JP2611413B2 - Method for producing high-strength polyester film - Google Patents

Method for producing high-strength polyester film

Info

Publication number
JP2611413B2
JP2611413B2 JP1932289A JP1932289A JP2611413B2 JP 2611413 B2 JP2611413 B2 JP 2611413B2 JP 1932289 A JP1932289 A JP 1932289A JP 1932289 A JP1932289 A JP 1932289A JP 2611413 B2 JP2611413 B2 JP 2611413B2
Authority
JP
Japan
Prior art keywords
film
stretching
stretched
birefringence
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1932289A
Other languages
Japanese (ja)
Other versions
JPH02198824A (en
Inventor
滋夫 内海
吉之丞 富高
裕二郎 福田
崇利 三木
Original Assignee
ダイアホイルヘキスト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイアホイルヘキスト株式会社 filed Critical ダイアホイルヘキスト株式会社
Priority to JP1932289A priority Critical patent/JP2611413B2/en
Publication of JPH02198824A publication Critical patent/JPH02198824A/en
Application granted granted Critical
Publication of JP2611413B2 publication Critical patent/JP2611413B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、縦方向(長手方向)の機械的強度が高くか
つ低収縮のポリエチレンテレフタレートフィルムを安定
して製造する方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for stably producing a polyethylene terephthalate film having high mechanical strength in the longitudinal direction (longitudinal direction) and low shrinkage.

[従来の技術および発明が解決しようとする課題] 従来、縦方向の機械的強度が高いフィルムを製造する
方法としては、縦−横2軸方向に延伸した二軸延伸フィ
ルムを再度縦延伸する方法が知られている。
[Problems to be Solved by the Related Art and the Invention] Conventionally, as a method of producing a film having high mechanical strength in the longitudinal direction, a method of longitudinally stretching a biaxially stretched film stretched in the longitudinal-horizontal biaxial directions again. It has been known.

しかし、かかる従来の方法で製造されたフィルムの機
械的強度、すなわち、F−5値は、通常20kg/mm2程度で
あり、それ以上のF−5値を有するフィルムを安定製造
することは困難であった。例えば、特開昭58−118220号
公報において、特定の延伸条件を採用した高強度フィル
ムを製造する方法が提案されているが、本発明者らの追
試によれば、該方法を採用しても極めて破断が多く、商
品化するのはまだ困難な状況であった。
However, the mechanical strength of the film manufactured by such a conventional method, that is, the F-5 value is usually about 20 kg / mm 2 , and it is difficult to stably manufacture a film having an F-5 value of more than 20 kg / mm 2. Met. For example, in Japanese Patent Application Laid-Open No. 58-118220, a method for producing a high-strength film employing specific stretching conditions has been proposed. There were many breaks, and it was still difficult to commercialize.

[課題を解決するための手段] 本発明者らは、上記課題に鑑み、鋭意検討した結果、
新規延伸処法を採用することにより、高強度フィルムを
容易に製造できることを見出し、本発明を完成するに至
った。
[Means for Solving the Problems] In view of the above problems, the present inventors have conducted intensive studies,
The present inventors have found that a high-strength film can be easily produced by employing the novel stretching method, and have completed the present invention.

すなわち本発明の要旨は、ポリエチレンテレフタレー
トを主成分とする、実質的に非晶状態のフィルムを、フ
ィルムの複屈折率が1.0×10-3〜2.5×10-2となるように
縦方向に1.2〜4.0倍で1段または多段で延伸し、フィル
ム温度をガラス転移点以下に冷却することなく、フィル
ムの複屈折率が3.0×10-2〜8.0×10-2となるように1.1
〜3.5倍で1段または多段で縦延伸し、フィルム温度を
(95−250・Δn1)〜(130−250・Δn1)℃の範囲(但
し、Δn1は縦方向の延伸後、横方向の延伸前におけるフ
ィルムの複屈折率を示す)でΔn1が0.060〜0.150となる
よう縦延伸し、次いで2.5〜4.5倍で横延伸した後、各縦
および横延伸倍率の積が18倍以上となるよう再度縦延伸
することを特徴とする高強度ポリエステルフィルムの製
造方法に存する。
That is, the gist of the present invention is to provide a substantially amorphous film containing polyethylene terephthalate as a main component, in a longitudinal direction so that the birefringence of the film is 1.0 × 10 −3 to 2.5 × 10 −2. The film is stretched in one step or multiple steps at ~ 4.0 times, and without cooling the film temperature below the glass transition point, the birefringence of the film is 3.0 × 10 -2 to 8.0 × 10 -2 so as to be 1.1 × 10 −2.
Was longitudinally stretched in a single stage or multiple stages to 3.5 times, the film temperature (95-250 · Δn 1) ~ ( 130-250 · Δn 1) ℃ range (however, after [Delta] n 1 is the longitudinal stretching, transverse direction (Showing the birefringence of the film before stretching)), longitudinal stretching so that Δn 1 is 0.060 to 0.150, and then transverse stretching at 2.5 to 4.5 times, the product of each longitudinal and transverse stretching ratio is 18 times or more The present invention is directed to a method for producing a high-strength polyester film, wherein the film is longitudinally stretched again.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明において使用されるポリエチレンテレフタレー
ト(以下、PETと略す)は、酸成分としてテレフタル酸
残基を80重量%以上含み、グリコール成分としてエチレ
ングリコール残基を80重量%以上含むポリエステルであ
るが、場合により残りの成分が種類の異なるモノマーと
の共重合体あるいはブレンド物であってもよい。また、
使用するポリマー中には、重合段階でリン酸、亜リン酸
およびそれらのエステルならびに無機粒子(シリカ、カ
オリン、炭酸カルシウム、リン酸カルシウム、二酸化チ
タンなど)が含まれていてもよいし、重合後ポリマーに
無機粒子などがブレンドされていてもよい。
Polyethylene terephthalate (hereinafter abbreviated as PET) used in the present invention is a polyester containing at least 80% by weight of a terephthalic acid residue as an acid component and at least 80% by weight of an ethylene glycol residue as a glycol component. The remaining components may be copolymers or blends with different types of monomers. Also,
The polymer used may contain phosphoric acid, phosphorous acid and esters thereof and inorganic particles (silica, kaolin, calcium carbonate, calcium phosphate, titanium dioxide, etc.) in the polymerization stage, Inorganic particles and the like may be blended.

次にフィルムの製造方法を説明する。まず上記のPET
ポリマーを十分乾燥後、例えば280〜290℃の温度範囲に
コントロールした押出機、フィルターおよび口金を通じ
てシート状に溶融成型し、回転する冷却ドラム上にキャ
ストして急冷固化したフィルムを得る。この急冷固化し
たフィルムは実質的に非晶状態(以下Aフィルムと称す
る)である。このAフィルムは共押出により積層された
フィルムでもよい。
Next, a method for producing a film will be described. First, the above PET
After sufficiently drying the polymer, it is melt-molded into a sheet through an extruder, a filter, and a die controlled in a temperature range of, for example, 280 to 290 ° C., and cast on a rotating cooling drum to obtain a rapidly solidified film. This rapidly solidified film is substantially in an amorphous state (hereinafter referred to as A film). This A film may be a film laminated by coextrusion.

次にAフィルムを通常100℃以上に十分予熱後、複屈
折率Δnが1.0〜10-3〜2.5×10-2となるような延伸倍率
で第1延伸を行なう(以下、このフィルムをB−1フィ
ルムと称する)。Δnが上記範囲内に入る第1延伸倍率
は、予熱温度にもよるが、1.2〜4.0倍の範囲であり、予
備試験により容易に決定できる。B−1フィルムのΔn
が、1.0×10-3未満では、後の工程を最適化しても、厚
み均一性に劣る上、縦延伸倍率の向上が望めない。ま
た、2.5×10-2を越えると、後の工程の結晶化の進行お
が著しく、横延伸時の破れが多発して、安定製造条件が
得られないので好ましくない。B−1フィルムのΔn
は、好ましくは1.0×10-3〜1.0×10-2の範囲である。
Next, the A film is usually preheated sufficiently to 100 ° C. or higher, and then subjected to a first stretching at a stretching ratio such that the birefringence Δn is 1.0 to 10 −3 to 2.5 × 10 −2 (hereinafter, this film is referred to as B- 1 film). The first stretch ratio at which Δn falls within the above range is 1.2 to 4.0 times, depending on the preheating temperature, and can be easily determined by a preliminary test. Δn of B-1 film
However, when it is less than 1.0 × 10 −3 , even if the subsequent steps are optimized, the thickness uniformity is poor and the improvement in the longitudinal stretching ratio cannot be expected. On the other hand, if it exceeds 2.5 × 10 −2 , the progress of crystallization in the subsequent step is remarkable, and breakage during transverse stretching frequently occurs, and stable production conditions cannot be obtained. Δn of B-1 film
Is preferably in the range of 1.0 × 10 −3 to 1.0 × 10 −2 .

第1延伸の延伸段数は、1段でもよいが、もちろん2
段以上の多段延伸でもよい。第1延伸を何段で行なうか
は、目的とする第1延伸倍率にもよるが、通常は1〜4
段、好ましくは1〜3段である。第1延伸の各延伸開始
点は、駆動された非粘着ロールと非粘着ニップロールで
構成されることが好ましく、第1延伸の間でフィルムは
ガラス転移温度以下にならないようにすることが好まし
い。
The number of stretching steps in the first stretching may be one, but of course two
Multi-stage stretching of more than one stage may be used. The number of steps for performing the first stretching depends on the intended first stretching ratio, but is usually 1 to 4
Steps, preferably 1 to 3 steps. Each stretching start point of the first stretching is preferably constituted by a driven non-adhesive roll and a non-adhesive nip roll, and it is preferable that the film does not fall below the glass transition temperature during the first stretching.

以上のようにして得られた、B−1フィルムをガラス
転移点温度以下に冷却することなく、複屈折率が、3.0
×10-2〜8.0×10-2となるように延伸倍率を1.1〜3.5の
範囲で調節し、1段又は多段で第2延伸する(以下、こ
のフィルムをB−2フィルムと称する)。このとき、フ
ィルムの温度は通常、100〜130℃の範囲である。
Without cooling the B-1 film obtained as described above to a glass transition temperature or lower, the birefringence is 3.0
The stretch ratio as × a 10 -2 to 8.0 × 10 -2 adjusted in the range of 1.1 to 3.5, the second stretched in one stage or multiple stages (hereinafter, referred to as the film and B-2 film). At this time, the temperature of the film is usually in the range of 100 to 130 ° C.

フィルムの温度が100℃未満では、延伸フィルムの厚
み斑が改良されない。一方、130℃を超えると、フィル
ムの結晶化が進行して、フィルム表面が粗面化したり、
横延伸性が悪化するため不適当である。また、B−2フ
ィルムの複屈折率が3.0×10-2未満では、延伸フィルム
の厚さ斑が良化しないため不適当であり、B−2フィル
ムの複屈折率が8.0×10-2を超える場合には、B−2フ
ィルムの結晶化が進行し過ぎるため、かえって厚み均一
性の改良効果が弱く、かつ横延伸性が悪化するので好ま
しくない。好ましくは、3.0×10-2〜6.0×10-2、更に好
ましくは、4.0×10-2〜5.5×10-2の範囲である。かくし
て得られたフィルムの平均屈折率()は1.570〜1.600
の範囲であることが好ましい。1.570未満では、次の工
程で縦延伸しても厚さの均一性が得られず好ましくな
い。一方、1.600を超えると、横延伸性が極端に悪化す
るため好ましくない。
When the temperature of the film is lower than 100 ° C., the unevenness of the thickness of the stretched film is not improved. On the other hand, when the temperature exceeds 130 ° C., crystallization of the film proceeds, or the film surface is roughened,
It is not suitable because the lateral stretching property is deteriorated. Further, if the birefringence of the B-2 film is less than 3.0 × 10 −2, it is inappropriate because the thickness unevenness of the stretched film is not improved, and the birefringence of the B-2 film is 8.0 × 10 −2 . If it exceeds, the crystallization of the B-2 film proceeds excessively, and the effect of improving the uniformity of the thickness is rather weak, and the lateral stretchability is deteriorated. Preferably, it is in the range of 3.0 × 10 -2 to 6.0 × 10 -2 , more preferably 4.0 × 10 -2 to 5.5 × 10 -2 . The average refractive index () of the film thus obtained is 1.570-1.600.
Is preferably within the range. If it is less than 1.570, uniformity of the thickness cannot be obtained even if it is longitudinally stretched in the next step, which is not preferable. On the other hand, when it exceeds 1.600, the transverse stretchability is extremely deteriorated, which is not preferable.

かくして得られたB−2フィルムは、次にフィルム温
度を(95−250・Δn1)〜(130−250・Δn1)℃の範
囲、好ましくは(105−250・Δn1)〜(120−250・Δ
n1)℃の範囲(ここでΔn1とはフィルムの縦方向の延伸
後、横方向の延伸前における複屈折率を示す)とし、Δ
n1が0.060〜0.150となる倍率で縦方向に第3延伸する
(以下、このフィルムをB−3フィルムと称する)。
The B-2 film thus obtained has a film temperature in the range of (95-250 · Δn 1 ) to (130-250 · Δn 1 ) ° C, preferably (105-250 · Δn 1 ) to (120-Δn 1 ). 250 ・ Δ
n 1 ) ° C. (where Δn 1 indicates the birefringence after stretching in the longitudinal direction of the film and before stretching in the transverse direction)
n 1 is the third stretched in the longitudinal direction at the magnification becomes 0.060 to 0.150 (hereinafter, referred to as the film and B-3 film).

かかるΔn1が0.060未満では、横延伸時、破断が多発
する。一方、Δn1が1.150を超えると再度縦延伸時、破
断し易くなり、製品採取が困難となる。また、第3延伸
の延伸温度が前記温度範囲外では、厚さ斑が悪化し、好
ましくない。
If Δn 1 is less than 0.060, breakage occurs frequently during transverse stretching. On the other hand, if Δn 1 exceeds 1.150, the film is likely to break during longitudinal stretching again, and it becomes difficult to collect the product. If the stretching temperature of the third stretching is outside the above-mentioned temperature range, the thickness unevenness worsens, which is not preferable.

以上の条件で縦延伸されたB−3フィルムを横方向に
2.5〜4.5倍延伸することにより二軸延伸フィルム(以
下、このフィルムをCフィルムと称する)が得られる。
横延伸時の温度は、通常、90〜150℃の範囲であり、好
ましくは100〜130℃の範囲である。
B-3 film stretched longitudinally under the above conditions
By stretching by 2.5 to 4.5 times, a biaxially stretched film (hereinafter, this film is referred to as C film) is obtained.
The temperature at the time of transverse stretching is usually in the range of 90 to 150 ° C, preferably in the range of 100 to 130 ° C.

得られたCフィルムに必要に応じ110〜220℃で熱処理
を施し、各縦および横延伸倍率の積が18倍以上となるよ
う再度縦延伸して本発明の高強度ポリエステルフィルム
を得ることができる。本発明における再縦延伸は、110
〜200℃のフィルム温度で、1.05〜2.0倍延伸することが
好ましい。延伸倍率が1.05未満では、高強度フィルムが
得られず、2.0倍を超えると、フィルムの破断が頻発し
好ましくない。得られたフィルムは130〜250℃で熱処理
してもよいが、必要に応じ、熱処理前に再横延伸を行な
ってもよい。
The obtained C film may be subjected to a heat treatment at 110 to 220 ° C. if necessary, and then longitudinally stretched again so that the product of each longitudinal and transverse stretching ratio becomes 18 times or more to obtain the high-strength polyester film of the present invention. . Re-longitudinal stretching in the present invention is 110
Preferably, the film is stretched 1.05 to 2.0 times at a film temperature of 200 ° C. If the stretching ratio is less than 1.05, a high-strength film cannot be obtained, and if it exceeds 2.0 times, the film breaks frequently, which is not preferable. The obtained film may be heat-treated at 130 to 250 ° C, but if necessary, may be subjected to re-lateral stretching before the heat treatment.

かくして得られる高強度フィルムの、生産性は高く、
厚み均一性、寸法安定性、易滑性、透明性等フィルム物
性にも優れ、現在知られている各種フィルム用途に適用
可能である。つまり磁気テープ用途等の磁気記録媒体用
ベースフィルム、コンデンサー用途等の電気絶縁体用ベ
ースフィルムばかりでなく、包装用フィルムとしても好
適である。
The high-strength film thus obtained has high productivity,
It has excellent film properties such as thickness uniformity, dimensional stability, lubricity and transparency, and can be applied to various known film applications. That is, it is suitable not only as a base film for a magnetic recording medium such as a magnetic tape and a base film for an electric insulator such as a capacitor but also as a packaging film.

本発明の方法は、特に好ましくは、0.5μm〜50μm
の厚さのフィルムの製造に適用される。また、必要に応
じ本方法の工程内で各種表面処理を施して、フィルム特
性を改良することも好ましい。
The method of the present invention is particularly preferably 0.5 μm to 50 μm
Applied in the production of films of thickness. It is also preferable to improve the film properties by performing various surface treatments in the steps of the present method as necessary.

[実施例] 以下、実施例にて、本発明を更に具体的に説明する
が、本発明は、その要旨を超えない限り以下の実施例に
限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples as long as the gist of the present invention is not exceeded.

なお、フィルムの特性評価方法は次の通りである。 The method for evaluating the characteristics of the film is as follows.

(1)F5値 (株)インテスコ製、引張試験機インテスコモデル20
01型を用いて、温度23℃、湿度50%RHに調節された室内
においてフィルムの縦方向に切り出した長さ50mm、幅15
mmの試料フィルムを長手方向に50mm/minの速度で引張
り、5%伸張時の強度をF5値とした。
(1) F 5 value Co. INTESCO Ltd., tensile tester in Tesco model 20
Using a type 01, cut in the vertical direction of the film in a room adjusted to a temperature of 23 ° C and a humidity of 50% RH, length 50mm, width 15
The sample film of mm pulled at a rate of 50 mm / min in the longitudinal direction, the strength at 5% elongation was F 5 value.

(2)熱収縮率(%) 無張力状態で100℃雰囲気中30分間、熱処理しその前
後のサンプルの長さを測定することにより次式にて計算
した。
(2) Heat Shrinkage (%) The heat shrinkage was performed in a 100 ° C. atmosphere for 30 minutes in a tensionless state, and the length of the sample before and after the heat treatment was measured.

(3)厚さ斑F5(%) 安立電気社製連続フィルム厚さ測定器(電子マイクロ
メーター使用)により、二軸延伸フィルムの縦方向に沿
って測定し、(5m長さについて)次式より算出した。
(3) Thickness unevenness F 5 (%) Measured along the longitudinal direction of the biaxially stretched film using a continuous film thickness measuring device manufactured by Anritsu Denki Co., Ltd. (using an electronic micrometer). It was calculated from:

(4)複屈折率Δn、平均屈折率n アタゴ光学社製アッベ式屈折計を用い、フィルム面内
の屈折率の最大値nγ、それに直角の方向の屈折率
β、及びフィルムの厚さ方向の屈折率nαを測定し、
次式より複屈折率及び平均屈折率を求めた。
(4) Birefringence Δn, average refractive index n Using an Abbe refractometer manufactured by Atago Optical Co., Ltd., the maximum value n γ of the refractive index in the plane of the film, the refractive index n β in a direction perpendicular thereto, and the thickness of the film Measuring the refractive index n α in the direction,
The birefringence and average refractive index were determined from the following formula.

実施例1 ポリエチレンテレフタレートチップ(固有粘度0.60、
平均粒径0.02μmのAl2O30.3重量%と平均粒径0.7μm
の炭酸カルシウム0.3重量%とを重合時添加したもの)
を180℃で5時間乾燥後、285℃でTダイからシート状に
て押出し、45℃に保たれた回転ドラム上で冷却固化して
幅350mmの未延伸非晶質フィルムを得た。その際、公知
の静電密着法を用いた。得られた非晶質フィルムを多段
のニップロール周速差を利用して、まず縦方向に第1段
目としてフィルム温度112℃で1.6倍延伸後、連続して縦
方向に第2段目としてフィルム温度110℃で3.1倍延伸し
た。
Example 1 Polyethylene terephthalate chip (intrinsic viscosity 0.60,
0.3% by weight of Al 2 O 3 having an average particle diameter of 0.02 μm and an average particle diameter of 0.7 μm
0.3% by weight of calcium carbonate added during polymerization)
Was dried at 180 ° C. for 5 hours, extruded at 285 ° C. in a sheet form from a T-die, and cooled and solidified on a rotating drum maintained at 45 ° C. to obtain an unstretched amorphous film having a width of 350 mm. At that time, a known electrostatic adhesion method was used. The obtained amorphous film is stretched 1.6 times at 112 ° C. as the first stage in the longitudinal direction at the film temperature of 112 ° C. using the multi-stage nip roll peripheral speed difference, and then continuously as the second stage in the longitudinal direction. The film was stretched 3.1 times at a temperature of 110 ° C.

なお、第1段目の延伸後のフィルムの複屈折率は3.0
×10-3であり、第2段目の延伸後のフィルムの複屈折率
は5.2×10-2であった。かくして得られたフィルムをガ
ラス転移温度以下に冷却することなく、フィルム温度78
℃とし、1.53倍で第3段目の縦延伸を行なった。得られ
た縦延伸フィルムの複屈折率は0.120であった。
The birefringence of the film after the first stretching is 3.0.
× 10 -3 , and the birefringence of the film after the second stretching was 5.2 × 10 -2 . Without cooling the film thus obtained below the glass transition temperature, a film temperature of 78
° C and the third stage of longitudinal stretching was performed at 1.53 times. The birefringence of the obtained vertically stretched film was 0.120.

次にテンター内で102℃で横方向に3.8倍延伸し、130
℃で熱固定した後、さらに125℃で1.2倍、縦延伸し、20
0℃で緊張熱固定を施し、8μmのフィルムを得た。
Then stretched 3.8 times in the transverse direction at 102 ° C in a tenter, 130
After heat setting at 125 ° C, the film was further stretched 1.2 times at 125 ° C,
Tensile heat fixing was performed at 0 ° C. to obtain an 8 μm film.

実施例2 実施例1において、再縦延伸倍率を1.5倍とする他
は、実施例1と同様にして8μmのフィルムを得た。
Example 2 An 8 μm film was obtained in the same manner as in Example 1 except that the re-longitudinal stretching ratio was changed to 1.5 times.

実施例3 実施例1において再縦延伸倍率を1.7倍とする他は実
施例1と同様にして8μmのフィルムを得た。
Example 3 An 8 μm film was obtained in the same manner as in Example 1 except that the re-longitudinal stretching ratio was changed to 1.7 times.

実施例4 実施例1の再縦延伸後のフィルムを180℃で再度1.14
倍横延伸し、200℃で緊張熱固定を施し7μmのフィル
ムを得た。
Example 4 The film after the longitudinal stretching in Example 1 was again heated at 180 ° C. to 1.14.
The film was stretched twice and stretched and heat-set at 200 ° C. to obtain a 7 μm film.

以上、得られたフィルムの特性をまとめて表−1に示
す。
Table 1 summarizes the properties of the obtained films.

[発明の効果] 本発明によれば、厚み均一性および寸法安定性に優れ
た高強度ポリエステルを容易に製造でき、また、その高
速製造も可能であり、本発明の工業的価値は高い。
[Effects of the Invention] According to the present invention, a high-strength polyester excellent in thickness uniformity and dimensional stability can be easily produced, and high-speed production thereof is also possible, and the industrial value of the present invention is high.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三木 崇利 滋賀県長浜市三ツ矢町5番8号 ダイア ホイル株式会社商品研究所内 (56)参考文献 特開 平2−175130(JP,A) 特開 平2−130125(JP,A) 特開 昭63−178143(JP,A) 特開 昭61−167531(JP,A) 特開 昭61−47235(JP,A) 特開 昭60−176743(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Takatoshi Miki 5-8, Mitsuya-cho, Nagahama-shi, Shiga Prefecture Inside of Product Research Laboratory of Diafoil Co., Ltd. (56) References JP-A-2-175130 (JP, A) JP-A-2-130125 (JP, A) JP-A-63-178143 (JP, A) JP-A-61-167531 (JP, A) JP-A-61-47235 (JP, A) JP-A-60-176743 (JP , A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポリエチレンテレフタレートを主成分とす
る、実質的に非晶状態のフィルムを、フィルムの複屈折
率が1.0×10-3〜2.5×10-2となるように縦方向に1.2〜
4.0倍で1段または多段で延伸し、フィルム温度をガラ
ス転移点以下に冷却することなく、フィルムの複屈折率
が3.0×10-2〜8.0×10-2となるように1.1〜3.5倍で1段
または多段で縦延伸し、フィルム温度を(95−250・Δn
1)〜(130−250・Δn1)℃の範囲(但し、Δn1は縦方
向の延伸後、横方向の延伸前におけるフィルムの複屈折
率を示す)でΔn1が0.060〜0.150となるよう縦延伸し、
次いで2.5〜4.5倍で横延伸した後、各縦および横延伸倍
率の積が18倍以上となるよう再度縦延伸することを特徴
とする高強度ポリエステルフィルムの製造方法。
1. A film in a substantially amorphous state containing polyethylene terephthalate as a main component, and a film having a birefringence of from 1.0 × 10 −3 to 2.5 × 10 −2 in a longitudinal direction of 1.2 to 10 × 10 −2.
The film is stretched at 4.0 times in one step or multiple steps, and without cooling the film temperature below the glass transition point, at 1.1 to 3.5 times so that the birefringence of the film becomes 3.0 × 10 -2 to 8.0 × 10 -2. The film is stretched longitudinally in one step or multiple steps, and the film temperature is set to (95-250 · Δn
1 ) to (130−250 · Δn 1 ) ° C. (however, Δn 1 indicates the birefringence of the film after stretching in the machine direction and before stretching in the transverse direction) so that Δn 1 is 0.060 to 0.150. Stretch longitudinally,
A method for producing a high-strength polyester film, comprising: horizontally stretching at 2.5 to 4.5 times, and then vertically stretching again so that the product of each longitudinal and transverse stretching ratio becomes 18 times or more.
JP1932289A 1989-01-27 1989-01-27 Method for producing high-strength polyester film Expired - Lifetime JP2611413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1932289A JP2611413B2 (en) 1989-01-27 1989-01-27 Method for producing high-strength polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1932289A JP2611413B2 (en) 1989-01-27 1989-01-27 Method for producing high-strength polyester film

Publications (2)

Publication Number Publication Date
JPH02198824A JPH02198824A (en) 1990-08-07
JP2611413B2 true JP2611413B2 (en) 1997-05-21

Family

ID=11996171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1932289A Expired - Lifetime JP2611413B2 (en) 1989-01-27 1989-01-27 Method for producing high-strength polyester film

Country Status (1)

Country Link
JP (1) JP2611413B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2734833B2 (en) * 1991-10-03 1998-04-02 株式会社村田製作所 Manufacturing method of laminated electronic components

Also Published As

Publication number Publication date
JPH02198824A (en) 1990-08-07

Similar Documents

Publication Publication Date Title
US5093064A (en) Low-shrinkage polyester film and preparation thereof
JP2611413B2 (en) Method for producing high-strength polyester film
JPH02255321A (en) Manufacture of polyester film
JP2679234B2 (en) Method for producing polyester film
JP2943183B2 (en) Laminated molding
JPH07106599B2 (en) Stretch molding method for polyester film
JPH02130125A (en) Production of polyester film
JP2643412B2 (en) Polyester film for capacitors
JP2788775B2 (en) Method for producing biaxially stretched polyester film
JP3020723B2 (en) Method for producing biaxially stretched polyester film
KR101525826B1 (en) White film and A method of manufacturing Opaque White film
KR0157090B1 (en) Biaxial oriented polyester film
JPH0771822B2 (en) Method for producing polyester film
JP2555707B2 (en) Process for producing polyethylene 2,6-naphthalate film
JPH08224777A (en) Biaxially oriented polyester film and manufacture thereof
KR0173729B1 (en) Manufacturing method of biaxially oriented polyester film
KR100238792B1 (en) Polypropylene film and manufacturing method for the same
KR970002307B1 (en) Forming method for biaxial polyester film
JP2937149B2 (en) Polyester film stretching method
EP0461256B1 (en) Stretched plastic molding and method for stretching plastic molding
JPH03264334A (en) Manufacture of polyester film
JPH03169529A (en) Biaxially oriented polyester film for molding
JP3582677B2 (en) Biaxially oriented polyester film and method for producing the same
JPH11188791A (en) Biaxially oriented polyester film and its manufacture
JPH0825473A (en) Production of biaxially oriented polyethylene-2, 6-naphthalate film