JPH1121658A - Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing - Google Patents

Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing

Info

Publication number
JPH1121658A
JPH1121658A JP9189295A JP18929597A JPH1121658A JP H1121658 A JPH1121658 A JP H1121658A JP 9189295 A JP9189295 A JP 9189295A JP 18929597 A JP18929597 A JP 18929597A JP H1121658 A JPH1121658 A JP H1121658A
Authority
JP
Japan
Prior art keywords
steel sheet
iron loss
magnetic annealing
annealing
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9189295A
Other languages
Japanese (ja)
Inventor
Yasushi Tanaka
靖 田中
Nobuo Yamagami
伸夫 山上
Akira Hiura
昭 日裏
Yoshihiko Oda
善彦 尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP9189295A priority Critical patent/JPH1121658A/en
Publication of JPH1121658A publication Critical patent/JPH1121658A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a nonorinted silicon steel sheet sufficiently reduced in iron loss after magnetic annealing and produced at a low cost. SOLUTION: This production of a nonoriented silicon steel sheet is based on the knowledge that iron loss characteristic after magnetic annealing can be effectively improved by the addition of a proper amount of Cr in the specific range of the amount of V. This steel sheet has a composition consisting of, by weight, 0-0.005% C, 0-0.2% P, 0-0.005% N, 0-1.0% Si, 0.05-1.0% Mn, 0-0.004% sol. Al, 0.02% S, 0.0020-0.010% V, >0.040-<0.10% Cr, and the balance essentially Fe.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【従来の技術】無方向性電磁鋼板は、その製造方法によ
りフルプロセス材とセミプロセス材に分けれられる。こ
のうち、フルプロセス材は鉄鋼メーカー側の仕上焼鈍に
より所定の磁気特性を得るものであり、一方、セミプロ
セス材は、需要家において打抜き加工後に歪取り焼鈍を
行うことにより、所定の磁気特性を得るものである。セ
ミプロセス材においては、歪取り焼鈍時に加工歪みの除
去と同時に結晶粒も成長することから、より一層の鉄損
の低減が可能となる。このため歪取り焼鈍は“磁性焼
鈍”とも呼ばれている。
2. Description of the Related Art Non-oriented electrical steel sheets are classified into full-process materials and semi-process materials according to the manufacturing method. Of these, the full process material obtains predetermined magnetic characteristics by finish annealing on the steel manufacturer side, while the semi-process material obtains the predetermined magnetic characteristics by performing strain relief annealing after punching at the customer. What you get. In the semi-process material, since the crystal grains grow simultaneously with the removal of the processing strain during the strain relief annealing, the iron loss can be further reduced. For this reason, the strain relief annealing is also called “magnetic annealing”.

【0002】この磁性焼鈍時の粒成長性を良好にするた
めには、鋼板中の介在物や析出物の量を低減することが
効果的である。このため、これまでにも介在物や析出物
を無害化するための種々の試みがなされてきた。例え
ば、特開平3−249115号には鋼中のMn量を適正
化にすることによりMnSを凝集粗大化させ、これを無
害化する技術が、また、特開昭62−199720号に
はスラブ加熱温度を1150℃以下とすることにより、
MnSの再固溶およびそれに続く微細析出を防止する技
術が、さらに、特公昭56−33451号にはスラブを
特定温度に保持することによりAlNを凝集粗大化させ
る技術が、それぞれ開示されている。
In order to improve grain growth during magnetic annealing, it is effective to reduce the amount of inclusions and precipitates in a steel sheet. For this reason, various attempts have been made to render inclusions and precipitates harmless. For example, Japanese Patent Application Laid-Open No. 3-249115 discloses a technique for making MnS agglomerate and coarsening by optimizing the amount of Mn in steel to make it harmless, and Japanese Patent Application Laid-Open No. 62-199720 discloses a slab heating method. By setting the temperature to 1150 ° C. or less,
A technique for preventing the re-solid solution of MnS and subsequent fine precipitation is disclosed, and Japanese Patent Publication No. 56-34351 discloses a technique for maintaining the slab at a specific temperature to coagulate and coarsen AlN.

