KR0173730B1 - Manufacturing method of biaxially oriented polyester film - Google Patents
Manufacturing method of biaxially oriented polyester film Download PDFInfo
- Publication number
- KR0173730B1 KR0173730B1 KR1019950001134A KR19950001134A KR0173730B1 KR 0173730 B1 KR0173730 B1 KR 0173730B1 KR 1019950001134 A KR1019950001134 A KR 1019950001134A KR 19950001134 A KR19950001134 A KR 19950001134A KR 0173730 B1 KR0173730 B1 KR 0173730B1
- Authority
- KR
- South Korea
- Prior art keywords
- stretching
- longitudinal
- stage
- temperature
- sheet
- Prior art date
Links
- 229920006267 polyester film Polymers 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 238000002425 crystallisation Methods 0.000 claims abstract description 13
- 230000008025 crystallization Effects 0.000 claims abstract description 13
- 229920001225 polyester resin Polymers 0.000 claims abstract description 4
- 239000004645 polyester resin Substances 0.000 claims abstract description 4
- 230000009477 glass transition Effects 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 28
- 238000001816 cooling Methods 0.000 claims description 16
- 230000005484 gravity Effects 0.000 claims description 5
- 229920000728 polyester Polymers 0.000 abstract description 6
- 230000000052 comparative effect Effects 0.000 description 9
- 238000007796 conventional method Methods 0.000 description 4
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
- B29C55/14—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
- B29C55/143—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0018—Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2067/00—Use of polyesters or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/005—Oriented
- B29K2995/0053—Oriented bi-axially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2007/00—Flat articles, e.g. films or sheets
- B29L2007/002—Panels; Plates; Sheets
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
본 발명은 두께균일성이 우수한 이축배향 폴리에스테르 필름을 제조하는 방법에 관한 것으로서, 구체적으로 폴리에스테르 수지를 용융 압출하고 미연신 쉬트를 종방향 및 횡방향으로 연신하는 단계를 포함하는 이축 배향 폴리에스테르 필름의 제조방법에 있어서 상기 연신 단계가 총 종연신비가 3.5배 이상이 되도록 2단 종연신을 행하되, 제1단 종연신쉬트의 결정화에너지 20J/g 이상이 되도록 제1단 종연신을 행하고, 쉬트의 유리 전이온도(Tg) + 50℃ 내지 140℃의 온도 범위에서 2.0 내지 3.0배의 연신비로 제2단 종연신을 행하고, 상기 제2단 종연신 온도로부터 105℃ 이상의 차이만큼 급속 냉각시킨 후, 3.5 내지 5.0배의 연신비로 횡연신하는 것을 특징으로 한다.The present invention relates to a method for producing a biaxially oriented polyester film having excellent thickness uniformity, and specifically, a biaxially oriented polyester comprising melt extruding a polyester resin and stretching an unstretched sheet in a longitudinal direction and a transverse direction. In the method for producing a film, the drawing step is performed in two stages of longitudinal stretching so that the total longitudinal stretching ratio is 3.5 times or more, and the first stage longitudinal stretching is performed so that the crystallization energy of the first stage longitudinal stretching sheets is 20 J / g or more, and the sheet After the second stage longitudinal stretching at a ratio of 2.0 to 3.0 times the glass transition temperature (T g ) of + 50 ℃ to 140 ℃, and rapidly cooled by a difference of 105 ℃ or more from the second stage longitudinal stretching temperature And transverse stretching at a draw ratio of 3.5 to 5.0 times.
Description
제1도는 본 발명의 한 태양에 따르는 폴리에스테르 필름의 2단 종연신 장치의 개략도이다.1 is a schematic view of a two-stage longitudinal drawing apparatus of a polyester film according to one aspect of the present invention.
본 발명은 두께 균일성 및 표면 평활성이 우수한 이축 배향 폴리에스테르 필름을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a biaxially oriented polyester film having excellent thickness uniformity and surface smoothness.
폴리에스테르 필름은 기계적 강도 및 내열성, 전기절연성, 내약품성이 우수하여 자기기록매체, 식품포장, 전기절연체 등의 용도로 그 사용량이 증대되어 왔다. 특히 폴리에스테르 필름은 기계적 강도와 내열성이 우수하여 비디오 테이프, 오디오 테이프, 컴퓨터 테이프 제조에 있어서 기재 필름으로 그 활용가치가 매우 높다. 따라서 고도의 자기기록밀도와 고도의 평활성이 요구되는 현재의 자기기록 재생장치의 기술적 수준에서 폴리에스테르 필름의 두께 균일성은 매우 중요한 위치를 차지하고 있다.Polyester film has excellent mechanical strength, heat resistance, electrical insulation, and chemical resistance, and its use has been increased for magnetic recording media, food packaging, and electrical insulators. In particular, the polyester film is excellent in mechanical strength and heat resistance, and its utilization value is very high as a base film in the manufacture of video tape, audio tape, and computer tape. Therefore, the thickness uniformity of the polyester film occupies a very important position in the technical level of the current magnetic recording and reproducing apparatus requiring high magnetic recording density and high smoothness.
종래의 폴리에스테르 필름의 제조방법으로서는, 폴리에스테르 단량체들을 일정한 압력과 온도, 촉매 등 소정의 반응 조건으로 중합하여 폴리에스테르 중합체 중간 생성물(칩 또는 그래뉼)을 얻어 수분의 함량이 일정 수준 이하로 될 때까지 건조시킨 다음, 압출기에서 용융압출시키고 다이를 통과시켜 미연신 쉬트를 얻은 후 이를 종방향으로 연신하고 횡방향으로 연신하는 이축 연신 폴리에스테르 필름의 제조방법이 일본 특공소 30-5639에 개시되어 있으며, 또한 2축연신 공정 후에 다시 1축 또는 2축 재연신하여 필름의 강도 및 두께 균일성을 향상시키는 방법이 일본 특개소 54-8672에 개시되어 있다.In the conventional method for producing a polyester film, when the polyester monomers are polymerized under predetermined reaction conditions such as a constant pressure, temperature, and catalyst to obtain a polyester polymer intermediate product (chip or granule), the moisture content is below a certain level. A method for producing a biaxially stretched polyester film, which is dried up to and then melt-extruded in an extruder and passed through a die to obtain an unstretched sheet, is stretched in the longitudinal direction and stretched in the transverse direction, is disclosed in Japanese Patent Application No. 30-5639. Moreover, the method of improving the intensity | strength and thickness uniformity of a film by uniaxially or biaxially redrawing again after a biaxial stretching process is disclosed by Unexamined-Japanese-Patent No. 54-8672.
한편, 미연신 쉬트를 1차 연신하는 종연신공정이 최종 이축 배양 필름의 두께 균일성에 중요한 영향을 미친다는 것은 공지의 사실이다. 종래에는 종연신공정에서 종연신쉬트의 두께가 균일하도록 충분하게 고배율로 종연신할 수 없었으며, 고배율 종연신이 이루어지더라도 과도한 배향결정화에 의해 폭수축이 증가되어 종연신 쉬트의 양단부의 두께가 불량해질 뿐만 아니라 횡연신공정에서 파단 및 불균일 연신이 일어나게 되어 양호한 두께의 폴리에스테르 필름을 제조하는데 한계가 있었다. 따라서, 이축 배양 필름의 두께 균일성 뿐만 아니라 횡연신공정의 안정성을 감안할 때, 최대한도로 배향결정을 억제하면서 가능한 한 고배율로 종연신하는 방법이 요망되어 왔다.On the other hand, it is well known that the longitudinal stretching step of primary stretching the unstretched sheet has a significant effect on the thickness uniformity of the final biaxial culture film. Conventionally, in the longitudinal drawing process, the longitudinal stretching sheet could not be longitudinally stretched at a sufficient high magnification so that the thickness of the longitudinal stretching sheet was uniform. Even if the high longitudinal stretching was performed, the width shrinkage was increased due to excessive orientation crystallization, resulting in poor thickness of both ends of the longitudinal stretching sheet. In addition, there was a limit in producing a polyester film having a good thickness due to breakage and uneven stretching in the lateral stretching process. Therefore, in view of the thickness uniformity of the biaxial culture film as well as the stability of the transverse stretching process, a method of longitudinal stretching at the highest possible magnification while suppressing the orientation determination to the maximum has been desired.
따라서 최근들어 종래의 연신방법에 비하여 필름의 두께 균일성을 향상시키기 위해서 종방향의 다단계 연신방법이 대두되었다. 예를 들면 일본 특개소 48-43772, 50-75, 50-139872, 49-42277, 54-56674, 58-78729, 58-160123, 60-61233과 일본특공소 57-48377, 57-49377, 59-36851 등에 종방향 다단계 연신방법이 기재되어 있다. 그러나, 이들 방법은 단계별 연신 중간에 냉각과 승온과정을 반복하는 것으로 인해 두께 균일성의 저하뿐만 아니라 종연신장치의 비효율성을 초래한다. 또한, USP 4,370,291, 4,497,865 및 일본특개소 58-118220에 기재된 종방향의 다단계 연신방법은 각 단계의 복굴절률의 특정화 또는 연신온도 및 연신비의 한정을 그 발명의 구성 요소로 하고 있으므로 종방향 다단계 연신의 핵심기술이라 할 수 있는 비결정질의 고배율 종연신과 급속 냉각을 실현하기에는 애매한 점이 있다.Therefore, in recent years, in order to improve the thickness uniformity of the film compared with the conventional stretching method, the longitudinal multi-stage stretching method has emerged. For example, Japanese Unexamined Patent Publications 48-43772, 50-75, 50-139872, 49-42277, 54-56674, 58-78729, 58-160123, 60-61233 and Japan Special Employment Offices 57-48377, 57-49377, 59 A longitudinal multistage stretching method is described in -36851 and the like. However, these methods cause the inefficiency of the longitudinal stretching apparatus as well as the reduction in thickness uniformity by repeating the cooling and the temperature raising process in the middle of the stepwise stretching. In addition, the longitudinal multistage stretching method described in USP 4,370,291, 4,497,865 and Japanese Patent Laid-Open No. 58-118220 is characterized by the specification of the birefringence of each stage or the limitation of the stretching temperature and the stretching ratio as components of the invention. There is an ambiguous point to realize amorphous high magnification longitudinal stretching and rapid cooling, which are core technologies.
따라서, 본 발명은 전술한 종래기술의 단점을 해소하여 두께 균일성 및 표면평활성을 향상시킨 이축 배양 폴리에스테르 필름의 제조방법을 제공하는 것을 목적으로 하고 있다.Accordingly, an object of the present invention is to provide a method for producing a biaxially cultivated polyester film which has solved the above disadvantages of the prior art and has improved thickness uniformity and surface smoothness.
상기 목적을 달성하기 위하여 본 발명은 폴리에스테르 수지를 용융 압출하고 미연신쉬트를 종방향 및 횡방향으로 연신하는 단계를 포함하는 이축 배향 폴리에스테르 필름의 제조방법에 있어서, 상기 연신단계가, 총 종연신비가 3.5 내지 5.0배가 되도록 2단 종연신을 행하되, 제1단 종연신쉬트의 결정화에너지가 20 내지 25J/g이 되도록 제1단 종연신을 행하고, 다음식 (1)의 온도에서 2.0 내지 3.0배의 연신비로 제2단 종연신을 행하고, 다음 식 (2)의 냉각온도까지 급속 냉각시킨 후, 3.5 내지 5.0배의 연신비로 횡연신하는 것을 특징으로 하는 이축 배향 폴리에스테르 필름의 제조방법을 제공한다.In order to achieve the above object, the present invention provides a method for producing a biaxially oriented polyester film comprising melt extruding a polyester resin and stretching an unstretched sheet in a longitudinal direction and a transverse direction, wherein the stretching step is a total length. Two-stage longitudinal stretching is performed so that the mystery is 3.5 to 5.0 times, but the first stage longitudinal stretching is performed so that the crystallization energy of the first stage longitudinal stretching sheet is 20 to 25 J / g, and 2.0 to 3.0 at the temperature of the following formula (1) The second stage longitudinal stretching is carried out at twice the stretching ratio, and after rapid cooling to the cooling temperature of the following formula (2), it is transversely stretched at the stretching ratio of 3.5 to 5.0 times to provide a method for producing a biaxially oriented polyester film. do.
식(1) Tg+ 50℃제2단 종연신온도140℃Formula (1) T g + 50 ° C 2nd stage longitudinal drawing temperature 140 ℃
식(2) 냉각온도제2단 종연신온도-105℃Equation (2) Cooling temperature 2nd stage longitudinal drawing temperature-105 degreeC
본 발명의 방법에 의하면, 총 종연신비 3.5배 내지 5.0배의 고배율 연신에 의해 종연신쉬트의 두께 균일성이 향상되고, 제1단 종연신쉬트의 결정화에너지가 20 내지 25J/g이 되도록 하고 제2단 종연신 온도를 쉬트의 Tg+ 50℃ 내지 140℃ 범위로 하여 연신비 2.0 내지 3.0의 배율로 제2단 종연신을 행하는 것에 의해서는 종연신쉬트의 폭 수축이 감소되고 배향결정이 덜 진행되며, 제2단 종연신 직후 제2단 종연신 온도로부터 105℃ 이상의 차이만큼 급속 냉각하는 것에 의해 쉬트 표면의 평활성, 두께 균일성 및 기계적 강도가 향상되며, 연신비 3.5 내지 5.0배로 횡연신하는 것에 의해 횡연신공정에서의 파단 및 불균일 연신이 감소되어 궁극적으로 폴리에스테르 필름의 두께가 폭방향 및 길이방향으로 균일하게 된다.According to the method of the present invention, the thickness uniformity of the longitudinal stretch sheet is improved by high magnification stretching of 3.5 to 5.0 times the total longitudinal stretch ratio, and the crystallization energy of the first longitudinal stretch sheet is 20 to 25 J / g, By performing the second stage longitudinal stretching at a magnification ratio of 2.0 to 3.0 with the two stage longitudinal stretching temperature in the range of T g + 50 ° C. to 140 ° C., the width shrinkage of the longitudinal stretch sheet is reduced and the orientation determination proceeds less. The sheet surface smoothness, thickness uniformity and mechanical strength are improved by rapidly cooling the second stage longitudinal stretching temperature by 105 ° C. or more immediately after the second stage longitudinal stretching, and by transverse stretching at a draw ratio of 3.5 to 5.0 times. Breaking and uneven stretching in the transverse stretching process are reduced so that the thickness of the polyester film becomes uniform in the width direction and the longitudinal direction ultimately.
본 원에서, 종연신쉬트의 결정화에너지가 20 내지 25J/g이라 함은 결정화의 과정에서 발열되는 에너지가 일정수준임을 의미하는 것으로 종연신쉬트의 배향결정이 일정수준이라는 의미를 내포하고 있다. 또한, 제2단의 종연신 온도라 함은 제2단 연신롤의 표면온도를 의미한다. 본 발명에서 제1단 종연신쉬트의 결정화에너지가 20 내지 25J/g이 되도록 하는 제1단 종연신은 제1단 연신온도와 연신비의 조합에 의해 행하여지며 어느 특정 연신온도 및 연신비의 조합으로 한정되지 아니한다. 본 원에서 Tg는 유리전이온도를 의미하au, 폴리에스테르의 경우 67℃ 내외이다.Herein, the crystallization energy of the longitudinally stretched sheet is in the range of 20 to 25 J / g, which means that the energy generated during the crystallization process is at a constant level, which implies that the orientation of the longitudinally stretched sheet is at a constant level. In addition, the longitudinal stretch temperature of the second stage means the surface temperature of the second stage stretching roll. In the present invention, the first stage longitudinal stretching such that the crystallization energy of the first stage longitudinal stretching sheet is 20 to 25 J / g is performed by a combination of the first stage stretching temperature and the stretching ratio and is not limited to any specific stretching temperature and the stretching ratio. No. In the present specification, T g means glass transition temperature, and in the case of polyester, it is about 67 ° C.
종연신공정에서 각 연신 단계별 롤의 주속비가 각 단계별 종연신비의 곱이 총 종연신비로 정의되는데, 총 종연신비가 3.5배 보다 작으면 종연신쉬트의 두께 균일성이 충분하지 못하고, 총종연신비가 5.0배 보다 크면 횡연신 공정에서의 파단이 수반된다. 제1단 종연신쉬트의 결정화에너지가 20J/g보다 작으면 제1단 연신 공정에서 배향결정이 많이 일어난 것이므로 제1단 및 제2단 종연신쉬트의 폭수축이 커지게 되며, 또한 제2단 종연신 온도가 쉬트의 Tg+ 50℃ 보다 낮으면 연신응력이 증가하여 폭수축 및 배향결정이 초래되며, 제2단 종연신 온도가 140℃ 보다 높으면 불균일 연신이 야기되어 횡연신 공정에서의 파단 및 불균일이 수반된다. 또한, 제2단 연신의 연신온도로부터 105℃ 이상의 차이만큼 급속 냉각되지 않으면 냉각불량에 의해 표면 스크래치가 발생하고 분자 배향이 이완되면서 두께의 불균일 및 기계적 강도의 저하가 초래되며, 너무 과도하게 냉각하는 경우에는 횡연신 공정에서의 예열 손실이 증가하므로 비효율적이다. 또한, 제1단 종연신쉬트의 비중은 1.335 내지 1.35 범위가 되도록 하는 것이 바람직한데, 1.35보다 클 경우는 연신 불량 및 파단이 발생하는 문제가 있다.In the longitudinal drawing process, the circumferential speed ratio of each drawing stage is defined as the total longitudinal drawing ratio, and if the total longitudinal drawing ratio is less than 3.5 times, the thickness uniformity of the longitudinal drawing sheet is not sufficient, and the total drawing ratio is more than 5.0 times. If large, breakage in a lateral stretch process is accompanied. If the crystallization energy of the first stage longitudinal drawing sheet is less than 20 J / g, since the orientation crystallization occurs in the first stage drawing process, the first and second longitudinal drawing sheets become wider in shrinkage, and the second stage If the longitudinal stretching temperature is lower than T g + 50 ° C. of the sheet, the stretching stress is increased, resulting in width shrinkage and orientation determination. If the second stage longitudinal stretching temperature is higher than 140 ° C., uneven stretching causes breakage in the transverse stretching process. And nonuniformity is involved. In addition, if the surface is not rapidly cooled by a difference of 105 ° C. or more from the stretching temperature of the second stage stretching, surface scratches are caused by poor cooling, and molecular orientation is relaxed, resulting in uneven thickness and a decrease in mechanical strength. In this case, the preheating loss in the transverse stretching process is increased, which is inefficient. In addition, the specific gravity of the first stage longitudinal stretch sheet is preferably in the range of 1.335 to 1.35, but when it is larger than 1.35, there is a problem that draw failure and breakage occur.
