JPH07106599B2 - Stretch molding method for polyester film - Google Patents

Stretch molding method for polyester film

Info

Publication number
JPH07106599B2
JPH07106599B2 JP1415988A JP1415988A JPH07106599B2 JP H07106599 B2 JPH07106599 B2 JP H07106599B2 JP 1415988 A JP1415988 A JP 1415988A JP 1415988 A JP1415988 A JP 1415988A JP H07106599 B2 JPH07106599 B2 JP H07106599B2
Authority
JP
Japan
Prior art keywords
film
stretching
longitudinal
temperature
transverse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1415988A
Other languages
Japanese (ja)
Other versions
JPH01188322A (en
Inventor
正 奥平
敬也 井上
勝朗 久世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP1415988A priority Critical patent/JPH07106599B2/en
Publication of JPH01188322A publication Critical patent/JPH01188322A/en
Publication of JPH07106599B2 publication Critical patent/JPH07106599B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、ポリエステルフィルムの延伸成形方法に関
し、二軸延伸ポリエステルフィルム、特に縦方向に強度
の増大された非対称配向二軸延伸ポリエステルフィルム
を製造する際の製膜安定性に優れた製造方法を提供する
ものである。
Description: TECHNICAL FIELD The present invention relates to a stretch-molding method for a polyester film, and more particularly to producing a biaxially-stretched polyester film, particularly an asymmetrically-oriented biaxially-stretched polyester film having increased strength in the machine direction. It is intended to provide a production method which is excellent in film formation stability when performing.

(従来の技術) ポリエチレンテレフタレート等のポリエステル樹脂から
なる二軸延伸フィルムは、熱安定性、寸法安定性および
機械的強度等の諸特性に優れているので、磁気テープ用
のベースフィルムその他各種の用途に使用されている
が、ビデオデッキの小型軽量化に伴って磁気テープ用ベ
ースフィルムの一層の薄膜化が要求されるようになっ
た。そして、この要求を満たすため、従来は、縦方向お
よび横方向に延伸して得られる二軸配向フィルムを更に
縦方向に延伸して縦方向、すなわち走行方向の強度を増
大させる再縦延伸法、および最初に横延伸し、しかるの
ち縦延伸を行なう横・縦延伸法が採用されていた。
(Prior Art) A biaxially stretched film made of a polyester resin such as polyethylene terephthalate is excellent in various properties such as thermal stability, dimensional stability and mechanical strength. However, as the VCR becomes smaller and lighter, it has become necessary to further thin the base film for magnetic tape. Then, in order to satisfy this requirement, conventionally, a re-longitudinal stretching method for increasing the strength in the longitudinal direction by stretching the biaxially oriented film obtained by stretching in the longitudinal direction and the transverse direction in the longitudinal direction, that is, the running direction, Further, a transverse / longitudinal stretching method has been adopted in which transverse stretching is first performed and then longitudinal stretching is performed.

(発明が解決しようとする課題) しかしながら、従来の再縦延伸法および横・縦延伸法
は、いずれも性膜安定性に乏しく、特に8ミリビデオ用
ベースフィルムの如く薄膜であって、しかも縦方向に高
い強力を要求されるフィルムの製膜に際しては、生産性
の低下が著しく、かつ工程の不安定に起因する品質斑が
大きいという問題があった。すなわち、再縦延伸法で
は、縦方向および横方向に延伸されて配向および結晶化
が相当に進み、しかも主配向方向が横方向になっている
フィルムを再び縦方向に延伸して分子鎖の配向方向を縦
方向に戻すので、その延伸に多大のエネルギを必要と
し、かつフィルム破れが発生し易いという問題があっ
た。また、横・縦延伸法では、いったん横方向に延伸さ
れた広幅のフィルムを縦方向に高倍率に延伸するので、
この縦方向の延伸の際にフィルム破れが発生し易く、ま
た工程が不安定であるため品質斑が大きいという問題が
あった。
(Problems to be Solved by the Invention) However, the conventional re-longitudinal stretching method and the transverse / longitudinal stretching method are both poor in film stability of the film, and particularly thin films such as 8 mm video base film, and When forming a film that is required to have a high strength in a certain direction, there is a problem that productivity is significantly reduced and quality unevenness due to process instability is large. That is, in the re-longitudinal stretching method, the film is stretched in the machine direction and the transverse direction to significantly advance the orientation and crystallization, and the film whose main orientation direction is the transverse direction is stretched in the longitudinal direction again to align the molecular chains. Since the direction is returned to the longitudinal direction, there has been a problem that a large amount of energy is required for the stretching and the film is easily broken. Further, in the transverse / longitudinal stretching method, since a wide film once stretched in the transverse direction is stretched in the longitudinal direction at a high ratio,
There is a problem that film breakage is likely to occur during the stretching in the machine direction, and the quality of the film is large because the process is unstable.