【0003】ところで、最近の電気機器の省エネルギー
化に伴い、従来にも増して磁性焼鈍後の鉄損の低い電磁
鋼板が求められるようになっている。しかし、このよう
な低鉄損の電磁鋼板を製造する場合、従来のようにMn
SおよびAlNの粗大化を図った電磁鋼板では磁性焼鈍
時に十分に粒成長させることができない。このため、よ
り一層粒成長性の優れた電磁鋼板が求められるようにな
ってきている。
[0003] With the recent energy saving of electrical equipment, there has been a demand for magnetic steel sheets having a lower iron loss after magnetic annealing than ever before. However, when manufacturing such an electromagnetic steel sheet having a low iron loss, Mn as in the related art is used.
In an electromagnetic steel sheet in which S and AlN are coarsened, grain growth cannot be sufficiently performed during magnetic annealing. For this reason, an electromagnetic steel sheet having more excellent grain growth properties has been required.

【0004】このような観点から、特開平3−2041
3号には無方向性電磁鋼板中の不純物元素であるV、N
をそれぞれV:0.01wt%以下、N:0.005w
t%以下に規制し、磁気特性に有害なバナジウム炭窒化
物の析出を抑制することで鉄損の低減化を図る技術が開
示されているが、この無方向性電磁鋼板で得られる鉄損
は決して満足すべきものではなく、また、鉄損を下げる
ためにV量を低減させると製造コストの上昇を招いてし
まう。したがって本発明の目的は、このような課題を解
決し、磁性焼鈍後の鉄損が十分に低く、しかも低コスト
に製造可能な無方向性電磁鋼板を提供することにある。
From such a viewpoint, Japanese Patent Application Laid-Open No. 3-2041
No. 3 includes V and N, which are impurity elements in non-oriented electrical steel sheets.
V: 0.01 wt% or less, N: 0.005 w
A technique for reducing iron loss by controlling precipitation of vanadium carbonitride, which is harmful to magnetic properties, by controlling the iron loss to less than t% is disclosed. It is by no means satisfactory, and if the amount of V is reduced to reduce iron loss, the production cost will increase. Therefore, an object of the present invention is to solve such a problem and to provide a non-oriented electrical steel sheet which has sufficiently low iron loss after magnetic annealing and can be manufactured at low cost.

【0005】[0005]

【課題を解決するための手段】本発明者らは磁性焼鈍後
の鉄損に及ぼすVの影響を詳細に調査し、その結果、V
量を極力低減化するという方向ではなく、むしろV量を
ある程度含有させた上で適量のCrを含有させることに
より磁性焼鈍後の鉄損特性を効果的に改善することで
き、Vによる悪影響を適切に回避できることを見い出し
た。
Means for Solving the Problems The present inventors have investigated in detail the effect of V on iron loss after magnetic annealing.
Instead of reducing the amount as much as possible, rather, by adding a certain amount of V and then adding an appropriate amount of Cr, the iron loss characteristics after magnetic annealing can be effectively improved, and the adverse effect of V can be appropriately reduced. Have found that they can be avoided.

【0006】本発明はこのような知見に基づきなされた
もので、重量%で、C:0〜0.005%、P:0〜
0.2%、N:0〜0.005%、Si:0〜1.0
%、Mn:0.05〜1.0%、Sol.Al:0〜
0.004%、S:0〜0.02%、V:0.0020
〜0.010%、Cr:0.040%超0.10%未
満、残部が実質的にFeからなることを特徴とする磁性
焼鈍後の鉄損の低い無方向性電磁鋼板である。
[0006] The present invention has been made based on such findings, and in terms of% by weight, C: 0 to 0.005%, and P: 0 to 0%.
0.2%, N: 0 to 0.005%, Si: 0 to 1.0
%, Mn: 0.05 to 1.0%, Sol. Al: 0
0.004%, S: 0 to 0.02%, V: 0.0020
It is a non-oriented electrical steel sheet with low iron loss after magnetic annealing, characterized in that: -0.010%, Cr: more than 0.040% and less than 0.10%, and the balance substantially consisting of Fe.

【0007】[0007]

【発明の実施の形態】以下、本発明の詳細をその限定理
由とともに説明する。本発明者らはVを含有する表1に
示す成分組成の無方向性電磁鋼板を磁性焼鈍し、Vの析
出物について詳細な解析を行った。その結果、Vの析出
物の主体はVNであるが、その一部がCrを含有したV
−Crの複合窒化物であることが判った。通常、Crは
鋼板中に不可避的不純物として0.01〜0.04wt
%程度含まれている成分であり、この不純物としてのC
rがVとの複合窒化物という形で析出物の形成に関与し
ていることが判った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below together with the reasons for limiting the same. The present inventors magnetically annealed a non-oriented electrical steel sheet containing V and having the composition shown in Table 1, and performed a detailed analysis on V precipitates. As a result, VN is mainly composed of V precipitates, but V
-It was found to be a composite nitride of Cr. Usually, Cr is contained in steel sheet as an unavoidable impurity in an amount of 0.01 to 0.04 wt.
%, Which is a component contained as an impurity.
It was found that r was involved in the formation of precipitates in the form of a composite nitride with V.

【0008】[0008]

【表1】 [Table 1]

【0009】以上のような知見に基づき、本発明者らは
この複合窒化物サイズをより大きくするためにCrを意
図的に添加し、磁性焼鈍後の粒成長性を改善することを
考え、このような着想に基づいて次のような実験を行っ
た。すなわち、表2〜表4に示すようにV量を6水準と
し、Cr量を0.035〜0.110wt%の範囲で変
化させた鋼を実験室レベルで溶解し、熱延後、酸洗を行
なった。引き続きこの熱延板を板厚0.5mmまで冷間
圧延し、720℃×1分の仕上焼鈍を施した後、さらに
750℃×2時間の磁性焼鈍を施した。
Based on the above findings, the present inventors considered that intentionally adding Cr to increase the size of the composite nitride and improve the grain growth after magnetic annealing, The following experiment was conducted based on such an idea. That is, as shown in Tables 2 to 4, steel having a V content of 6 levels and a Cr content of 0.035 to 0.110 wt% was melted at a laboratory level, hot rolled, and then pickled. Was performed. Subsequently, the hot-rolled sheet was cold-rolled to a sheet thickness of 0.5 mm, subjected to finish annealing at 720 ° C. × 1 minute, and further subjected to magnetic annealing at 750 ° C. × 2 hours.

【0010】[0010]

【表2】 [Table 2]

【0011】[0011]

【表3】 [Table 3]

【0012】[0012]

【表4】 [Table 4]

【0013】図1はこのようにして得られた鋼板の磁性
焼鈍後の鉄損W15/50とV量およびCr量との関係を示
したものである。これによればCrが0.045wt%
含まれている鋼板は、V量が0.0020wt%以上と
なる付近からCr量:0.035wt%の鋼板に較べて
鉄損が低減し、一方、V量が0.010wt%を超える
と逆にCr量:0.035wt%の鋼板よりも鉄損が悪
くなる。このようなCrによる鉄損改善効果はCr量が
0.040wt%超0.10wt%未満の範囲において
認められ、特にCr量が0.045〜0.080wt%
の範囲において顕著である。これに対して、V量が0.
0020wt%未満および0.010wt%超の範囲と
Cr量が0.040wt%以下および0.10wt%以
上の範囲においては、上述したようなCr添加による効
果および影響は殆んど見られない。
FIG. 1 shows the relationship between the iron loss W15 / 50 after magnetic annealing of the steel sheet obtained in this way and the amounts of V and Cr. According to this, Cr is 0.045 wt%.
The contained steel sheet has a reduced iron loss as compared with a steel sheet having a Cr content of 0.035 wt% from the vicinity where the V content is 0.0020 wt% or more, and conversely if the V content exceeds 0.010 wt%. In addition, iron loss is worse than that of a steel sheet having a Cr content of 0.035 wt%. Such an effect of improving iron loss by Cr is recognized when the Cr content is more than 0.040 wt% and less than 0.10 wt%, and particularly when the Cr content is 0.045 to 0.080 wt%.
Is remarkable in the range. On the other hand, when the V amount is 0.
In the range of less than 0020 wt% or more than 0.010 wt% and the range of Cr content of 0.040 wt% or less and 0.10 wt% or more, the effect and the effect of the above-described Cr addition are hardly observed.

【0014】このように特定のV量の範囲において適量
のCrを添加することで鉄損が効果的に低減するのは、
先に述べたようにCrが不可避的不純物レベルである場
合に比べ、VとCrが複合窒化物となって粗大化し、こ
れにより結晶粒成長性が促進されるためであると考えら
れる。またV量、Cr量がある程度多くなると、複合窒
化物は形成するものの、その絶対量が増大するために結
晶粒成長性が阻害され、このため鉄損の低減効果が得ら
れないばかりでなく、却って鉄損が悪化してしまうもの
と考えられる。
The reason why the iron loss is effectively reduced by adding an appropriate amount of Cr in a specific V amount range as described above is as follows.
This is presumably because V and Cr become complex nitrides and become coarser as compared with the case where Cr is at an unavoidable impurity level as described above, thereby promoting crystal grain growth. When the V content and the Cr content are increased to some extent, a composite nitride is formed, but the absolute content thereof is increased, thereby hindering the growth of crystal grains. It is considered that iron loss worsens.

【0015】以下、本発明の鋼板の成分組成の限定理由
について説明する。Siは鋼板の固有抵抗を高めるため
に有効な元素であるが、その含有量が1.0wt%を超
えると飽和磁束密度の低下に伴い磁束密度が低下するた
め、0〜1.0wt%(但し、無添加の場合を含む)と
する。Alは微量に添加した場合には微細なAlNを形
成し、磁気特性を阻害するため、Sol.Al:0〜
0.004wt%(但し、無添加の場合を含む)とす
る。Cは磁気時効の問題を生じさせるため0〜0.00
5wt%(但し、無添加の場合を含む)とする。
Hereinafter, the reasons for limiting the component composition of the steel sheet of the present invention will be described. Si is an element effective for increasing the specific resistance of the steel sheet. However, if the content exceeds 1.0 wt%, the magnetic flux density decreases with a decrease in the saturation magnetic flux density. , Without addition). When Al is added in a small amount, it forms fine AlN and impairs magnetic properties. Al: 0
0.004 wt% (including the case of no addition). C is 0 to 0.00 in order to cause a problem of magnetic aging.
5 wt% (including the case of no addition).

【0016】Mnは熱間圧延時の赤熱脆性を防止するた
めに0.05wt%以上必要であるが、1.0wt%を
超えると磁束密度を低下させるので0.05〜1.0w
t%とする。Nは多量に含まれると窒化物を形成して磁
気特性を劣化させるので、0〜0.005wt%(但
し、無添加の場合を含む)とする。Pは鋼板の打ち抜き
性を改善するために有効な元素であるが、0.2wt%
を超ると鋼板が脆化するため0〜0.2wt%(但し、
無添加の場合を含む)とする。Sは鋼中Mnとの間でM
nSを形成する。このような観点からS含有量はなるべ
く少いほうが好ましいが、通常、0.02wt%以下で
あれば格別な問題を生じないので0〜0.02wt%
(但し、無添加の場合を含む)とする。
Mn is required to be 0.05 wt% or more in order to prevent red hot brittleness during hot rolling, but if it exceeds 1.0 wt%, the magnetic flux density is reduced.
t%. If N is contained in a large amount, it forms a nitride and deteriorates magnetic properties. Therefore, the N content is set to 0 to 0.005 wt% (including the case where N is not added). P is an element effective for improving the punching property of the steel sheet.
Exceeds 0.2 to 0.2 wt% (however,
(Including the case of no addition). S is M between steel and Mn
Form nS. From such a viewpoint, it is preferable that the S content is as small as possible. However, if the S content is 0.02 wt% or less, there is no particular problem.
(However, the case without addition is included).

【0017】Vは不可避的不純物として鋼中に含まれる
ものであるが、先に示したように本発明の効果はVが
0.0020〜0.010wt%の範囲においてのみ得
られるものであり、このためV含有量は0.0020〜
0.010wt%とする。また、その中でもより低鉄損
化を図るためには、V含有量の上限を0.0055wt
%とすることが好ましい。Crは本発明において最も重
要な成分元素であり、先に示したようにVの悪影響を回
避するためには0.040wt%超0.10wt%未満
の範囲で含有させる必要がある。このためCr量は0.
040wt%超0.10wt%未満、特に好ましくは
0.045〜0.080wt%とする。
Although V is contained in steel as an unavoidable impurity, as described above, the effect of the present invention is obtained only when V is in the range of 0.0020 to 0.010 wt%. Therefore, the V content is 0.0020 to
0.010 wt%. In order to further reduce iron loss, the upper limit of the V content is set to 0.0055 wt.
% Is preferable. Cr is the most important component element in the present invention, and as described above, it is necessary to contain Cr in a range of more than 0.040 wt% and less than 0.10 wt% in order to avoid the adverse effect of V. For this reason, the amount of Cr is 0.
More than 040 wt% and less than 0.10 wt%, particularly preferably 0.045 to 0.080 wt%.

【0018】本発明鋼板において残部は実質的にFeか
らなるが、磁気特性向上のために0.1wt%以下のS
b、0.2wt%以下のSn、0.005wt%以下の
B、0.05wt%以下のZrをさらに添加することは
何等差しつかえない。これらの元素のうち、Sb、Sn
は集合組織を制御することにより、B、Zrは一部の窒
素を固定することにより、それぞれ磁気特性を向上させ
る。
In the steel sheet according to the present invention, the balance is substantially composed of Fe.
It is no problem to further add b, Sn of 0.2 wt% or less, B of 0.005 wt% or less, and Zr of 0.05 wt% or less. Of these elements, Sb, Sn
B and Zr improve the magnetic properties by controlling the texture, and B and Zr fix a part of nitrogen.

【0019】本発明の無方向性電磁鋼板は、鋼板中の成
分組成が上記の範囲にあれば所望の効果が得られるた
め、その製造条件に特別の制約はなく、例えば、通常採
用される以下のような製造条件で十分に製造可能であ
る。すなわち、転炉で吹練した溶鋼を脱ガス処理して所
定の成分に調整し、引き続き鋳造および熱間圧延を行
う。熱間圧延後の熱延板焼鈍は行ってもよいが必須では
ない。次いで、一回の冷間圧延若しくは中間焼鈍を挾ん
だ2回以上の冷間圧延により所定の板厚とした後、最終
焼鈍を行う。
In the non-oriented electrical steel sheet of the present invention, since the desired effects can be obtained if the component composition in the steel sheet is within the above range, there are no particular restrictions on the production conditions. It can be manufactured sufficiently under the following manufacturing conditions. That is, the molten steel blown in the converter is degassed to adjust to a predetermined component, and then casting and hot rolling are performed. Hot-rolled sheet annealing after hot rolling may be performed, but is not essential. Next, after a single sheet of cold rolling or two or more times of cold rolling with intermediate annealing being performed to obtain a predetermined sheet thickness, final annealing is performed.

【0020】[0020]

【実施例】溶鋼を転炉で吹練した後に脱ガス処理を行う
ことにより表5に示す成分組成に調整し、鋳造後、板厚
2.0mmまで熱間圧延を行った。次いで、この熱延板
を酸洗した後、板厚0.5mmまで冷間圧延を行い、7
00℃×2分の仕上焼鈍を行った後、さらに750℃×
2時間の磁性焼鈍を行った。得られた鋼板の磁気特性を
25cmエプスタイン試験片を用いて測定した。その結
果を表5に併せて示す。表5によれば、本発明例の無方
向性電磁鋼板は比較例の鋼板に較べて磁性焼鈍後の鉄損
特性が著しく改善されていることが判る。
EXAMPLE The molten steel was blown in a converter and then degassed to adjust the composition as shown in Table 5. After casting, the steel was hot-rolled to a thickness of 2.0 mm. Next, after pickling this hot-rolled sheet, cold rolling was performed to a sheet thickness of 0.5 mm,
After performing the finish annealing at 00 ° C. for 2 minutes, 750 ° C. ×
Magnetic annealing was performed for 2 hours. The magnetic properties of the obtained steel sheet were measured using a 25 cm Epstein test piece. The results are shown in Table 5. According to Table 5, it can be seen that the non-oriented electrical steel sheet of the present invention example has significantly improved iron loss characteristics after magnetic annealing as compared with the steel sheet of the comparative example.

【0021】[0021]

【表5】 [Table 5]

【0022】[0022]

【発明の効果】以上述べたように本発明の無方向性電磁
鋼板は、磁性焼鈍後の鉄損特性が優れ、しかも鋼中のV
量を過度に低減させることなく低コストに製造可能であ
る。
As described above, the non-oriented electrical steel sheet of the present invention has excellent iron loss characteristics after magnetic annealing, and has a high V loss in the steel.
It can be manufactured at low cost without excessively reducing the amount.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋼板中のV量およびCr量と磁性焼鈍後の鉄損
との関係を示すグラフ
FIG. 1 is a graph showing the relationship between the amounts of V and Cr in a steel sheet and iron loss after magnetic annealing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾田 善彦 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yoshihiko Oda 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Inside Nihon Kokan Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0〜0.005%、P:
0〜0.2%、N:0〜0.005%、Si:0〜1.
0%、Mn:0.05〜1.0%、Sol.Al:0〜
0.004%、S:0〜0.02%、V:0.0020
〜0.010%、Cr:0.040%超0.10%未
満、残部が実質的にFeからなることを特徴とする磁性
焼鈍後の鉄損の低い無方向性電磁鋼板。
C. 0 to 0.005% by weight, P:
0 to 0.2%, N: 0 to 0.005%, Si: 0 to 1.
0%, Mn: 0.05-1.0%, Sol. Al: 0
0.004%, S: 0 to 0.02%, V: 0.0020
A non-oriented electrical steel sheet with low iron loss after magnetic annealing, characterized in that: -0.010%, Cr: more than 0.040% and less than 0.10%, and the balance substantially consists of Fe.
JP9189295A 1997-06-30 1997-06-30 Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing Pending JPH1121658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9189295A JPH1121658A (en) 1997-06-30 1997-06-30 Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9189295A JPH1121658A (en) 1997-06-30 1997-06-30 Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing

Publications (1)

Publication Number Publication Date
JPH1121658A true JPH1121658A (en) 1999-01-26

Family

ID=16238948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9189295A Pending JPH1121658A (en) 1997-06-30 1997-06-30 Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing

Country Status (1)

Country Link
JP (1) JPH1121658A (en)

Similar Documents

Publication Publication Date Title
US4439251A (en) Non-oriented electric iron sheet and method for producing the same
JP4207231B2 (en) Method for producing non-oriented electrical steel sheet
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JP7245325B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP3430833B2 (en) Non-oriented electrical steel sheet having excellent magnetic properties after strain relief annealing and method for producing the same
JP4259269B2 (en) Method for producing grain-oriented electrical steel sheet
JP2888226B2 (en) Non-oriented electrical steel sheet with low iron loss
JP2000017330A (en) Production of nonoriented silicon steel sheet low in iron loss
JPH1121658A (en) Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing
JP3424178B2 (en) Non-oriented electrical steel sheet with low iron loss
JP3352599B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JP2718403B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
JP3766745B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
JPH1171650A (en) Nonoriented silicon steel sheet low in core loss
JPH1046245A (en) Manufacture of nonoriented magnetic steel sheet reduced in iron loss after magnetic annealing
JPH1088297A (en) Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing
JP4244393B2 (en) Method for producing non-oriented electrical steel sheet having excellent surface properties and iron loss characteristics, and non-oriented electrical steel sheet having excellent surface properties and iron loss characteristics
JPH1192890A (en) Nonoriented silicon steel sheet low in core loss and its production
JPH10237606A (en) Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing
JPH11131196A (en) Nonoriented silicon steel sheet minimal in iron loss
JPH11315327A (en) Manufacture of non-oriented silicon steel sheet with low iron loss, and non-oriented silicon steel sheet with low iron loss
JPH1112700A (en) Non-oriented electrical sheet having low iron loss
JPH1192892A (en) Nonoriented silicon steel sheet with low iron loss
JPH11229098A (en) Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing
JPH11302741A (en) Production of nonoriented silicon steel sheet low in core loss and nonoriented silicon steel sheet low in core loss

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees