JPH11251353A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH11251353A
JPH11251353A JP5053098A JP5053098A JPH11251353A JP H11251353 A JPH11251353 A JP H11251353A JP 5053098 A JP5053098 A JP 5053098A JP 5053098 A JP5053098 A JP 5053098A JP H11251353 A JPH11251353 A JP H11251353A
Authority
JP
Japan
Prior art keywords
semiconductor device
hole
circuit board
polyimide
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5053098A
Other languages
Japanese (ja)
Inventor
徹夫 ▲吉▼沢
Tetsuo Yoshizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5053098A priority Critical patent/JPH11251353A/en
Publication of JPH11251353A publication Critical patent/JPH11251353A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid cracks, breaks, or the like of a metal ball accompanied by a thermal stress, by a method wherein, in a semiconductor device in which a semiconductor and a wiring pattern are sealed, a through hole opening diameter on a reverse face to one face is set greater than that of an insulation member. SOLUTION: A flexible circuit substrate 201 comprises a copper foil 202 which is a conductive circuit pattern, and a polyimide 203 of a film thickness 60 μm which is an insulation member. Further, the polyimide 203 is provided with a through hole 214 on a taper which is narrow on a side of the copper foil 202 and expanded toward the counter side. At this time, an angle θ made between a sidewall part of the through hole 214 and a face of the polyimide 203 is set to be 60 deg.. Further, the copper foil 202 of a film thickness 18 μm in the through hole 214 of the polyimide 203 is electrically connected to a solder ball 208 as an electrode part 205. In a heat cycle durability test in a temperature region set at -25 deg.C and +125 deg.C, no cracks appear in the solder ball and excellent soldering can be performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スルーホールにテ
ーパーを設けた半導体装置およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a tapered through hole and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、半導体素子を回路基板に電気的に
接合することにより構成される半導体装置のパッケージ
としては、QFP( Quad Flat Package )、TCP(
TapeCarrier Package )、BGA( Ball Grid Array
)、CSP( Chip Scale orSize Package )、CCB
( Controlled Collapsed Bonding)などが既に知られ
ている。この中でも、最近、多ピン化、小型化が進ん
で、注目されているものはBGA、CSP、CCBであ
る。
2. Description of the Related Art Conventionally, a semiconductor device package formed by electrically bonding a semiconductor element to a circuit board includes a QFP (Quad Flat Package) and a TCP (TCP).
Tape Carrier Package), BGA (Ball Grid Array)
), CSP (Chip Scale or Size Package), CCB
(Controlled Collapsed Bonding) is already known. Among them, recently, with increasing number of pins and miniaturization, BGA, CSP and CCB have attracted attention.

【0003】BGAによる方法は、米国特許第5,23
9,198号、米国特許第5,285,352号、米国
特許第5,381,307号、米国特許第5,397,
921号などに記載されている。このBGAに関する標
準化はJEDEC、EIAJで行われている。これらの
代表例を、図3および図4を参照して、具体的に説明す
る。なお、図3の(a)はBGAの断面図であり、同じ
く、(b)はBGAを回路基板に接合した状態の断面図
であり、図4は図3の(b)に用いた回路基板を示して
いる。
[0003] The BGA method is disclosed in US Pat.
9,198, U.S. Patent No. 5,285,352, U.S. Patent No. 5,381,307, U.S. Patent No. 5,397,
No. 921 and the like. The standardization of the BGA is performed by JEDEC and EIAJ. These representative examples will be specifically described with reference to FIGS. 3A is a cross-sectional view of the BGA, FIG. 3B is a cross-sectional view of a state in which the BGA is joined to a circuit board, and FIG. 4 is a circuit board used in FIG. Is shown.

【0004】先ず、図3の(a)に示すように、回路基
板101上にICチップ102をダイボンディング、ワ
イヤボンディングし、これを樹脂などで覆うように封止
するが、ICチップ102の搭載面とは反対側の、回路
基板101の面にある電極部103には、金属ボール、
具体的には、半田ボール104を接合し、符号105で
示すような半導体素子(BGA)を組み立てる。この場
合の回路基板101の電極部103のピッチは1.27
mmである。
First, as shown in FIG. 3A, an IC chip 102 is die-bonded and wire-bonded on a circuit board 101 and sealed so as to be covered with a resin or the like. On the electrode portion 103 on the surface of the circuit board 101 opposite to the surface, a metal ball,
Specifically, the solder balls 104 are joined to assemble a semiconductor device (BGA) as indicated by reference numeral 105. In this case, the pitch of the electrode portions 103 of the circuit board 101 is 1.27.
mm.

【0005】次に、半導体装置(BGA)105の電極
部103と対応して、電極部106が位置する回路基板
107を用意する。なお、図4には、電極部106側か
ら拡大して見た回路基板107を示す。この電極部10
6のピッチも1.27mmである。この事例の回路基板
107では、10×10個の電極部106を有し、外周
2列は、表面に配線パターンがあるが、その他の電極部
は、スルーホール(図示せず)を通して、内層あるいは
裏層の表面に対して導通するように臨んでおり、電極部
106以外は半田レジストで絶縁されている。
[0005] Next, a circuit board 107 on which the electrode section 106 is located corresponding to the electrode section 103 of the semiconductor device (BGA) 105 is prepared. FIG. 4 shows the circuit board 107 in an enlarged view from the electrode section 106 side. This electrode part 10
The pitch of No. 6 is also 1.27 mm. The circuit board 107 of this case has 10 × 10 electrode portions 106, and the outer two rows have wiring patterns on the surface, but the other electrode portions are formed through inner layers or through through holes (not shown). It faces the surface of the back layer so as to be conductive, and portions other than the electrode portion 106 are insulated by a solder resist.

【0006】次に、回路基板107の電極部106上
に、所望のクリーム半田を塗布し、回路基板107の電
極106と半導体装置105の電極103とを相対向す
るように位置決めして、融着手段で、半田付けを行う。
図3の(b)は、半田付け後の断面を示す。
Next, desired cream solder is applied on the electrode portion 106 of the circuit board 107, and the electrode 106 of the circuit board 107 and the electrode 103 of the semiconductor device 105 are positioned so as to face each other, and are fused. By means of soldering.
FIG. 3B shows a cross section after soldering.

【0007】CSPによる方法は、米国特許第5,34
6,861号、米国特許第5,592,025号などに
記載されている。また、月刊誌[ Semiconductor World
]1995. 5. PP103-131 の特集「本流となるのはCS
Pかベアチップか」に、各社のCSPが紹介されてい
る。
[0007] The CSP method is disclosed in US Pat.
No. 6,861, and U.S. Pat. No. 5,592,025. In addition, monthly magazine [Semiconductor World
] 1995. 5. Special feature on PP103-131 "CS is the mainstream
CSP of each company is introduced in "P or bare chip?"

【0008】次に、CSPによる方法を、図5の(a)
および(b)を参照して説明する。図5の(a)はCS
Pの断面図であり、(b)はCSPを回路基板に接合し
た断面図である。ここで、フレキシブル回路基板113
を構成するのに、銅箔111(部分的に表面に金メッキ
が施こされている)の裏面にポリイミド層112をラミ
ネートし、これに開口を形成するが、また、ポリイミド
層112とは反対側の、銅箔111の表面に絶縁処理1
14を施している。フレキシブル回路基板113上で
は、その絶縁処理114側にICチップ115をダイボ
ンディング、ワイヤボンディングし、これを樹脂などで
覆うように封止する。
Next, the method using the CSP will be described with reference to FIG.
This will be described with reference to FIGS. FIG. 5A shows CS.
It is sectional drawing of P, (b) is sectional drawing which joined CSP to the circuit board. Here, the flexible circuit board 113
Is formed by laminating a polyimide layer 112 on the back surface of the copper foil 111 (partially gold plated on the surface) and forming an opening in the polyimide layer 112. Insulation treatment 1 on the surface of copper foil 111
14 is given. On the flexible circuit board 113, the IC chip 115 is die-bonded and wire-bonded on the insulating treatment 114 side, and the IC chip 115 is sealed so as to be covered with a resin or the like.

【0009】その後、レジストにて形成された、ポリイ
ミド層112の開口に臨んでいる銅箔111の電極部1
16にクリーム半田を印刷し、ここに半田ボール117
を搭載した後、リフローして、クリーム半田、半田ボー
ルを溶融させることで、半田ボール117を銅箔111
に接合させ、これによって、図5の(a)に示すような
半導体装置(CSP)118を形成する。なお、この電
極部116のピッチは0.8mmであって、25pin
のCSPを構成している。
Thereafter, the electrode portion 1 of the copper foil 111 facing the opening of the polyimide layer 112 formed of a resist.
16 is printed with cream solder, and solder balls 117
After mounting, the solder balls 117 are melted to melt the cream solder and the solder balls, so that the solder balls 117 are
Then, a semiconductor device (CSP) 118 as shown in FIG. 5A is formed. Note that the pitch of the electrode portion 116 is 0.8 mm,
Of the CSP.

【0010】一方、同じく、0.8mmピッチで、25
pinの電極部120を有する回路基板121を用意す
る。そして、クリーム半田を電極部120上に印刷し、
電極部120とCSP118の電極部116とを相対す
るように位置決めし、その後にリフローで、CSP11
8の半田ボール117を、電極部120に接合する。こ
の接合された状態が図5の(b)に示されている。
On the other hand, similarly, at a pitch of 0.8 mm, 25
A circuit board 121 having a pin electrode section 120 is prepared. Then, cream solder is printed on the electrode section 120,
The electrode unit 120 and the electrode unit 116 of the CSP 118 are positioned so as to face each other, and then the CSP 11 is reflowed.
The eight solder balls 117 are joined to the electrode part 120. This joined state is shown in FIG.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、上記従
来の半導体装置であるBGA、CSPを、半田ボールを
介して、回路基板の電極部へ接合することによって得ら
れる半導体装置の接合構造に関しては、次のような問題
点がある。
However, with respect to the bonding structure of a semiconductor device obtained by bonding the above-mentioned conventional semiconductor devices BGA and CSP to an electrode portion of a circuit board via solder balls, the following is described. There is a problem as follows.

【0012】1)BGAによる方法の場合 図3の(a)および(b)で説明すると、半導体装置
(BGA)105は、複合材料で、即ち、熱膨張係数が
異なる材料の複合で構成されており、各熱膨張係数は、
シリコンで構成されるICチップ102で、2〜3pp
m/℃であり、BTレジンとガラスで構成されている回
路基板101で、13〜17ppm/℃程度であり、ま
た、封止材108はICチップ102の熱膨張係数に近
くなるように、合成樹脂にSiO2 などのフィラーを含
有させてある。
1) Method using BGA Referring to FIGS. 3A and 3B, the semiconductor device (BGA) 105 is composed of a composite material, that is, a composite of materials having different thermal expansion coefficients. And each coefficient of thermal expansion is
IC chip 102 made of silicon, 2-3pp
m / ° C., about 13 to 17 ppm / ° C. in the circuit board 101 made of BT resin and glass, and the sealing material 108 is synthesized so as to be close to the thermal expansion coefficient of the IC chip 102. The resin contains a filler such as SiO 2 .

【0013】従って、半導体装置(BGA)105の回
路基板101側の全体としての熱膨張係数は、本来の回
路基板101の材料の熱膨張係数とは異っている。例え
ば、NEMA規格のFR−4の回路基板107の熱膨張
係数は13〜17ppm/℃程度であるから、半導体装
置(BGA)105を、半田ボールを介して、回路基板
107の電極部に接合してなる接合体(パッケージ)
を、ヒートサイクル試験にかけると、その半田接合部
に、可成りの熱応力ストレスを受けることになる。即
ち、熱応力ストレスは、回路基板の中心部の半田接合部
よりも、周辺部の半田接合部に大きくかかる。
Therefore, the overall thermal expansion coefficient of the semiconductor device (BGA) 105 on the circuit board 101 side is different from the original thermal expansion coefficient of the material of the circuit board 101. For example, since the thermal expansion coefficient of the FR-4 circuit board 107 of the NEMA standard is about 13 to 17 ppm / ° C., the semiconductor device (BGA) 105 is joined to the electrode portion of the circuit board 107 via solder balls. Joint (package)
Is subjected to a heat cycle test, the solder joint is subjected to considerable thermal stress. That is, the thermal stress is applied more to the solder joints in the peripheral part than in the central part of the circuit board.

【0014】これを式で表すと Δl=L×Δα×
ΔT (ここで、Δlは伸び、Lは中立点または拘束点からの
距離、Δαは熱膨張係数差、ΔTは温度差である)。
This can be expressed by the following equation: Δl = L × Δα ×
ΔT (where Δl is elongation, L is distance from neutral or constrained point, Δα is thermal expansion coefficient difference, ΔT is temperature difference).

【0015】また、半田ボール104の形状は、半田
量、半導体装置(BGA)105の重量によっても異な
るが、概して、樽状になっている。更に、レジストにて
形成された電極部103の開口の形状は、半田ボールの
方向に向けてストレート(角度=0度)であり、このた
め、図3の(b)に示すように、電極部103の接合面
よりも、半田ボール側の上部くびれ109や、電極部1
06の接合面近傍の下部110に熱応力ストレスが集中
し、クラックが生じたり、最悪の場合には、破断するこ
とになる。つまり、接合寿命が短くなり、市場でのトラ
ブルの原因となった。特に、上部くびれ109は、電極
部の開口に位置し、その開口縁に当たるので、これによ
って、回路基板の面に沿って、せん断応力が集中し易
い。
The shape of the solder ball 104 varies depending on the amount of solder and the weight of the semiconductor device (BGA) 105, but is generally barrel-shaped. Further, the shape of the opening of the electrode portion 103 formed of a resist is straight (angle = 0 degrees) toward the direction of the solder ball. Therefore, as shown in FIG. The upper constriction 109 on the solder ball side with respect to the bonding surface 103 and the electrode portion 1
Thermal stress stress concentrates on the lower part 110 near the joint surface of No. 06, causing cracks or, in the worst case, breaking. That is, the bonding life was shortened, causing troubles in the market. In particular, since the upper constriction 109 is located at the opening of the electrode portion and hits the opening edge, the shear stress tends to concentrate along the surface of the circuit board.

【0016】2)CSPによる方法の場合 図5の(a)および(b)で説明すると、CSPによる
方法は、上述のBGAよりも顕著となる。その第一点
は、半導体装置(BGA)105の場合よりも、半導体
装置(CSP)118の方が、シリコンICチップ11
5の熱膨張係数に近づくことである。即ち、CSP11
8は、BGA105よりも外形寸法が小さくて、シリコ
ンICチップ115の大きさに近くなる。また、CSP
118の回路基板113もBGA105の回路基板10
1よりも薄くなる傾向がある。
2) In the case of the method using the CSP Referring to FIGS. 5A and 5B, the method using the CSP is more remarkable than the above-mentioned BGA. The first point is that the semiconductor device (CSP) 118 is more suitable for the silicon IC chip 11 than the semiconductor device (BGA) 105.
5 approaching the coefficient of thermal expansion. That is, CSP11
8 has a smaller outer dimension than the BGA 105 and is close to the size of the silicon IC chip 115. Also, CSP
The circuit board 113 of the BGA 105 and the circuit board 113 of the BGA 105
It tends to be thinner than 1.

【0017】また、その第二点は、BGA105のボー
ルピッチよりもCSP118のボールピッチが小さいた
め、BGA105の電極103の面積よりも、CSP1
18の電極116の面積が小さく、従って、ボール径も
小さくて、接合強度が弱くなることである。即ち、BG
A105のボールピッチは、JEDEC、EIAJで述
べられているように、1mm、1.27mm、1.5m
mとなっているけれども、CSP118のピッチは1m
mよりも小さい(電極部の直径は、概略、配列ピッチの
1/2の径である故に、電極面積が小さい)ので、従っ
て、接合強度も弱くなる。
The second point is that, since the ball pitch of the CSP 118 is smaller than the ball pitch of the BGA 105, the area of the electrode 103 of the BGA 105 is smaller than the area of the electrode 103 of the BGA 105.
18 is that the area of the electrode 116 is small, so that the ball diameter is also small, and the bonding strength is weakened. That is, BG
The ball pitch of A105 is 1 mm, 1.27 mm, 1.5 m as described in JEDEC, EIAJ.
m, but the pitch of CSP118 is 1m
m (the diameter of the electrode portion is approximately 径 of the arrangement pitch, so the electrode area is small), and therefore, the bonding strength is also weakened.

【0018】更に、小径の穴明け作業となると、レーザ
を用いることが多くなり、電極部の開口もストレート
(テーパ角度が0度)にならざるを得ない。また、ポリ
イミド112と半田とは、相互接着性がないために、電
極部の開口内での、半田ボール117の部分119は、
くびれて、凹形状となる。従って、半田ボール117の
上部くびれ122と下部123に対して熱応力ストレス
が集中し、クラックが生じたり、最悪の場合、破断にな
ることがある。
Further, in the case of a small-diameter drilling operation, a laser is frequently used, and the opening of the electrode portion must be straight (the taper angle is 0 degree). In addition, since the polyimide 112 and the solder have no mutual adhesiveness, the portion 119 of the solder ball 117 in the opening of the electrode portion is
It becomes constricted and concave. Therefore, thermal stress stress concentrates on the upper constriction 122 and the lower part 123 of the solder ball 117, which may cause cracks or, in the worst case, breakage.

【0019】これらの問題点を回避する策として、回路
基板113と回路基板121との間で、半田ボール11
7相互の空隙に、アンダーフィル材として、樹脂を注入
し、半田ボール117にかかる熱応力ストレスを分散さ
せる方法が提唱されたが、樹脂の硬化後に、半導体装置
(CSP)118を交換する、つまり、リペアーするこ
とが難しくなる。
As a measure for avoiding these problems, a solder ball 11 is provided between the circuit board 113 and the circuit board 121.
A method has been proposed in which a resin is injected as an underfill material into the voids of each other to disperse the thermal stress applied to the solder balls 117. However, after the resin is cured, the semiconductor device (CSP) 118 is replaced. , It becomes difficult to repair.

【0020】本発明は、上記事情に基づいてなされたも
ので、半田ボールなどの金属ボールの括れが発生する箇
所での、絶縁部材のスルーホールに簡単な加工上の工夫
を施し、これによって、熱応力ストレスによる金属ボー
ルのクラック、破断などを回避できるようにした半導体
装置およびその製造方法を提供することを目的とする。
The present invention has been made on the basis of the above circumstances, and a simple processing device is applied to a through hole of an insulating member at a place where a metal ball such as a solder ball is constricted. It is an object of the present invention to provide a semiconductor device capable of avoiding cracks, breakage, and the like of a metal ball due to thermal stress and a method of manufacturing the same.

【0021】[0021]

【課題を解決するための手段】この目的の実現のため、
本発明では、絶縁部材と、前記絶縁部材の片面に配置さ
れた半導体チップと、前記片面に配置され且つ前記半導
体チップと接合する配線パターンと、前記絶縁部材に設
けられたスルーホールと、前記半導体チップ及び前記配
線パターンを封止する封止材を有する半導体装置におい
て、前記片面の反対面における前記スルーホールの開口
径は前記片面における開口径よりも大きいことを特徴と
する。
In order to achieve this object,
In the present invention, an insulating member, a semiconductor chip disposed on one surface of the insulating member, a wiring pattern disposed on the one surface and joined to the semiconductor chip, a through hole provided in the insulating member, In a semiconductor device having a sealing material for sealing a chip and the wiring pattern, an opening diameter of the through hole on a surface opposite to the one surface is larger than an opening diameter on the one surface.

【0022】また、本発明では、半導体装置の製造方法
において、絶縁部材の片面に配線パターンと半導体チッ
プとを配置する工程と、前記配線パターンと前記半導体
チップとを接合する工程と、前記片面と反対の面におけ
る開口径が前記片面における開口径よりも大きくなるよ
うに前記絶縁部材にスルーホールを設ける工程と、前記
絶縁部材の前記片面と前記半導体チップと前記配線パタ
ーンとを封止材で封止する工程とを有することを特徴と
する。
Further, according to the present invention, in the method of manufacturing a semiconductor device, a step of arranging a wiring pattern and a semiconductor chip on one surface of an insulating member, a step of joining the wiring pattern and the semiconductor chip, Providing a through hole in the insulating member such that the opening diameter on the opposite surface is larger than the opening diameter on the one surface; and sealing the one surface of the insulating member, the semiconductor chip, and the wiring pattern with a sealing material. And a stopping step.

【0023】従って、半導体装置およびその接合構造に
おいて、アンダーフィルなしでも、耐クラック性が良
く、接合寿命が十分に得られるという効果を奏する。
Therefore, in the semiconductor device and the bonding structure thereof, there is an effect that the crack resistance is good and the bonding life can be sufficiently obtained without the underfill.

【0024】[0024]

【発明の実施の形態】(第1の実施の形態)以下、本発
明の第1の実施の形態を図1を参照して具体的に説明す
る。図1の(a)は、本発明の半導体装置(CSP)の
断面図である。該半導体装置209は、フレキシブル回
路基板201と、フレキシブル回路基板201の片側面
にマウントされたIC(半導体)チップ206と、フレ
キシブル回路基板を構成する配線パターンである銅箔2
02とICチップ206とを電気的に接続するボンディ
ングワイヤ213と、該ICチップ206をマウントす
るフレキシブル回路基板201の片側面をICチップご
とに封止する封止材207とから構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) A first embodiment of the present invention will be specifically described below with reference to FIG. FIG. 1A is a cross-sectional view of a semiconductor device (CSP) of the present invention. The semiconductor device 209 includes a flexible circuit board 201, an IC (semiconductor) chip 206 mounted on one side of the flexible circuit board 201, and a copper foil 2 serving as a wiring pattern forming the flexible circuit board.
The bonding wire 213 electrically connects the IC chip 206 to the IC chip 206 and a sealing material 207 for sealing one side of the flexible circuit board 201 on which the IC chip 206 is mounted for each IC chip.

【0025】またフレキシブル回路基板201は、導電
性の回路パターンである銅箔202と絶縁部材であるポ
リイミド203とから構成されている。ポリイミドの膜
厚は60μmである。また、ポリイミド203は銅箔2
02側では狭く、反対側に向かって広くなるテーパー上
のスルーホール214が設けられている。この時、スル
ーホール214の側壁部と銅箔202を保持するポリイ
ミド203の面との間の角度θは60゜である。またポ
リイミド203のスルーホール214における銅箔20
2は電極部205として半田ボール208と電気的に接
合している。この時の銅箔202の膜厚は18μmであ
る。半田ボール208はフレキシブル回路基板201か
ら突出した略球形状でかつスルーホール214内でスル
ーホール214のテーパー形状にならい、そして電極部
205と電気的に接合されている。
The flexible circuit board 201 is composed of a copper foil 202 as a conductive circuit pattern and a polyimide 203 as an insulating member. The thickness of the polyimide is 60 μm. The polyimide 203 is made of copper foil 2
The through-hole 214 on the taper that is narrow on the 02 side and widens toward the opposite side is provided. At this time, the angle θ between the side wall of the through hole 214 and the surface of the polyimide 203 holding the copper foil 202 is 60 °. The copper foil 20 in the through hole 214 of the polyimide 203
2 is electrically connected to the solder ball 208 as an electrode portion 205. At this time, the film thickness of the copper foil 202 is 18 μm. The solder ball 208 has a substantially spherical shape protruding from the flexible circuit board 201, follows the tapered shape of the through hole 214 in the through hole 214, and is electrically connected to the electrode portion 205.

【0026】また、(b)は、その半導体装置を回路基
板210に接合した断面図である。マザーボードである
回路基板210は片側面に電極部211を有している。
図1の(a)を用いて説明した本発明の半導体装置20
9は回路基板210と半田ボール208を介して接合す
る。半田ボール208は回路基板210の電極部211
と電気的に接合される。また半導体装置209と対向す
る回路基板210の面は半田レジスト212によって覆
われている。ここで、先ず、図1の(a)に示す半導体
装置(CSP)209の製法から説明する。
FIG. 2B is a cross-sectional view of the semiconductor device joined to a circuit board 210. A circuit board 210 as a motherboard has an electrode portion 211 on one side.
The semiconductor device 20 of the present invention described with reference to FIG.
9 is joined to the circuit board 210 via the solder balls 208. The solder balls 208 are connected to the electrode portions 211 of the circuit board 210.
Electrically connected to The surface of the circuit board 210 facing the semiconductor device 209 is covered with the solder resist 212. Here, a method of manufacturing the semiconductor device (CSP) 209 shown in FIG.

【0027】フレキシブル回路基板201は、厚さ:1
8μmの銅箔202と、厚さ:60μmのポリイミド2
03とをラミネートしたものを準備し、その銅箔202
をエッチングした後に、銅箔202上にNiメッキある
いはAuメッキを施す。その後、絶縁層204を設け
る。次に、配線パターンである銅箔202の裏面で、C
2 レーザを用いて、ポリイミド203に、直径:a=
0.4mmで、ストレートに穴明けし、銅箔202を露
出させ、電極部205とする。
The flexible circuit board 201 has a thickness of 1
8 μm copper foil 202 and 60 μm thick polyimide 2
03 and a copper foil 202
Is etched, Ni plating or Au plating is performed on the copper foil 202. After that, an insulating layer 204 is provided. Next, on the back surface of the copper foil 202 as the wiring pattern, C
Using an O 2 laser, a diameter: a =
A hole is made straight at 0.4 mm to expose the copper foil 202 to form an electrode portion 205.

【0028】その後、除々に、レーザの出力を下げ、あ
るいは、照射時間を短くして、順次に、0.43mmの
直径で、0.45の直径で、また、最終的にb=0.4
7mmの直径で、段々に下向きのテーパを、例えば、約
30度のテーパー角で穴明け加工し、開口の内周壁を形
成する。なお、ここでの電極部205の配列ピッチは
0.8mm、そのピン数は25pinである。
Thereafter, the output of the laser is gradually reduced, or the irradiation time is shortened, so that the diameter is 0.43 mm, the diameter is 0.45, and finally b = 0.4.
With a diameter of 7 mm, a downward taper is gradually drilled, for example, at a taper angle of about 30 degrees to form an inner peripheral wall of the opening. Here, the arrangement pitch of the electrode portions 205 is 0.8 mm, and the number of pins thereof is 25 pins.

【0029】このような構成のフレキシブル回路基板2
01を用い、ICチップ206をダイボンディング、ワ
イヤボンディングした後、フィラー入りエポキシ樹脂な
どの封止材207で、回路基板201の表面をトランス
ファーモールドする。その後に、回路基板201の裏面
の電極部205上にクリーム半田を印刷し、その後に直
径:0.45mmの半田塊を当該電極部205に搭載し
て、リフローで、半田を溶融させ、半田ボール208と
して、半導体装置(CSP)209を構成するのであ
る。
The flexible circuit board 2 having such a configuration
Then, the IC chip 206 is die-bonded and wire-bonded, and then the surface of the circuit board 201 is transfer-molded with a sealing material 207 such as a filler-containing epoxy resin. Thereafter, cream solder is printed on the electrode portion 205 on the back surface of the circuit board 201, and then a solder lump having a diameter of 0.45 mm is mounted on the electrode portion 205, and the solder is melted by reflow to form a solder ball. A semiconductor device (CSP) 209 is configured as 208.

【0030】次に、上述の半導体装置(CSP9209
を、別に用意した回路基板210に接合するプロセスに
ついて、図1の(b)を用いて説明する。ここでは、C
SP209の電極部205に対応した回路基板210上
の位置に、電極部211を設けている。この回路基板2
10の電極部211の配列ピッチは0.8mm、そのピ
ン数は25である。電極部211は、銅箔の一部が露出
した部分であり、その表面には、耐熱プリフラックスが
塗布されており、また、電極部211以外の銅箔の部分
は半田レジスト212で覆われている。
Next, the above-described semiconductor device (CSP 9209)
Will be described with reference to FIG. 1B. Here, C
An electrode unit 211 is provided at a position on the circuit board 210 corresponding to the electrode unit 205 of the SP 209. This circuit board 2
The arrangement pitch of the ten electrode portions 211 is 0.8 mm, and the number of pins is 25. The electrode portion 211 is a portion where a part of the copper foil is exposed, a heat-resistant pre-flux is applied to the surface thereof, and a portion of the copper foil other than the electrode portion 211 is covered with a solder resist 212. I have.

【0031】そして、回路基板210の電極部211上
にクリーム半田を印刷し、半導体装置(CSP)209
側に固定された半田ボール208と、電極部211とを
位置合わせし、当接した後に、リフローし、半田ボール
208と電極部211とを、接合する。
Then, cream solder is printed on the electrode section 211 of the circuit board 210, and the semiconductor device (CSP) 209 is printed.
After the solder ball 208 fixed to the side and the electrode portion 211 are aligned and brought into contact, reflow is performed, and the solder ball 208 and the electrode portion 211 are joined.

【0032】このように構成された半導体装置の接合構
造は、その後、温度が−25℃および+125℃に設定
された2つの温度領域内で、ヒートサイクル試験(各3
0分間隔で、交互に1,000サイクル)を行う。その
耐久試験において、上述の半導体装置およびその接合構
造では、半田ボールにクラックなどの亀裂が認められ
ず、良好な半田付けが行なわれたことを示している。
Thereafter, the junction structure of the semiconductor device thus configured is subjected to a heat cycle test (3 each) in two temperature ranges where the temperature is set to -25 ° C. and + 125 ° C.
(1,000 cycles alternately at 0 minute intervals). In the durability test, no crack such as a crack was found in the solder ball in the above-described semiconductor device and the joint structure thereof, indicating that good soldering was performed.

【0033】なお、この実施の形態では、厚さ:18μ
mの銅箔を用いたが、それが10〜50μmの範囲なら
差し支えなく、また、厚さ:60μmのポリイミドを半
田レジストとして用いたが、40〜100μmの間なら
有効であり、更に、レジストの材質としては、ポリイミ
ド以外に、エポキシ樹脂、ウレタン樹脂、フッ素樹脂、
シリコン樹脂、などの樹脂を用いても良い。
In this embodiment, the thickness is 18 μm.
Although a copper foil having a thickness of 60 m was used, a polyimide having a thickness of 60 m was used as a solder resist, but it was effective if the thickness was between 40 and 100 m. As materials, besides polyimide, epoxy resin, urethane resin, fluororesin,
A resin such as a silicon resin may be used.

【0034】また、レジストにて形成された電極部の開
口には、その穴明け手段として、レーザ以外に、エッチ
ャントによるウェットエッチング、あるいは、プラズマ
エッチングなどのドライエッチングを用いても良い。ま
た、ここでは、CO2 レーザを用いたが、CO2 以外
に、YAG、エキシマレーザなどの高エネルギーレーザ
を用いても良く、また、これらの方法をMixして採用
しても良い。
In addition, in addition to the laser, a wet etching using an etchant or a dry etching such as a plasma etching may be used as a means for making a hole in the opening of the electrode portion formed of the resist. Although a CO 2 laser is used here, a high-energy laser such as a YAG laser or an excimer laser may be used in addition to CO 2 , or these methods may be mixed and adopted.

【0035】今回、テーパ状の形状は、前述のように、
階段式に穴明けを行って、全体として、すり鉢式の穴形
状にしたが、他の連続式の穴明けで形成しても良い。ま
た、今回は、開口部のテーパには、60゜のテーパ角を
付けたが、本発明はその他に樽形の半田ボール208の
形状を阻外しない範囲、つまり45度ないし60度の範
囲で、そのテーパ角度を設定してもよい。
This time, the tapered shape is, as described above,
Drilling is performed stepwise to form a mortar type hole as a whole, but it may be formed by other continuous type drilling. Also, in this case, the taper of the opening has a taper angle of 60 °. However, the present invention also has a taper angle in a range that does not obstruct the shape of the barrel-shaped solder ball 208, that is, in a range of 45 degrees to 60 degrees. , The taper angle may be set.

【0036】また、本発明のスルーホール214の側壁
部に半田ボール208と濡れ性のよい導電材料を配置す
ることも好ましい。この場合導電材料として、例えば、
銅や錫を用いることが好ましい。その結果、半田ボール
208がくびれることなく、スルーホール214の形状
にならい、半導体装置の接合信頼性が向上する。また、
本発明はBGAに用いることもできる。
It is also preferable to dispose a conductive material having good wettability with the solder ball 208 on the side wall of the through hole 214 of the present invention. In this case, as the conductive material, for example,
It is preferable to use copper or tin. As a result, the solder ball 208 does not become constricted and follows the shape of the through hole 214, and the bonding reliability of the semiconductor device is improved. Also,
The present invention can also be used for BGA.

【0037】(第2の実施の形態)本発明の第2の実施
の形態を、図2の(a)および(b)を参照して、具体
的に説明する。なお、図2の(a)は半導体装置(CS
P)の断面図であり、その(b)は前記CSPを回路基
板に接合した断面図を示す。この実施の形態が、第1の
実施の形態と異なる点は、フレキシブル回路基板201
のポリイミド203にて明けた電極部の開口のテーパ角
と、半田ボール径とが異なるのであって、他は、同じ構
成である。
(Second Embodiment) A second embodiment of the present invention will be specifically described with reference to FIGS. 2 (a) and 2 (b). FIG. 2A shows a semiconductor device (CS).
It is sectional drawing of P), and (b) is sectional drawing which joined the said CSP to the circuit board. This embodiment is different from the first embodiment in that a flexible circuit board 201 is provided.
The difference is that the taper angle of the opening of the electrode portion made with the polyimide 203 differs from the solder ball diameter, and the other configuration is the same.

【0038】テーパ角の形成は、CO2 レーザを用い
て、α=0.4mmの径でストレートに穴明けするまで
は同じであるが、その後、公知の方法によって、C=
0.52mmの径内部以外に、レジストを塗布し、エチ
レンジアミンとヒドラジンの混合溶液で、ポリイミド2
03をエッチングした後に、レジストを剥離して、フレ
キシブル回路基板201に、45度のテーパ角を構成す
る。
The formation of the taper angle is the same until a straight hole is formed with a diameter of α = 0.4 mm using a CO 2 laser.
A resist is applied to the inside of the inside of the diameter of 0.52 mm, and polyimide 2 is mixed with a mixed solution of ethylenediamine and hydrazine.
After etching 03, the resist is peeled off to form a 45 ° taper angle on the flexible circuit board 201.

【0039】なお、ボール塊には直径:0.5mmのも
のを用いるので、第1の実施の形態よりも、半田ボール
が大きくなり、若干の信頼性向上が認められる。他は、
第一の実施の形態と同様であり、その後、−25℃と+
125℃との2つの温度領域での各30分で1,000
サイクルのヒートサイクル試験が行われたが、半田ボー
ルにクラックなどの亀裂は認められなかった。更に、
1,000サイクル以上の試験も行ったが、1,200
サイクルまでは、全く亀裂の発生が見られないことが確
認された。
Since a ball mass having a diameter of 0.5 mm is used, the solder ball becomes larger than in the first embodiment, and a slight improvement in reliability is recognized. Others
It is the same as the first embodiment.
1,000 in 30 minutes each in two temperature ranges of 125 ° C
A heat cycle test of the cycle was performed, and no cracks such as cracks were found in the solder balls. Furthermore,
Tests over 1,000 cycles were also performed, but 1,200
It was confirmed that no cracks were observed until the cycle.

【0040】[0040]

【発明の効果】本発明は以上詳述したようになり、半導
体装置のスルーホールに、所要のテーパを付けることに
より、半導体装置と、前記金属ボールを介して接合され
る回路基板との間の熱膨張係数差による熱応力ストレス
の集中を避け、耐クラック性を向上し、接合箇所の長寿
命化を達成することができる。
The present invention has been described in detail above. By forming a through hole of a semiconductor device with a required taper, the through hole between the semiconductor device and the circuit board joined via the metal ball is formed. Concentration of thermal stress due to a difference in thermal expansion coefficient can be avoided, crack resistance can be improved, and a longer life of a joint can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態を(a)および
(b)で示す縦断側面図である。
FIG. 1 is a longitudinal sectional side view showing a first embodiment of the present invention in (a) and (b).

【図2】同じく、第2の実施の形態を(a)および
(b)で示す縦断側面図である。
FIG. 2 is a vertical sectional side view showing the second embodiment in (a) and (b).

【図3】従来の実施の形態を(a)および(b)で示す
縦断側面図である。
FIG. 3 is a longitudinal sectional side view showing a conventional embodiment in (a) and (b).

【図4】同じく、回路基板の平面図である。FIG. 4 is a plan view of the circuit board.

【図5】従来の別の実施の形態を(a)および(b)で
示す縦断側面図である。
FIG. 5 is a longitudinal sectional side view showing another conventional embodiment in (a) and (b).

【符号の説明】[Explanation of symbols]

101 回路基板 102 ICチップ 103 電極部 104 半田ボール(金属ボール) 105 半導体装置(BGA) 106 電極部 107 回路基板 111 銅箔 112 ポリイミド 113 フレキシブル回路基板 114 絶縁処理 115 ICチップ 116 電極部 117 半田ボール(金属ボール) 118 半導体装置(CSP) 119 部分 121 回路基板 122 上部くびれ 123 下部 124 空隙 201 回路基板 202 銅箔 203 ポリイミド 204 絶縁層 205 電極部 206 ICチップ 207 封止材 208 半田ボール(金属ボール) 209 半導体装置(CPS) 210 回路基板 211 電極部 212 レジスト 213 ボンディングワイヤ 214 スルーホール DESCRIPTION OF SYMBOLS 101 Circuit board 102 IC chip 103 Electrode part 104 Solder ball (metal ball) 105 Semiconductor device (BGA) 106 Electrode part 107 Circuit board 111 Copper foil 112 Polyimide 113 Flexible circuit board 114 Insulation processing 115 IC chip 116 Electrode part 117 Solder ball ( 118 semiconductor device (CSP) 119 part 121 circuit board 122 upper constriction 123 lower part 124 air gap 201 circuit board 202 copper foil 203 polyimide 204 insulating layer 205 electrode part 206 IC chip 207 sealing material 208 solder ball (metal ball) 209 Semiconductor device (CPS) 210 Circuit board 211 Electrode part 212 Resist 213 Bonding wire 214 Through hole

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 絶縁部材と、前記絶縁部材の片面に配置
された半導体チップと、前記片面に配置され且つ前記半
導体チップと接合する配線パターンと、前記絶縁部材に
設けられたスルーホールと、前記半導体チップ及び前記
配線パターンを封止する封止材を有する半導体装置にお
いて、 前記片面の反対面における前記スルーホールの開口径は
前記片面における開口径よりも大きいことを特徴とする
半導体装置。
An insulating member, a semiconductor chip disposed on one surface of the insulating member, a wiring pattern disposed on the one surface and joined to the semiconductor chip, a through hole provided in the insulating member, A semiconductor device having a sealing material for sealing a semiconductor chip and the wiring pattern, wherein an opening diameter of the through hole on a surface opposite to the one surface is larger than an opening diameter on the one surface.
【請求項2】 前記スルーホールの内から前記スルーホ
ールの外へ突出する突起電極を有することを特徴とする
請求項1に記載の半導体装置。
2. The semiconductor device according to claim 1, further comprising a protruding electrode projecting from the inside of the through hole to the outside of the through hole.
【請求項3】 前記突起電極は略球形であることを特徴
とする請求項2に記載の半導体装置。
3. The semiconductor device according to claim 2, wherein said protruding electrode has a substantially spherical shape.
【請求項4】 前記突起電極を介して回路基板と接合す
ることを特徴とする請求項2に記載の半導体装置。
4. The semiconductor device according to claim 2, wherein said semiconductor device is bonded to a circuit board via said projecting electrode.
【請求項5】 前記スルーホールは側壁部に導電材料を
有することを特徴とする請求項1に記載の半導体装置。
5. The semiconductor device according to claim 1, wherein the through hole has a conductive material on a side wall.
【請求項6】 前記片面と前記スルーホールの側壁部と
の間の角度が45度ないし60度の範囲にあることを特
徴とする請求項1に記載の半導体装置。
6. The semiconductor device according to claim 1, wherein an angle between the one surface and a side wall of the through hole is in a range of 45 degrees to 60 degrees.
【請求項7】 前記導電材料は銅ないし錫からなること
を特徴とする請求項5に記載の半導体装置。
7. The semiconductor device according to claim 5, wherein said conductive material is made of copper or tin.
【請求項8】 前記突起電極は半田からなることを特徴
とする請求項2に記載の半導体装置。
8. The semiconductor device according to claim 2, wherein the protruding electrodes are made of solder.
【請求項9】 前記スルーホールの口径は前記片面から
離れるに連れて大きくなることを特徴とする請求項1に
記載の半導体装置。
9. The semiconductor device according to claim 1, wherein the diameter of the through hole increases as the distance from the one surface increases.
【請求項10】 絶縁部材の片面に配線パターンと半導
体チップとを配置する工程と、前記配線パターンと前記
半導体チップとを接合する工程と、前記片面と反対の面
における開口径が前記片面における開口径よりも大きく
なるように前記絶縁部材にスルーホールを設ける工程
と、前記絶縁部材の前記片面と前記半導体チップと前記
配線パターンとを封止材で封止する工程とを有する半導
体装置の製造方法。
10. A step of arranging a wiring pattern and a semiconductor chip on one surface of an insulating member, a step of joining the wiring pattern and the semiconductor chip, and a step of opening an opening on a surface opposite to the one surface to an opening on the one surface. A method of manufacturing a semiconductor device, comprising: providing a through hole in the insulating member so as to be larger than a diameter; and sealing the one surface of the insulating member, the semiconductor chip, and the wiring pattern with a sealing material. .
【請求項11】 前記スルーホールの内から前記スルー
ホールの外に向かって突出する突起電極を設ける工程を
有することを特徴とする請求項10に記載の半導体装置
の製造方法。
11. The method for manufacturing a semiconductor device according to claim 10, further comprising the step of providing a protruding electrode projecting from inside of said through hole to outside of said through hole.
【請求項12】 前記突起電極は略球形であることを特
徴とする請求項11に記載の半導体装置の製造方法。
12. The method according to claim 11, wherein the protruding electrodes are substantially spherical.
【請求項13】 前記スルーホールは側壁部に導電材料
を有する工程を含むことを特徴とする請求項10に記載
の半導体装置の製造方法。
13. The method according to claim 10, wherein the through hole includes a step of having a conductive material on a side wall.
【請求項14】 前記片面と前記スルーホールの側壁部
との間の角度が45度ないし60度の範囲とする工程を
有することを特徴とする請求項10に記載の半導体装置
の製造方法。
14. The method according to claim 10, further comprising the step of setting an angle between the one surface and a side wall of the through hole in a range of 45 degrees to 60 degrees.
【請求項15】 前記導電材料は銅ないし錫からなるこ
とを特徴とする請求項13に記載の半導体装置の製造方
法。
15. The method according to claim 13, wherein the conductive material is made of copper or tin.
【請求項16】 前記突起電極は半田からなることを特
徴とする請求項10に記載の半導体装置の製造方法。
16. The method according to claim 10, wherein the protruding electrodes are made of solder.
【請求項17】 前記スルーホールの口径は前記片面か
ら離れるに連れて大きくなることを特徴とする請求項1
0に記載の半導体装置の製造方法。
17. The device according to claim 1, wherein the diameter of the through hole increases with increasing distance from the one surface.
0. A method for manufacturing a semiconductor device according to item 0.
JP5053098A 1998-03-03 1998-03-03 Semiconductor device and its manufacture Pending JPH11251353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5053098A JPH11251353A (en) 1998-03-03 1998-03-03 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5053098A JPH11251353A (en) 1998-03-03 1998-03-03 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH11251353A true JPH11251353A (en) 1999-09-17

Family

ID=12861557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5053098A Pending JPH11251353A (en) 1998-03-03 1998-03-03 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH11251353A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1087440A2 (en) * 1999-09-22 2001-03-28 Texas Instruments Incorporated Modeling technique to increase device reliability
JP2002033417A (en) * 2000-07-17 2002-01-31 Rohm Co Ltd Semiconductor device
JP2005026650A (en) * 2003-07-01 2005-01-27 Northrop Grumman Corp Electronic device package assembly
JP2005280044A (en) * 2004-03-29 2005-10-13 Brother Ind Ltd Process of manufacturing inkjet head
JP2012069984A (en) * 1999-09-20 2012-04-05 Texas Instr Inc <Ti> Method for increasing device reliability by selectively depopulating solder balls from foot print of ball grid array package
JP2017201677A (en) * 2016-05-06 2017-11-09 旭徳科技股▲ふん▼有限公司 Method for manufacturing circuit board

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069984A (en) * 1999-09-20 2012-04-05 Texas Instr Inc <Ti> Method for increasing device reliability by selectively depopulating solder balls from foot print of ball grid array package
EP1087440A2 (en) * 1999-09-22 2001-03-28 Texas Instruments Incorporated Modeling technique to increase device reliability
JP2002033417A (en) * 2000-07-17 2002-01-31 Rohm Co Ltd Semiconductor device
JP2005026650A (en) * 2003-07-01 2005-01-27 Northrop Grumman Corp Electronic device package assembly
JP4714814B2 (en) * 2003-07-01 2011-06-29 ノースロップ グラマン システムズ コーポレーション Electronic device package assembly
JP2005280044A (en) * 2004-03-29 2005-10-13 Brother Ind Ltd Process of manufacturing inkjet head
US7467468B2 (en) 2004-03-29 2008-12-23 Brother Kogyo Kabushiki Kaisha Method for manufacturing an ink-jet head
JP2017201677A (en) * 2016-05-06 2017-11-09 旭徳科技股▲ふん▼有限公司 Method for manufacturing circuit board

Similar Documents

Publication Publication Date Title
JP2595909B2 (en) Semiconductor device
US6638638B2 (en) Hollow solder structure having improved reliability and method of manufacturing same
US5519936A (en) Method of making an electronic package with a thermally conductive support member having a thin circuitized substrate and semiconductor device bonded thereto
US5960262A (en) Stitch bond enhancement for hard-to-bond materials
US5633533A (en) Electronic package with thermally conductive support member having a thin circuitized substrate and semiconductor device bonded thereto
JPH08510358A (en) Interconnection of integrated circuit chips and substrates
JP2001060645A (en) Interposer for mounting semiconductor die on board
JPH11251353A (en) Semiconductor device and its manufacture
JP3575324B2 (en) Semiconductor device, method of manufacturing semiconductor device, and method of mounting semiconductor device
JP2000228455A (en) Bga-type ic package
JP3180041B2 (en) Connection terminal and method of forming the same
JP2001044319A (en) Wiring board and mounting structure thereof
JP3563170B2 (en) Method for manufacturing semiconductor device
JP2002359336A (en) Semiconductor device
JPH11186440A (en) Semiconductor device
JPH10261735A (en) Semiconductor device and its manufacture
JP2001168224A (en) Semiconductor device, electronic circuit device, and its manufacturing method
JPH08236575A (en) Semiconductor device and manufacturing method thereof
JP2002057242A (en) Area array type semiconductor package
JPH09260529A (en) Substrate for semiconductor device, and semiconductor device
JPS61224444A (en) Mounting of semiconductor chip
JP2001185642A (en) Package substrate for mounting semiconductor
JPH06151440A (en) Semiconductor device, its manufacture, and its packaging body
KR101133126B1 (en) Semiconductor package and manufacturing method thereof
JPH10335547A (en) Electronic circuit device and its manufacture