この発明は、縦方向に強度の増大した二軸延伸フィルム
を製造する際の操業安定性を向上しようとするものであ
る。
The present invention is intended to improve operational stability when producing a biaxially stretched film having increased strength in the machine direction.

(課題を解決するための手段) ポリエチレンテレフタレートを主体とする実質的に未配
向のフィルムを横方向、縦方向の順に80〜130℃の温度
で2.5〜5.0倍に逐次延伸して二軸配向フィルムとし、次
いで縦方向に100〜180℃の温度で、1.05〜2.0倍に再延
伸し、160〜240℃で熱固定する。
(Means for Solving the Problems) A biaxially oriented film in which a substantially unoriented film mainly composed of polyethylene terephthalate is sequentially stretched 2.5 to 5.0 times at a temperature of 80 to 130 ° C. in the transverse direction and the longitudinal direction in this order. Then, the film is re-stretched 1.05 to 2.0 times in the longitudinal direction at a temperature of 100 to 180 ° C and heat set at 160 to 240 ° C.

上記のポリエチレンテレフタレートを主体とする実質的
に未配向のフィルムは、分子構成の80モル%以上がポリ
エチレンテレフタレート単位からなる重合体、共重合体
またはこれらの混合体を原料とするものであり、そのポ
リマー中には、滑剤として公知の内部粒子や外部粒子、
またリン酸、亜リン酸およびそれらのエステルなどの安
定剤を含有することができる。そして、この発明では、
上記のポリエチレンテレフタレート原料を通常の方法で
溶融押出し、冷却固化して得られる実質的に未配向の未
延伸フィルムが使用される。
The substantially non-oriented film mainly composed of polyethylene terephthalate is a raw material of a polymer, a copolymer or a mixture thereof, in which 80 mol% or more of the molecular constitution is composed of polyethylene terephthalate units. In the polymer, internal particles and external particles known as a lubricant,
It may also contain stabilizers such as phosphoric acid, phosphorous acid and their esters. And in this invention,
A substantially unoriented unstretched film obtained by melt-extruding the above polyethylene terephthalate raw material by a usual method and cooling and solidifying is used.

この発明では、上記の未配向のフィルムを横方向に延伸
したのち縦方向に延伸する横・縦延伸を行なって二軸配
向フィルムを得る。この場合の延伸倍率は、横方向およ
び縦方向とも80〜130℃の温度下で2.5〜5.0倍に設定さ
れるが、横方向と縦方向とで若干倍率を相違させ、横方
向には80〜100℃で2.5〜4.0倍に延伸し、縦方向には90
〜130℃で3.0〜5.0倍に延伸することが好ましい。
In the present invention, the above-mentioned unoriented film is stretched in the transverse direction and then transversely / longitudinally stretched in the longitudinal direction to obtain a biaxially oriented film. The stretching ratio in this case is set to 2.5 to 5.0 times at a temperature of 80 to 130 ° C. in both the transverse direction and the longitudinal direction, but the stretching ratio is slightly different between the transverse direction and the longitudinal direction, and the transverse direction is 80 to 130 ° C. Stretched 2.5 to 4.0 times at 100 ℃, 90 in the machine direction
It is preferable to stretch at a temperature of 130 ° C. to 3.0 to 5.0 times.

この発明では、上記の横・縦延伸で得られた二軸配向フ
ィルムを更に縦方向に再延伸するものであり、このとき
の延伸倍率は、100〜180℃の温度下で1.05〜2.0倍、好
ましくは120〜160℃の温度下で1.05〜1.50倍に設定され
る。そして、この縦方向に再延伸されたフィルムは、熱
固定のために温度160〜240℃、好ましくは200〜220℃で
熱処理される。処理時間は2〜3秒が好ましい。この熱
処理は、上記の再延伸フィルムの長さ方向両端をクリッ
プで把持して行なうが、幅方向には弛緩状態であっても
よい。
In this invention, the biaxially oriented film obtained by the above-mentioned transverse / longitudinal stretching is re-stretched in the longitudinal direction, and the stretching ratio at this time is 1.05 to 2.0 times at a temperature of 100 to 180 ° C., It is preferably set to 1.05 to 1.50 times under a temperature of 120 to 160 ° C. Then, the film re-stretched in the machine direction is heat-treated at a temperature of 160 to 240 ° C., preferably 200 to 220 ° C. for heat setting. The processing time is preferably 2 to 3 seconds. This heat treatment is performed by holding both ends in the length direction of the re-stretched film with clips, but it may be in a relaxed state in the width direction.

