JP2611415B2 - Biaxially oriented polyester film for molding, film for molding transfer, and film for molding container - Google Patents
Biaxially oriented polyester film for molding, film for molding transfer, and film for molding containerInfo
- Publication number
- JP2611415B2 JP2611415B2 JP1023333A JP2333389A JP2611415B2 JP 2611415 B2 JP2611415 B2 JP 2611415B2 JP 1023333 A JP1023333 A JP 1023333A JP 2333389 A JP2333389 A JP 2333389A JP 2611415 B2 JP2611415 B2 JP 2611415B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- molding
- transfer
- present
- polyester
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、成形性、平面性および耐熱性に優れた成形
用二軸延伸ポリエステルフィルム、転写用フィルムおよ
び成形容器用フィルムに関する。Description: TECHNICAL FIELD The present invention relates to a biaxially oriented polyester film for molding, excellent in moldability, flatness and heat resistance, a film for transfer, and a film for molded containers.
従来、二軸延伸ポリエステルフィルムは強度、耐熱性
に優れ、種々の工業用用途に幅広く適用されている。例
えば、真空、圧空、張出、冷間、射出、インモールド、
エンボス加工等の原材料または補助材としてポリエステ
ルフィルムを用いることが検討され、加工されるポリエ
ステルフィルムの用途として、成形転写用、成形容器
用、電絶用、包装用、装飾用等への適用が検討されてい
る。Hitherto, biaxially stretched polyester films have excellent strength and heat resistance and have been widely applied to various industrial uses. For example, vacuum, compressed air, overhang, cold, injection, in-mold,
Considering the use of polyester film as a raw material or auxiliary material for embossing, etc., and considering the application of the processed polyester film to molding transfer, molding containers, electrification, packaging, decoration, etc. Have been.
しかしながら二軸延伸ポリエステルフィルムは、塩化
ビニール系樹脂に比べ成形性が劣るため、これらの用途
における適用が困難であった。特に成形転写用、成形容
器用ベースフィルムとして成形性の改良が求められてい
た。However, the biaxially stretched polyester film is inferior in moldability as compared with the vinyl chloride resin, and thus has been difficult to apply in these applications. In particular, improvement of moldability has been demanded as a base film for molding transfer and molding containers.
〔課題を解決するための手段〕 本発明者は上記課題に鑑み、鋭意検討した結果、高温
伸長条件下のフィルム強度がある特定値である二軸延伸
ポリエステルフィルムが優れた成形性を有することを見
出し、本発明を完成するに至った。[Means for solving the problem] In view of the above problems, the present inventor has conducted intensive studies and found that a biaxially stretched polyester film having a specific value of film strength under high-temperature stretching conditions has excellent moldability. As a result, the present invention has been completed.
すなわち本発明の要旨は、150℃の雰囲気下、100%伸
長時のフィルム強度F100が0.5〜7kg/mm2であることを特
徴とする成形用二軸延伸ポリエステルフィルム、成形転
写用フィルムおよび成形容器用フィルムに存する。That is, the gist of the present invention is to provide a biaxially stretched polyester film for molding, a film for molding transfer, and a film, wherein the film strength F 100 at 100% elongation under an atmosphere at 150 ° C. is 0.5 to 7 kg / mm 2. Exists in container film.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明に用いられるポリエステルは、ジカルボン酸成
分として、テレフタル酸、シュウ酸、マロン酸、コハク
酸、アジピン酸、アゼライン酸、セバシン酸、フタル
酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニ
ルエーテルジカルボン酸等、公知のジカルボン酸の一種
もしくは二種以上からなり、また、ジオール成分として
エチレングリコール、プロピレングリコール、トリメチ
レングリコール、テトラメチルグリコール、ヘキサメチ
レングリコール、ジエチレングリコール、トリエチレン
グリコール、ポリアルキレングリコール、1,4−シクロ
ヘキサンジメタノール、ネオペチルグリコール等公知の
ジオール成分の一種又は二種以上からなるポリエステル
である。Polyester used in the present invention, as a dicarboxylic acid component, terephthalic acid, oxalic acid, malonic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyl ether dicarboxylic acid, etc. And one or more dicarboxylic acids of the formula (I), and as a diol component, ethylene glycol, propylene glycol, trimethylene glycol, tetramethyl glycol, hexamethylene glycol, diethylene glycol, triethylene glycol, polyalkylene glycol, 1,4-cyclohexane It is a polyester comprising one or more known diol components such as dimethanol and neopetyl glycol.
本発明のポリエステルにおいて共重合成分として、例
えばp−オキシ安息香酸のようなオキシカルボン酸、安
息香酸、ベンゾイル安息香酸、メトキシポリアルキレン
グリコールのような一官能性化合物、グリセリン、ペン
タエリスリトール、トリメチレンプロパンのような多官
能性化合物も、生成物が実質的に線状の高分子を保持し
得る範囲内で使用することができる。In the polyester of the present invention, as a copolymerization component, for example, oxycarboxylic acid such as p-oxybenzoic acid, benzoic acid, benzoylbenzoic acid, monofunctional compound such as methoxypolyalkylene glycol, glycerin, pentaerythritol, trimethylenepropane Polyfunctional compounds such as can be used as long as the product can retain a substantially linear polymer.
本発明のポリエステルにおいて、ポリエチレンテレフ
タレートの割合は好ましくは50モル%以上、更に好まし
くは70モル%以上である。ポリエチレンテレフタレート
が50モル%未満であるとフィルムにした場合の強度及び
耐熱性が低下するので好ましくない。In the polyester of the present invention, the proportion of polyethylene terephthalate is preferably at least 50 mol%, more preferably at least 70 mol%. If the polyethylene terephthalate content is less than 50 mol%, the strength and heat resistance of the film are undesirably reduced.
本発明のポリエステルにおいて、共重合成分の一つと
して、アジピン酸、セバシン酸、1,10−デカンジカルボ
ン酸のような脂肪族ジカルボン酸成分を含有させること
により、後述する150℃の雰囲気下における100%伸長時
の強度を低下させることができ好ましい。本発明のポリ
エステルにおいてかかる脂肪族ジカルボン酸成分の含有
量は好ましくは1〜25mol%、更に好ましくは1〜20mol
%の範囲である。この含有量が25mol%を越えるフィル
ムでは上記強度の低下は十分なものの、耐熱性の低下が
起こり好ましくない。In the polyester of the present invention, adipic acid, sebacic acid, and an aliphatic dicarboxylic acid component such as 1,10-decanedicarboxylic acid are contained as one of the copolymer components, so that 100 % Elongation strength can be reduced, which is preferable. The content of the aliphatic dicarboxylic acid component in the polyester of the present invention is preferably 1 to 25 mol%, more preferably 1 to 20 mol%.
% Range. If the content exceeds 25 mol%, the strength is sufficiently reduced, but the heat resistance is undesirably reduced.
またフィルムの易滑性を向上させるために、有機滑
剤、無機の滑剤等の微粒子を含有させることも好まし
く、必要に応じて安定剤、着色剤、酸化防止剤、消泡
剤、静電防止剤等の添加剤を含有するものであってもよ
い。滑り性を付与する微粒子としては、カオリン、クレ
ー、炭酸カルシウム、酸化ケイ素、テレフタレ酸カルシ
ウム、酸化アルミニウム、酸化チタン、リン酸カルシウ
ム、フッ化リチウム、カーボンブラック等の公知の不活
性外部粒子、ポリエステル樹脂の溶融製膜に際して不溶
な高融点有機化合物、架橋ポリマー及びポリエステル合
成時に使用する金属化合物触媒、例えばアルカリ金属化
合物、アルカリ土類金属化合物などによってポリエステ
ル製造時にポリマー内部に形成される内部粒子が挙げら
れる。フィルム中に含まれる微粒子の含有量は、通常、
0.005〜0.9重量%の範囲であり、平均粒径は、0.001〜
3.5μmの範囲であることが好ましい。Further, in order to improve the lubricity of the film, it is also preferable to include fine particles such as an organic lubricant and an inorganic lubricant, and, if necessary, a stabilizer, a coloring agent, an antioxidant, an antifoaming agent, and an antistatic agent. And the like. As the fine particles imparting lubricating properties, known inert external particles such as kaolin, clay, calcium carbonate, silicon oxide, calcium terephthalate, aluminum oxide, titanium oxide, calcium phosphate, lithium fluoride, carbon black, and melting of polyester resin Internal particles formed inside the polymer during polyester production by a high melting point organic compound which is insoluble during film formation, a crosslinked polymer, and a metal compound catalyst used during polyester synthesis, such as an alkali metal compound or an alkaline earth metal compound. The content of the fine particles contained in the film is usually
The range is 0.005 to 0.9% by weight, and the average particle size is 0.001 to
Preferably it is in the range of 3.5 μm.
本発明のポリエステルは、フィルムにおける極限粘度
が好ましくは0.50以上、更に好ましくは0.60以上であ
る。フィルムの極限粘度が0.50未満の場合は、十分な強
度及び成形性が得られず好ましくない。The polyester of the present invention has an intrinsic viscosity in the film of preferably 0.50 or more, more preferably 0.60 or more. If the intrinsic viscosity of the film is less than 0.50, it is not preferable because sufficient strength and moldability cannot be obtained.
本発明のフィルムにおいて、150℃の雰囲気下におけ
る100%伸長時のフィルム強度F100が0.5〜7kg/mm2の範
囲である必要がある。本発明でいうF100は150℃での100
%伸長時でのフィルムの縦および横方向の強度の平均値
である。F100値は好ましくは0.5〜5kg/mm2、更に好まし
くは0.5〜3kg/mm2の範囲である。In the film of the present invention, it is necessary at 100% elongation of the film strength F 100 under an atmosphere of 0.99 ° C. is in the range of 0.5~7kg / mm 2. F 100 in the present invention is 100 at 150 ° C.
It is the average value of the strength in the vertical and horizontal directions of the film at the time of% elongation. F 100 value is preferably in the range 0.5 to 5 kg / mm 2, more preferably of 0.5~3kg / mm 2.
我々の検討結果によると、強度F100値はフィルムの成
形性に深く関係しており、F100が7kg/mm2を越すフィル
ムでは、成形性が低下し、好ましくない。また、F100が
0.5kg/mm2未満のフィルムでは、成形時フィルムが不均
一に変形し、例えば転写用フィルムでは、転写する図柄
の歪み等が生じ好ましくない。また縦方向と横方向の15
0℃、100%伸長時のフィルム強度の差は通常3kg/mm2以
下であり、好ましくは2kg/mm2以下である。かかる差が3
kg/mm2を超えると異方性が大きくなるため成形性が悪化
する。According to our study results, the intensity F 100 value is deeply related to the formability of the film, the film F 100 Kos to 7 kg / mm 2, the moldability decreases, unfavorably. Also, F 100
When the film is less than 0.5 kg / mm 2, the film is deformed non-uniformly at the time of molding. For example, in the case of a transfer film, the transferred pattern is undesirably deformed. Also vertical and horizontal 15
The difference in film strength at 0 ° C. and 100% elongation is usually 3 kg / mm 2 or less, preferably 2 kg / mm 2 or less. The difference is 3
If it exceeds kg / mm 2 , the anisotropy increases and the formability deteriorates.
このようにF100と成型性が良い相関を持つ理由は不明
であるが、我々は、例として真空成形におけるフィルム
挙動を観察した結果、この現象を以下の通り推察する。
すなわち、ポリエステルフィルムの真空成形は、通常10
0〜200℃の温度で加熱後、平均開口径:深さ=10:1〜1:
1の金型で成形されるが、金型のコーナー付近では、フ
ィルムは局部的に100%以上の伸長を強制されると考え
られる。前記F100が高いフィルムでは、このような局所
的に伸長された部分において、部分的に極めて高い応力
が発生し、この応力集中によりフィルムの破断を招き易
くなり、成形性が低下すると考えられる。一方F100が0.
5kg/mm2未満という極めて低い値を持つフィルムでは、
成形性は良好となるものの、金型の平面部のような均一
に伸長される部分において極めて弱い張力しか発生せ
ず、その結果、該部分におけるフィルムの均一な伸長が
得られないのではないかと考えられる。The reason why this way have a moldability is good correlation with F 100 is unknown, we result of observation of the film behavior in vacuum forming as an example, be inferred as follows this behavior.
In other words, vacuum forming of polyester film is usually 10
After heating at a temperature of 0 to 200 ° C, average opening diameter: depth = 10: 1 to 1:
Although the film is formed by the mold 1, it is considered that the film is locally forced to stretch by 100% or more near the corner of the mold. Wherein in the F 100 is high the film, in such a locally extended portion, partially very high stress is generated, easily lead to rupture of the film by the stress concentration, it is considered that the moldability decreases. On the other hand, F 100 is 0.
In the film having a very low value of less than 5 kg / mm 2,
Although the moldability is good, it may be that only a very weak tension is generated in the uniformly stretched portion such as the plane portion of the mold, and as a result, the film may not be stretched uniformly in the portion. Conceivable.
本発明のフィルムはF100が上記範囲にあることを必須
とするが、さらに本発明のフィルムの面配向度ΔPは0.
040〜0.140の範囲であることが好ましく、更に好ましく
は0.050〜0.120の範囲である。面配向度ΔPが0.140を
超えるフィルムでは成形性が不十分で好ましくない。ま
た、面配向度ΔPが0.040未満のフィルムでは、フィル
ムの強度が低下し、平面性を悪化するため好ましくな
い。The film of the present invention requires that F 100 be within the above range, but the degree of plane orientation ΔP of the film of the present invention is 0.1.
It is preferably in the range of 040 to 0.140, and more preferably in the range of 0.050 to 0.120. A film having a degree of plane orientation ΔP of more than 0.140 is not preferable because the moldability is insufficient. Further, a film having a degree of plane orientation ΔP of less than 0.040 is not preferable because the strength of the film is reduced and the flatness is deteriorated.
さらに本発明のフィルムの平均屈折率は好ましくは
1.580〜1.598の範囲である。が1.598を越えるフィル
ムでは、フィルムの結晶化度が高くなり好ましくない。
また、が1.580未満のフィルムでは、逆にフィルムの
結晶化が十分でなく、耐熱性が劣り好ましくない。Further, the average refractive index of the film of the present invention is preferably
It is in the range of 1.580 to 1.598. Is more than 1.598, the crystallinity of the film is undesirably high.
On the other hand, when the film has a molecular weight of less than 1.580, on the contrary, the crystallization of the film is not sufficient, and the heat resistance is poor, which is not preferable.
また、本発明においてフィルムの溶解熱は好ましくは
1〜8cal/g、更に好ましくは1〜6cal/gの範囲である。
溶解熱が8cal/gを越えるフィルムでは成形性が低下し好
ましくない。一方、溶解熱が1cal/g未満のフィルムは、
製膜時の原料乾燥工程において結晶化が極めて困難なた
め、真空乾燥等の繁雑な工程が必要となり、好ましくな
い。In the present invention, the heat of dissolution of the film is preferably in the range of 1 to 8 cal / g, more preferably 1 to 6 cal / g.
Films having a heat of dissolution of more than 8 cal / g are not preferred because moldability decreases. On the other hand, films with a heat of dissolution of less than 1 cal / g
Since crystallization is extremely difficult in the raw material drying step during film formation, complicated steps such as vacuum drying are required, which is not preferable.
本発明のフィルムの収縮特性に関しては、150℃で3
分間処理後の縦及び横方向の収縮率が共に10%以下であ
ることが好ましく、更に好ましくは5%以下である。Regarding the shrinkage properties of the film of the present invention,
The shrinkage in the longitudinal and transverse directions after the minute treatment is preferably 10% or less, more preferably 5% or less.
縦又は横方向の収縮率が10%を上回るフィルムは、加
工工程中の加熱区間においてフィルムの縮みが大きく発
生し好ましくない。特に転写用フィルムの用途では、上
記条件下における横方向の収縮率が0%以下(フィルム
が膨張する場合は収縮率をマイナスとする)であること
が、好ましい。A film having a shrinkage ratio of more than 10% in the vertical or horizontal direction is not preferable because the film shrinks greatly in a heating section during the processing step. In particular, in the use of a transfer film, the shrinkage in the horizontal direction under the above conditions is preferably 0% or less (when the film expands, the shrinkage is set to minus).
横方向の収縮率が0%を越えるフィルムでは、成形転
写用として用いる場合、印刷層形成後の乾燥工程におい
てフィルムが巾縮みを起こし好ましくない。In the case of a film having a lateral shrinkage of more than 0%, when used for forming and transferring, the film shrinks in the drying step after the formation of the print layer, which is not preferable.
本発明のフィルムの機械的強度に関し、フィルムの縦
方向及び横方向におけるヤング率は好ましくは300kg/mm
2以上、更に好ましくは350kg/mm2以上である。ヤング率
が300kg/mm2未満のフィルムでは、成形工程においてフ
ィルムの伸びが生じ易く好ましくない。Regarding the mechanical strength of the film of the present invention, the Young's modulus in the longitudinal and transverse directions of the film is preferably 300 kg / mm
It is 2 or more, more preferably 350 kg / mm 2 or more. A film having a Young's modulus of less than 300 kg / mm 2 is not preferred because the film tends to elongate in the forming step.
さらに本発明のフィルムにおいて、フィルムの複屈折
率は、0.025以下が好ましく、更に好ましくは0.020以下
である。フィルムの複屈折率が0.025を越えるとフィル
ムの異方性が大きくなるため、成形性が低下し好ましく
ない。Furthermore, in the film of the present invention, the birefringence of the film is preferably 0.025 or less, more preferably 0.020 or less. If the birefringence of the film exceeds 0.025, the anisotropy of the film becomes large, and the moldability decreases, which is not preferable.
本発明のフィルムの厚さは特に限定されないが、成形
転写用のフィルムとして好ましく用いられる厚さは5〜
200μm、更に好ましくは5〜150μmである。Although the thickness of the film of the present invention is not particularly limited, the thickness preferably used as a film for molding transfer is 5 to 5.
It is 200 μm, more preferably 5 to 150 μm.
次に本発明のフィルムの製造法を具体的に説明する
が、本発明の構成要件を満足する限り、以下の例示に特
に限定されるものではない。Next, the production method of the film of the present invention will be specifically described, but is not particularly limited to the following examples as long as the constitutional requirements of the present invention are satisfied.
滑り剤として無機粒子等を必要に応じて適量含有する
本発明のポリエステルを、ホッパードライヤー、パドル
ドライヤー、オーブン等の通常用いられる乾燥機または
真空乾燥機等を用いて乾燥した後、200〜320℃で押出
す。押出しに際しては、Tダイ法、チューブラ法等、既
存のどの手法を採用しても構わない。The polyester of the present invention containing an appropriate amount of inorganic particles and the like as a slipping agent, if necessary, is dried using a commonly used dryer or vacuum dryer such as a hopper dryer, a paddle dryer, and an oven, and then heated to 200 to 320 ° C. And extrude. At the time of extrusion, any existing method such as a T-die method and a tubular method may be employed.
押出し後、急冷して無定形シートを得るが、急冷する
際に静電印加法を用いると該無定形シートの厚さ斑が向
上するので好ましい。After the extrusion, the amorphous sheet is quenched to obtain an amorphous sheet. However, it is preferable to use an electrostatic application method during the quenching because unevenness in the thickness of the amorphous sheet is improved.
次いで得られた無定形シートを縦及び横方向に少なく
とも面積倍率で6倍以上、好ましくは9倍以上となるよ
う延伸して二軸配向フィルムを得、必要に応じて該フィ
ルムを縦及び/又は横方向に再延伸を行なった後、好ま
しくは150〜220℃の範囲の温度で熱処理を行ない所望の
フィルムを得る。Next, the obtained amorphous sheet is stretched in the longitudinal and transverse directions so that the area magnification is at least 6 times or more, preferably 9 times or more to obtain a biaxially oriented film, and if necessary, the film is stretched vertically and / or After re-stretching in the transverse direction, heat treatment is preferably performed at a temperature in the range of 150 to 220 ° C. to obtain a desired film.
熱処理工程において、熱処理の最高温度のゾーン及び
/又は熱処理出口のクーリングゾーンにて横方向及び/
又は縦方向に0.1〜30%の弛緩を行なうことも本発明に
おいては好ましい態様の1つである。また、熱処理工程
において、二段熱処理を行なっても構わない。In the heat treatment step, the transverse direction and / or the temperature at the highest temperature zone of the heat treatment and / or the cooling zone at the heat treatment outlet.
Alternatively, performing a relaxation of 0.1 to 30% in the longitudinal direction is also a preferred embodiment in the present invention. In the heat treatment step, a two-step heat treatment may be performed.
上記延伸工程中又は延伸後に、フィルムに接着性、帯
電防止性、滑り性等を付与するために、フィルムの片面
又は両面に塗布層を形成したり、コロナ放電処理等を施
したりしても構わない。During or after the stretching step, in order to impart adhesiveness, antistatic property, slipperiness, etc. to the film, a coating layer may be formed on one or both sides of the film, or a corona discharge treatment may be performed. Absent.
以上、本発明によれば、成型性、平面性及び耐熱性に
優れ、且つ、粗大物の非常に少ない、成形用、成形転写
用および成形容器用フィルムとして極めて好適なポリエ
ステルフィルムを得ることができる。As described above, according to the present invention, it is possible to obtain a polyester film which is excellent in moldability, flatness and heat resistance, and has very few coarse substances, and is extremely suitable as a film for molding, molding transfer and molding container. .
以下、実施例にて本発明を更に具体的に説明するが、
本発明はその趣旨を越えない限り、これらの実施例に限
定されるものではない。Hereinafter, the present invention will be described more specifically with reference to Examples.
The present invention is not limited to these examples unless it exceeds the gist.
なお、フィルムの評価方法を以下に示す。 In addition, the evaluation method of a film is shown below.
(1)150℃雰囲気下における100%伸長時のフィルム強
度F100(kg/mm2) (株)インテスコ製恒温槽付引張試験機インテスコ20
01型の恒温槽を150℃に設定し、幅15mmのフィルムをチ
ャック間50mmとなるようにセットして2分間放置後、引
張速度200mm/minで100%伸長時の強度を測定した。測定
は、フィルムの縦および横方向について行ない、その平
均値をF100とした。なお、100%伸長前に破断するフィ
ルムについては、次式に従って換算した。(1) Film strength at 100% elongation in a 150 ° C atmosphere F 100 (kg / mm 2 ) Intesco 20 tensile testing machine with a thermostatic chamber manufactured by Intesco Corporation
A 01-type thermostat was set at 150 ° C., a film having a width of 15 mm was set so that the distance between the chucks was 50 mm, and the film was allowed to stand for 2 minutes. Then, the strength at 100% elongation at a tensile speed of 200 mm / min was measured. Measurements performed on longitudinal and transverse directions of the film, and the average value was defined as the F 100. In addition, about the film which fracture | ruptures before 100% elongation, it converted according to the following formula.
(2)フィルムの平均屈折率()、面配向度(Δ
P)、複屈折率(Δn) フィルムの屈折率の測定は、アタゴ社製アッベの屈折
計を使用し、光源にはナトリウムランプを用いて測定し
た。 (2) Average refractive index (), plane orientation (Δ
P), birefringence (Δn) The refractive index of the film was measured using an Abbe refractometer manufactured by Atago Co., and using a sodium lamp as a light source.
Δn=nγ−nβ なお、上記式中nγ,nβおよびnαは各々フィルム面
内の最大屈折率、それに直交する方向の屈折率および厚
さ方向の屈折率を表わす。 Δn = n γ -n β Note that represents the maximum refractive index, the refractive index and the thickness direction of the refractive index in the direction perpendicular to that of the above formula n gamma, n beta and n alpha Each film plane.
(3)フィルムの溶解熱(cal/g) パーキンエルマー社製差動走査熱量計DSC−1Bによ
り、昇温速度16℃/minにて測定した試料の結晶の融解に
伴うピークの面積を求め、下記式に従い計算した。(3) Heat of dissolution of film (cal / g) Using a differential scanning calorimeter DSC-1B manufactured by PerkinElmer, the peak area accompanying the melting of the crystal of the sample measured at a heating rate of 16 ° C./min was determined. It was calculated according to the following equation.
A:同一条件でインジウムを測定したときのチャート上で
の単位面積当りの溶融熱(cal/cm2) S:試料の溶解ピークの面積(cm2) m:試料の重量(g) (4)極限粘度(η) 試料200mgをフェノール/テトラクロロエタン=50/50
の混合溶媒20mlに加え、約110℃で30分間加熱後、30℃
で測定 (5)フィルムの加熱収縮率(%) 150±2℃の温度のギャードオープン中にフィルムを
無負荷の状態で3分間熱収縮させ、縦及び横方向につい
ての加熱収縮率を下記式に従い求めた。 A: Heat of fusion per unit area on the chart when measuring indium under the same conditions (cal / cm 2 ) S: Area of the melting peak of the sample (cm 2 ) m: Weight of the sample (g) (4) Intrinsic viscosity (η) 200mg sample is phenol / tetrachloroethane = 50/50
After heating for 30 minutes at about 110 ° C, add
(5) Heat shrinkage rate of film (%) During film guard open at a temperature of 150 ± 2 ° C, the film is heat shrunk for 3 minutes with no load, and the heat shrinkage rate in the vertical and horizontal directions is calculated by the following formula. And asked for it.
但し、l0:原長10cm l :収縮後の長さ (6)転写フィルムとしての成形性 第1図に示す縦10cm、横10cm、最大深さ1.5cmの金型
(1)を用い、フィルムを真空及び圧空にて金型内部に
予備成形した後、加熱した樹脂を射出して成形を行なっ
た。成形時のフィルム破断の頻度によりフィルムの成形
性を以下のように評価した。 Here, l 0 : original length 10 cm l: length after shrinkage (6) Formability as transfer film Using a mold (1) shown in Fig. 1 having a length of 10 cm, a width of 10 cm, and a maximum depth of 1.5 cm, Was preformed in a mold under vacuum and pressure, and then heated resin was injected to perform molding. The formability of the film was evaluated as follows based on the frequency of film breakage during molding.
○:フィルムの破断が全く無い。:: No break in the film.
△:時々フィルム破れが1〜2ケ所発生し、連続運転時
には支障をきたす。Δ: Occasionally, film breakage occurs at one or two places, which hinders continuous operation.
×:フィルム破れが頻発し、使用不可能である。×: The film is frequently broken and cannot be used.
(7)転写フィルムとしての適性 第1図に示すようにフィルム(3)に離型層、印刷層
及び接着層からなる層(4)を形成後、上記(6)の方
法にて実際に成形転写を連続で行なった。成形時にフィ
ルムの破断がなく連続に運転でき、且つ、成形品への印
刷において図柄の歪み、印刷の抜け等が見られないもの
を○、そうでないものを×として評価した。(7) Suitability as transfer film As shown in FIG. 1, after forming a layer (4) composed of a release layer, a printing layer and an adhesive layer on the film (3), it is actually formed by the method of (6) above. Transfer was performed continuously. When the film could be operated continuously without breakage of the film at the time of molding, and there was no pattern distortion or missing print in printing on the molded product, it was evaluated as ○, and when it was not, it was evaluated as ×.
(8)成形容器用フィルムとしての適性 16μmのポリエステルフィルムを70μmの未延伸ポリ
プロピレンフィルムと接着剤を介して積層した後、加熱
して真空成形を行ないプラスチックトレーを作成した。
成形時に積層フィルムの成形が不十分なものを×、金型
に密着するまで十分成形可能なものを○とした。(8) Suitability as Film for Molding Container A 16 μm polyester film was laminated with a 70 μm unstretched polypropylene film via an adhesive, and then heated and vacuum molded to prepare a plastic tray.
When the laminated film was insufficiently molded at the time of molding, it was evaluated as x, and when it could be molded sufficiently until it came into close contact with the mold, it was evaluated as ○.
実施例1 ジカルボン酸成分としてテレフタル酸単位80mol%、
インフタル酸単位15mol%及びセバシン酸単位5mol%よ
りなり、ジオール成分としてエチレングリコール単位よ
りなる、平均粒径1.0μmの無定形シリカ粒子を100ppm
含む共重合ポリエステルを予備結晶化、本乾燥し、285
℃でTダイを有する押出機より押出し、急冷固化して極
限粘度0.66の無定形シートを得た。得られたシートを縦
方向に85℃で3.3倍延伸した後、続いて横方向に100℃で
3.5倍延伸し、10%の幅方向の弛緩と0.5%の縦方向の弛
緩を行ないながら185℃で熱処理を行なった。得られた
フィルムの平均厚さは50μmであった。Example 1 80 mol% of terephthalic acid units as a dicarboxylic acid component,
100 ppm of amorphous silica particles having an average particle size of 1.0 μm, comprising 15 mol% of phthalic acid units and 5 mol% of sebacic acid units and ethylene glycol units as a diol component.
Pre-crystallize the copolyester containing
The mixture was extruded from an extruder having a T-die at ℃ and quenched and solidified to obtain an amorphous sheet having an intrinsic viscosity of 0.66. After stretching the obtained sheet 3.3 times in the longitudinal direction at 85 ° C., then in the transverse direction at 100 ° C.
The film was stretched 3.5 times, and heat-treated at 185 ° C. while performing 10% relaxation in the width direction and 0.5% relaxation in the longitudinal direction. The average thickness of the obtained film was 50 μm.
実施例2 ジカルボン酸成分としてテレフタル酸94mol%及びア
ジピン酸単位6mol%よりなり、ジオール成分としてエチ
レングリコール単位70mol%及び1,4−シクロヘキサンジ
メタノール単位30mol%よりなる共重合ポリエステル
と、平均粒径1.1μmのカオリン2000ppmを含むポリエチ
レンテレフタレートを70/30(wt%)の割合で混合した
後、実施例1と全く同様に乾燥、押出し、製膜を行ない
平均厚さ38μmのフィルムを得た。フィルムの極限粒度
は0.70であった。Example 2 A copolyester comprising 94 mol% of terephthalic acid and 6 mol% of adipic acid units as a dicarboxylic acid component, 70 mol% of ethylene glycol units and 30 mol% of 1,4-cyclohexane dimethanol units as a diol component, and an average particle diameter of 1.1 Polyethylene terephthalate containing 2000 ppm of kaolin (μm) was mixed at a ratio of 70/30 (wt%), and then dried, extruded and formed into a film exactly as in Example 1 to obtain a film having an average thickness of 38 μm. The ultimate grain size of the film was 0.70.
比較例1 ジカルボン酸成分としてテレフタル酸単位97mol%及
びイソフタル酸単位3mol%よりなり、ジオール成分とし
てエチレングリコールよりなる、平均粒径1.0μmの無
定形シリカ粒子を100ppm含有する共重合ポリエステルを
用いて実施例1と同様に乾燥、押出しを行ない、極限粘
度0.62の無定形シートを得た。得られた無定形シートを
実施例1と同様に延伸後緊張固定下で200℃で熱処理を
行ない平均厚さ約50μmのフィルムを得た。Comparative Example 1 Implemented using a copolymerized polyester containing 97 ppm of terephthalic acid units and 3 mol% of isophthalic acid units as dicarboxylic acid components and 100 ppm of amorphous silica particles having an average particle size of 1.0 μm and consisting of ethylene glycol as a diol component. Drying and extrusion were carried out in the same manner as in Example 1 to obtain an amorphous sheet having an intrinsic viscosity of 0.62. The obtained amorphous sheet was stretched and heat-treated at 200 ° C. under tension and fixing in the same manner as in Example 1 to obtain a film having an average thickness of about 50 μm.
実施例1,2、比較例1のフィルムの物性及び転写用フ
ィルムとしての成形性適性をまとめて表−1に示す。比
較例1のフィルムはF100が大きく成形性が劣り転写フィ
ルムとして、不適当であった。Table 1 summarizes the physical properties of the films of Examples 1 and 2 and Comparative Example 1 and the suitability for moldability as a transfer film. Film of Comparative Example 1 as a transfer film poor in large moldability F 100, was inadequate.
実施例3,4、比較例2 実施例1,2、比較例1において縦延伸倍率を3.5倍にす
る以外は各々実施例1,2、比較例1と全く同様に押出・
製膜を行ない、平均厚さ16μmのフィルムを作成し各々
実施例3,4、比較例2とした。Examples 3 and 4 and Comparative Example 2 Extrusion and extrusion were performed in exactly the same manner as in Examples 1 and 2 and Comparative Example 1 except that the longitudinal stretching ratio was 3.5 times in Examples 1 and 2 and Comparative Example 1.
Films were formed to form films having an average thickness of 16 μm, which were used as Examples 3 and 4 and Comparative Example 2, respectively.
実施例3,4、比較例2で得られたフィルムの物性と成
形容器用フィルムとしての適性をまとめて表−2に示
す。比較例2のフィルムはF100が大きく、真空成形性が
劣り、成形容器用フィルムとして不適当であった。Table 2 summarizes the physical properties of the films obtained in Examples 3 and 4 and Comparative Example 2 and their suitability as films for molded containers. Film of Comparative Example 2 has a large F 100, inferior vacuum moldability was unsuitable as molded container film.
〔発明の効果〕 本発明のフィルムは優れた成形性、平面性および耐熱
性を有し、成形用、成形転写用および成形容器用ベース
フィルムとして好適であり、その工業的価値は高い。 [Effect of the Invention] The film of the present invention has excellent moldability, flatness and heat resistance, is suitable as a base film for molding, molding transfer and molding containers, and has high industrial value.
第1図は成形と同時に転写も行なう成形転写法の概略を
示す図である。図中の1は金型、2は射出機、3はベー
スフィルムそして4は印刷層を含む層を表わす。FIG. 1 is a diagram showing an outline of a molding transfer method in which transfer is performed simultaneously with molding. In the figure, 1 denotes a mold, 2 denotes an injection machine, 3 denotes a base film, and 4 denotes a layer including a printing layer.
Claims (3)
強度F100が0.5〜7kg/mm2であることを特徴とする成形用
二軸延伸ポリエステルフィルム。1. A biaxially stretched polyester film for molding, wherein the film strength F 100 at 100% elongation in an atmosphere at 150 ° C. is 0.5 to 7 kg / mm 2 .
強度F100が0.5〜7kg/mm2であることを特徴とする成形転
写用フィルム。2. A film for forming and transferring, wherein a film strength F 100 at 100% elongation in an atmosphere at 150 ° C. is 0.5 to 7 kg / mm 2 .
強度F100が0.5〜7kg/mm2であることを特徴とする成形容
器用フィルム。3. A film for a molded container, wherein the film strength F 100 at 100% elongation in an atmosphere at 150 ° C. is 0.5 to 7 kg / mm 2 .
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1023333A JP2611415B2 (en) | 1989-02-01 | 1989-02-01 | Biaxially oriented polyester film for molding, film for molding transfer, and film for molding container |
US07/472,030 US5071690A (en) | 1989-02-01 | 1990-01-30 | Moldable biaxially stretched polyester film |
EP19900101922 EP0386450A3 (en) | 1989-02-01 | 1990-01-31 | Moldable biaxially stretched polyester film |
KR1019900001182A KR960006778B1 (en) | 1989-02-01 | 1990-01-31 | Moldable biaxially stretched polyester film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1023333A JP2611415B2 (en) | 1989-02-01 | 1989-02-01 | Biaxially oriented polyester film for molding, film for molding transfer, and film for molding container |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02204020A JPH02204020A (en) | 1990-08-14 |
JP2611415B2 true JP2611415B2 (en) | 1997-05-21 |
Family
ID=12107657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1023333A Expired - Lifetime JP2611415B2 (en) | 1989-02-01 | 1989-02-01 | Biaxially oriented polyester film for molding, film for molding transfer, and film for molding container |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2611415B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100757771B1 (en) * | 2003-09-02 | 2007-09-12 | 토요 보세키 가부시기가이샤 | Polyester film for forming |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0819245B2 (en) * | 1989-05-22 | 1996-02-28 | 帝人株式会社 | Polyester film for container molding |
JP4734694B2 (en) * | 1999-07-05 | 2011-07-27 | 東レ株式会社 | Biaxially stretched polyester film for molding process and molded laminate |
JP2001239579A (en) * | 2000-02-28 | 2001-09-04 | Toyobo Co Ltd | Biaxially oriented polyester film for insert molding |
JP4779250B2 (en) * | 2001-07-04 | 2011-09-28 | 東レ株式会社 | Biaxially stretched polyester film for processing |
US7198857B2 (en) | 2003-09-02 | 2007-04-03 | Toyo Boseki Kabushiki Kaisha | Polyester film for forming |
KR101111040B1 (en) * | 2006-09-06 | 2012-03-13 | 도요 보세키 가부시키가이샤 | Polyester film for molding |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2505474B2 (en) * | 1987-07-06 | 1996-06-12 | 東レ株式会社 | Easy folding polyester film |
-
1989
- 1989-02-01 JP JP1023333A patent/JP2611415B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100757771B1 (en) * | 2003-09-02 | 2007-09-12 | 토요 보세키 가부시기가이샤 | Polyester film for forming |
Also Published As
Publication number | Publication date |
---|---|
JPH02204020A (en) | 1990-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0349960B1 (en) | Shrinkable polyester film | |
KR960006778B1 (en) | Moldable biaxially stretched polyester film | |
JP2730197B2 (en) | Easy heat sealing laminated polyester film | |
JP3657502B2 (en) | Heat-shrinkable polyester film and method for producing the same | |
KR960000590B1 (en) | Shrinkable polyester film | |
JPH02155630A (en) | Polyester shrink film | |
JP5234690B2 (en) | Polyester film for simultaneous transfer of molding | |
JPS63193822A (en) | Shrinkable film | |
JP5234689B2 (en) | Polyester film for simultaneous transfer of molding | |
JP3038843B2 (en) | Matte laminated polyester film for molding | |
JP2611415B2 (en) | Biaxially oriented polyester film for molding, film for molding transfer, and film for molding container | |
JP3585056B2 (en) | Polyester shrink film | |
JP3852979B2 (en) | Polyester film for transfer foil | |
JPH03159727A (en) | Biaxially oriented polyester film for forming | |
JP2692284B2 (en) | Biaxially oriented polyester film for molding | |
JPH02289627A (en) | Polyester shrink film | |
JPH0832499B2 (en) | Heat resistant polyester film for transfer film | |
JPH0832498B2 (en) | Polyester film for transfer film | |
JPH0329763A (en) | Fluorescent-lamp shrink packaging polyester film | |
JP2943183B2 (en) | Laminated molding | |
JP2692310B2 (en) | Biaxially oriented polyester film for molding | |
JPH0729376B2 (en) | Low temperature shrinkable polyester film | |
JP2819761B2 (en) | Biaxially oriented polyester film for molding | |
JPH07196821A (en) | Polyester film for deep drawing and similtaneous transfer printing | |
JP2794893B2 (en) | Biaxially oriented polyester film for molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080227 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090227 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |