JPH0832499B2 - Heat resistant polyester film for transfer film - Google Patents

Heat resistant polyester film for transfer film

Info

Publication number
JPH0832499B2
JPH0832499B2 JP20385387A JP20385387A JPH0832499B2 JP H0832499 B2 JPH0832499 B2 JP H0832499B2 JP 20385387 A JP20385387 A JP 20385387A JP 20385387 A JP20385387 A JP 20385387A JP H0832499 B2 JPH0832499 B2 JP H0832499B2
Authority
JP
Japan
Prior art keywords
film
transfer
present
heat
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20385387A
Other languages
Japanese (ja)
Other versions
JPS6445699A (en
Inventor
裕二郎 福田
滋夫 内海
Original Assignee
ダイアホイルヘキスト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイアホイルヘキスト株式会社 filed Critical ダイアホイルヘキスト株式会社
Priority to JP20385387A priority Critical patent/JPH0832499B2/en
Publication of JPS6445699A publication Critical patent/JPS6445699A/en
Publication of JPH0832499B2 publication Critical patent/JPH0832499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Decoration By Transfer Pictures (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は深絞り性、平面性及び耐熱性に優れ、且つ粗
大物の極めて非常に少ない、転写フィルム用ベースフィ
ルムとして極めて優れた二軸配向ポリエステルフィルム
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is excellent in deep drawability, flatness and heat resistance, and has very few coarse particles, and is extremely excellent as a base film for transfer film. Regarding polyester film.

〔従来の技術および発明が解決しようとする問題点〕[Problems to be Solved by Prior Art and Invention]

成形品への印刷手法は従来種々の方法が用いられてい
るが、その中の代表的手法の一つとして転写印刷法があ
る。近年、該印刷法の一つとして脚光を浴びているの
が、、成形と同時に転写も行なう、いわゆる成形転写法
である。
Conventionally, various methods have been used as a printing method for a molded article, and a transfer printing method is one of the typical methods. In recent years, what has been highlighted as one of the printing methods is a so-called molding transfer method in which transfer is performed simultaneously with molding.

該転写法を第1図を用いて簡単に説明する。予め印刷
層を含む層4例えば離型層、印刷層、接着層を順次積層
したものとベースフィルム3とを射出機2と金型1との
間に位置決めする。該フィルムを必要に応じて加熱後真
空又は圧空等により予備成形した後、射出機2より樹脂
を注入する。該成形時の圧力で印刷層を含む層4が成形
品表面に転写され、成形後ベースフィルム3を該成形品
より剥離する事により、成形及び印刷共に完成する。
The transfer method will be briefly described with reference to FIG. A layer 4 including a printing layer, such as a release layer, a printing layer, and an adhesive layer, which are sequentially laminated in advance, and the base film 3 are positioned between the injection machine 2 and the mold 1. The film is heated, if necessary, and then preformed by vacuum or compressed air, and then a resin is injected from the injection machine 2. The layer 4 including the printing layer is transferred to the surface of the molded product by the pressure during the molding, and after molding, the base film 3 is peeled off from the molded product to complete both molding and printing.

このような転写法は、従来の成形後印刷する方法に比
べ工程の省略により大幅なコストダウンが可能となり、
又平面に限らず、2次、3次曲面に極めて正確に且つ迅
速に印刷出来る利点を持つ。
Compared with the conventional method of printing after molding, such a transfer method enables a significant cost reduction by omitting steps.
Further, it is possible to print on a quadratic or cubic curved surface, not limited to a flat surface, extremely accurately and quickly.

該転写法に用いられるベースフィルムとしては、従来
ポリエステルフィルムや塩化ビニール系樹脂のフィルム
が用いられて来た。しかしながら、従来のポリエステル
フィルムは、上記成形工程におけるフィルムの伸び率が
極めて小さく、金型をより深く、又は複雑な形状とした
場合に該工程におけるフィルム破れが頻発し、転写が事
実上不可能となる。従って該ポリエステルフィルムは、
底が浅く、かつ単純な形状の金型を用いた成形転写にお
いてのみ使用されているのが現状である。
As a base film used in the transfer method, a polyester film or a vinyl chloride resin film has been conventionally used. However, the conventional polyester film has a very small elongation rate of the film in the above molding step, and when the mold is deeper or has a complicated shape, film breakage frequently occurs in the step, and transfer is practically impossible. Become. Therefore, the polyester film,
At present, it is used only in molding transfer using a mold having a shallow bottom and a simple shape.

一方塩化ビニール系樹脂のフィルムは上述の底の深
い、又は複雑な形状の金型に対する成形性(以下、深絞
り性と称す)は非常に優れてはいるものの、ポリエステ
ルフィルムに比べフィルムの平面性に劣り、且つ、フィ
ルム表面、又は内部に存在する粗大物数も極めて多く、
正確且つ鮮明な転写印刷用のベースフィルムとしては不
適当であった。
On the other hand, a vinyl chloride resin film is very excellent in moldability (hereinafter referred to as deep drawability) for a mold having a deep bottom or a complicated shape as described above, but the flatness of the film is higher than that of a polyester film. And the number of coarse particles present on the film surface or inside is extremely large,
It was unsuitable as a base film for accurate and clear transfer printing.

成形品の形状は近年増々多種多様となり、上記の深絞
り性を必要とする成形転写の需要は増加して来ており、
それ故、転写フィルムのベースフィルムとしてポリエス
テルフィルムの持つ平面性及びフィッシュアイの少なさ
を維持し、且つ塩化ビニール系樹脂のフィルムが有する
深絞り性に優れたフィルムを得る事が望まれていた。
The shapes of molded products have become more and more diverse in recent years, and the demand for molding transfer requiring the above-mentioned deep drawability is increasing.
Therefore, it has been desired to obtain a film which is a base film of a transfer film while maintaining the flatness and the small number of fish eyes of a polyester film and having an excellent deep drawability of a vinyl chloride resin film.

