JP2555707B2 - Process for producing polyethylene 2,6-naphthalate film - Google Patents

Process for producing polyethylene 2,6-naphthalate film

Info

Publication number
JP2555707B2
JP2555707B2 JP21201588A JP21201588A JP2555707B2 JP 2555707 B2 JP2555707 B2 JP 2555707B2 JP 21201588 A JP21201588 A JP 21201588A JP 21201588 A JP21201588 A JP 21201588A JP 2555707 B2 JP2555707 B2 JP 2555707B2
Authority
JP
Japan
Prior art keywords
film
stretching
longitudinal
polyethylene
stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21201588A
Other languages
Japanese (ja)
Other versions
JPH0259324A (en
Inventor
多保田  規
明人 濱野
正 奥平
勝朗 久世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP21201588A priority Critical patent/JP2555707B2/en
Publication of JPH0259324A publication Critical patent/JPH0259324A/en
Application granted granted Critical
Publication of JP2555707B2 publication Critical patent/JP2555707B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はポリエチレン2,6−ナフタレートフイルムの
製造方法に関し、二軸延伸ポリエチレン2,6−ナフタレ
ートフイルム、特に縦方向に強度の増大された非対称配
向二軸延伸ポリエチレン2,6−ナフタレートフイルムを
製造する際の製膜安定性に優れた製造方法を提供するも
のである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a polyethylene 2,6-naphthalate film, which is a biaxially stretched polyethylene 2,6-naphthalate film, and particularly has an increased strength in the machine direction. Another object of the present invention is to provide a production method having excellent film-forming stability when producing an asymmetrically oriented biaxially stretched polyethylene 2,6-naphthalate film.

(従来の技術) 一般にポリエチレンテレフタレートに代表されるポリ
エステルは物理的および化学的諸特性に優れているので
繊維用、成型品用の他に磁気テープ用、フロッピーディ
スク用、写真用、コンデンサー用、包装用、レントゲン
用などのフイルムとしても広く用いられている。
(Prior Art) Generally, polyester typified by polyethylene terephthalate has excellent physical and chemical properties, so that it can be used for magnetic tapes, floppy disks, photographs, capacitors, packaging in addition to fibers and moldings. It is also widely used as a film for radiography and X-ray.

特に磁気テープの分野ではポリエチレンテレフタレー
トを主成分とするベースフイルムが広い範囲で使用され
ており、その適用範囲は更に拡がる傾向にある。一方、
技術の高度化に伴い、装置および磁気テープの小型化が
求められ、そのためベースフイルムの一層の薄膜化、す
なわち高強力化が必要になり、例えばポリエチレンテレ
フタレートからなるベースフイルムを製造する際、一軸
方向に強く延伸してテープ強度を増加させるテンシライ
ズ化などが採用されている。
Particularly in the field of magnetic tape, a base film containing polyethylene terephthalate as a main component is used in a wide range, and its application range tends to be further expanded. on the other hand,
With the advancement of technology, downsizing of devices and magnetic tapes is required, and therefore it is necessary to make the base film even thinner, that is, to have higher strength. For example, when manufacturing a base film made of polyethylene terephthalate, it is uniaxial. Tensileizing, which strongly stretches the tape to increase the strength of the tape, is used.

(発明が解決しようとする課題) しかしながらポリエチレンテレフタレートを原料とし
てテンシライズ化した場合、得られるベースフイルムの
5%伸長時応力が最大20kg/mm2程度であり、業界の要求
に対して不十分であった。また、特殊な延伸条件を採用
することにより、強度的に要求を満たすベースフイルム
が得られても強度と他の特性、例えば熱収縮特性との間
には互いに相反する傾向があるため、例えば上記のベー
スフイルムを磁気テープに加工するために金属蒸着法を
採用する場合、ベースフイルムが100℃以上に加熱され
るため熱収縮を生じ、品質が低下するという問題があっ
た。
(Problems to be Solved by the Invention) However, when polyethylene terephthalate is used as a raw material and tensilized, the stress at the time of 5% elongation of the obtained base film is about 20 kg / mm 2 at the maximum, which is insufficient for the demand of the industry. It was Further, by adopting special stretching conditions, even if a base film satisfying the strength requirement is obtained, the strength and other properties, such as heat shrinkage properties, tend to conflict with each other. When the metal vapor deposition method is used to process the base film into a magnetic tape, the base film is heated to 100 ° C. or higher, so that heat shrinkage occurs and the quality is deteriorated.

これらの問題点を解決することを目的として、従来か
ら種々のベースフイルムの提案がなされ、その中のひと
つとしてポリエチレン2,6−ナフタレートフイルムが知
られている。
Various base films have been proposed for the purpose of solving these problems, and polyethylene 2,6-naphthalate film is known as one of them.

しかし、強度と耐熱性を同時に満足するためには従来
の縦・横・縦方向延伸からなる再縦延伸法、或いは横・
縦延伸法を行うことがポリエチレン2,6−ナフタレート
フイルムでも必要である。特に8ミリビデオ用ベースフ
イルムの如く薄膜であって、しかも縦方向に高い強力を
要求されるフイルムの製膜に際しては、これら従来の再
縦延伸法や横・縦延伸法においては生産性の低下が著し
く、かつ工程の不安定に起因する品質斑が大きいという
問題があった。すなわち、再縦延伸法では縦方向および
横方向に延伸されて配向および結晶化が相当に進み、し
かも主配向方向が横方向になっているフイルムを再び縦
方向に延伸して分子鎖の配向方向を縦方向に戻すので、
その延伸に多大のエネルギーを必要とし、かつフイルム
破れが発生し易いという問題があった。また、横・縦延
伸法では一旦横方向に延伸された広幅のフイルムを縦方
向に高倍率に延伸するので、この縦方向の延伸の際にフ
イルム破れが発生し易く、また工程が不安定であるため
品質斑が大きいという問題があった。
However, in order to satisfy both strength and heat resistance at the same time, the conventional re-longitudinal stretching method consisting of longitudinal / transverse / longitudinal stretching or
It is also necessary for polyethylene 2,6-naphthalate film to be subjected to a longitudinal stretching method. In particular, when forming a film that is a thin film such as a base film for 8 mm video and is required to have a high strength in the longitudinal direction, the productivity is lowered by the conventional re-longitudinal stretching method and the transverse / longitudinal stretching method. However, there is a problem that the quality unevenness is large due to the instability of the process. That is, in the re-longitudinal stretching method, the film is stretched in the longitudinal direction and the transverse direction to significantly advance the orientation and crystallization, and the film whose main orientation direction is the transverse direction is re-oriented in the longitudinal direction to re-orient the molecular chains. Back in the vertical direction,
There has been a problem that a large amount of energy is required for the stretching and that the film is easily broken. Further, in the transverse / longitudinal stretching method, since a wide film once stretched in the transverse direction is stretched at a high ratio in the longitudinal direction, film tearing easily occurs during the longitudinal stretching, and the process is unstable. Therefore, there was a problem that the quality unevenness was large.

(課題を解決するための手段) 本発明者らは上記従来技術の問題点に鑑み、延伸され
たポリエチレン2,6−ナフタレートフイルムの製造方法
において、横・縦延伸に続いて再縦延伸を行なうことに
より、高強度であると同時に操業安定性が向上したポリ
エチレン2,6−ナフタレートフイルムの製造方法を提供
しようとするものである。
(Means for Solving the Problems) In view of the problems of the above-mentioned conventional techniques, the inventors of the present invention, in a method for producing a stretched polyethylene 2,6-naphthalate film, carry out re-longitudinal stretching after transverse / longitudinal stretching. By doing so, it is intended to provide a method for producing a polyethylene 2,6-naphthalate film having high strength and improved operational stability.

即ち、本発明はポリエチレン2,6−ナフタレートを主
体とする実質的に未配向のフイルムを横方向、縦方向の
順に100〜170℃の温度で2.5〜5.5倍に逐次延伸して2軸
配向フイルムとし、次いで縦方向に100〜180℃で1.05〜
2.00倍に再延伸し、160℃〜該フイルム融点未満で熱固
定してなることを特徴とするポリエチレン2,6−ナフタ
レートフイルムの製造方法である。
That is, the present invention is a biaxially oriented film obtained by sequentially stretching a substantially unoriented film mainly composed of polyethylene 2,6-naphthalate in the transverse direction and the longitudinal direction at a temperature of 100 to 170 ° C. by a factor of 2.5 to 5.5. And then 1.05 ~ at 100 ~ 180 ℃ in the vertical direction.
A method for producing a polyethylene 2,6-naphthalate film, which comprises re-drawing to 2.00 times and heat-setting at 160 ° C. to a temperature lower than the melting point of the film.

上記のポリエチレン2,6−ナフタレートを主体とする
実質的に未配向のフイルムは、分子構成の80モル%以上
がポリエチレン2,6−ナフタレート単位からなる重合
体、共重合体またはこれらの混合体を原料とするもので
あり、共重合体成分としては、テレフタル酸、P−β−
オキシエトキシ安息香酸、4,4′−ジカルボキシルジフ
ェニール、4,4′−ジカルボキシルベンゾフェノール、
ビス(4−カルボキシルフェニール)エタン、アジピン
酸、セバシン酸、5−ナトリウムスルホイソフタル酸、
シクロヘキサン−1,4−ジカルボン酸等のジカルボン酸
成分、プロピレングリコール、ジエチレングリコール、
シクロヘキサンジメタノール、ビスフェノールAのエチ
レンオキサイド付加物、ポリエチレングリコール、ポリ
プロピレングリコール、ポリテトラメチレングリコール
等のグリコール成分、P−オキシ安息香酸などのオキシ
安息香酸成分等を任意に選択使用することができる。そ
の他の共重合成分としてアミド結合、カーボネート結合
等を含有する少量の化合物を含むことができる。そのポ
リマーの中には、滑剤として公知の内部粒子や外部粒
子、またリン酸、亜リン酸およびそれらのエステルなど
の安定剤を含有することができる。そして本発明では、
上記ポリエステルの製造方法としては、芳香族ジカルボ
ン酸とグリコールとを直接反応させる直接重合法、芳香
族ジカルボン酸のジメチルエステルとグリコールをエス
テル交換反応させるエステル交換法など任意の製造方法
を適用することができる。
The above-mentioned substantially unoriented film mainly composed of polyethylene 2,6-naphthalate is a polymer, a copolymer or a mixture thereof having a molecular constitution of 80 mol% or more consisting of polyethylene 2,6-naphthalate units. As a raw material, copolymer components include terephthalic acid, P-β-
Oxyethoxybenzoic acid, 4,4'-dicarboxyl diphenyl, 4,4'-dicarboxyl benzophenol,
Bis (4-carboxylphenyl) ethane, adipic acid, sebacic acid, 5-sodium sulfoisophthalic acid,
Dicarboxylic acid components such as cyclohexane-1,4-dicarboxylic acid, propylene glycol, diethylene glycol,
Cyclohexanedimethanol, an ethylene oxide adduct of bisphenol A, a glycol component such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and an oxybenzoic acid component such as P-oxybenzoic acid can be arbitrarily selected and used. A small amount of a compound containing an amide bond, a carbonate bond or the like can be contained as other copolymerization components. The polymer may contain internal particles and external particles known as a lubricant, and stabilizers such as phosphoric acid, phosphorous acid and esters thereof. And in the present invention,
As the method for producing the polyester, it is possible to apply any production method such as a direct polymerization method in which an aromatic dicarboxylic acid and a glycol are directly reacted and a transesterification method in which a dimethyl ester of an aromatic dicarboxylic acid and a glycol are transesterified. it can.

本発明では、上記ポリエチレン2,6−ナフタレート原
料を260〜320℃の温度において、通常の方法で溶融押出
し、冷却固化して得られる実質的に未配向の未延伸フイ
ルムが使用される。
In the present invention, a substantially unoriented unstretched film obtained by melt-extruding the polyethylene 2,6-naphthalate raw material at a temperature of 260 to 320 ° C by a usual method and cooling and solidifying is used.

本発明では、上記の未配向のフイルムを横方向に延伸
したのち縦方向に延伸する横・縦延伸を行なって二軸配
向フイルムを得る。この場合の延伸倍率は、横方向およ
び縦方向とも100〜170℃の温度下で2.5〜5.5倍に設定さ
れるが、横方向と縦方向とで若干倍率を相違させ、横方
向には100〜140℃で2.5〜4.5倍に延伸し、縦方向には11
0〜170℃で3.0〜5.5倍に延伸することが好ましい。
In the present invention, a biaxially oriented film is obtained by transversely and longitudinally stretching the above unoriented film in the transverse direction and then in the longitudinal direction. The stretching ratio in this case is set to 2.5 to 5.5 times at a temperature of 100 to 170 ° C. in both the transverse direction and the longitudinal direction, but the transverse direction and the longitudinal direction are slightly different, and the transverse direction is 100 to 170 times. Stretched 2.5 to 4.5 times at 140 ℃, 11 in the machine direction
It is preferable to stretch at 3.0 to 5.5 times at 0 to 170 ° C.

本発明では、上記の横・縦延伸で得られた二軸配向フ
イルムを更に縦方向に再延伸するものであり、このとき
の延伸倍率は、100〜180℃の温度下で1.05〜2.00倍、好
ましくは120〜170℃の温度下で1.05〜1.70倍に設定され
る。そして、この縦方向に再延伸されたフイルムは熱固
定のために温度160℃〜該フイルム融点未満、好ましく
は200〜250℃で熱処理される。処理時間は2〜3秒が好
ましい。この熱処理は、上記の再延伸フイルムの両端を
クリップで把持して行なうが、幅方向には弛緩状態であ
ってもよい。
In the present invention, the biaxially oriented film obtained by the above-mentioned transverse / longitudinal stretching is further re-stretched in the longitudinal direction, and the stretching ratio at this time is 1.05 to 2.00 times at a temperature of 100 to 180 ° C, Preferably, it is set to 1.05 to 1.70 times under the temperature of 120 to 170 ° C. The film re-stretched in the machine direction is heat-treated at a temperature of 160 ° C. to lower than the melting point of the film, preferably 200 to 250 ° C. for heat setting. The processing time is preferably 2 to 3 seconds. This heat treatment is performed by holding both ends of the re-stretched film with clips, but it may be in a relaxed state in the width direction.

(作用) 本発明では、横・縦延伸法で得られ、縦方向に選択配
向された二軸延伸フイルムを引続き縦方向に再延伸す
る。換言すれば、従来法の横・縦延伸法における縦延伸
を2回に分けて行なう。したがって横・縦延伸の縦延伸
および再縦延伸の各延伸条件が緩和され、全延伸倍率を
従来と同じ倍率に設定しても、フイルム破損等が解消し
て操業が安定し、しかも従来以上の高強力化を計ること
ができる。
(Function) In the present invention, the biaxially stretched film obtained by the transverse / longitudinal stretching method and selectively oriented in the longitudinal direction is continuously re-stretched in the longitudinal direction. In other words, the longitudinal stretching in the conventional transverse / longitudinal stretching method is performed twice. Therefore, the stretching conditions of longitudinal and transverse re-longitudinal stretching are relaxed, and even if the total stretching ratio is set to the same ratio as the conventional one, the film damage is eliminated and the operation is stable. You can measure high strength.

ただし、横・縦延伸の温度が100℃未満の場合は、延
伸に必要な応力の著しい増大によるフイルムの破断が生
じ、反対に170℃を超えた場合は予熱時に生じる結晶化
に伴うフイルムの破断や、延伸時、フイルムのロールへ
の融着などが生じまた、上記横・縦延伸の延伸倍率が2.
5倍未満の場合は、良好な厚みの均一性が得られず、反
対に5.5倍を超えた場合は延伸に必要な応力の著しい増
大によるフイルム破断が生じ、そして横延伸と縦延伸の
条件を相違させ、横延伸を100〜140℃、延伸倍率2.5〜
4.5倍で行ない、縦延伸を温度110〜170℃、延伸倍率3.0
〜5.5倍で行なったときは、製膜時の安定性に優れると
ともに厚み均一性に優れたフイルムが得られる。
However, if the temperature for transverse / longitudinal stretching is less than 100 ° C, the film breaks due to a significant increase in the stress required for stretching, and if it exceeds 170 ° C, the film breaks due to crystallization that occurs during preheating. Also, during stretching, fusion of the film to the roll occurs, and the stretching ratio in the above-mentioned transverse / longitudinal stretching is 2.
If it is less than 5 times, good thickness uniformity cannot be obtained, and if it exceeds 5.5 times, film rupture occurs due to a significant increase in the stress necessary for stretching, and the conditions for transverse stretching and longitudinal stretching are set. Differently, transverse stretching 100-140 ℃, draw ratio 2.5-
4.5 times, longitudinal stretching temperature 110-170 ℃, stretching ratio 3.0
When it is performed up to 5.5 times, a film having excellent stability in film formation and excellent thickness uniformity can be obtained.

また再延伸時の温度が100℃未満の場合は延伸に必要
な応力の著しい増大による厚み均一性の悪化が、反対に
180℃を超えた場合は、機械的性質の向上がはかれない
外、厚みの均一性も損われそして再縦延伸の延伸倍率が
1.05倍未満の場合は目的とする機械的性質の向上がはか
れず、反対に2.00倍を超えると延伸応力の著しい増大に
よるフイルムの破断が生じるし、また熱固定の際の熱処
理温度が160℃未満の場合は、十分な熱安定性が得られ
ないため製品として供せず、又反対に該フイルムの融点
を超えた場合は結晶化度の著しい増加によるフイルムの
耐摩耗性の低下につながり、磁気テープ用ベースフイル
ムとして好ましくない。
When the temperature during re-stretching is less than 100 ° C, the thickness uniformity is deteriorated due to the significant increase in the stress required for stretching.
If the temperature exceeds 180 ° C, the mechanical properties will not be improved, the uniformity of thickness will be impaired, and the stretching ratio for re-longitudinal stretching will be reduced.
If it is less than 1.05 times, the desired mechanical properties will not be improved, and if it exceeds 2.00 times, the film will rupture due to a marked increase in stretching stress, and the heat treatment temperature during heat setting will be 160 ° C. If it is less than, it cannot be provided as a product because sufficient thermal stability cannot be obtained.On the contrary, if it exceeds the melting point of the film, it leads to a decrease in the abrasion resistance of the film due to a marked increase in crystallinity, It is not preferable as a base film for magnetic tape.

なお、上記の熱固定処理の終了後、上記フイルムを温
度100〜160℃、好ましくは110〜150℃に加熱して縦方向
に0.1〜1%弛緩処理を施すことにより、寸法安定性を
一層向上させることができる。
After completion of the heat setting treatment, the film is heated to a temperature of 100 to 160 ° C., preferably 110 to 150 ° C. and subjected to a relaxation treatment of 0.1 to 1% in the longitudinal direction to further improve the dimensional stability. Can be made.

以下本発明を実施例について説明する。 The present invention will be described below with reference to examples.

なお実施例中の延伸フイルムの5%伸長時の応力(F
−5値)および熱収縮率はそれぞれ次の測定法により求
めた。
The stress (F) at the time of 5% elongation of the stretched film in the examples is
-5 value) and the heat shrinkage rate were obtained by the following measuring methods.

F−5値:フイルムの長さ方向および幅方向にそれぞれ
平行に幅10mm長さ150mmの短冊形試料を切出し、東洋ボ
ールドウィン社製テンシロンを用い、毎分100%の変形
速度下で引張試験を行い、5%伸長した時の応力を求め
た。
F-5 value: A strip-shaped sample having a width of 10 mm and a length of 150 mm was cut out in parallel with the length direction and the width direction of the film, and a tensile test was performed using a Toyo Baldwin Tensilon at a deformation rate of 100% per minute. The stress when stretched by 5% was determined.

熱収縮率:F−5値の測定に使用したものと同形状の短冊
形試料を105℃のギアオーブン中、無緊張状態で30分間
放置処理し、処理前後の短冊形試料の長さ変化から熱収
縮率を求めた。
Heat shrinkage rate: A strip-shaped sample with the same shape as that used to measure the F-5 value was left in a gear oven at 105 ° C for 30 minutes without tension, and the length change of the strip-shaped sample before and after the treatment The heat shrinkage rate was calculated.

(実施例1〜4) 固有粘度0.55のポリエチレン2,6−ナフタレートペレ
ットを十分に乾燥した後、押出機に供給して、290℃で
溶融押出し、これを温度30℃に冷却されたドラムに接触
させて冷却固化し、厚み160μの未配向フイルムを得
た。次にこの未配向フイルムを温度130℃で横方向に3.2
倍延伸し、続いて140℃の温度で縦方向に4.5倍延伸し
て、二軸配向フイルムを得た。そして、この二軸配向フ
イルムを、更に160℃の温度で縦方向に延伸倍率を1.07
〜1.33の範囲で4種類に変更して再縦延伸を行ない、24
0℃、2秒間熱固定処理を施こし、冷却してフイルムを
巻取り、実施例1〜4の高強力化フイルム(厚み9〜10
μ)を得た。
(Examples 1 to 4) After thoroughly drying polyethylene 2,6-naphthalate pellets having an intrinsic viscosity of 0.55, the pellets were fed to an extruder and melt-extruded at 290 ° C, which was then transferred to a drum cooled to 30 ° C. By contacting and cooling and solidifying, an unoriented film having a thickness of 160 μm was obtained. Next, the unoriented film was heated at a temperature of 130 ° C. in a lateral direction of 3.2.
The film was double-stretched and then stretched 4.5 times in the machine direction at a temperature of 140 ° C. to obtain a biaxially oriented film. Then, this biaxially oriented film was further stretched at a temperature of 160 ° C. in the longitudinal direction by a stretching ratio of 1.07.
Change to 4 types in the range of ~ 1.33 and re-longitudinal stretch,
The film was heat-set at 0 ° C. for 2 seconds, cooled, and wound into a film, and the high-strength film of Examples 1 to 4 (thickness 9 to 10).
μ) was obtained.

(比較例1〜2) 実施例1〜4と同様にして得られた厚み160μの未配
向フイルムに従来法の横・縦延伸を施して比較例1のフ
イルム(最終厚み10μ)を製造した。すなわち、上記未
配向のポリエチレン2,6−ナフタレートフイルムを130℃
で横方向に3.2倍延伸し、ひき続き140℃で縦方向に5.2
倍延伸して二軸配向フイルムを得、これを240℃で2秒
間熱固定処理を行なった後、冷却して巻取った。また前
記比較例1における横延伸倍率を2.8に、また縦延伸温
度を145℃に変更する以外は比較例1と同様にして比較
例2のフイルムを製造したが、比較例1および比較例2
ともに製膜時にフイルムが破断し、最終製品を得ること
ができなかった。
(Comparative Examples 1 and 2) An unoriented film having a thickness of 160 µ and obtained in the same manner as in Examples 1 to 4 was subjected to transverse and longitudinal stretching by a conventional method to produce a film of Comparative Example 1 (final thickness 10 µ). That is, the unoriented polyethylene 2,6-naphthalate film was heated to 130 ° C.
Stretched 3.2 times in the transverse direction with continuous stretching at 140 ℃ in the longitudinal direction at 5.2
The film was double-stretched to obtain a biaxially oriented film, which was heat set at 240 ° C. for 2 seconds, then cooled and wound. The film of Comparative Example 2 was produced in the same manner as Comparative Example 1 except that the transverse stretching ratio in Comparative Example 1 was changed to 2.8 and the longitudinal stretching temperature was changed to 145 ° C.
In both cases, the film was broken during film formation, and the final product could not be obtained.

(比較例3) 実施例1〜4と同様にして得られた厚み160μの未配
向フイルムを温度180℃の横方向に3.2倍延伸した。続い
て180℃の温度で縦方向に4.5倍、更に180℃の温度で縦
方向に1.24倍縦延伸し二軸配向フイルムを得ようと試み
たが、縦延伸時にフイルムがロールに融着し延伸が困難
であり最終製品を得ることができなかった。
Comparative Example 3 An unoriented film having a thickness of 160 μ and obtained in the same manner as in Examples 1 to 4 was stretched 3.2 times in the transverse direction at a temperature of 180 ° C. Subsequently, it was attempted to obtain a biaxially oriented film by longitudinally stretching at a temperature of 180 ° C by 4.5 times in the longitudinal direction and further by 1.24 times in the longitudinal direction at a temperature of 180 ° C, but the film was fused to a roll during longitudinal stretching and stretched. However, the final product could not be obtained.

(比較例4) 実施例1〜4と同様にして得られた厚み160μの未配
向フイルムを温度130℃で横方向に5.6倍延伸したがフイ
ルムの破断が著しく、最終製品を得ることができなかっ
た。
Comparative Example 4 An unoriented film having a thickness of 160 μ and obtained in the same manner as in Examples 1 to 4 was stretched 5.6 times in the transverse direction at a temperature of 130 ° C., but the film was significantly broken, and the final product could not be obtained. It was

(比較例5) 固有粘度0.60のポリエチレンテレフタレートペレット
を乾燥後、280℃で溶融押出し未配向フイルムを実施例
と同様にして得、該フイルムを温度90℃で横方向に3.2
倍延伸し、続いて温度95℃で縦方向に4.5倍延伸して二
軸配向フイルムとし、そして更に130℃の温度で縦方向
に延伸倍率1.33で再延伸を行ない210℃、2秒間熱固定
処理を施こし、冷却してフイルムを巻きとり、二軸配向
ポリエチレンテレフタレートフイルム(厚み9μ)を得
た。
(Comparative Example 5) Polyethylene terephthalate pellets having an intrinsic viscosity of 0.60 were dried and melt-extruded at 280 ° C to obtain an unoriented film in the same manner as in Example.
Double stretching, then 4.5 times in the machine direction at a temperature of 95 ℃ to obtain a biaxially oriented film, and then re-stretch at a temperature of 130 ℃ in the machine direction at a draw ratio of 1.33 and heat setting at 210 ℃ for 2 seconds. Was applied, and the film was cooled and wound to obtain a biaxially oriented polyethylene terephthalate film (thickness 9 μm).

上記実施例1〜4、比較例1〜5の製造条件および性
能を別紙第1表に示した。なお表中のMDはフイルムの長
さ方向を、TDをフイルムの幅方向を意味する。
The manufacturing conditions and performances of Examples 1 to 4 and Comparative Examples 1 to 5 are shown in Table 1 of the attached sheet. In the table, MD means the length direction of the film, and TD means the width direction of the film.

上記の表の実施例1〜4から明らかなように、再縦延
伸倍率を大きく設定する程、MD方向のF−5値が増大す
る。
As is clear from Examples 1 to 4 in the above table, the larger the re-longitudinal stretching ratio is set, the more the F-5 value in the MD direction increases.

なお比較例5は、ポリエチレンテレフタレートフイル
ムの例であるが、総合縦延伸倍率が同一のときF−5値
および熱収縮率はともにポリエチレン2,6−ナフタレー
トフイルムよりも劣り、フイルム縦断発生頻度も多いも
のであった。
Comparative Example 5 is an example of a polyethylene terephthalate film, but when the total longitudinal stretching ratio is the same, both the F-5 value and the heat shrinkage ratio are inferior to the polyethylene 2,6-naphthalate film, and the film longitudinal occurrence frequency is also high. There were many.

(発明の効果) 本発明はポリエチレン2,6−ナフタレートフイルムの
製造に際し、横・縦延伸に続いて再縦延伸を行ない、か
つその条件を特定するものであり、従来法の横・縦延伸
の縦延伸を2回に分けて行なうものに相当し、総合縦延
伸倍率を従来よりも大きく設定して、従来以上の高強力
化フイルムが得られ、しかも延伸成形による製膜時の破
断が著しく減少し、円滑な操作が可能となり、製品の品
質が均一化される。
(Effects of the Invention) The present invention is intended to carry out transverse / longitudinal stretching and then re-longitudinal stretching in the production of polyethylene 2,6-naphthalate film, and to specify the conditions. This is equivalent to performing the longitudinal stretching of the film in two steps, and by setting the total longitudinal stretching ratio to a value larger than that of the conventional one, a toughened film having a higher strength than that of the conventional one can be obtained, and moreover, breakage during film formation due to stretch molding is remarkable. Reduced, smooth operation is possible, and product quality is made uniform.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−188322(JP,A) 特開 昭63−60731(JP,A) 特開 昭63−17023(JP,A) 特開 昭49−86459(JP,A) ─────────────────────────────────────────────────── --Continued from the front page (56) References JP-A-1-188322 (JP, A) JP-A 63-60731 (JP, A) JP-A 63-17023 (JP, A) JP-A 49- 86459 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポリエチレン2,6−ナフタレートを主体と
する実質的に未配向のフイルムを横方向、縦方向の順に
100〜170℃の温度で2.5〜5.5倍に逐次延伸して2軸配向
フイルムとし、次いで縦方向に100〜180℃で1.05〜2.00
倍に再延伸し、160℃〜該フイルム融点未満で熱固定し
てなるポリエチレン2,6−ナフタレートフイルムの製造
方法。
1. A substantially unoriented film mainly composed of polyethylene 2,6-naphthalate is arranged in the transverse direction and then in the longitudinal direction.
Sequential stretching of 2.5 to 5.5 times at a temperature of 100 to 170 ° C to form a biaxially oriented film, and then 1.05 to 2.00 at 100 to 180 ° C in the machine direction.
A method for producing a polyethylene 2,6-naphthalate film, which is re-stretched twice and heat-set at 160 ° C to less than the melting point of the film.
JP21201588A 1988-08-25 1988-08-25 Process for producing polyethylene 2,6-naphthalate film Expired - Lifetime JP2555707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21201588A JP2555707B2 (en) 1988-08-25 1988-08-25 Process for producing polyethylene 2,6-naphthalate film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21201588A JP2555707B2 (en) 1988-08-25 1988-08-25 Process for producing polyethylene 2,6-naphthalate film

Publications (2)

Publication Number Publication Date
JPH0259324A JPH0259324A (en) 1990-02-28
JP2555707B2 true JP2555707B2 (en) 1996-11-20

Family

ID=16615471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21201588A Expired - Lifetime JP2555707B2 (en) 1988-08-25 1988-08-25 Process for producing polyethylene 2,6-naphthalate film

Country Status (1)

Country Link
JP (1) JP2555707B2 (en)

Also Published As

Publication number Publication date
JPH0259324A (en) 1990-02-28

Similar Documents

Publication Publication Date Title
JP6797279B2 (en) Method for manufacturing thermoplastic resin film and thermoplastic resin film
US4867937A (en) Process for producing high modulus film
JPS61211014A (en) Biaxial oriented heat-set film having improved abrasion resistance consisting of thermoplastic polyester
JP3804311B2 (en) Polyester film and method for producing the same
JP2555707B2 (en) Process for producing polyethylene 2,6-naphthalate film
JPH09300518A (en) Laminated film and its production
JPH0832499B2 (en) Heat resistant polyester film for transfer film
JPH03224722A (en) Manufacture of composite film
JP4228039B2 (en) Method for producing flexible polyester film with excellent thickness uniformity
JPH0248926A (en) Manufacture of high-tenacity polyester film
JPH0832498B2 (en) Polyester film for transfer film
JP3367129B2 (en) Method for producing polyester film
JPH0367629A (en) Biaxially oriented polyester film for molding
JPH06210720A (en) Molding of polyester film
JP2004358742A (en) Method for manufacturing plastic film
JPH07106599B2 (en) Stretch molding method for polyester film
JP2943183B2 (en) Laminated molding
JP3748165B2 (en) Polyester film and method for producing the same
JP3045811B2 (en) Method for producing uniaxially stretched polyester sheet
JPH03284934A (en) Manufacture of biaxially oriented polyester film
JPH08174661A (en) Production of biaxially oriented polyester film
JP3020723B2 (en) Method for producing biaxially stretched polyester film
JPH06305016A (en) Manufacture of polyester film
JPH08174662A (en) Production of biaxially stretched polyester film
JP2611413B2 (en) Method for producing high-strength polyester film