(作用) この発明では、横・縦延伸法で得られ、縦方向に選択配
向された二軸延伸フィルムを引続き縦方向に再延伸す
る。換言すれば、従来法の横・縦延伸法における縦延伸
を2回に分けて行なう。したがって、横・縦延伸の縦延
伸および再縦延伸の各延伸条件が緩和され、全延伸倍率
を従来と同じ倍率に設定しても、フィルム破損等が解消
して操業が安定し、しかも従来以上の高強力化を計るこ
とができる。
(Operation) In this invention, the biaxially stretched film obtained by the transverse / longitudinal stretching method and selectively oriented in the longitudinal direction is continuously re-stretched in the longitudinal direction. In other words, the longitudinal stretching in the conventional transverse / longitudinal stretching method is performed twice. Therefore, the stretching conditions of longitudinal and transverse re-longitudinal stretching are relaxed, and even if the total stretching ratio is set to the same ratio as the conventional one, the film breakage is eliminated and the operation is stable. You can measure the high strength of.

ただし、横・縦延伸の温度が80℃未満の場合は、延伸に
必要な応力が著しく増大してフィルムが破断し、反対に
130℃を越えた場合は、予熱時に生じる結晶化に伴って
フィルムが破断し、また、上記横・縦延伸の延伸倍率が
2.5倍未満の場合は、厚みの良好な均一性が得られず、
反対に5.0倍を超えた場合は、延伸に必要な応力が著し
く増大してフィルムが破断する。そして、横延伸と縦延
伸の条件を相違させ、横延伸を温度80〜100℃、延伸倍
率2.5〜4.0倍で行ない、縦延伸を温度90〜130℃、延伸
倍率3.0〜5.0倍で行なったときは、製膜の安定性および
厚みの均一性が一層向上する。
However, if the temperature for transverse / longitudinal stretching is less than 80 ° C, the stress required for stretching will increase significantly and the film will rupture.
If the temperature exceeds 130 ° C, the film will break due to crystallization that occurs during preheating, and the stretching ratio for the above-mentioned transverse and longitudinal stretching will be
If it is less than 2.5 times, good uniformity of thickness cannot be obtained,
On the other hand, when it exceeds 5.0 times, the stress required for stretching remarkably increases and the film breaks. Then, when the conditions of the transverse stretching and the longitudinal stretching are different, the transverse stretching is performed at a temperature of 80 to 100 ° C and a stretching ratio of 2.5 to 4.0 times, and the longitudinal stretching is performed at a temperature of 90 to 130 ° C and a stretching ratio of 3.0 to 5.0 times. Improves the stability of film formation and the uniformity of thickness.

また、再延伸の温度が100℃未満の場合は、延伸に必要
な応力が著しく増大して厚みの均一性が低下し、反対に
180℃を超えた場合は機械的性質の向上が図れず、また
厚みの均一性が損なわれる。そして、再縦延伸の延伸倍
率が1.05倍未満の場合は、目的とする機械的性質の向上
が得られず、反対に1.50倍を超えると延伸応力が著しく
増大してフィルムが破断する。
When the re-stretching temperature is lower than 100 ° C, the stress required for stretching remarkably increases and the uniformity of thickness is reduced.
If it exceeds 180 ° C, the mechanical properties cannot be improved and the thickness uniformity is impaired. When the stretching ratio in the re-longitudinal stretching is less than 1.05 times, the desired improvement in mechanical properties cannot be obtained. On the contrary, when the stretching ratio exceeds 1.50 times, the stretching stress remarkably increases and the film breaks.

また、熱固定の際の熱処理温度が160℃未満の場合は熱
安定性が不十分になり、反対に240℃を超えた場合は、
結晶化度が著しく増大してフィルムの耐摩耗性が低下
し、磁気テープ用として不適当になる。
Also, when the heat treatment temperature during heat setting is less than 160 ° C, the thermal stability becomes insufficient, and conversely, when it exceeds 240 ° C,
The crystallinity increases remarkably and the abrasion resistance of the film decreases, making it unsuitable for magnetic tape.

なお、上記の熱固定処理の終了後、上記のフィルムを温
度80〜130℃、好ましくは90〜120℃に加熱して縦方向に
0.1〜1%弛緩処理を施すことにより、寸法安定性を一
層向上させることができる。
After the heat-setting treatment, the film is heated to a temperature of 80 to 130 ° C, preferably 90 to 120 ° C in the longitudinal direction.
The dimensional stability can be further improved by performing the relaxation treatment of 0.1 to 1%.

(実施例) 固有粘度0.60のポリエチレンテレフタレートのペレット
を十分に乾燥した後、押出機に供給して温度280℃で溶
融押出し、これを温度30℃に冷却されたドラムに接触さ
せて冷却固化し、厚み160μの未配向フィルムを得た。
次に、この未配向フィルムを温度90℃で横方向に3.2倍
延伸し続いて95℃の温度で縦方向に4.5倍延伸して二軸
配向フィルムを得た。そして、この二軸配向フィルム
を、更に130℃の温度で縦方向に延伸倍率を1.1〜1.3の
範囲で4種類に変更して再縦延伸を行ない、210℃、2
秒間の熱固定処理を施し、冷却してフィルムを巻取り、
実施例1〜4の高強力化フィルム(厚み9〜10μ)を得
た。
(Example) After sufficiently drying pellets of polyethylene terephthalate having an intrinsic viscosity of 0.60, the pellets were supplied to an extruder and melt-extruded at a temperature of 280 ° C, which was cooled and solidified by contacting with a drum cooled to a temperature of 30 ° C. An unoriented film having a thickness of 160 μm was obtained.
Next, this unoriented film was stretched 3.2 times in the transverse direction at a temperature of 90 ° C. and then stretched 4.5 times in the longitudinal direction at a temperature of 95 ° C. to obtain a biaxially oriented film. Then, this biaxially oriented film was subjected to re-longitudinal stretching at a temperature of 130 ° C. in the longitudinal direction by changing the stretching ratio to four types within the range of 1.1 to 1.3, and at 210 ° C.
After heat setting for 2 seconds, cool and wind the film,
The high strength films (thickness 9 to 10 μm) of Examples 1 to 4 were obtained.

一方、上記実施例1〜4と同様にして得られた厚み160
μの未配向フィルムに従来法の横・縦延伸を施して比較
例1のフィルム(最終厚み10μ)を製造した。すなわ
ち、上記未配向のポリエチレンテレフタレートフィルム
を90℃の温度で横方向に3.2倍延伸し、続いて95℃で縦
方向に4.8倍延伸して二軸配向フィルムを得、これを210
℃で2秒間の熱固定処理を行なった後、冷却して巻取っ
た。また、上記比較例1の縦延伸倍率を5.2倍に変更す
る以外は比較例1と同様にして比較例2のフィルムを製
造し、更に比較例1の横延伸倍率を2.8倍に、また縦延
伸温度を100℃にそれぞれ変更する以外は比較例1と同
一の条件にして比較例3のフィルムを製造したが、比較
例2および3とも製膜時にフィルムが破断し、最終製品
を得ることができなかった。
On the other hand, a thickness of 160 obtained in the same manner as in Examples 1 to 4 above.
A film of Comparative Example 1 (final thickness 10 μm) was produced by subjecting the μ-unoriented film to transverse and longitudinal stretching by a conventional method. That is, the unoriented polyethylene terephthalate film was stretched 3.2 times in the transverse direction at a temperature of 90 ° C., and then stretched 4.8 times in the longitudinal direction at 95 ° C. to obtain a biaxially oriented film.
After heat setting at 2 ° C. for 2 seconds, it was cooled and wound. Further, a film of Comparative Example 2 was produced in the same manner as Comparative Example 1 except that the longitudinal stretching ratio of Comparative Example 1 was changed to 5.2 times, and the transverse stretching ratio of Comparative Example 1 was further increased to 2.8 times and the longitudinal stretching was performed. A film of Comparative Example 3 was produced under the same conditions as in Comparative Example 1 except that the temperature was changed to 100 ° C., but in Comparative Examples 2 and 3, the film broke during film formation, and a final product could be obtained. There wasn't.

上記の実施例1〜4、比較例1〜3の製造条件および性
能を下記の表に示す。なお、表中の5%伸長時応力およ
び熱収縮率は、フィルム長さ方向をMDで、また幅方向を
TDでそれぞれ表わし、その数値は、フィルム長さ方向お
よび幅方向にそれぞれ平行に幅10mm、長さ150mmの短冊
形試料を切出し、東洋ボールドウィン株式会社製テンシ
ロンを用い、100%/分の変形速度下で引張り試験を実
施し、常法により算出した。また、熱収縮率は、引張試
験に供したものと同形状の短冊形試料を用い、105℃の
温度に保持されたギアオーブン中に無緊状態で放置して
熱処理を行ない、30分後に取出して処理前後の試料長さ
から算出した。
The production conditions and performances of the above Examples 1 to 4 and Comparative Examples 1 to 3 are shown in the table below. The stress at 5% elongation and heat shrinkage in the table are MD in the film length direction and in the width direction.
Represented by TD, the numerical value is cut in parallel with the film length direction and width direction to obtain a strip sample with a width of 10 mm and a length of 150 mm and using Tensilon manufactured by Toyo Baldwin Co., Ltd. under a deformation rate of 100% / min. The tensile test was carried out and calculated by the usual method. Regarding the heat shrinkage, a strip sample with the same shape as that used in the tensile test was used, left in a gear oven held at a temperature of 105 ° C in a non-tensioned state for heat treatment, and taken out after 30 minutes. Was calculated from the sample length before and after the treatment.

上記の表の実施例1〜4を比較して明らかなように、再
縦延伸倍率を大きく設定する程、MD方向(縦方向)の5
%伸長時応力が増大する。すなわち、縦方向の強力が向
上する。そして、比較例1と総合縦延伸倍率を等しく設
定した実施例1は、比較例1と同程度の強力を発揮す
る。しかも、比較例2および3は、縦延伸倍率が比較例
1よりも大きいために製膜時の破断が多く、製品が得ら
れなかったのに対し、実施例2〜4は、その総合縦延伸
倍率が比較例2、3と同程度以上であるにも拘らず、製
膜時のフィルム破断が少なく、高強力のフィルムを製品
化することができた。
As is clear by comparing Examples 1 to 4 in the above table, the larger the re-longitudinal stretching ratio is set, the more the MD direction (longitudinal direction) becomes 5.
% The stress increases during elongation. That is, the vertical strength is improved. Then, Example 1 in which the total longitudinal stretching ratio is set equal to that of Comparative Example 1 exhibits the same strength as that of Comparative Example 1. Moreover, in Comparative Examples 2 and 3, since the longitudinal stretching ratio was larger than that in Comparative Example 1, many breakages occurred during film formation, and no products were obtained. Although the magnification was about the same as or higher than that of Comparative Examples 2 and 3, there was little film breakage during film formation, and a high-strength film could be commercialized.

(発明の効果) この発明は、ポリエチレンテレフタレートフィルムの延
伸成形に際し、横・縦延伸に続いて再縦延伸を行ない、
かつその条件を特定するものであり、従来法の横・縦延
伸の縦延伸を2回に分けて行なうものに相当し、総縦延
伸倍率を従来よりも大きく設定して従来以上の高強力化
フィルムが得られ、しかも延伸成形による成膜時の破断
が著しく減少し、円滑な操業が可能となり、製品の品質
が均一化される。
(Effect of the Invention) The present invention is characterized in that, when stretch-molding a polyethylene terephthalate film, transverse-longitudinal stretching is followed by re-longitudinal stretching.
In addition, it specifies the conditions and is equivalent to performing the longitudinal stretching of the conventional method of transverse / longitudinal stretching in two steps. The total longitudinal stretching ratio is set to be larger than that of the conventional method to achieve higher strength than ever. A film is obtained, moreover, breakage during film formation by stretch molding is significantly reduced, smooth operation is possible, and product quality is made uniform.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久世 勝朗 福井県敦賀市東洋町10番24号 東洋紡績株 式会社総合研究所敦賀分室内 (56)参考文献 特開 昭58−124617(JP,A) 特開 昭59−48124(JP,A) 特開 昭50−8869(JP,A) 特開 昭58−205735(JP,A) 特開 昭59−48125(JP,A) 米国特許3261903(US,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuro Kuze 10-24 Toyo-cho, Tsuruga City, Fukui Prefecture Toyobo Co., Ltd. General Research Laboratory Tsuruga Branch Office (56) Reference JP-A-58-124617 (JP, A) ) JP-A-59-48124 (JP, A) JP-A-50-8869 (JP, A) JP-A-58-205735 (JP, A) JP-A-59-48125 (JP, A) US Patent 3261903 (US , A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ポリエチレンテレフタレートを主体とする
実質的に未配向のフィルムを横方向、縦方向の順に80〜
130℃の温度で2.5〜5.0倍に逐次延伸して二軸配向フィ
ルムとし、次いで縦方向に100〜180℃の温度で1.05〜2.
0倍に再延伸し、160〜240℃で熱固定することを特徴と
するポリエステルフィルムの延伸成形方法。
1. A substantially non-oriented film mainly composed of polyethylene terephthalate having a thickness of 80 to 80 in the horizontal and vertical directions.
Sequentially stretched 2.5 to 5.0 times at a temperature of 130 ° C to form a biaxially oriented film, and then 1.05 to 2.at a temperature of 100 to 180 ° C in the machine direction.
A stretch-molding method for a polyester film, which comprises re-stretching to 0 times and heat-setting at 160 to 240 ° C.
JP1415988A 1988-01-25 1988-01-25 Stretch molding method for polyester film Expired - Lifetime JPH07106599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1415988A JPH07106599B2 (en) 1988-01-25 1988-01-25 Stretch molding method for polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1415988A JPH07106599B2 (en) 1988-01-25 1988-01-25 Stretch molding method for polyester film

Publications (2)

Publication Number Publication Date
JPH01188322A JPH01188322A (en) 1989-07-27
JPH07106599B2 true JPH07106599B2 (en) 1995-11-15

Family

ID=11853371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1415988A Expired - Lifetime JPH07106599B2 (en) 1988-01-25 1988-01-25 Stretch molding method for polyester film

Country Status (1)

Country Link
JP (1) JPH07106599B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0217610D0 (en) * 2002-07-30 2002-09-11 Security & Standards Ltd An electronic sealing and registration method for electronic transaction
WO2004012415A1 (en) * 2002-07-30 2004-02-05 Security And Standards Limited Electronic sealing for electronic transactions
CN113580456B (en) * 2021-08-11 2023-03-24 浙江格尔泰斯环保特材科技股份有限公司 Preparation method of polytetrafluoroethylene microporous film

Also Published As

Publication number Publication date
JPH01188322A (en) 1989-07-27

Similar Documents

Publication Publication Date Title
US4867937A (en) Process for producing high modulus film
JPH07106599B2 (en) Stretch molding method for polyester film
JPH0125695B2 (en)
JP4228039B2 (en) Method for producing flexible polyester film with excellent thickness uniformity
KR0140299B1 (en) Process for preparing biaxially oriented polyester film
JP2788775B2 (en) Method for producing biaxially stretched polyester film
JP2555707B2 (en) Process for producing polyethylene 2,6-naphthalate film
JPH0248926A (en) Manufacture of high-tenacity polyester film
JPH03275332A (en) Manufacture of biaxially oriented polyester film
JP2611413B2 (en) Method for producing high-strength polyester film
JPS60187530A (en) Preparation of heat resistant polyether ketone film or sheet
JP3367129B2 (en) Method for producing polyester film
JPH08224777A (en) Biaxially oriented polyester film and manufacture thereof
US2847709A (en) Process of producing unoriented formed articles from high polymers
JP3020723B2 (en) Method for producing biaxially stretched polyester film
JP2992586B2 (en) Method for producing biaxially oriented polyester film
KR0173730B1 (en) Manufacturing method of biaxially oriented polyester film
JP2679234B2 (en) Method for producing polyester film
JPH02130125A (en) Production of polyester film
KR0140294B1 (en) Process for preparing biaxially oriented polyester film
KR0140311B1 (en) Process for preparing biaxially oriented polyester film
KR0173732B1 (en) Manufacturing method of biaxially oriented polyester film
KR0142039B1 (en) Process for preparing biaxially oriented polyester film
KR0173728B1 (en) Manufacturing method of biaxially oriented polyester film
KR0140295B1 (en) Process for preparing biaxially oriented polyester film