本発明者らは上記問題点に鑑み、二軸配向ポリエステ
ルのイソフタル酸共重合体のフィルムにおいて、ある特
定の物性を付与する事により、上記問題点が改良される
ことを先に提案した。しかるに金型に凹凸や溝をつけた
際、その高さもしくは深さが低くかつなだらかな場合に
は、上記提案フィルムで良好な結果が得られたが、凹凸
が急峻であったり細く深かったりした場合にはその部分
で破れるという問題が生じた。
In view of the above problems, the present inventors have previously proposed that the above problems can be improved by imparting certain specific physical properties to a film of an isophthalic acid copolymer of biaxially oriented polyester. However, when unevenness or grooves were added to the mold and the height or depth was low and smooth, good results were obtained with the proposed film, but the unevenness was sharp or thin and deep. In some cases, there was a problem of breaking at that part.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明者らは上記問題点を解決すべく鋭意検討
を重ねた結果、本発明に到達したものである。
Therefore, the present inventors have arrived at the present invention as a result of intensive studies to solve the above problems.

即ち、本発明の要旨はフィルムの2次転移温度が70℃
以上であり、かつフィルムの平均屈折率が1.598以下、
面配向度が0.050以上0.140以下かつ該フィルムの融解熱
が8cal/g以下である事を特徴とする転写フィルム用耐熱
ポリエステルフィルムに存する。
That is, the gist of the present invention is that the second-order transition temperature of the film is 70 ° C.
And above, and the average refractive index of the film is 1.598 or less,
A heat-resistant polyester film for a transfer film, which has a degree of plane orientation of 0.050 or more and 0.140 or less and a heat of fusion of the film of 8 cal / g or less.

以下本発明を詳細に説明する。 The present invention will be described in detail below.

本発明に用いられるポリエステルは、ジカルボン酸成
分として、テレフタル酸、シュウ酸、マロン酸、コハク
酸、アジピン酸、アゼライン酸、セバシン酸、フタル
酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニ
ルエーテルジカルボン酸等、公知のジカルボン酸の一種
もしくは二種以上からなり、又、ジオール成分としてエ
チレングリコール、プロピレングリコール、トリメチレ
ングリコール、テトラメチレングリコール、ヘキサメチ
レングリコール、ジエチレングリコール、トリエチレン
グリコール、ポリアルキレングリコール、1,4−シクロ
ヘキサンジメタノール、ネオペンチルグリコール等公知
のジオール成分の一種又は二種以上からなるいかなるポ
リエステル又はその共重合ポリエステルであっても良い
が、本発明において主としてポリエチレンテレフタレー
ト、ポリブチレンテレフタレート、ポリエチレン−2,6
−ナフタレート、テレフタル酸と1,4−シクロヘキサン
ジメタノールからなるポリエステルの共重合体が好適で
あ。とりわけ、コストの面からポリエチレンテレフタレ
ートの共重合体が特に好ましい。
The polyester used in the present invention is known as a dicarboxylic acid component, such as terephthalic acid, oxalic acid, malonic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, naphthalenedicarboxylic acid, and diphenyl ether dicarboxylic acid. Of one or more dicarboxylic acids, and as the diol component, ethylene glycol, propylene glycol, trimethylene glycol, tetramethylene glycol, hexamethylene glycol, diethylene glycol, triethylene glycol, polyalkylene glycol, 1,4-cyclohexane. Although any polyester or copolymerized polyester thereof composed of one or more known diol components such as dimethanol and neopentyl glycol may be used, in the present invention, Polyethylene terephthalate Te, polybutylene terephthalate, polyethylene-2,6
Copolymers of polyesters consisting of naphthalate, terephthalic acid and 1,4-cyclohexanedimethanol are preferred. Above all, a copolymer of polyethylene terephthalate is particularly preferable in terms of cost.

但し該フィルムは、フィルムの状態で2次転移温度
(Tg)が70℃以上であることが必要である。ちなみにポ
リエチレンテレフタレートの該温度は69℃、ポリエチレ
ン−2,6−ナフタレートは113℃である。
However, the film must have a second-order transition temperature (Tg) of 70 ° C. or higher in the film state. By the way, the temperature of polyethylene terephthalate is 69 ° C, and that of polyethylene-2,6-naphthalate is 113 ° C.

本発明のフィルムは上記条件を満足する限りにおい
て、以下にあげるような共重合ポリエステルであっても
構わない。例えば、p−オキシ安息香酸、p−オキシエ
トキシ安息香酸のごときオキシカルボン酸、安息香酸、
ベンゾイル安息香酸、メトキシポリアルキレングリコー
ルのごとき一官能性化合物、グリセリン、ペンタエリス
リトール、トリメチレンプロパンのごとき多官能性化合
物も、生成物が実質的に線状の高分子を保持し得る範囲
内で使用することが出来る。
The film of the present invention may be a copolyester as described below as long as the above conditions are satisfied. For example, oxycarboxylic acid such as p-oxybenzoic acid and p-oxyethoxybenzoic acid, benzoic acid,
Use of monofunctional compounds such as benzoylbenzoic acid and methoxypolyalkylene glycol, and polyfunctional compounds such as glycerin, pentaerythritol, and trimethylenepropane, as long as the product retains a substantially linear polymer. You can do it.

上記の条件を満たす本発明のポリエステルとしては、
ポリエチレンテレフタレートを主体とし、ジオール成分
としてネオペンチルグリコール、1,4−シクロヘキサン
ジメタノールを共重合させた共重合ポリエステルが工業
的に安価に得られることから特に好ましい。
As the polyester of the present invention satisfying the above conditions,
A copolyester obtained by copolymerizing polyethylene terephthalate as a main component with neopentyl glycol and 1,4-cyclohexanedimethanol as a diol component is industrially inexpensive and is particularly preferable.

上記共重合ポリエステルにおけるネオペンチルグリコ
ール、及び1,4−シクロヘキサンジメタノールの全ジオ
ール成分中の含有量は、2次転移温度が70℃以上であ限
りいずれの割合でもよいが、好ましくは5モル%以上50
モル%以下、更に好ましくは5モル%以上30モル%以下
である。
The content of neopentyl glycol and 1,4-cyclohexanedimethanol in all the diol components in the above copolymerized polyester may be any proportion as long as the second-order transition temperature is 70 ° C. or higher, but is preferably 5 mol%. More than 50
It is not more than mol%, more preferably not less than 5 mol% and not more than 30 mol%.

一方、上記共重合ポリエステルにおけるポリエチレン
テフタレート成分の割合は好ましくは50モル%、更に好
ましくは70モル%である。
On the other hand, the proportion of the polyethylene terephthalate component in the above copolyester is preferably 50 mol%, more preferably 70 mol%.

ポリエチレンテレフタレートが50モル%未満である
と、フィルムにした場合の強度及び耐熱性が大幅に低下
するので好ましくない。
When the content of polyethylene terephthalate is less than 50 mol%, the strength and heat resistance of a film are significantly reduced, which is not preferable.

又、フィルムの易滑性を向上させるために、有機滑
剤、無機の滑剤等の微粒子を含有せしめることも好まし
い。又、必要に応じて安定剤、着色剤、酸化防止剤、消
泡剤、静電防止剤等の添加剤を含有するものであっても
良い。滑り性を付与する微粒子としては、カオリン、ク
レー、炭酸カルシウム、酸化ケイ素、テレフタル酸カル
シウム、酸化アルミニウム、酸化チタン、リン酸カルシ
ウム、フッ化リチウム、カーボンブラック等の公知の不
活性外部粒子、ポリエステル樹脂の溶融製膜に際して不
溶な高融点有機化合物、架橋ポリマー及びポリエステル
合成時に使用する金属化合物触媒、たとえばアルカリ金
属化合物、アルカリ土類金属化合物などによってポリエ
ステル製造時にポリマー内部に形成される内部粒子があ
げられる。フィルム中に含まれる該微粒子は0.005〜0.9
重量%、平均粒径としては0.001〜3.5μmであることが
好ましい。
Further, in order to improve the slipperiness of the film, it is also preferable to contain fine particles such as an organic lubricant and an inorganic lubricant. Further, it may contain additives such as a stabilizer, a colorant, an antioxidant, an antifoaming agent and an antistatic agent, if necessary. As fine particles imparting lubricity, known inert external particles such as kaolin, clay, calcium carbonate, silicon oxide, calcium terephthalate, aluminum oxide, titanium oxide, calcium phosphate, lithium fluoride and carbon black, melting of polyester resin Examples include high melting point organic compounds insoluble during film formation, crosslinked polymers, and metal compound catalysts used in the synthesis of polyester, such as internal particles formed inside the polymer during the production of polyester by an alkali metal compound or an alkaline earth metal compound. The fine particles contained in the film are 0.005 to 0.9
The weight percent and the average particle diameter are preferably 0.001 to 3.5 μm.

本発明のポリエステルは、フィルムにおける極限粘度
が好ましくは0.40以上、更に好ましくは0.50以上であ
る。フィルムの極限粘度が0.40未満の場合は十分な強度
及び深絞り性が得られず、好ましくない。
The polyester of the present invention preferably has an intrinsic viscosity in a film of 0.40 or more, more preferably 0.50 or more. When the intrinsic viscosity of the film is less than 0.40, sufficient strength and deep drawability cannot be obtained, which is not preferable.

斯かるポリエステルを延伸製膜し、特定のフィルム物
性を付与させる事により、本発明における所望のフィル
ムとなる。
The desired film in the present invention can be obtained by stretching such a polyester to give specific film physical properties.

また本発明における重要な構成要件の1つとして、本
発明のポリエステルフィルムにおいて下記式で表わされ
る面配向度ΔPが0.050以上0.140以下であることが必要
であり、好ましくは0.050以上0.130以下、更に好ましく
は0.050以上0.120以下である事が好ましい。
Further, as one of important constitutional requirements in the present invention, it is necessary that the degree of plane orientation ΔP represented by the following formula in the polyester film of the present invention is 0.050 or more and 0.140 or less, preferably 0.050 or more and 0.130 or less, and further preferably Is preferably 0.050 or more and 0.120 or less.

上記式においてnγ、nβ及びnαは、各々フィルム
面内の最大屈折率、それに直交する方向の屈折率、厚さ
方向の屈折率を表わす。
In the above formula, n γ , n β and n α represent the maximum refractive index in the film plane, the refractive index in the direction orthogonal thereto and the refractive index in the thickness direction, respectively.

該面配向度ΔPが0.140を超えるフィルムは深絞り性
が不十分で、成形転写時にフィルム破れが頻発し好まし
くない。この原因は明確ではないが、本発明者らの推定
する所では、該面配向度ΔPが0.140を超えるようなフ
ィルムはフィルム面内における分子鎖の配向度が高く、
深絞りの成形転写時にフィルムに十分な伸度を与える余
地が残っていないと思われる。
A film having a degree of plane orientation ΔP of more than 0.140 is not preferable because the deep drawability is insufficient and the film breaks frequently during molding transfer. Although the cause of this is not clear, it is estimated by the present inventors that a film having a degree of plane orientation ΔP of more than 0.140 has a high degree of orientation of molecular chains in the plane of the film,
It seems that there is no room for giving sufficient elongation to the film during deep drawing molding transfer.

又、該面配向度ΔPが0.050未満のフィルムでは、該
フィルム面内の配向度が不十分となり、フィルムの強度
の低下及び平面性の悪化が発生し、好ましくない。
On the other hand, a film having a degree of plane orientation ΔP of less than 0.050 is not preferable because the degree of orientation in the plane of the film becomes insufficient and the strength of the film decreases and the flatness of the film deteriorates.