한편, 제2단 종연신비 2.0 내지 3.0배 범위와 2단 종연신이 만족되지 못하는 경우에는 종연신공정에서 총 종연신비를 3.5배 내지 5.0배로 하는 것과 결정화 에너지를 20 내지 25J/g로 할 수 없게 되는 문제점이 발생하게 된다.On the other hand, when the second stage longitudinal draw ratio of 2.0 to 3.0 times and the second stage longitudinal stretch are not satisfied, the total longitudinal draw ratio is 3.5 times to 5.0 times in the longitudinal drawing process and the crystallization energy cannot be set to 20 to 25 J / g. This will occur.
이하 본 발명을 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
제1도는 본 발명의 한 태양에 따르는 폴리에스테르 필름의 2단 종연신장치에 대한 개략도이다. 제1도의 1-7번 롤은 예열롤, 8번 롤은 제1단 연신롤, 9번 롤은 제2단 연신롤, 10-11번 롤은 냉각롤이며, 8', 9', 10'는 닢롤이다. 통상의 방법에 따라 폴리에스테르 수지를 T-다이를 통해 용융압출하여 얻은 폴리에스테르 미연신쉬트(F)를 1 내지 7번 롤을 통과시켜 예열한 후 8번과 9번 롤 사이에서 롤의 주속차에 의해 제1단 연신을 행하고, 9번과 10번 롤 사이에서 제2단 연신 및 급속냉각을 행하여 종연신쉬트(F')를 제조한다.1 is a schematic diagram of a two-stage longitudinal drawing apparatus of a polyester film according to one aspect of the present invention. Rolls 1-7 of FIG. 1 are preheat rolls, rolls 8 are 1st draw rolls, rolls 9 are 2nd draw rolls, rolls 10-11 are cooling rolls, and 8 ', 9', 10 'are rolls. Is roll roll. After preheating the polyester unstretched sheet (F) obtained by melt-extruding a polyester resin through a T-die through a roll 1 to 7, according to a conventional method, the circumferential speed difference between rolls 8 and 9 The first stage stretching is performed, and the second stage stretching and rapid cooling are performed between the rolls 9 and 10 to produce the longitudinal stretch sheet F '.
이상과 같이 종연신된 쉬트(F')를 통상의 횡연신 장치에서 연신비 3.5 내지 5.0배로 횡연신시킨 후 통상적인 방법에 따라 열고정시켜 본 발명의 이축 배향된 폴리에스테르 필름을 제조한다.The longitudinally stretched sheet F 'as described above is laterally stretched at a draw ratio of 3.5 to 5.0 times in a conventional transverse stretching apparatus and heat-set according to a conventional method to prepare a biaxially oriented polyester film of the present invention.
이하 본 발명의 실시예를 기재한다. 그러나 이들은 본 발명의 이해를 돕기 위해 제공되는 것을 뿐, 본 발명이 이들 실시예에 의해 한정되는 것은 아니다.Hereinafter, examples of the present invention will be described. However, these are merely provided to aid the understanding of the present invention, and the present invention is not limited by these examples.
[실시예 1]Example 1
고유점도가 0.63dl/g인 폴리에스테르 칩을 다이를 통해 280℃에서 70m/분의 쉬트 성형 속도로 용융압출시켜 미연신쉬트를 얻는다. 제1도의 종연신 장치에서 1-3번 롤 온도 100℃, 4-7번 롤 온도 120℃, 8-9번 롤 온도 125℃로 하고 상기 미연신 쉬트를 8번과 9번 롤 사이에서 1.8배 제1단 종연신, 9번과 10번 롤 사이에서 2.0배 제2단 종연신시킨 후, 종연신쉬트를 20℃의 냉각수가 300ℓ/분의 유량으로 내부 순환하는 10번 냉각롤에 의해 급속 냉각시킨 다음, 횡연신비 4.3배로 횡연신시킨 후 통상적인 방법에 의해 열고정을 행하여 두께 14㎛인 2축 배향 폴리에스테르 필름을 얻었다.An unstretched sheet is obtained by melt extrusion of a polyester chip having an intrinsic viscosity of 0.63 dl / g at a sheet forming speed of 70 m / min at 280 ° C. through a die. In the longitudinal drawing apparatus of FIG. 1, the roll temperature of No. 1-3 is 100 ° C, the roll temperature of 4-7 is 120 ° C, the roll temperature of 8-9 is 125 ° C, and the unstretched sheet is 1.8 times between rolls 8 and 9. After the first stage longitudinal stretching, 2.0 times the second stage longitudinal stretching between the rolls 9 and 10, the longitudinal stretch sheet is rapidly cooled by the 10th cooling roll in which the cooling water at 20 ° C. circulates at a flow rate of 300 l / min. Then, the film was laterally stretched at a lateral stretch ratio of 4.3 times and then heat-set by a conventional method to obtain a biaxially oriented polyester film having a thickness of 14 µm.
[실시예 2]Example 2
실시예 1에서, 쉬트 성형 속도를 77.5m/분으로 하고, 제1도의 종연신 장치에서 8번 롤 온도를 120℃로 하고, 제1단 종연신비 1.8배, 제2단 종연신비 2.1배, 및 10번 냉각롤 온도 18℃로 하는 것을 제외하고는 실시예 1과 동일하게 행하였다.In Example 1, the sheet forming speed was 77.5 m / min, the 8th roll temperature was 120 degreeC in the longitudinal drawing apparatus of FIG. 1, 1.8 times of 1st stage longitudinal stretch ratio, 2.1 times of 2nd stage longitudinal stretch ratio, and It carried out similarly to Example 1 except having set the 10th cooling roll temperature to 18 degreeC.
[실시예 3]Example 3
실시예 1에서, 쉬트 성형 속도를 52.5m/분으로 하고, 제1도의 종연신 장치에서 9번 롤 온도를 130℃로 하고, 제1단 종연신비 2.0배, 제2단 종연신비 2.4배, 및 10번 냉각롤 온도 15℃로 하는 것을 제외하고는 실시예 1과 동일하게 행하였다.In Example 1, the sheet forming speed was 52.5 m / min, the roll temperature No. 9 was 130 ° C. in the longitudinal drawing apparatus of FIG. 1, the first stage longitudinal draw ratio was 2.0 times, the second stage longitudinal draw ratio was 2.4 times, and It carried out similarly to Example 1 except having set the 10th cooling roll temperature to 15 degreeC.
[비교실시예 1]Comparative Example 1
실시예 1에서, 제1도의 종연신 장치에서 1-7번 롤 온도를 90℃, 8번 롤 온도를 110℃, 9-11번 롤 온도를 20℃로 하고, 8번과 9번 롤 사이에서의 제1단 종연신비 4.0배로 하는 것을 제외하고는 실시예 1과 동일하게 행하였다.In Example 1, in the longitudinal drawing apparatus of FIG. 1, the roll temperature of 1-7 is 90 ° C, the roll temperature of 8 is 110 ° C, the roll temperature of 9-11 is 20 ° C, and between rolls 8 and 9 The same procedure as in Example 1 was carried out except that the first stage longitudinal draw ratio was 4.0 times.
[비교실시예 2]Comparative Example 2
실시예 1에서, 쉬트 성형 속도를 77.8m/분으로 하고, 제1도의 종연신 장치에서 4-7번 롤 온도를 100℃, 8번 롤 온도를 105℃, 9번 롤 온도를 110℃로 하고, 제1단 종연신비 1.8배, 제2단 종연신비 1.8배로 하는 것을 제외하고는 실시예 1과 동일하게 행하였다.In Example 1, the sheet forming speed was 77.8 m / min, the roll stretching apparatus of FIG. 1 was set at 4 ° C roll temperature to 100 ° C, the 8th roll temperature to 105 ° C, and the 9th roll temperature to 110 ° C. The same procedure as in Example 1 was conducted except that the first stage longitudinal draw ratio was 1.8 times and the second stage longitudinal draw ratio was 1.8 times.
[비교실시예 3]Comparative Example 3
실시예 1에서, 제1도의 종연신 장치에서 1-7번 롤 온도를 90℃, 8번 롤 온도를 100℃, 9번 롤 온도를 150℃로 하고, 제1단 종연신비 2.0배, 제2단 종연신비 2.0배로 하는 것을 제외하고는 실시예 1과 동일하게 행하였다.In Example 1, in the longitudinal drawing apparatus of FIG. 1, the roll temperature of 1-7 is 90 ° C, the roll temperature of 8 is 100 ° C, the roll temperature of 9 is 150 ° C, the first stage longitudinal draw ratio is 2.0 times, and the second However, it carried out similarly to Example 1 except having made the draw ratio 2.0 times.
[비교실시예 4]Comparative Example 4
실시예 1에서, 쉬트 성형 속도를 52.5m/분으로 하고, 제1도의 종연신 장치에서 4-7번 롤 온도를 110℃, 8번 롤 온도를 120℃, 9번 롤 온도를 125℃로 하고, 제1단 종연신비 1.5배, 제2단 종연신비 3.5배로 하는 것을 제외하고는 실시예 1과 동일하게 행하였다.In Example 1, the sheet forming speed was 52.5 m / min, the roll stretching apparatus of FIG. 1 was 110 ° C. for the 4-7 roll temperature, the roll temperature was 120 ° C. for the 8th roll, and the roll temperature was 125 ° C. for the 9th roll. The same procedure as in Example 1 was conducted except that the first stage longitudinal draw ratio was 1.5 times and the second stage longitudinal draw ratio was 3.5 times.
[비교실시예 5]Comparative Example 5
실시예 1에서, 제1도의 종연신 장치에서 10번 냉각롤 온도를 25℃로 하는 것을 제외하고는 실시예 1과 동일하게 행하였다.In Example 1, it carried out similarly to Example 1 except having set the 10th cooling roll temperature to 25 degreeC in the longitudinal drawing apparatus of FIG.
[비교실시예 6]Comparative Example 6
실시예 1에서, 쉬트 성형 속도를 82.4m/분으로 하고, 횡연신비를 3.4배로 한 것을 제외하고는 실시예 1과 동일하게 행하였다.In Example 1, it carried out similarly to Example 1 except having set the sheet forming speed to 82.4 m / min, and making the lateral stretch ratio 3.4 times.
[비교실시예 7]Comparative Example 7
실시예 1에서, 쉬트 성형 속도를 53.8m/분으로 하고, 횡연신비를 5.2배로 한 것을 제외하고는 실시예 1과 동일하게 행하였다.In Example 1, it carried out similarly to Example 1 except having set the sheet forming speed to 53.8 m / min, and making lateral draw ratio 5.2 times.
이상의 실시예 및 비교실시예의 실시조건과, 종연신쉬트의 결정화에너지와 비중, 횡연신공정에서의 파단횟수, 최종 얻어진 필름의 표면 평활성 및 두께 균일성을 하기 방법으로 측정하여 표 1에 나타내었다.The conditions of the above examples and comparative examples, the crystallization energy and specific gravity of the longitudinally stretched sheets, the number of breaks in the transverse stretching process, the surface smoothness and the thickness uniformity of the finally obtained film were measured and shown in Table 1 below.
[평가 방법][Assessment Methods]
1. 결정화에너지 : 차등열량계측기(DSC, Perkin-Elmer 사 제품)를 사용하여 20℃/분의 승온속도에서 측정하였다.1. Crystallization energy: measured using a differential calorimeter (DSC, Perkin-Elmer) at a temperature increase rate of 20 ℃ / min.
2. 비중 : 필름의 비중은 ASTM D1505에 의한 밀도구배관으로 측정하였다.2. Specific gravity: Specific gravity of the film was measured by the density gradient tube according to ASTM D1505.
3. 파단횟수 : 폴리에스테르 필름의 횡연신공정 72시간 동안 발생한 파단의 횟수를 측정하였다.3. Number of breaks: The number of breaks that occurred during the 72 hours transverse stretching process of the polyester film was measured.
두께 균일성 : 두께측정기(안니츠(안립)사 제품)를 사용하여 횡방향 20㎜ 간격으로 두께를 측정하여 최대값과 최소값의 차이인 두께 편차로 나타내었다.Thickness uniformity: The thickness was measured at intervals of 20 mm in the transverse direction using a thickness gauge (manufactured by Annitsu Co., Ltd.) and expressed as a thickness deviation that is a difference between the maximum value and the minimum value.
표면 평활성 : 형광등에 비추어 필름 표면에 나타난 종방향의 표면 스크래치의 유무를 육안으로 평가하였다.Surface smoothness: The presence or absence of surface scratches in the longitudinal direction on the film surface in the light of fluorescent lamps was visually evaluated.
상기 표에서 보듯이 본 발명의 제조방법에 의해 제조된 실시예 1-3의 폴리에스테르 필름은 본 발명의 제조방법에 의하지 아니한 비교실시예 1-5의 폴리에스테르 필름보다 표면 평활성 및 두께 균일성이 우수하며, 또한 횡연산공정 중 파단횟수가 적어 생산성이 양호함을 알 수 있다.As shown in the above table, the polyester film of Example 1-3 prepared by the manufacturing method of the present invention has surface smoothness and thickness uniformity more than that of the polyester film of Comparative Example 1-5 without the manufacturing method of the present invention. It can be seen that the productivity is good because the number of breaks during the transverse operation is small.
따라서, 본 발명의 제조방법은 고도의 자기기록밀도와 고도의 평활성 및 고속의 주행안정성이 요구되는 비디오 및 오디오, 컴퓨터용 자기기록매체의 기재 필름으로서 적함한 폴리에스테르 필름의 제조에 이용될 수 있다.Therefore, the manufacturing method of the present invention can be used for the production of polyester film suitable as a base film of video recording, audio recording, and computer magnetic recording media requiring high magnetic recording density, high smoothness and high driving stability. .
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019950001134A KR0173730B1 (en) | 1995-01-24 | 1995-01-24 | Manufacturing method of biaxially oriented polyester film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019950001134A KR0173730B1 (en) | 1995-01-24 | 1995-01-24 | Manufacturing method of biaxially oriented polyester film |
Publications (2)
Publication Number | Publication Date |
---|---|
KR960029070A KR960029070A (en) | 1996-08-17 |
KR0173730B1 true KR0173730B1 (en) | 1999-04-01 |
Family
ID=19407123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019950001134A KR0173730B1 (en) | 1995-01-24 | 1995-01-24 | Manufacturing method of biaxially oriented polyester film |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR0173730B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100369442B1 (en) * | 1998-11-20 | 2003-03-28 | 에스케이씨 주식회사 | Manufacturing method of biaxially oriented polyester film |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000067585A (en) * | 1999-04-29 | 2000-11-25 | 장용균 | the Process of Biaxial-oriented Polyester film Manufacture |
-
1995
- 1995-01-24 KR KR1019950001134A patent/KR0173730B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100369442B1 (en) * | 1998-11-20 | 2003-03-28 | 에스케이씨 주식회사 | Manufacturing method of biaxially oriented polyester film |
Also Published As
Publication number | Publication date |
---|---|
KR960029070A (en) | 1996-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3901851A (en) | Strengthened films and method for producing same | |
KR0173730B1 (en) | Manufacturing method of biaxially oriented polyester film | |
KR0140299B1 (en) | Process for preparing biaxially oriented polyester film | |
KR0173731B1 (en) | Manufacturing method of biaxially oriented polyester film | |
KR0173732B1 (en) | Manufacturing method of biaxially oriented polyester film | |
KR0173727B1 (en) | Manufacturing method of biaxially oriented polyester film | |
KR0173728B1 (en) | Manufacturing method of biaxially oriented polyester film | |
KR0173729B1 (en) | Manufacturing method of biaxially oriented polyester film | |
KR0142039B1 (en) | Process for preparing biaxially oriented polyester film | |
KR0140297B1 (en) | Process for preparing biaxially oriented polyester film | |
KR0140311B1 (en) | Process for preparing biaxially oriented polyester film | |
KR0140295B1 (en) | Process for preparing biaxially oriented polyester film | |
KR0140310B1 (en) | Process for preparing biaxially oriented polyester film | |
KR0164972B1 (en) | Process for producing polyester film | |
KR0140300B1 (en) | Process for preparing biaxially oriented polyester film | |
KR0140294B1 (en) | Process for preparing biaxially oriented polyester film | |
KR0140309B1 (en) | Process for preparing biaxially oriented polyester film | |
KR100369442B1 (en) | Manufacturing method of biaxially oriented polyester film | |
KR0140298B1 (en) | Process for preparing biaxially oriented polyester film | |
KR100258571B1 (en) | Process for the preparation of biaxially oriented polyester film having good thickness uniformity | |
KR100369441B1 (en) | Manufacturing method of biaxially oriented polyester film | |
JP2992586B2 (en) | Method for producing biaxially oriented polyester film | |
KR100258568B1 (en) | Process for the preparation of biaxially oriented polyester film having good thickness uniformity | |
KR100258570B1 (en) | Process for the preparation of biaxially oriented polyester film having good thickness uniformity | |
JPH0480815B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |