 水 :80.0重量% その後、同時二軸テンターを用いて、実施例31は、実
施例1と同様の延伸条件で製造し、さらに実施例32
は、実施例20と同様の延伸条件で製造する。得られた
厚さ4μmのフィルムに熱転写リボン用加工を施して、
熱転写リボン用としての実用特性を評価する。結果は、
表11のとおり、優れた特性を有している。(Composition of Coating Material) Acrylate: 14.0% by weight Amino-modified silicone: 5.9% by weight Isocyanate: 0.1% by weight Water: 80.0% by weight Then, using a simultaneous biaxial tenter Example 31 was manufactured under the same stretching conditions as in Example 1;
Is manufactured under the same stretching conditions as in Example 20. The obtained film having a thickness of 4 μm is processed for a thermal transfer ribbon,
Evaluate practical properties for thermal transfer ribbons. Result is,
As shown in Table 11, it has excellent characteristics.
【0141】比較例12 実施例31と同様にして、片面に融着防止層を塗布した
未延伸フィルムを得る。その後、同時二軸テンターを用
いて、比較例10の延伸条件と同様にして厚さ4μmの
熱転写リボン用のフィルムを得る。熱転写リボン用に加
工を施したフィルムは、表11に示したとおり、熱転写
リボン用としての実用特性が本発明のフィルムと比較し
て劣る。Comparative Example 12 In the same manner as in Example 31, an unstretched film having one surface coated with an anti-fusing layer was obtained. Thereafter, using a simultaneous biaxial tenter, a film for a thermal transfer ribbon having a thickness of 4 μm is obtained in the same manner as in the stretching conditions of Comparative Example 10. As shown in Table 11, the film processed for the thermal transfer ribbon has inferior practical properties for the thermal transfer ribbon as compared with the film of the present invention.
【0142】[0142]
【表11】 実施例33、34 ポリエチレンテレフタレート(固有粘度0.65、ガラ
ス転移温度75℃、融点255℃、平均径1.2μmの
凝集シリカ粒子0.1重量%配合)のペレットを180
℃で3時間真空乾燥した後に、280℃に加熱された押
出機に供給して溶融押出し、Tダイよりシート状に吐出
する。さらにこのシートを表面温度25℃の冷却ドラム
上に静電気力で密着させて冷却固化し、未延伸キャスト
フィルムを得る。この未延伸フィルムを、同時二軸テン
ターを用いて、実施例33は実施例1と同様の延伸条件
で製造し、さらに実施例34は実施例20と同様の延伸
条件にして作成した厚さ4μmのフィルムを、コンデン
サー用に加工を施して、実用特性を評価する。結果は、
表12のとおり、優れた特性を有している。[Table 11] Examples 33 and 34 180 pellets of polyethylene terephthalate (containing 0.15% by weight of aggregated silica particles having an intrinsic viscosity of 0.65, a glass transition temperature of 75 ° C, a melting point of 255 ° C, and an average diameter of 1.2 µm) were mixed.
After vacuum drying at 3 ° C. for 3 hours, the mixture is supplied to an extruder heated to 280 ° C., melt-extruded, and discharged from a T-die into a sheet. Further, this sheet is brought into close contact with a cooling drum having a surface temperature of 25 ° C. by electrostatic force to be cooled and solidified to obtain an unstretched cast film. This unstretched film was produced using the same biaxial tenter in Example 33 under the same stretching conditions as in Example 1, and Example 34 was produced under the same stretching conditions as in Example 20 with a thickness of 4 μm. The film is processed for a condenser and the practical characteristics are evaluated. Result is,
As shown in Table 12, it has excellent characteristics.
【0143】比較例13 実施例33と同様にして得た未延伸フィルムに対して、
比較例11と同様の延伸条件で得た厚さ4μmのフィル
ムを、コンデンサー用に加工を施して、実用特性を評価
する。表12に示したとおり、コンデンサー用としての
実用特性が本発明のフィルムと比較して劣る。Comparative Example 13 An unstretched film obtained in the same manner as in Example 33 was
A film having a thickness of 4 μm obtained under the same stretching conditions as in Comparative Example 11 is processed for a capacitor, and the practical characteristics are evaluated. As shown in Table 12, the practical properties for capacitors are inferior to those of the film of the present invention.
【0144】[0144]
【表12】 実施例35、36 ポリエチレンテレフタレート(固有粘度0.65、ガラ
ス転移温度75℃、融点255℃、平均径1.2μmの
凝集シリカ粒子0.4重量%配合)のペレットを180
℃で3時間真空乾燥した後に、280℃に加熱された押
出機に供給して溶融押出し、Tダイよりシート状に吐出
する。さらにこのシートを表面温度25℃の冷却ドラム
上に静電気力で密着させて冷却固化し、未延伸キャスト
フィルムを得る。この未延伸フィルムを、同時二軸テン
ターを用いて、実施例35は実施例1と同様の延伸条件
で製造し、さらに実施例36は実施例20と同様の延伸
条件にして作成した厚さ4μmのフィルムを、感熱孔版
原紙用に加工を施して、実用特性を評価する。結果は、
表13のとおり、優れた特性を有している。[Table 12] Examples 35 and 36 A pellet of polyethylene terephthalate (containing 0.45% by weight of aggregated silica particles having an intrinsic viscosity of 0.65, a glass transition temperature of 75 ° C, a melting point of 255 ° C, and an average diameter of 1.2 µm) was mixed with 180
After vacuum drying at 3 ° C. for 3 hours, the mixture is supplied to an extruder heated to 280 ° C., melt-extruded, and discharged from a T-die into a sheet. Further, this sheet is brought into close contact with a cooling drum having a surface temperature of 25 ° C. by electrostatic force to be cooled and solidified to obtain an unstretched cast film. This unstretched film was produced using the same biaxial tenter in Example 35 under the same stretching conditions as in Example 1, and Example 36 was produced under the same stretching conditions as in Example 20 with a thickness of 4 μm. This film is processed for heat-sensitive stencil paper, and its practical characteristics are evaluated. Result is,
As shown in Table 13, it has excellent characteristics.
【0145】比較例14 実施例35と同様にして得た未延伸フィルムに対して、
比較例11と同様の延伸条件で得た厚さ4μmのフィル
ムを、感熱孔版用原紙に加工を施して、実用特性を評価
する。表13に示したとおり、感熱孔版用としての実用
特性が本発明のフィルムと比較して劣る。Comparative Example 14 An unstretched film obtained in the same manner as in Example 35 was
A film having a thickness of 4 μm obtained under the same stretching conditions as in Comparative Example 11 is processed into a heat-sensitive stencil sheet to evaluate its practical characteristics. As shown in Table 13, the practical properties for heat-sensitive stencil printing are inferior to those of the film of the present invention.
【0146】[0146]
【表13】 [Table 13]
【0147】[0147]
【発明の効果】本発明の製造法によれば、高剛性、低熱
収縮性で、かつ厚みむら、表面欠点も少ない高品質のポ
リエステルフィルムを、破れ頻度も低下させて安定製膜
できる。本発明は、磁気記録媒体用、コンデンサー用、
熱転写リボン用、感熱孔版印刷用、包装用など各種フィ
ルムの製造法として広く活用が可能であり、また、本発
明により、従来のポリエステルフィルムの機械特性を遙
かに凌ぐ物性と品質を有した新規なポリエステルフィル
ムが得られる。According to the production method of the present invention, a high-quality polyester film having high rigidity and low heat shrinkage and having little unevenness in thickness and few surface defects can be stably formed with a reduced frequency of tearing. The present invention is for magnetic recording media, for capacitors,
It can be widely used as a method for manufacturing various films such as for thermal transfer ribbons, heat-sensitive stencil printing, and packaging. In addition, according to the present invention, a new polyester film having physical properties and quality far exceeding the mechanical properties of conventional polyester films A polyester film is obtained.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B29K 67:00 H01G 4/24 331Z B29L 7:00 Fターム(参考) 2H111 BB06 BB08 4F210 AA24 AE01 AG01 AH33 AH38 AH81 AR06 AR19 AR20 QA02 QC07 QC17 QD13 QG01 QG18 QL03 5D006 CB01 CB07 5E082 AB05 EE05 EE24 EE37 FG06 FG36 FG48 FG54 GG04 JJ04 JJ22 MM22 MM24 PP06 PP08 PP10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) // B29K 67:00 H01G 4/24 331Z B29L 7:00 F term (reference) 2H111 BB06 BB08 4F210 AA24 AE01 AG01 AH33 AH38 AH81 AR06 AR19 AR20 QA02 QC07 QC17 QD13 QG01 QG18 QL03 5D006 CB01 CB07 5E082 AB05 EE05 EE24 EE37 FG06 FG36 FG48 FG54 GG04 JJ04 JJ22 MM22 MM24 PP06 PP08 PP10
Claims (17)
フィルムを同時二軸テンターを用いて延伸するポリエス
テルフィルムの製造法において、フィルムの面積延伸倍
率が1.0005〜3.0倍の倍率で微延伸する操作を
3回以上含み、トータルの面積延伸倍率が25〜150
倍であることを特徴とするポリエステルフィルムの製造
法。In a method for producing a polyester film, in which a film composed of a resin containing a polyester as a main component is stretched by using a simultaneous biaxial tenter, the film is stretched at an area stretching magnification of from 0.0005 to 3.0 times. The stretching operation is performed three times or more, and the total area stretching ratio is 25 to 150.
A method for producing a polyester film, characterized in that the film is doubled.
とを特徴とする請求項1記載のポリエステルフィルムの
製造法。2. The method for producing a polyester film according to claim 1, wherein the fine stretching operation is continuously performed three times or more.
満の回数で繰り返すことを特徴とする請求項1または2
記載のポリエステルフィルムの製造法。3. The method according to claim 1, wherein the fine stretching is repeated 10 times or more and less than 10,000 times.
A method for producing the polyester film as described above.
(ガラス転移温度(Tg)+10)℃〜(Tg+12
0)℃の温度範囲で行うことを特徴とする請求項1〜3
のいずれかに記載のポリエステルフィルムの製造法。4. The fine stretching of the unstretched film is performed at (glass transition temperature (Tg) +10) ° C. to (Tg + 12
0) The process is performed in a temperature range of 0 ° C.
The method for producing a polyester film according to any one of the above.
晶化度が3%以上、30%未満になるまで連続的に繰り
返すことを特徴とする請求項1〜4のいずれかに記載の
ポリエステルフィルムの製造法。5. The non-stretched film according to claim 1, wherein the fine stretching is continuously repeated until the crystallinity becomes 3% or more and less than 30%. Manufacturing method of polyester film.
フィルムを同時二軸テンターを用いて延伸して得られる
ポリエステルフィルムの製造法において、フィルムを延
伸した後、続いて弛緩する一連の操作を2回以上100
00回未満含み、トータルの面積延伸倍率が25〜15
0倍であることを特徴とするポリエステルフィルムの製
造法。6. A method for producing a polyester film obtained by stretching a film composed of a resin containing a polyester as a main component using a simultaneous biaxial tenter, a series of operations of stretching the film and subsequently relaxing the film. More than 100
Less than 00 times, total area stretching ratio is 25-15
A method for producing a polyester film, wherein the ratio is 0 times.
積延伸倍率が1.005〜10倍であり、弛緩操作にお
ける弛緩率は弛緩直前の縦、横各々の方向の長さに対し
て0.1〜80%であることを特徴とする請求項6記載
のポリエステルフィルムの製造法。7. The stretching ratio in one stretching in the stretching operation is 1.005 to 10 times, and the relaxation ratio in the relaxing operation is 0.1 to 1.0 in the vertical and horizontal directions just before the relaxation. The method for producing a polyester film according to claim 6, wherein the content is 1 to 80%.
リニアモーター方式であることを特徴とする請求項1〜
7のいずれかに記載のポリエステルフィルムの製造法。8. The method according to claim 1, wherein the clip is driven by a linear motor when extending.
8. The method for producing a polyester film according to any one of 7.
されてなることを特徴とするポリエステルフィルム。9. A polyester film produced by the method according to claim 1.
和が8〜30GPaであり、100℃、30分の熱収縮
率の和が2%以下であることを特徴とする請求項9記載
のポリエステルフィルム。10. The film according to claim 9, wherein the sum of the Young's modulus in the longitudinal direction and the transverse direction of the film is 8 to 30 GPa, and the sum of the heat shrinkage rates at 100 ° C. for 30 minutes is 2% or less. Polyester film.
徴とする請求項9または10記載のポリエステルフィル
ム。11. The polyester film according to claim 9, wherein the degree of crystallinity is 30 to 90%.
ート、ポリエチレンナフタレートまたはこれらの共重合
体または変成体であることを特徴とする請求項9〜11
のいずれかに記載のポリエステルフィルム。12. The polyester according to claim 9, wherein the polyester is polyethylene terephthalate, polyethylene naphthalate, or a copolymer or modified product thereof.
The polyester film according to any one of the above.
とする請求項9〜12のいずれかに記載のポリエステル
フィルム。13. The polyester film according to claim 9, which has an intrinsic viscosity of 0.6 or more.
のポリエステルフィルムからなることを特徴とする磁気
記録媒体。14. A magnetic recording medium comprising the polyester film according to any one of claims 9 to 13.
ポリエステルフィルムからなることを特徴とするコンデ
ンサー。15. A capacitor comprising the polyester film according to any one of claims 9 to 13.
ポリエステルフィルムからなることを特徴とする熱転写
リボン。16. A thermal transfer ribbon comprising the polyester film according to any one of claims 9 to 13.
ポリエステルフィルムからなることを特徴とする感熱孔
版。17. A heat-sensitive stencil comprising the polyester film according to any one of claims 9 to 13.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11006363A JP2000202904A (en) | 1999-01-13 | 1999-01-13 | Polyester film and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11006363A JP2000202904A (en) | 1999-01-13 | 1999-01-13 | Polyester film and manufacture thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000202904A true JP2000202904A (en) | 2000-07-25 |
JP2000202904A5 JP2000202904A5 (en) | 2005-07-07 |
Family
ID=11636288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11006363A Pending JP2000202904A (en) | 1999-01-13 | 1999-01-13 | Polyester film and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000202904A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007201287A (en) * | 2006-01-27 | 2007-08-09 | Kyocera Corp | Manufacturing method of electronic parts |
JP2008255288A (en) * | 2007-04-09 | 2008-10-23 | Teijin Ltd | Biaxially oriented polyester film |
JP2010240976A (en) * | 2009-04-06 | 2010-10-28 | Japan Steel Works Ltd:The | Method for producing stretched film |
JP2010253832A (en) * | 2009-04-27 | 2010-11-11 | Teijin Dupont Films Japan Ltd | Film roll for optical film |
JP2012505542A (en) * | 2008-10-08 | 2012-03-01 | エスケーシーカンパニーリミテッド | Multilayer weather resistant film for solar cells |
JP2012093726A (en) * | 2010-09-30 | 2012-05-17 | Jiroo Corporate Plan:Kk | Protective sheet and polarizing plate |
JP2013200470A (en) * | 2012-03-26 | 2013-10-03 | Sumitomo Chemical Co Ltd | Polarizing plate and liquid crystal display device |
JP2014195985A (en) * | 2013-03-08 | 2014-10-16 | 東レ株式会社 | Biaxially oriented polyester film and method for manufacturing the same |
KR20170129096A (en) * | 2015-03-17 | 2017-11-24 | 닛폰고세이가가쿠고교 가부시키가이샤 | Polyvinyl alcohol film, method for producing polyvinyl alcohol film, polarizing film, and polarizing plate |
JP2018184508A (en) * | 2017-04-25 | 2018-11-22 | 東レ株式会社 | Polyester film |
JP2021066882A (en) * | 2019-10-28 | 2021-04-30 | エスケイシー・カンパニー・リミテッドSkc Co., Ltd. | Polyester film and flexible display apparatus comprising the same |
KR20210050481A (en) * | 2019-10-28 | 2021-05-07 | 에스케이씨 주식회사 | Polyester film and flexible display apparatus comprising same |
JP2022027914A (en) * | 2017-04-25 | 2022-02-14 | 東レ株式会社 | Polyester film |
CN114103175A (en) * | 2021-11-22 | 2022-03-01 | 佛山市彩龙镀膜包装材料有限公司 | A kind of double-sided aluminized polyester film and preparation method thereof |
-
1999
- 1999-01-13 JP JP11006363A patent/JP2000202904A/en active Pending
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007201287A (en) * | 2006-01-27 | 2007-08-09 | Kyocera Corp | Manufacturing method of electronic parts |
JP2008255288A (en) * | 2007-04-09 | 2008-10-23 | Teijin Ltd | Biaxially oriented polyester film |
JP2012505542A (en) * | 2008-10-08 | 2012-03-01 | エスケーシーカンパニーリミテッド | Multilayer weather resistant film for solar cells |
KR101327470B1 (en) | 2008-10-08 | 2013-11-08 | 에스케이씨 주식회사 | weatherable solar cell films having multi-layer |
US9028952B2 (en) | 2008-10-08 | 2015-05-12 | Skc Co., Ltd. | Multilayered weatherable film for solar cell |
JP2010240976A (en) * | 2009-04-06 | 2010-10-28 | Japan Steel Works Ltd:The | Method for producing stretched film |
JP2010253832A (en) * | 2009-04-27 | 2010-11-11 | Teijin Dupont Films Japan Ltd | Film roll for optical film |
JP2012093726A (en) * | 2010-09-30 | 2012-05-17 | Jiroo Corporate Plan:Kk | Protective sheet and polarizing plate |
JP2013200470A (en) * | 2012-03-26 | 2013-10-03 | Sumitomo Chemical Co Ltd | Polarizing plate and liquid crystal display device |
JP2014195985A (en) * | 2013-03-08 | 2014-10-16 | 東レ株式会社 | Biaxially oriented polyester film and method for manufacturing the same |
KR20170129096A (en) * | 2015-03-17 | 2017-11-24 | 닛폰고세이가가쿠고교 가부시키가이샤 | Polyvinyl alcohol film, method for producing polyvinyl alcohol film, polarizing film, and polarizing plate |
KR102461860B1 (en) | 2015-03-17 | 2022-11-01 | 미쯔비시 케미컬 주식회사 | Polyvinyl alcohol film, method for producing polyvinyl alcohol film, polarizing film, and polarizing plate |
JP7035334B2 (en) | 2017-04-25 | 2022-03-15 | 東レ株式会社 | Polyester film. |
JP2018184508A (en) * | 2017-04-25 | 2018-11-22 | 東レ株式会社 | Polyester film |
JP7248092B2 (en) | 2017-04-25 | 2023-03-29 | 東レ株式会社 | polyester film. |
JP2022027914A (en) * | 2017-04-25 | 2022-02-14 | 東レ株式会社 | Polyester film |
JP2021066882A (en) * | 2019-10-28 | 2021-04-30 | エスケイシー・カンパニー・リミテッドSkc Co., Ltd. | Polyester film and flexible display apparatus comprising the same |
JP7133601B2 (en) | 2019-10-28 | 2022-09-08 | エスケイシー・カンパニー・リミテッド | Polyester film and flexible display device including the same |
KR20210050482A (en) * | 2019-10-28 | 2021-05-07 | 에스케이씨 주식회사 | Polyester film and flexible display apparatus comprising same |
US11551584B2 (en) | 2019-10-28 | 2023-01-10 | Skc Co., Ltd. | Polyester film and flexible display apparatus comprising same |
KR20210050481A (en) * | 2019-10-28 | 2021-05-07 | 에스케이씨 주식회사 | Polyester film and flexible display apparatus comprising same |
US11630239B2 (en) | 2019-10-28 | 2023-04-18 | Skc Co., Ltd. | Polyester film and flexible display apparatus comprising same |
KR102539936B1 (en) * | 2019-10-28 | 2023-06-07 | 에스케이마이크로웍스 주식회사 | Polyester film and flexible display apparatus comprising same |
KR102540897B1 (en) * | 2019-10-28 | 2023-06-12 | 에스케이마이크로웍스 주식회사 | Polyester film and flexible display apparatus comprising same |
CN114103175A (en) * | 2021-11-22 | 2022-03-01 | 佛山市彩龙镀膜包装材料有限公司 | A kind of double-sided aluminized polyester film and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7214339B2 (en) | Polyester film and a production method thereof | |
JP4023090B2 (en) | Biaxially oriented polyester film for magnetic recording tape and magnetic recording tape | |
KR100626771B1 (en) | Biaxially Oriented Polyester Film and Their Production Method | |
US6562274B1 (en) | Process of making biaxially oriented polyester films | |
JP2989080B2 (en) | Laminated polyester film for magnetic recording media | |
JP2000202904A (en) | Polyester film and manufacture thereof | |
JP2000302892A (en) | Polyester film | |
KR100297271B1 (en) | Magnetic Tape for Digital Audio Tape Recorder Cassette and Biaxially Oriented Polyester Substrate Film Used in It | |
JP4390025B2 (en) | Biaxially oriented polyester film | |
JP2002307550A (en) | Biaxially oriented polyester film and its production method | |
JP3804311B2 (en) | Polyester film and method for producing the same | |
JP4590693B2 (en) | Biaxially oriented polyester film | |
JP3726456B2 (en) | Simultaneously biaxially stretched polyester film and method for producing the same | |
JP4066768B2 (en) | Biaxially oriented polyester film | |
JP3748165B2 (en) | Polyester film and method for producing the same | |
JP4232378B2 (en) | Biaxially oriented polyester film and method for producing the same | |
JP4742396B2 (en) | Biaxially oriented polyester film and method for producing the same | |
JP4356148B2 (en) | Biaxially oriented polyester film and method for producing the same | |
JP2000169599A (en) | Polyester film and its manufacture | |
JP5112923B2 (en) | Magnetic recording medium support | |
JP2000336183A (en) | Biaxially oriented polyester film and its production | |
JP3048737B2 (en) | Method for producing biaxially oriented polyethylene 2,6-naphthalate film | |
JP3238589B2 (en) | Biaxially oriented laminated polyester film | |
JP2000071329A (en) | Simultaneously biaxially stretched polyester film and production thereof | |
JP2000025107A (en) | Biaxially oriented polyester film and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041029 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041029 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060328 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061107 |