しかしながら該面配向度ΔPを上記範囲内に制御する
事により成形転写時の深絞り性を少なからず向上させた
ものの、該深絞り性は、未だ完全に満足出来るレベルに
は達していなかった。
However, although the deep drawability during molding transfer was improved to some extent by controlling the surface orientation degree ΔP within the above range, the deep drawability has not yet reached a completely satisfactory level.

一方で、本発明者らはフィルムの平均屈折率及び該フ
ィルムの融解熱が成形転写時の該フィルムの深絞り性に
大きく関与している事を見出した。
On the other hand, the present inventors have found that the average refractive index of the film and the heat of fusion of the film have a great influence on the deep drawability of the film during molding transfer.

即ち、本発明のフィルムにおいては、下記式で表わさ
れる該フィルムの平均屈折率が1.598以下であること
が必要であり、好ましくは1.597以下、更に好ましくは
1.580以上1.597以下である事が望ましい。
That is, in the film of the present invention, the average refractive index of the film represented by the following formula is required to be 1.598 or less, preferably 1.597 or less, more preferably
It is desirable that it is 1.580 or more and 1.597 or less.

このの値はフィルムの結晶化度と相関関係があり、
結晶化度が高いとも高くなる。本発明において、フィ
ルムのが1.598を超えると該フィルムの結晶化度が高
くなり、成形転写時のフィルムの破断が頻繁に発生し好
ましくない。
This value correlates with the crystallinity of the film,
The higher the crystallinity, the higher. In the present invention, when the film number exceeds 1.598, the crystallinity of the film becomes high, and the film is frequently broken during molding transfer, which is not preferable.

一方、もともとのフィルムの結晶化度が適正な範囲に
ある場合でも成形転写前あるいは成形転写時の加熱によ
りフィルムの結晶化が進行すると、上記と同じ理由によ
り成形転写時にフィルムの破断が頻発しやすいと思われ
る。
On the other hand, even if the crystallinity of the original film is in the proper range, if the film is crystallized by heating before molding transfer or during molding transfer, the film is likely to break during molding transfer for the same reason as above. I think that the.

本発明においてはフィルムの融解熱が8cal/g以下であ
る事も重要な構成要件の1つであり、好ましくは6cal/g
以下、更に好ましくは2〜6cal/gである。
In the present invention, one of the important constituents is that the heat of fusion of the film is 8 cal / g or less, preferably 6 cal / g
Hereafter, it is more preferably 2 to 6 cal / g.

一般に融解熱の高いフィルムは結晶性が高く、結晶化
度も増加しやすい傾向にある。本発明においてフィルム
の融解熱が8cal/gを超えると、成形転写前或いはその時
の加熱によりフィルムの結晶化が進行し、成形転写時に
フィルムの破断が頻発して好ましくない。又、該融解熱
が2cal/g未満のフィルムは、成形転写時の深絞り性には
問題ないものの製膜時の原料乾燥工程において、結晶化
が極めて困難な為、真空乾燥等の繁雑な工程が必要とな
る。
Generally, a film having a high heat of fusion has high crystallinity, and the crystallinity tends to increase. In the present invention, when the heat of fusion of the film exceeds 8 cal / g, crystallization of the film proceeds due to heating before or during molding transfer, and the film is frequently broken during molding transfer, which is not preferable. Further, the film having a heat of fusion of less than 2 cal / g has no problem in deep drawing at the time of molding transfer, but in the raw material drying step during film formation, crystallization is extremely difficult, and thus a complicated step such as vacuum drying Is required.

本発明のフィルムにおいて、フィルムの厚さ斑は好ま
しくは20%以下、更に好ましくは10%以下である。該フ
ィルムの厚さ斑が20%を超えるとフィルムの平面性が十
分でなく、印刷層形成時に図柄に歪み等が生じやすくな
り好ましくない。
In the film of the present invention, the unevenness of the film thickness is preferably 20% or less, more preferably 10% or less. When the thickness unevenness of the film exceeds 20%, the flatness of the film is not sufficient, and distortion or the like is likely to occur in the pattern when the printing layer is formed, which is not preferable.

又、本発明のフィルムにおいて、フィルム表面又は内
部に存在する最大径1.0mm以上の粗大物の数が、100cm2
当りで好ましくは5個以下、更に好ましくは2個以下で
ある。該粗大物の数が100cm2当りで5個を超えるような
フィルムは、印刷層に抜けが生じ、転写後にいわゆる印
刷抜けが生ずるので好ましくない。
Further, in the film of the present invention, the number of coarse particles having a maximum diameter of 1.0 mm or more present on the film surface or inside is 100 cm 2
The number of hits is preferably 5 or less, more preferably 2 or less. A film in which the number of the coarse particles exceeds 5 per 100 cm 2 is not preferable because the print layer has a gap and a so-called print gap occurs after transfer.

本発明のフィルムにおいて、空気中150℃、3分の条
件下での縦及び横方向の収縮率が好ましくは10%以下、
更に好ましくは5%以下である事が好ましい。該収縮率
が10%を上回るフィルムは、加工工程における加熱区
間、例えば印刷層形成後の乾燥工程においてフィルムの
縦方向の縮み、又は横方向の縮みが発生し、印刷した図
柄の歪み等が発生するので好ましくない。
In the film of the present invention, the shrinkage in the longitudinal and transverse directions under the conditions of 150 ° C. and 3 minutes in air is preferably 10% or less,
More preferably, it is 5% or less. A film having a shrinkage ratio of more than 10% has a shrinkage in the longitudinal direction or a shrinkage in the lateral direction of the film in the heating section in the processing step, for example, in the drying step after the printing layer is formed, which causes distortion of the printed pattern. Is not preferred.

本発明のフィルムにおける該フィルムの縦方向及び横
方向におけるヤング率は好ましくは300kg/mm2以上、更
に好ましくは350kg/mm2以上である。該ヤング率が300kg
/mm2未満のフィルムでは、成形工程においてフィルムに
巻取り張力が掛かった場合にフィルムに伸びが生じやす
く、印刷層の図柄等に歪みが生ずるので好ましくない。
The Young's modulus in the machine direction and the transverse direction of the film of the present invention is preferably 300 kg / mm 2 or more, more preferably 350 kg / mm 2 or more. The Young's modulus is 300 kg
A film having a thickness of less than / mm 2 is not preferable, because when the film is subjected to a winding tension in the molding step, the film is likely to be stretched and the design of the printing layer is distorted.

本発明のフィルムにおいて、該フィルムの複屈折率は
好ましくは0.025以下、更に好ましくは0.020以下、特に
好ましくは0.015以下である。該フィルムの複屈折率が
0.025を超えると、フィルムの異方性が大きくなり、成
形転写時のフィルムの深絞り性が低下し好ましくない。
In the film of the present invention, the birefringence of the film is preferably 0.025 or less, more preferably 0.020 or less, and particularly preferably 0.015 or less. The birefringence of the film is
When it exceeds 0.025, the anisotropy of the film becomes large, and the deep drawability of the film at the time of molding transfer is deteriorated, which is not preferable.

このようにして得られたフィルムの厚さは特に限定さ
れないが、成形転写用のフィルムとして好ましく用いら
れる厚さは5〜200μm、更に好ましくは10〜150μmで
ある。
The thickness of the film thus obtained is not particularly limited, but the thickness preferably used as a film for molding transfer is 5 to 200 μm, more preferably 10 to 150 μm.

次に本発明のフィルムの製造法を具体的に説明する
が、本発明の構成要件を満足する限り、以下の例示に特
に限定されるものではない。
Next, the method for producing the film of the present invention will be specifically described, but is not particularly limited to the following examples as long as the constituent requirements of the present invention are satisfied.

滑り剤として無機粒子等を必要に応じて適量含有せし
めた本発明のポリエステルを、ホッパードライヤー、パ
ドルドライヤー、オーブン等の通常用いられる乾燥機、
又は真空乾燥機等を用いて乾燥した後、200〜320℃で押
出す。押出しに際しては、Tダイ法、チューブラ法等の
既存のどの手法を採用しても構わない。
The polyester of the present invention containing an appropriate amount of inorganic particles or the like as a slip agent, a hopper dryer, a paddle dryer, a commonly used dryer such as an oven,
Alternatively, it is dried using a vacuum dryer or the like and then extruded at 200 to 320 ° C. At the time of extrusion, any existing method such as a T-die method or a tubular method may be adopted.

押出し後急冷して無定形シートを得るが、急冷する際
に静電印加法を用いると該無定形シートの厚さ斑が向上
するので好ましい。
Although the amorphous sheet is obtained by rapid cooling after extrusion, it is preferable to use an electrostatic application method at the time of rapid cooling because the thickness unevenness of the amorphous sheet is improved.

次いで該無定形シートを縦及び横方向に少なくとも面
積倍率で6倍以上、好ましくは9倍以上となるよう延伸
して二軸配向フィルムを得、必要に応じて該フィルムを
縦及び/又は横方向に再延伸を行なった後、好ましくは
150〜220℃の範囲の温度で熱処理を行ない所望のフィル
ムを得る。
Next, the amorphous sheet is stretched in the machine direction and the transverse direction so that the area ratio is at least 6 times or more, preferably 9 times or more to obtain a biaxially oriented film, and if necessary, the film is longitudinally and / or transversely. After re-stretching to, preferably
Heat treatment is performed at a temperature in the range of 150 to 220 ° C. to obtain the desired film.

該熱処理工程において、熱処理の最高温度のゾーン及
び/又は熱処理出口のクーリングゾーンにて横方向、及
び/又は縦方向に0.1〜30%の弛緩を行なう事も本発明
の好ましい態様の1つである。又、該熱処理工程におい
て、二段熱処理を行なっても構わない。
In the heat treatment step, relaxation of 0.1 to 30% in the transverse direction and / or the longitudinal direction in the cooling zone at the maximum temperature of the heat treatment and / or the cooling zone at the heat treatment outlet is also a preferred embodiment of the present invention. . Further, in the heat treatment step, a two-step heat treatment may be performed.

上記延伸工程中又は延伸後に、該フィルムに接着性、
帯電防止性、滑り性等を付与する為に、フィルムの片面
又は両面に塗布層を形成したり、或いはコロナ放電処理
等を施しても構わない。
During or after the stretching step, adhesiveness to the film,
A coating layer may be formed on one side or both sides of the film, or a corona discharge treatment or the like may be performed in order to impart antistatic properties, slip properties, and the like.

以上本発明によれば、深絞り性、平面性及び耐熱性に
優れ且つ、粗大物の非常に少ない、転写フィルム用ベー
スとして極めて好適なポリエステルフィルムを得る事が
出来る。
As described above, according to the present invention, it is possible to obtain a polyester film which is excellent in deep drawability, flatness and heat resistance, and which has very few coarse particles and which is extremely suitable as a base for a transfer film.

〔実施例〕〔Example〕

以下、実施例にて本発明を更に具体的に説明するが、
本発明はその趣旨を超えない限り、これらの実施例に限
定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples.
The present invention is not limited to these examples as long as the gist thereof is not exceeded.

尚、フィルムの評価方法を以下に示す。 The evaluation method of the film is shown below.

(1) フィルムの平均屈折率()、面配向度(Δ
P)、複屈折率(Δn) フィルムの屈折率の測定は、アタゴ社製アッベの屈折
計を使用し、光源にはナトリウムランプを用いて測定し
た。
(1) Average refractive index of film (), degree of plane orientation (Δ
P), Birefringence (Δn) The refractive index of the film was measured using an Abbe refractometer manufactured by Atago Co., Ltd. and a sodium lamp as a light source.

フィルム面内の最大の屈折率nγ、それに直交する方
向の屈折率nβ、及び厚さ方向の屈折率nαを求め、平
均屈折率()、面配向度(ΔP)、及び複屈折率(Δ
n)を次式に従って算出した。
The maximum refractive index n γ in the film plane, the refractive index n β in the direction orthogonal thereto, and the refractive index n α in the thickness direction are obtained, and the average refractive index (), plane orientation degree (ΔP), and birefringence index (Δ
n) was calculated according to the following formula.

Δn=nγ−nβ (2) フィルムの2次転移温度 フィルムを窒素雰囲気下で300℃、5分間保持して溶
融させた後、急冷して実質的に非晶質の試料を得た。該
試料をパーキンエルマー社製差動走査熱量計DSC−1Bを
用い、昇温速度4℃/minにて2次転移温度を測定し、こ
れをフィルムの2次転移温度とした。
Δn = n γ −n β (2) Second-order transition temperature of film The film was held at 300 ° C. for 5 minutes in a nitrogen atmosphere to melt, and then rapidly cooled to obtain a substantially amorphous sample. The second-order transition temperature of the sample was measured with a differential scanning calorimeter DSC-1B manufactured by Perkin Elmer at a temperature rising rate of 4 ° C./min, and this was used as the second-order transition temperature of the film.

(3) フィルムの融解熱 前述のパーキンエルマー社製差動走査熱量計DSC−1B
により、昇温速度16℃/minにて測定した試料の結晶の融
解に伴うピークの面積を求め、下記式に従い計算した。
(3) Heat of melting of film Differential scanning calorimeter DSC-1B manufactured by Perkin Elmer Co., Ltd.
The area of the peak accompanying the melting of the crystal of the sample measured at a temperature rising rate of 16 ° C./min was calculated by the above, and calculated according to the following formula.

但し、A:同一条件でインジウムを測定したときの、チ
ャート上での単位面積当りの融解熱(cal/cm2) S:試料の融解ピークの面積(cm2) m:試料の重量(g) (4) 極限粘度(η) 試料200mgをフェノール/テトラクロロエタン=50/50
の混合溶媒20mlに加え、約110℃で30分間加熱後、30℃
で測定した。
Where A: heat of fusion per unit area (cal / cm 2 ) on the chart when indium was measured under the same conditions S: area of melting peak of sample (cm 2 ) m: weight of sample (g) (4) Intrinsic viscosity (η) 200 mg sample is phenol / tetrachloroethane = 50/50
Add to 20 ml of mixed solvent and heat at about 110 ℃ for 30 minutes, then at 30 ℃
It was measured at.

(5) フィルムの厚さ斑 安立電気社製連続フィルム厚さ測定器(電子マイクロ
メーター使用)により、フィルムの縦方向に沿って5mの
長さで測定し、次式により厚さ斑を算出した。
(5) Thickness unevenness of film The continuous film thickness measuring instrument (using an electronic micrometer) manufactured by Anritsu Electric Co., Ltd. was used to measure the length of the film along the lengthwise direction of 5 m, and the thickness unevenness was calculated by the following formula. .

(6) フィルムの粗大物数 倍率10倍の偏光顕微鏡を用い、偏光下でフィルムの表
面及び内部に存在する最大径1.0mm以上の粗大物の数を
フィルム面積100cm2当りの個数に換算した。
(6) Number of Coarse Films Using a polarizing microscope with a magnification of 10 times, the number of coarse products having a maximum diameter of 1.0 mm or more existing on the surface and inside of the film under polarized light was converted into the number per 100 cm 2 of film area.

(7) フィルムの加熱収縮率 150±2℃の温度のギヤードオーブン中にフィルムを
無負荷の状態で3分間熱収縮させ、縦及び横方向につい
ての加熱収縮率を下記式に従い求めた。
(7) Heat Shrinkage of Film The film was heat shrunk in a geared oven at a temperature of 150 ± 2 ° C. for 3 minutes with no load applied, and the heat shrinkage in the longitudinal and transverse directions was determined according to the following formula.

但し、l0:原長10cm l:収縮後の長さ (8) フィルムの深絞り性 縦10cm、横10cm、最大深さ1.8cmの金型を用い、フィ
ルムを真空及び圧空にて金型内部に予備成形した後、加
熱した樹脂を射出して成形を行なった。該成形時のフィ
ルム破断の頻度によりフィルムの深絞り性を以下のよう
に評価した。
However, l 0 : Original length 10 cm l: Length after shrinkage (8) Deep drawability of film Use a mold with a length of 10 cm, a width of 10 cm, and a maximum depth of 1.8 cm. After preforming, the heated resin was injected to perform molding. The deep drawability of the film was evaluated as follows based on the frequency of film breakage during the molding.

○:フィルムの破断が全く無い。◯: There is no breakage of the film.

△:時々フィルム破れが1〜2ケ所発生し、連続運転時
には支障をきたす。
Δ: Film breakage sometimes occurs at 1 to 2 places, which causes trouble during continuous operation.

×:フィルム破れが頻発し、使用不可能である。X: The film is frequently broken and cannot be used.

(9) 転写フィルムとしての適性 フィルムの離型層、印刷層及び接着層を形成後、上記
(8)の方法にて実際に成形転写を連続で行なった。成
形時にフィルムの破断がなく連続に運転出来、且つ、成
形品への印刷が図柄の歪み、印刷の抜け等がほとんど見
られないものを○、そうでないものを×として評価し
た。
(9) Suitability as transfer film After forming the release layer, the printing layer and the adhesive layer of the film, molding transfer was actually continuously carried out by the method of (8) above. The film was evaluated as ◯ when it could be operated continuously without breakage of the film at the time of molding, and when the printing on the molded product showed almost no distortion of the design, omission of printing, etc., and x when it was not.

比較例1 ジガルボン酸成分としてテレフタル酸単位を80mol%
及びイソフタル酸単位を20mol%、ジオール成分として
エチレングリコール単位98mol%及びジエチレングリコ
ール単位2mol%よりなる、平均粒径1.2μmの無定形シ
リカを600ppm含む共重合ポリエステルを、パドルドライ
ヤーにて予備結晶化後本乾燥を行ない、285℃で押出機
より押出し後急冷固化し、無定形シートを得た。該無定
形シートの極限粘度は(η)は0.66であった。
Comparative Example 1 80 mol% of terephthalic acid unit as a digalvic acid component
And a pre-crystallized copolyester containing 600 ppm of amorphous silica having an average particle size of 1.2 μm and comprising 20 mol% of isophthalic acid unit, 98 mol% of ethylene glycol unit and 2 mol% of diethylene glycol unit as diol components after precrystallization with a paddle dryer. It was dried, extruded from an extruder at 285 ° C., then rapidly cooled and solidified to obtain an amorphous sheet. The intrinsic viscosity (η) of the amorphous sheet was 0.66.

該無定形シートを加熱ロールと冷却ロールの間で、IR
ヒーターを併用して85℃で縦方向に3.5倍延伸した後、
次いで110℃で横方向に3.8倍延伸し、15%の幅方向の弛
緩を行ないながら180℃で熱処理を行なった。得られた
フィルムの2次転移点は66℃で厚さは50μmであった。
The amorphous sheet is placed between a heating roll and a cooling roll by IR
After using a heater together and stretching 3.5 times in the machine direction at 85 ° C,
Then, it was stretched 3.8 times in the transverse direction at 110 ° C. and heat-treated at 180 ° C. while being relaxed by 15% in the width direction. The obtained film had a second-order transition point of 66 ° C. and a thickness of 50 μm.

実施例1 ジカルボン成分がテレフタル酸単位よりなり、ジオー
ル成分として1,4−シクロヘキサンジメタノール単位33m
ol%及びエチレングリコール単位67mol%よりなる共重
合ポリエステルとポリエチレンテレフタレートを重量比
70/30でブレンドした後乾燥し、押出して急冷し、無定
形シートを得た。該無定形シートを90℃で縦方向に3.7
倍延伸後、120℃で横方向に4.0倍延伸し、次いで幅方向
に10%の弛緩を行ないながら、200℃にて熱処理を行な
った。得られたフィルムの厚さは50μm、2次転移温度
は80℃、極限粘度は0.72であった。
Example 1 The dicarboxylic acid component was composed of terephthalic acid units, and the diol component was 1,4-cyclohexanedimethanol unit 33 m
ol% and ethylene glycol unit 67mol% copolyester and polyethylene terephthalate weight ratio
After blending at 70/30, it was dried, extruded and quenched to obtain an amorphous sheet. The amorphous sheet at 90 ° C in the longitudinal direction 3.7
After the double stretching, the film was stretched 4.0 times in the transverse direction at 120 ° C., and then heat-treated at 200 ° C. while performing 10% relaxation in the width direction. The obtained film had a thickness of 50 μm, a second-order transition temperature of 80 ° C., and an intrinsic viscosity of 0.72.

比較例2 実施例1の無定形シートを用い、実施例1と同じ手法
を用いて90℃縦方向に2.0倍延伸し、次いで横方向に2.5
倍延伸後実施例1と同じ条件で熱処理を行ない、厚さ50
μmのフィルムを得た。
Comparative Example 2 Using the amorphous sheet of Example 1, the same procedure as in Example 1 was used to draw at 90 ° C. in the machine direction 2.0 times, and then in the transverse direction 2.5.
After the double stretching, heat treatment was performed under the same conditions as in Example 1 to obtain a thickness of 50.
A film of μm was obtained.

比較例3 実施例1の無定形シートを用い、熱処理温度を225℃
とした以外は実施例1と全く同様に延伸製膜を行ない、
厚さ50μmのフィルムを得た。
Comparative Example 3 Using the amorphous sheet of Example 1, the heat treatment temperature was 225 ° C.
Stretch film formation was performed in exactly the same manner as in Example 1 except that
A film having a thickness of 50 μm was obtained.

実施例2 ジカルボン酸成分がテレフタル酸単位98mol%及びo
−フタル酸単位2mol%よりなり、ジオール成分がエチレ
ングリコール単位90mol%及びネオペンチルグリコール
単位10mol%よりなる、平均粒径0.9μmの炭酸カルシウ
ム微粒子1000ppmを含む共重合ポリエステルを、真空乾
燥機を用いて乾燥後、以下実施例1と全く同様に押出し
後延伸製膜し、厚さ30μmのフィルムを得た。得られた
フィルムの2次転移温度は75℃、極限粘度は0.70であっ
た。
Example 2 The dicarboxylic acid component was 98 mol% of terephthalic acid units and o
-Using a vacuum dryer, a copolyester containing 1000 ppm of calcium carbonate fine particles having an average particle size of 0.9 µm and consisting of 2 mol% of phthalic acid unit, 90 mol% of diol component and 10 mol% of neopentyl glycol unit, After drying, the film was extruded and stretched in the same manner as in Example 1 to obtain a film having a thickness of 30 μm. The film thus obtained had a second-order transition temperature of 75 ° C. and an intrinsic viscosity of 0.70.

比較例4 実施例2の無定形シート用い、78℃の加熱ロールと冷
却ロールの間で縦方向に4.4倍延伸後、テンターにて100
℃で4.8倍延伸し、実施例2と同様の操作により熱処理
を行なって厚さ30μmのフィルムを得た。
Comparative Example 4 Using the amorphous sheet of Example 2, the film was stretched 4.4 times in the machine direction between a heating roll and a cooling roll at 78 ° C., and then stretched at 100 with a tenter.
The film was stretched 4.8 times at ℃ and heat-treated in the same manner as in Example 2 to obtain a film having a thickness of 30 μm.

上記実施例及び比較例で得られたフィルムの物性と評
価結果を表1にまとめた。
Table 1 shows the physical properties and evaluation results of the films obtained in the above Examples and Comparative Examples.

比較例1のフィルムはフィルムの2次転移温度が低
く、まだ完全に深絞り性が良好なものではなかった。こ
れに対し実施例1及び実施例2のフィルムでは、良好な
深絞り性を示した。一方、比較例2、3及び4において
は、実施例1及び2において、平均屈折率、面配向度等
が特定の範囲からはずれたため不良となることが分か
る。
The film of Comparative Example 1 had a low second-order transition temperature of the film and was not yet completely excellent in deep drawability. On the other hand, the films of Examples 1 and 2 showed good deep drawability. On the other hand, in Comparative Examples 2, 3 and 4, it can be seen that in Examples 1 and 2, the average refractive index, the degree of plane orientation, etc. deviate from the specific ranges, resulting in defects.

〔発明の効果〕 以上記載の通り、本発明の条件を満足するフィルム
は、深絞り性、平面性及び耐熱性等に優れ、転写フィル
ムのベースフィルムとして極めて有用な事が分かる。
[Effects of the Invention] As described above, a film satisfying the conditions of the present invention is excellent in deep drawability, flatness, heat resistance and the like, and is extremely useful as a base film of a transfer film.

【図面の簡単な説明】 第1図は成形と同時に転写も行なう成形転写法の概略を
示す図である。図中の1は金型、2は射出機、3はベー
スフィルムそして4は印刷層を含む層を表わす。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an outline of a molding transfer method in which transfer is performed simultaneously with molding. In the figure, 1 is a mold, 2 is an injection machine, 3 is a base film, and 4 is a layer including a printing layer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】フィルムの2次転移温度が70℃以上であ
り、かつフィルムの平均屈折率が1.598以下、面配向度
が0.050以上0.140以下かつ該フィルムの融解熱が8cal/g
以下である事を特徴とする転写フィルム用耐熱ポリエス
テルフィルム。
1. The second-order transition temperature of the film is 70 ° C. or higher, the average refractive index of the film is 1.598 or lower, the degree of plane orientation is 0.050 to 0.140 and the heat of fusion of the film is 8 cal / g.
A heat-resistant polyester film for a transfer film, which is characterized in that:
JP20385387A 1987-08-17 1987-08-17 Heat resistant polyester film for transfer film Expired - Fee Related JPH0832499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20385387A JPH0832499B2 (en) 1987-08-17 1987-08-17 Heat resistant polyester film for transfer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20385387A JPH0832499B2 (en) 1987-08-17 1987-08-17 Heat resistant polyester film for transfer film

Publications (2)

Publication Number Publication Date
JPS6445699A JPS6445699A (en) 1989-02-20
JPH0832499B2 true JPH0832499B2 (en) 1996-03-29

Family

ID=16480778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20385387A Expired - Fee Related JPH0832499B2 (en) 1987-08-17 1987-08-17 Heat resistant polyester film for transfer film

Country Status (1)

Country Link
JP (1) JPH0832499B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071690A (en) * 1989-02-01 1991-12-10 Diafoil Company, Limited Moldable biaxially stretched polyester film
JPH05245930A (en) * 1991-12-26 1993-09-24 Sekisui Chem Co Ltd Polyester heat-shrinkable film
KR101496536B1 (en) * 2003-11-28 2015-02-26 다이니폰 인사츠 가부시키가이샤 Decorating sheet, decorated resin molded article and method for production thereof
JP4617669B2 (en) * 2003-12-25 2011-01-26 東洋紡績株式会社 Laminated polyester film for molding and molded member formed by molding the same
JP4635434B2 (en) * 2003-12-25 2011-02-23 東洋紡績株式会社 Polyester film for molding
JP2009248578A (en) * 2008-04-01 2009-10-29 Murata Yuatsu Kikai Kk Hold opening/closing device for sand carrier
JP5667526B2 (en) * 2011-06-22 2015-02-12 東洋機械金属株式会社 Method of performing in-mold molding of complex shape, transfer sheet used for in-mold molding, and resin molded product formed by the method
JP5974328B2 (en) * 2011-10-24 2016-08-23 帝人株式会社 Biaxially oriented polyester film for in-mold transfer

Also Published As

Publication number Publication date
JPS6445699A (en) 1989-02-20

Similar Documents

Publication Publication Date Title
KR960006778B1 (en) Moldable biaxially stretched polyester film
KR101725576B1 (en) Heat-shrinkable polyester film, packaging body thereof, the method for producing heat-shrinkable polyester film
EP0349960A2 (en) Shrinkable polyester film
JP5234690B2 (en) Polyester film for simultaneous transfer of molding
KR101218145B1 (en) Biaxially-oriented polyester film excellent in formability and manufacturing method thereof
JP5234689B2 (en) Polyester film for simultaneous transfer of molding
JP4232004B2 (en) Biaxially oriented polyester film
JP4583699B2 (en) Polyester film, polyester film for molding, and molded member using the same
JP3569077B2 (en) Polyester film for large-sized molded transfer foil
JPH0832499B2 (en) Heat resistant polyester film for transfer film
JPH03159727A (en) Biaxially oriented polyester film for forming
JPH0832498B2 (en) Polyester film for transfer film
JP2611415B2 (en) Biaxially oriented polyester film for molding, film for molding transfer, and film for molding container
JP5450941B2 (en) Biaxially stretched laminated polyester film for molding
JP2692284B2 (en) Biaxially oriented polyester film for molding
JP3804311B2 (en) Polyester film and method for producing the same
JPH07237283A (en) Laminated polyester film to be transferred simultaneously with molding
JP2943183B2 (en) Laminated molding
JP2692310B2 (en) Biaxially oriented polyester film for molding
JPH07196821A (en) Polyester film for deep drawing and similtaneous transfer printing
JPH06210720A (en) Molding of polyester film
JP2012066586A (en) Polyester film for molding simultaneous transfer
JP2819761B2 (en) Biaxially oriented polyester film for molding
JP3975582B2 (en) Method for producing biaxially stretched polyester film
JP2794893B2 (en) Biaxially oriented polyester film for molding

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees