JP4244393B2 - Method for producing non-oriented electrical steel sheet having excellent surface properties and iron loss characteristics, and non-oriented electrical steel sheet having excellent surface properties and iron loss characteristics - Google Patents

Method for producing non-oriented electrical steel sheet having excellent surface properties and iron loss characteristics, and non-oriented electrical steel sheet having excellent surface properties and iron loss characteristics Download PDF

Info

Publication number
JP4244393B2
JP4244393B2 JP04631398A JP4631398A JP4244393B2 JP 4244393 B2 JP4244393 B2 JP 4244393B2 JP 04631398 A JP04631398 A JP 04631398A JP 4631398 A JP4631398 A JP 4631398A JP 4244393 B2 JP4244393 B2 JP 4244393B2
Authority
JP
Japan
Prior art keywords
iron loss
steel sheet
less
steel
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04631398A
Other languages
Japanese (ja)
Other versions
JPH11229035A (en
Inventor
昭 日裏
善彦 小野
靖 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP04631398A priority Critical patent/JP4244393B2/en
Publication of JPH11229035A publication Critical patent/JPH11229035A/en
Application granted granted Critical
Publication of JP4244393B2 publication Critical patent/JP4244393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【従来の技術】
無方向性電磁鋼板は面内の磁気異方性が小さいという特徴を活かして、各種モータの鉄心材料として多量に使用されている。無方向性電磁鋼板は、フルプロセス材とセミプロセス材に分けられる。このうち、フルプロセス材は鉄鋼メーカー側の仕上焼鈍により所定の磁気特性を得るものである。セミプロセス材は、需要家において打抜き加工後に歪取り焼鈍(Stress-relief Annealing、略してSRA)を行うことにより、所定の磁気特性を得るものである。セミプロセス材では、SRA時に、加工歪みの除去と同時に結晶粒も成長することから、より一層の鉄損低減が可能となる。このため歪取り焼鈍は「磁性焼鈍」とも呼ばれており、特に、エアコンや冷蔵庫のコンプレッサーモータの高効率化に必要なものとしてニーズが高まってきている。
【0002】
こうした電磁鋼板の仕上焼鈍は、従来、横型の連続焼鈍炉で行われるのが一般的であった。横型炉は、縦型炉に比べて炉内張力が低く、鋼板とハースロールとの接触圧が小さいので、SiO2やAl23などが生成する雰囲気で焼鈍してもピックアップと呼ばれる押し傷による製品表面の劣化がほとんど生じない。また、焼鈍工程での歪みによる磁気特性の劣化も生じない。
【0003】
一方、汎用の冷延鋼板やぶりき原板等の仕上焼鈍に使われている縦型の連続焼鈍炉は、高能率での操業が可能で、生産コストの大幅な削減が期待できる。しかし、電磁鋼板を製造する場合には、その表面性状と磁気特性の確保が難しいという問題点を有している。この問題点を克服する製造方法として、これまでに、炉内雰囲気ガスの露点や焼鈍温度、炉内張力、ハースロール形状や溶射材料に関する種々の提案がなされている。
【0004】
例えば、特開昭60−86211号公報には、炉内雰囲気ガスの露点と焼鈍温度を所定範囲に規定し、通板時における張力を1.2 kg/mm2以下に規定することにより、縦型炉でのピックアップを抑制する方法が開示されている。しかし、800℃以上の高温焼鈍での粒成長により低鉄損の材料を製造するには、ピックアップ抑制のために、露点を−10℃以下にする必要がある。
【0005】
【発明が解決しようとする課題】
しかしながら、この方法においては、設備上の制約や操業条件の管理が難しく実用的ではない。
【0006】
また、ロールにセラミック溶射を行ったり、ロール形状を改善したりする方法も提案されているが、いずれも十分ではなく、縦型の連続焼鈍炉によっても安定して製造できる表面性状と磁気特性に優れた無方向性電磁鋼板は強く切望されている。
【0007】
一方、近年、合理化や資源有効活用の観点から、製銑プロセスでは低品位鉱石の活用が進められている。こうした鉱石をベースにした銑鉄はV含有率が高いために、製鋼プロセスで、酸素吹き込み量を増加してVを低減している。しかしながら、この方法では精練時間が長くなり生産効率の低下を招くことから、Vを十分に低減することができず、スラブ中のV量の上昇は避けられないのが実情である。
【0008】
一方、電磁鋼板の粒成長性を良好にするためには、鋼板中のV量を低減する必要のあることが明らかになっており、例えば、特開平3−20413号公報には、鋼中のV、N量をV:0.01%以下、N:0.005%以下と規定することによりVNの析出を防止し、磁性焼鈍時の粒成長性を向上させる技術が開示されている。しかし、前述した理由により、Vを低減するためにはVの混入量の低い鉱石を選別する必要があり、大幅なコストアップとなることは避けられない。
【0009】
このVNの析出を抑制するためにはV、N量を低減する方法以外にAlを添加しNをAlNとして固定する方法もある。しかし、Alを0.1%未満の範囲で微量に添加した場合にはVNの析出は防止できるものの、熱間圧延時に析出するAlNが粒成長を阻害するため、粒成長性は向上しない。一方、Alを0.1%以上添加した場合には粒成長性は向上するもののコストアップとなることは避けられない。さらに、Alを多量添加すると、仕上焼鈍中にAl23が生成するために、ピックアップの生成を助長する可能性がある。
【0010】
本発明はこのような事情に鑑みなされたものであり、Vを含んだ鋼においても、縦型の連続焼鈍炉の生産性を最大限に活用して、コストアップを伴うことなく、ピックアップなどの表面欠陥のない鉄損の低い無方向性電磁鋼板を提供することを課題とする。
【0011】
【課題を解決するための手段】
本発明の骨子は、Vを含む電磁鋼板を縦型連続焼鈍炉で製造可能とするために、Bを添加してNをBNとして固定することで粒成長性を向上させること、Sbの極微量添加により鋼板表層部の窒化・酸化を防止すること、Al量を制限することによりピックアップの発生を抑制すること、を組み合わせて表面性状と鉄損特性に優れた無方向性電磁鋼板を、縦形連続焼鈍炉を使用して得ることにある。
【0012】
すなわち、前記課題を解決するための第1の手段は、重量%で、C:0.005%以下、Si:0.8%以下、Mn:0.1〜1.0%、Al:0.001%〜0.05%、S:0.02%以下(0を含む)、P:0.2%以下、N:0.005%以下(0を含む)、SbとSnの少なくとも一方を、Sb+Sn/2で0.002〜0.02%、V:0.002〜0.02%を含み、さらにBをB/N(重量比)=0.5〜2.0の範囲で含有し、残部Fe及び不可避的不純物からなる鋼を熱間圧延した後酸洗し、次いで冷間圧延した後、縦型の連続焼鈍炉において焼鈍を施すことを特徴とする無方向性電磁鋼板の製造方法(請求項1)である。
【0013】
前記課題を解決するための第2の手段は、重量%で、C:0.005%以下、Si:0.8%以下、Mn:0.1〜1.0%、Al:0.001%〜0.05%、S:0.02%以下(0を含む)、P:0.2%以下、N:0.005%以下(0を含む)、SbとSnの少なくとも一方を、Sb+Sn/2で0.002〜0.02%、V:0.002〜0.02%を含み、さらにBをB/N(重量比)=0.5〜2.0の範囲で含有し,残部Fe及び不可避的不純物からなる鋼のスラブを1100℃〜1250℃で加熱し、仕上げ温度750℃〜900℃、巻取温度650℃〜750℃で熱間圧延した後酸洗し、次いで冷間圧延した後、縦型の連続焼鈍炉において700℃〜900℃で焼鈍を施すことを特徴とする無方向性電磁鋼板の製造方法(請求項2)である。
【0014】
お、本明細書、表、図において、鋼の成分を表す%は、特にことわらないかぎり重量%を意味し、ppmも重量ppmを意味する。
【0015】
(発明に至る経緯と、B、Sb、Al含有量の限定理由)
本発明者らはVを含んだ電磁鋼板を高生産性の縦型焼鈍焼鈍炉で製造するために、ピックアップ等の表面欠陥発生を抑制し、かつ鉄損を低減する手法に関し検討したところ、Bを添加することによりVNの析出を抑制することが可能となること、こうしたB添加鋼は仕上焼鈍時に鋼板表層部での窒化・酸化が著しく生じ、これを防止するためには微量のSb添加が有効であり鉄損の大幅な低減が可能になること、さらにAl量を適正化することによりピックアップ発生が抑制できることを見出した。
【0016】
以下、本発明を実験結果に基づいて詳細に説明する。
縦型の連続焼鈍炉は、汎用冷延鋼板を製造するので、コスト低減や製造制約緩和の観点から炉内ガスのH2は7%程度とされている。こうした雰囲気の縦型炉においてSiやAlを多く含む電磁鋼板を焼鈍すると、酸化物であるSiO2、Al23が炉内ハースロールに付着する。そして、前述のようにロールと鋼板との接触圧が高いこともあって、ロールに付着したこれら酸化物が鋼板に転写されてピックアップと呼ばれる凹凸欠陥が生じ易くなる。
【0017】
本発明者らは、初めに、こうした焼鈍雰囲気中での磁気特性に及ぼすV、BとSbの影響を調査した。仕上焼鈍の雰囲気ガスは、露点−5℃、5%H2-95%N2 に調整した。
【0018】
C:0.0020%、Si:0.30%、Mn:0.40%、P:0.10%、Al:0.0040%、S:0.005%、N:0.0018%、V:0.0060%とし、BをB/N(重量比)で0〜3.0とした鋼、およびそれぞれにSbを80ppm添加した鋼を50kg高周波真空溶解炉にて溶製し鋳造した。インゴットを熱延後、酸洗を行った。引き続き板厚0.5mmまで冷間圧延し、前記の焼鈍雰囲気中で、820℃×1min間の仕上焼鈍を行った。
【0019】
図1は、このようにして得られたサンプルの鉄損W15/50とB/Nとの関係を示す図である。ここで、磁気測定は25 cmエプスタイン法により行った。
図1より、Bフリー材に比べて、BをB/Nで0.5以上添加することにより鉄損が低下することがわかる。特にSb添加鋼ではさらに低下することがわかる。一方、BがB/Nで2.0を越えた場合にはいずれも鉄損が増大することもわかる。その中でも、B/N=0.7〜1.5の範囲では、鉄損は一段と低くなっていることがわかる。
【0020】
この原因を調査するため光学顕微鏡にて組織観察を行った。その結果、Bフリー材ではSbの有無によらず磁性焼鈍による結晶粒の粗大化は認められなかった。B添加鋼では、B/N=0.5以上で結晶粒が粗大化することが明らかとなった。また、B添加-Sbフリー鋼には、B/Nによらず鋼板表層部に微細組織が認められ、Sb添加鋼にはこうした鋼板表層部の微細組織は認められなかった。
【0021】
そこで、粒成長性の違いを調査するため、磁性焼鈍後の鋼板中央部より薄膜を作製し透過電子顕微鏡(TEM)観察を行った。その結果、いずれもB/N=0.5以下の材料には結晶粒界上に直径10〜50 nmの微細なVNが多数観察され、このVNが粒成長を阻害し高鉄損になることが判明した。
【0022】
一方、B/N=0.5〜2.0の材料には、こうした微細なVNは観察されず、直径200〜300 nmのBNがクラスター状に存在していた。このことよりB/N=0.5〜2.0の材料では、B添加によりNがBNとして固定されたため、微細なVNの析出が抑制され、粒成長性が向上したものと考えられる。
【0023】
B/Nが2.0を超える材料においても、B/N=0.5〜2.0の材料と同様、微細なVNはほとんど認められず、直径200〜300nmのBNが観察された。B/N>2.0の材料で粒成長が低下した主な原因は、固溶Bによる粒界のドラック効果によるものと考えられる。
以上より、本発明においてはB含有量をB/Nで0.5〜2.0に限定するが、0.7〜1.5の範囲にすることが更に好ましい。
【0024】
次に、Sb添加による鉄損低減の原因調査のために、Sbフリー鋼とSb添加鋼の鋼板表層部の微細粒組織領域をTEMにより観察した。鋼板表層を10μm程度研磨した後、研磨後の表面より抽出レプリカ法を用いて析出物を観察した。その結果、Sbフリー鋼では、B/N=1.0未満の材料には微細なAlNやVNが、B/N=1.0〜2.5の材料にはBN、AlNがそれぞれ観察された。一方、Sb添加鋼にはこうした表層部の微細析出物は全く認められなかった。これら表層部の析出物は、微量の固溶Alや固溶Bが磁性焼鈍時に窒化されて生成したものと推定される。Sbフリー鋼における鉄損がSb添加鋼に比べて高かったのは、Sbフリー鋼では、表層部に微細粒組織が形成され鉄損が増大したためと考えられる。
【0025】
そこで、Sbの最適添加量を調査するため、C:0.0026%、Si:0.30%、Mn:0.40%、P:0.10%、Al:0.0030%、S:0.005%、N:0.0018%、V:0.0060%、B:21ppm(B/N=1.17)としSb量をtr.〜500ppmの範囲で変化させた鋼を実験室にて真空溶解し、熱延後、酸洗を行った。引き続き、板厚0.5mmまで冷間圧延し、5%H2-95%N2雰囲気(露点−5℃)で820℃×1min間の仕上焼鈍を施した。焼鈍後の磁気特性とSbとの関係を図2に示す。
【0026】
図2より、Sb添加量が20ppm以上になると鉄損は低下し始めることがわかる。しかし、Sbをさらに添加してもSb>200ppmで鉄損は飽和する。また、表層部の光学顕微鏡による組織観察の結果、Sbが20ppm未満では鋼板表層部に窒化に起因する微細粒が認められた。Sbが20ppmを越えると高露点雰囲気での仕上焼鈍では鋼板表層部の微細粒は認められず、表層の窒化が抑制されると考えられる。
【0027】
このようなSbによる表層の窒化抑制効果は、Snにおいても同様に認められ、Snの効果はSbの1/2であることがわかった。以上より、本発明においては、SbとSnの少なくとも一方をSb+Sn/2で20ppm以上含有させることとし、コストの観点より上限を200ppmとする。
【0028】
次に、縦型連続焼鈍ラインでの最大の問題点であるピックアップについて調査した。電磁鋼板のピックアップ(凹凸欠陥)は、前述のように、通板の経過と共にSiO2、Al23の酸化物が炉内ハースロールに付着し、ロールと鋼板との接触圧が高いこともあって、それが鋼板に転写されて生じる。
【0029】
本発明の電磁鋼板は、鉄損確保の観点からSiを相当量含有させることが必要である。しかし、Alは微量B添加時の歩留まり向上にのみ使用するため、Al添加量は調整できる。そこで、ピックアップの発生状況に及ぼすAl量と露点の影響について調べた。
【0030】
実験は以下のように行った。ピックアップ発生の検討には、ハースロールと同一材質の溶射パネルと鋼板を面圧60 kg/cm2で加圧積層して焼鈍する装置を試作し、焼鈍後の鋼板と溶射パネルとの接触面上への酸化物の付着状態を観察して判定した。
【0031】
C:0.0023%、Si:0.30%、Mn:0.40%、P:0.11%、S:0.005%、N:0.0018%、V:0.0070%、Sb:100ppm、B:20ppm(B/N=1.11)とし、Al量をtr.〜0.2%の範囲で変化させた鋼を実験室にて真空溶解した。ここでは、Alは種々の元素の添加前の最初に投入し、脱酸後の残留Al量を調整した。次いでSi、Mn、P、V、Sb等を添加した。各インゴットは熱延後、酸洗を行った。引き続き、板厚0.5 mmまで冷間圧延し、5%H2-95%N2ガス雰囲気中にて露点を0℃〜−15℃に変化させて820℃×100時間の焼鈍を行った。
【0032】
図3は、Al量と露点によるピックアップ発生状況の観察結果を示した図である。この実験結果によれば、露点が0℃以下、Al量が0.05%以下の領域では、ピックアップの発生は認められなかった。また、Al量が0.1%を越えると著しくピックアップが発生しやすくなることがわかる。以上より、本発明においては、Al量の上限を0.05%とする。
【0033】
次に、Al量と鉄損について調査した。図4は、Al量と820℃×1min仕上焼鈍後の鉄損の関係を示す図である。このときの焼鈍雰囲気は5%H2-95%N2、露点は−5℃である。図4より、Alが0.001%未満では鉄損にばらつきが生じ、0.001%〜0.05%までほぼ一定となり、0.07%以上から徐々に低下することがわかる。
【0034】
そこで、こうした鉄損のAl量依存性を調査するために、光学顕微鏡による組織観察を行った。その結果、Al量が0.001%未満のサンプルでは、混粒組織があり一部に異常粒成長がみとめられた。0.001%を越えたサンプルの組織は整粒であった。さらに、断面のSEM観察による介在物を分析したところ、Al<0.001%のサンプルでは、一部の酸化物がSiO2-MnO-Al23の三元系組成になっており展伸していた。Al>0.001%のサンプルの酸化物組成はAl23が主体であった。低Al領域での鉄損のばらつきは、こうした酸化物の形態が関係していると考えれる。以上より、本発明においては、鉄損の安定化の観点から、Al量の下限を0.001%とする。
【0035】
(その他の成分の限定理由)
次に、成分の限定理由について説明する。
C: Cは磁気時効の問題があるため0.005%以下とする。
Si: Siは鋼板の固有抵抗を上げて鉄損を低減するために有効な元素であるが、縦型連続焼鈍炉用では0.8%を超えるとピックアップが発生し易くなるので、上限を0.8%とする。
Mn: Mnは熱間圧延時の赤熱脆性を防止するために、0.05%以上必要であるが、1.0%以上になると磁束密度を低下させ、ピックアップの発生原因にもなるので、0.05〜1.0%とする。
S: Sは含有量が多い場合にはMnSの析出量が多くなり、粒成長性が低下するため0.02%以下とする。
【0036】
P: Pは鋼板の打ち抜き性を改善するために必要な元素であるが、0.2%を超えて添加すると鋼板が脆化するため0.2%以下とする。
N: Nは含有量が多い場合にはBNの析出量が多くなり、粒成長性が低下するため0.005%以下とする。
V: Vは鉱石から混入する元素であり、通常は転炉での酸化により低減される。特に、VNとして析出し粒成長性を劣化させるため低い方がが好ましいが、本発明ではBにより無害化できるので、混入しても問題はない。Vが0.002%未満のときは、VNの析出量が少なくなり、Bを添加する効果が薄くなる。従って、本発明ではその下限を0.002%とする。V含有量が0.02%を越えると、VCとして析出し粒成長性を阻害するため上限を0.02%とする。
【0037】
(製造方法)
本発明においては、転炉で吹練した溶鋼を脱ガス処理し、V、B、Sb、Alを始め規定の成分が所定の範囲である鋼を製造し、引き続き鋳造、熱間圧延を行う。この時の加熱温度は1100℃〜1250℃、仕上温度は750℃〜900℃、巻取り温度は650℃〜750℃とすることが好ましい。また、熱延後の熱延板焼鈍は行っても良いが必須ではない。次いで1回の冷間圧延、もしくは中間焼鈍をはさんだ2回以上の冷間圧延により所定の板厚とした後に仕上焼鈍を行う、仕上焼鈍温度と時間は、700℃〜900℃で10〜120 secの仕上焼鈍とすることが好ましい。この仕上焼鈍は一般冷延鋼板用の縦型連続焼鈍炉で実施される。また、縦型連続焼鈍炉の製造条件および設備には、特に制限はなく、一般の冷延鋼板の製造条件と同様である。
【0038】
【実施例】
表1に示す鋼を用い、転炉で吹練した後に脱ガス処理を行うことにより所定の成分に調整後鋳造し、スラブを1200℃で加熱した後、板厚2.0mmまで熱間圧延を行った。熱延仕上げ温度は800℃、巻取り温度は690℃とした。酸洗後、板厚0.5mmまで冷間圧延を行った。ついで、得られた冷延コイルを電解洗浄後に、縦型の連続焼鈍炉にて表1に示す温度で仕上焼鈍を行った。焼鈍ラインの条件は、雰囲気ガス:7%H2-93%N2、露点:−8℃、均熱時間:30秒、炉内張力:1.3 kg/mm2とした。
【0039】
焼鈍後のコイルより、煎断にてエプスタイン試験片を切り出し、25cmエプスタイン試験器により磁気特性を測定した。また、表面性状は、鋼板を500ton通板した後の鋼板表面の外観観察により判定した。結果を表1に示す。
【0040】
表1より、本発明鋼(No.1〜No.9)においては、比較鋼に比して、縦型連続焼鈍炉において鉄損が低く、表面性状の優れた電磁鋼板が得られることがわかる。
【0041】
これに対し、No.10の鋼板はB/Nの範囲が本発明の範囲を超え、No.11の鋼板はB/Nの範囲が本発明の範囲を下回っているため、共に鉄損が高くなっている。
No.12の鋼板は、Sb+1/2Sn含有量が本発明の範囲を下回っているので、やはり鉄損が高くなっていると共に、少量のピックアップが発生している。
No.13の鋼板は、Al含有量が本発明の範囲を超えているので、ピックアップが多く発生し表面性状が悪くなっている。
【0042】
No.14の鋼板は、Mn含有量が本発明の範囲を下回っているので鉄損が高くなっている。
No.15の鋼板は、Mn含有量が本発明の範囲を超えているので、鉄損は低いものの、磁束密度が低くなっていると共に、ピックアップが多く発生し表面性状が悪い。
No.16の鋼板は、S含有量が本発明の範囲を超えているので、鉄損が大幅に高くなっていると共に、少量のピックアップが発生している。
No.17の鋼板は、V含有量が本発明の範囲を超えているので、鉄損が大幅に高くなっている。
No.18の鋼板は、N含有量が本発明の範囲を超えているので、やはり鉄損が大幅に高くなっている。
No.19の鋼板は、Si含有量が本発明の範囲を超えているので、鉄損は低いものの磁束密度が大幅に低下しており、かつピックアップが多く発生して表面性状が悪い。
【0043】
【表1】

Figure 0004244393
【0044】
【発明の効果】
以上説明したように、本発明においては、Bを添加してNをBNとして固定することで粒成長性を向上させること、Sbの極微量添加により鋼板表層部の窒化・酸化を防止すること、Al量を制限することによりピックアップの発生を抑制すること、を組み合わせているので、Vを含む電磁鋼板を縦型連続焼鈍炉で製造しても、表面性状と鉄損特性に優れた無方向性電磁鋼板を得ることができる。
【0045】
本発明に係る無方向性電磁鋼板は、低鉄損が必要とされる電気材料として広く使用するのに好適である。
【図面の簡単な説明】
【図1】 B/N(重量比)と鉄損との関係を示す図である。
【図2】 Sb量と鉄損との関係を示す図である。
【図3】 Al量とピックアップ発生状態の関係を示す図である。
【図4】 Al量と鉄損との関係を示す図である。[0001]
[Prior art]
Non-oriented electrical steel sheets are used in large quantities as iron core materials for various motors, taking advantage of the small in-plane magnetic anisotropy. Non-oriented electrical steel sheets are divided into full-process materials and semi-process materials. Among these, the full process material obtains predetermined magnetic properties by finish annealing on the steel manufacturer side. The semi-process material is obtained by performing stress-relief annealing (SRA for short) after punching at a customer to obtain predetermined magnetic characteristics. In the semi-process material, the crystal grain grows simultaneously with the removal of the processing strain at the time of SRA, so that the iron loss can be further reduced. For this reason, the strain relief annealing is also called “magnetic annealing”, and there is a growing need especially for the high efficiency of compressor motors for air conditioners and refrigerators.
[0002]
Conventionally, such finish annealing of electrical steel sheets has been generally performed in a horizontal continuous annealing furnace. A horizontal furnace has a lower internal tension than a vertical furnace, and the contact pressure between a steel plate and a hearth roll is small. Therefore, even if annealing is performed in an atmosphere where SiO 2 or Al 2 O 3 is generated, it is called a pick-up scratch Almost no deterioration of the product surface due to. In addition, the magnetic characteristics are not deteriorated due to distortion in the annealing process.
[0003]
On the other hand, the vertical continuous annealing furnace used for finish annealing of general-purpose cold-rolled steel sheets and tinplate original sheets can be operated with high efficiency, and a significant reduction in production costs can be expected. However, when manufacturing an electromagnetic steel sheet, it has the problem that it is difficult to ensure the surface properties and magnetic properties. As a manufacturing method for overcoming this problem, various proposals have been made so far regarding the dew point of the atmosphere gas in the furnace, the annealing temperature, the furnace tension, the hearth roll shape, and the thermal spray material.
[0004]
For example, Japanese Patent Application Laid-Open No. 60-86221 discloses a vertical furnace by defining the dew point and annealing temperature of the atmosphere gas in the furnace within a predetermined range, and the tension during feeding through to 1.2 kg / mm 2 or less. A method for suppressing pick-up at a printer is disclosed. However, in order to produce a material with low iron loss by grain growth in high-temperature annealing at 800 ° C. or higher, the dew point needs to be −10 ° C. or lower in order to suppress pickup.
[0005]
[Problems to be solved by the invention]
However, this method is not practical because it is difficult to manage equipment constraints and operating conditions.
[0006]
In addition, methods for ceramic spraying the roll and improving the roll shape have also been proposed, but none of them are sufficient, and the surface properties and magnetic properties that can be stably produced by a vertical continuous annealing furnace An excellent non-oriented electrical steel sheet is strongly desired.
[0007]
On the other hand, in recent years, low grade ore has been utilized in the ironmaking process from the viewpoint of rationalization and effective utilization of resources. Since pig iron based on such ore has a high V content, V is reduced by increasing the oxygen blowing rate in the steelmaking process. However, in this method, since the scouring time is prolonged and the production efficiency is lowered, V cannot be sufficiently reduced, and the increase in the amount of V in the slab is unavoidable.
[0008]
On the other hand, it has become clear that it is necessary to reduce the amount of V in the steel sheet in order to improve the grain growth properties of the electromagnetic steel sheet. For example, JP-A-3-20413 discloses that A technique for preventing VN precipitation and improving grain growth at the time of magnetic annealing by defining the amounts of V and N as V: 0.01% or less and N: 0.005% or less is disclosed. However, for the reasons described above, in order to reduce V, it is necessary to select ore with a low V mixing amount, which inevitably increases the cost.
[0009]
In order to suppress the precipitation of VN, there is a method of fixing N as AlN by adding Al in addition to the method of reducing the amounts of V and N. However, when Al is added in a very small amount in a range of less than 0.1%, precipitation of VN can be prevented, but AlN that precipitates during hot rolling inhibits grain growth, so that grain growth is not improved. On the other hand, when Al is added in an amount of 0.1% or more, the grain growth is improved but the cost is unavoidably increased. Furthermore, when a large amount of Al is added, Al 2 O 3 is generated during finish annealing, which may promote pickup generation.
[0010]
The present invention has been made in view of such circumstances, and even in steel containing V, the productivity of a vertical continuous annealing furnace is utilized to the maximum, without increasing the cost, such as pickup. It is an object of the present invention to provide a non-oriented electrical steel sheet having no surface defects and low iron loss.
[0011]
[Means for Solving the Problems]
The gist of the present invention is to improve grain growth by adding B and fixing N as BN in order to make it possible to manufacture an electromagnetic steel sheet containing V in a vertical continuous annealing furnace. A non-oriented electrical steel sheet with excellent surface properties and iron loss characteristics by combining the prevention of nitriding and oxidation of the steel sheet surface layer by addition and the suppression of pickup by limiting the amount of Al. It is to obtain using an annealing furnace.
[0012]
That is, the first means for solving the above-mentioned problems is weight%, C: 0.005% or less, Si: 0.8% or less, Mn: 0.1-1.0%, Al: 0.001% -0.05%, S: 0.02% Below (including 0), P: 0.2% or less, N: 0.005% or less (including 0), at least one of Sb and Sn, Sb + Sn / 2 0.002-0.02%, V: 0.002-0.02% Further, B is contained in the range of B / N (weight ratio) = 0.5 to 2.0, and the steel composed of the remaining Fe and inevitable impurities is hot-rolled, pickled, then cold-rolled, you characterized by applying annealing in a continuous annealing furnace is a method for producing a non-oriented electrical steel sheet (claim 1).
[0013]
The second means for solving the above-mentioned problems is, by weight%, C: 0.005% or less, Si: 0.8% or less, Mn: 0.1 to 1.0%, Al: 0.001% to 0.05%, S: 0.02% or less ( 0), P: 0.2% or less, N: 0.005% or less (including 0), at least one of Sb and Sn, including Sb + Sn / 2, 0.002-0.02%, V: 0.002-0.02%, Further, B is contained in a range of B / N (weight ratio) = 0.5 to 2.0, and the steel slab composed of the balance Fe and inevitable impurities is heated at 1100 ° C. to 1250 ° C., and the finishing temperature is 750 ° C. to 900 ° C. Sorted pickling after hot rolling at a temperature 650 ° C. to 750 ° C., then it was cold rolled, non-oriented electrical in the vertical continuous annealing furnace you characterized by applying annealing at 700 ° C. to 900 ° C. It is a manufacturing method (claim 2) of a steel plate.
[0014]
Contact name herein, the table in FIG.,% Represents the component of the steel, means weight% unless otherwise indicated, ppm also means weight ppm.
[0015]
(Background to the invention and reasons for limiting B, Sb, and Al contents)
In order to manufacture a magnetic steel sheet containing V in a high-productivity vertical annealing furnace, the present inventors have studied a technique for suppressing the occurrence of surface defects such as pick-up and reducing iron loss. It is possible to suppress the precipitation of VN by adding N, and in such B-added steel, nitriding / oxidation occurs remarkably in the steel sheet surface layer during finish annealing, and in order to prevent this, a small amount of Sb is added. It has been found that it is effective and can greatly reduce iron loss, and that pickup can be suppressed by optimizing the amount of Al.
[0016]
Hereinafter, the present invention will be described in detail based on experimental results.
Since the vertical continuous annealing furnace manufactures general-purpose cold-rolled steel sheets, the H 2 in the furnace gas is about 7% from the viewpoint of cost reduction and manufacturing constraint relaxation. When an electrical steel sheet containing a large amount of Si or Al is annealed in a vertical furnace in such an atmosphere, SiO 2 and Al 2 O 3 which are oxides adhere to the hearth roll in the furnace. And since the contact pressure of a roll and a steel plate is high as mentioned above, these oxides adhering to a roll are transcribe | transferred to a steel plate, and it becomes easy to produce the uneven | corrugated defect called a pickup.
[0017]
The inventors first investigated the effects of V, B and Sb on the magnetic properties in such an annealing atmosphere. The atmosphere gas for finish annealing was adjusted to a dew point of −5 ° C. and 5% H 2 −95% N 2 .
[0018]
C: 0.0020%, Si: 0.30%, Mn: 0.40%, P: 0.10%, Al: 0.0040%, S: 0.005%, N: 0.0018%, V: 0.0060%, and B is B / N (weight ratio) The steel made 0 to 3.0 and steel added with 80 ppm of Sb were melted and cast in a 50 kg high-frequency vacuum melting furnace. The ingot was hot-rolled and then pickled. Subsequently, the sheet was cold-rolled to a thickness of 0.5 mm, and finish annealing was performed in the annealing atmosphere for 820 ° C. × 1 min.
[0019]
FIG. 1 is a diagram showing the relationship between the iron loss W 15/50 and B / N of the sample thus obtained. Here, the magnetic measurement was performed by the 25 cm Epstein method.
From FIG. 1, it can be seen that iron loss is reduced by adding 0.5 or more of B in B / N as compared with B-free material. In particular, it can be seen that the Sb-added steel further decreases. On the other hand, it can also be seen that the iron loss increases when B exceeds 2.0 in B / N. Among these, it can be seen that the iron loss is further reduced in the range of B / N = 0.7 to 1.5.
[0020]
In order to investigate this cause, the structure was observed with an optical microscope. As a result, in the B-free material, no coarsening of crystal grains due to magnetic annealing was observed regardless of the presence or absence of Sb. In the B-added steel, it became clear that the crystal grains become coarse when B / N = 0.5 or more. Further, in the B-added-Sb-free steel, a microstructure was observed in the surface layer portion of the steel sheet regardless of B / N, and in the Sb-added steel, such a microstructure of the steel sheet surface layer portion was not observed.
[0021]
Therefore, in order to investigate the difference in grain growth property, a thin film was prepared from the central part of the steel plate after the magnetic annealing, and observed with a transmission electron microscope (TEM). As a result, a lot of fine VN with a diameter of 10-50 nm was observed on the grain boundary in the materials with B / N = 0.5 or less, and it was found that this VN hindered the grain growth and resulted in high iron loss. did.
[0022]
On the other hand, in the material of B / N = 0.5 to 2.0, such fine VN was not observed, and BN having a diameter of 200 to 300 nm was present in a cluster shape. From this, in the material of B / N = 0.5 to 2.0, since N was fixed as BN by adding B, it is considered that the precipitation of fine VN was suppressed and the grain growth property was improved.
[0023]
Even in the material with B / N exceeding 2.0, fine VN was hardly observed as in the material with B / N = 0.5 to 2.0, and BN having a diameter of 200 to 300 nm was observed. It is considered that the main cause of the decrease in grain growth in the material of B / N> 2.0 is due to the grain boundary drag effect caused by the solid solution B.
As mentioned above, in this invention, although B content is limited to 0.5-2.0 by B / N, it is still more preferable to set it as the range of 0.7-1.5.
[0024]
Next, in order to investigate the cause of iron loss reduction due to the addition of Sb, the fine grain structure region of the surface layer portion of the Sb-free steel and the Sb-added steel was observed by TEM. After the steel plate surface layer was polished by about 10 μm, precipitates were observed from the polished surface using the extraction replica method. As a result, in the Sb-free steel, fine AlN and VN were observed for materials with B / N = 1.0, and BN and AlN were observed for materials with B / N = 1.0 to 2.5. On the other hand, such fine precipitates on the surface layer were not observed at all in the Sb-added steel. These surface layer precipitates are presumed to be produced by nitriding a small amount of solute Al or solute B during magnetic annealing. The reason why the iron loss in the Sb-free steel was higher than that in the Sb-added steel is thought to be that the Sb-free steel formed a fine grain structure in the surface layer and increased the iron loss.
[0025]
Therefore, in order to investigate the optimum addition amount of Sb, C: 0.0026%, Si: 0.30%, Mn: 0.40%, P: 0.10%, Al: 0.0030%, S: 0.005%, N: 0.0018%, V: 0.0060 %, B: 21 ppm (B / N = 1.17) and steel in which the Sb amount was changed in the range of tr. To 500 ppm was vacuum-melted in a laboratory, and after hot rolling, pickling was performed. Subsequently, it was cold-rolled to a sheet thickness of 0.5 mm and subjected to finish annealing for 820 ° C. × 1 min in a 5% H 2 -95% N 2 atmosphere (dew point −5 ° C.). The relationship between the magnetic properties after annealing and Sb is shown in FIG.
[0026]
FIG. 2 shows that the iron loss starts to decrease when the Sb addition amount is 20 ppm or more. However, even if Sb is further added, the iron loss is saturated at Sb> 200 ppm. As a result of observation of the structure of the surface layer with an optical microscope, fine grains due to nitriding were observed in the surface layer of the steel sheet when Sb was less than 20 ppm. If Sb exceeds 20 ppm, fine graining in the surface layer of the steel sheet is not observed in the finish annealing in a high dew point atmosphere, and it is considered that nitriding of the surface layer is suppressed.
[0027]
Such an effect of suppressing the nitridation of the surface layer by Sb was also observed in Sn, and it was found that the effect of Sn was 1/2 of Sb. From the above, in the present invention, at least one of Sb and Sn is contained as Sb + Sn / 2 in an amount of 20 ppm or more, and the upper limit is set to 200 ppm from the viewpoint of cost.
[0028]
Next, we investigated the pickup, which is the biggest problem in the vertical continuous annealing line. As mentioned above, the electrical steel sheet pick-up (uneven defects) has a high contact pressure between the roll and the steel sheet because the oxide of SiO 2 and Al 2 O 3 adheres to the hearth roll in the furnace as the plate passes. It is produced by being transferred to the steel plate.
[0029]
The magnetic steel sheet of the present invention needs to contain a considerable amount of Si from the viewpoint of securing iron loss. However, since Al is used only for improving the yield when a small amount of B is added, the amount of Al added can be adjusted. Therefore, the influence of the amount of Al and the dew point on the pickup generation situation was investigated.
[0030]
The experiment was performed as follows. To examine the occurrence of pick-up, we made a prototype of an apparatus that laminates a thermal sprayed panel and steel plate made of the same material as the hearth roll at a surface pressure of 60 kg / cm 2 and anneals them on the contact surface between the annealed steel plate and the thermal spray panel. Judgment was made by observing the state of oxide adhesion to the surface.
[0031]
C: 0.0023%, Si: 0.30%, Mn: 0.40%, P: 0.11%, S: 0.005%, N: 0.0018%, V: 0.0070%, Sb: 100ppm, B: 20ppm (B / N = 1.11) Steel whose Al content was changed in the range of tr. To 0.2% was melted in vacuum in a laboratory. Here, Al was added at the beginning before addition of various elements, and the amount of residual Al after deoxidation was adjusted. Next, Si, Mn, P, V, Sb, etc. were added. Each ingot was pickled after hot rolling. Subsequently, the sheet was cold-rolled to a thickness of 0.5 mm, and annealed at 820 ° C. for 100 hours in a 5% H 2 -95% N 2 gas atmosphere with the dew point changed from 0 ° C. to −15 ° C.
[0032]
FIG. 3 is a diagram showing an observation result of the pickup occurrence state by the Al amount and the dew point. According to this experimental result, no pickup was observed in the region where the dew point was 0 ° C. or less and the Al content was 0.05% or less. It can also be seen that pick-up tends to occur remarkably when the Al content exceeds 0.1%. From the above, in the present invention, the upper limit of Al content is set to 0.05%.
[0033]
Next, the amount of Al and iron loss were investigated. FIG. 4 is a diagram showing the relationship between the amount of Al and the iron loss after finish annealing at 820 ° C. for 1 min. The annealing atmosphere at this time is 5% H 2 -95% N 2 , and the dew point is −5 ° C. FIG. 4 shows that when Al is less than 0.001%, the iron loss varies, becomes almost constant from 0.001% to 0.05%, and gradually decreases from 0.07% or more.
[0034]
Therefore, in order to investigate the dependency of iron loss on the Al content, the structure was observed with an optical microscope. As a result, samples with an Al content of less than 0.001% had a mixed grain structure and some abnormal grain growth was observed. The texture of the sample exceeding 0.001% was sized. Furthermore, when the inclusions were analyzed by SEM observation of the cross section, in the sample with Al <0.001%, some of the oxide had a ternary composition of SiO 2 —MnO—Al 2 O 3 and expanded. It was. The oxide composition of the Al> 0.001% sample was mainly Al 2 O 3 . It is considered that the variation of iron loss in the low Al region is related to the form of these oxides. From the above, in the present invention, the lower limit of the Al amount is set to 0.001% from the viewpoint of stabilizing the iron loss.
[0035]
(Reason for limitation of other ingredients)
Next, the reasons for limiting the components will be described.
C: C has a problem of magnetic aging, so 0.005% or less.
Si: Si is an effective element for increasing the specific resistance of steel sheets and reducing iron loss. However, for vertical continuous annealing furnaces, pick-up is more likely to occur if it exceeds 0.8%, so the upper limit is 0.8%. To do.
Mn: Mn needs 0.05% or more in order to prevent red hot brittleness during hot rolling, but if it exceeds 1.0%, the magnetic flux density will be reduced and this will also cause pickup, so 0.05-1.0% To do.
S: When the content of S is large, the amount of MnS precipitated increases, and the grain growth property decreases, so the content is made 0.02% or less.
[0036]
P: P is an element necessary for improving the punchability of the steel sheet, but if added over 0.2%, the steel sheet becomes brittle, so the content is made 0.2% or less.
N: When the content of N is large, the precipitation amount of BN increases and the grain growth property decreases, so the content is made 0.005% or less.
V: V is an element mixed from ore, and is usually reduced by oxidation in a converter. In particular, it is preferable that it is low because it precipitates as VN and deteriorates the grain growth property, but in the present invention, it can be rendered harmless by B, so there is no problem even if it is mixed. When V is less than 0.002%, the amount of deposited VN decreases, and the effect of adding B is reduced. Therefore, in the present invention, the lower limit is made 0.002%. If the V content exceeds 0.02%, it precipitates as VC and inhibits grain growth, so the upper limit is made 0.02%.
[0037]
(Production method)
In the present invention, molten steel blown in a converter is degassed to produce steel in which the prescribed components such as V, B, Sb, and Al are in a predetermined range, followed by casting and hot rolling. The heating temperature at this time is preferably 1100 ° C to 1250 ° C, the finishing temperature is preferably 750 ° C to 900 ° C, and the winding temperature is preferably 650 ° C to 750 ° C. Moreover, although hot-rolled sheet annealing after hot rolling may be performed, it is not essential. Next, the final annealing is performed after the cold-rolling is performed once or two or more cold-rolling steps are performed with intermediate annealing, and then the final annealing is performed. The finishing annealing temperature and time are 10 to 120 at 700 to 900 ° C. It is preferable to use a finish annealing of sec. This finish annealing is carried out in a vertical continuous annealing furnace for general cold-rolled steel sheets. Moreover, there is no restriction | limiting in particular in the manufacturing conditions and equipment of a vertical continuous annealing furnace, It is the same as the manufacturing conditions of a general cold-rolled steel plate.
[0038]
【Example】
Using the steel shown in Table 1, after defoaming in a converter, it is cast after adjusting to the prescribed components, the slab is heated at 1200 ° C, and then hot rolled to a thickness of 2.0 mm It was. The hot rolling finishing temperature was 800 ° C and the winding temperature was 690 ° C. After pickling, cold rolling was performed to a plate thickness of 0.5 mm. Subsequently, the obtained cold-rolled coil was subjected to electrolytic cleaning, and then subjected to finish annealing at a temperature shown in Table 1 in a vertical continuous annealing furnace. The annealing line conditions were as follows: atmospheric gas: 7% H 2 -93% N 2 , dew point: −8 ° C., soaking time: 30 seconds, furnace tension: 1.3 kg / mm 2 .
[0039]
An Epstein test piece was cut out from the annealed coil by cutting, and the magnetic properties were measured with a 25 cm Epstein tester. The surface texture was determined by observing the appearance of the steel sheet surface after passing 500 tons of the steel sheet. The results are shown in Table 1.
[0040]
From Table 1, it can be seen that in the steels of the present invention (No. 1 to No. 9), compared with the comparative steel, an iron and steel sheet having low surface loss and excellent surface properties can be obtained in the vertical continuous annealing furnace. .
[0041]
In contrast, the No. 10 steel plate has a B / N range exceeding the range of the present invention, and the No. 11 steel plate has a B / N range lower than the range of the present invention. It has become.
The No. 12 steel sheet has an Sb + 1 / 2Sn content that is below the range of the present invention, so that the iron loss is still high and a small amount of pickup is generated.
The No. 13 steel sheet has an Al content exceeding the range of the present invention, so that many pickups are generated and the surface properties are poor.
[0042]
The No. 14 steel sheet has a high iron loss because the Mn content is below the range of the present invention.
The No. 15 steel sheet has an Mn content exceeding the range of the present invention, so the iron loss is low, but the magnetic flux density is low, and many pickups are generated, resulting in poor surface properties.
The No. 16 steel sheet has an S content exceeding the range of the present invention, so that the iron loss is significantly increased and a small amount of pickup is generated.
The No. 17 steel sheet has a significantly higher iron loss because the V content exceeds the range of the present invention.
Since the N content of the steel plate No. 18 exceeds the range of the present invention, the iron loss is significantly increased.
The No. 19 steel sheet has a Si content exceeding the range of the present invention, so that the magnetic flux density is greatly reduced although the iron loss is low, and many pickups are generated and the surface properties are poor.
[0043]
[Table 1]
Figure 0004244393
[0044]
【The invention's effect】
As described above, in the present invention, by adding B and fixing N as BN, grain growth is improved, and nitriding and oxidation of the steel sheet surface layer portion is prevented by adding a very small amount of Sb. Since the combination of suppressing the occurrence of pickup by limiting the amount of Al, non-directionality with excellent surface properties and iron loss characteristics even when magnetic steel sheets containing V are manufactured in a vertical continuous annealing furnace An electromagnetic steel sheet can be obtained.
[0045]
The non-oriented electrical steel sheet according to the present invention is suitable for wide use as an electrical material that requires low iron loss.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between B / N (weight ratio) and iron loss.
FIG. 2 is a diagram showing the relationship between the amount of Sb and iron loss.
FIG. 3 is a diagram illustrating a relationship between an Al amount and a pickup generation state.
FIG. 4 is a graph showing the relationship between Al content and iron loss.

Claims (2)

重量%で、C:0.005%以下、Si:0.8%以下、Mn:0.1〜1.0%、Al:0.001%〜0.05%、S:0.02%以下(0を含む)、P:0.2%以下、N:0.005%以下(0を含む)、SbとSnの少なくとも一方を、Sb+Sn/2で0.002〜0.02%、V:0.002〜0.02%を含み、さらにBをB/N(重量比)=0.5〜2.0の範囲で含有し、残部Fe及び不可避的不純物からなる鋼を熱間圧延した後酸洗し、次いで冷間圧延した後、縦型の連続焼鈍炉において焼鈍を施すことを特徴とする無方向性電磁鋼板の製造方法。C: 0.005% or less, Si: 0.8% or less, Mn: 0.1-1.0%, Al: 0.001% -0.05%, S: 0.02% or less (including 0), P: 0.2% or less, N: 0.005% or less (including 0), at least one of Sb and Sn is 0.002 to 0.02% in Sb + Sn / 2, V: 0.002 to 0.02%, and B is B / N (weight ratio) = 0.5 to incorporated within a range of 2.0, a steel the balance being Fe and unavoidable impurities and pickling after hot rolling, and then after cold rolling, you characterized by applying annealing in a vertical continuous annealing furnace of the continuously A method for producing grain-oriented electrical steel sheets. 重量%で、C:0.005%以下、Si:0.8%以下、Mn:0.1〜1.0%、Al:0.001%〜0.05%、S:0.02%以下(0を含む)、P:0.2%以下、N:0.005%以下(0を含む)、SbとSnの少なくとも一方を、Sb+Sn/2で0.002〜0.02%、V:0.002〜0.02%を含み、さらにBをB/N(重量比)=0.5〜2.0の範囲で含有し、残部Fe及び不可避的不純物からなる鋼のスラブを1100℃〜1250℃で加熱し、仕上げ温度750℃〜900℃、巻取温度650℃〜750℃で熱間圧延した後酸洗し、次いで冷間圧延した後、縦型の連続焼鈍炉において700℃〜900℃で焼鈍を施すことを特徴とする無方向性電磁鋼板の製造方法。C: 0.005% or less, Si: 0.8% or less, Mn: 0.1-1.0%, Al: 0.001% -0.05%, S: 0.02% or less (including 0), P: 0.2% or less, N: 0.005% or less (including 0), at least one of Sb and Sn is 0.002 to 0.02% in Sb + Sn / 2, V: 0.002 to 0.02%, and B is B / N (weight ratio) = 0.5 to After the steel slab containing in the range of 2.0 , the balance Fe and inevitable impurities is heated at 1100 ° C to 1250 ° C and hot rolled at a finishing temperature of 750 ° C to 900 ° C and a winding temperature of 650 ° C to 750 ° C pickled, then after cold rolling method for producing a non-oriented electrical steel sheet characterized in that the vertical continuous annealing furnace subjected to annealing at 700 ° C. to 900 ° C..
JP04631398A 1998-02-13 1998-02-13 Method for producing non-oriented electrical steel sheet having excellent surface properties and iron loss characteristics, and non-oriented electrical steel sheet having excellent surface properties and iron loss characteristics Expired - Fee Related JP4244393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04631398A JP4244393B2 (en) 1998-02-13 1998-02-13 Method for producing non-oriented electrical steel sheet having excellent surface properties and iron loss characteristics, and non-oriented electrical steel sheet having excellent surface properties and iron loss characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04631398A JP4244393B2 (en) 1998-02-13 1998-02-13 Method for producing non-oriented electrical steel sheet having excellent surface properties and iron loss characteristics, and non-oriented electrical steel sheet having excellent surface properties and iron loss characteristics

Publications (2)

Publication Number Publication Date
JPH11229035A JPH11229035A (en) 1999-08-24
JP4244393B2 true JP4244393B2 (en) 2009-03-25

Family

ID=12743691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04631398A Expired - Fee Related JP4244393B2 (en) 1998-02-13 1998-02-13 Method for producing non-oriented electrical steel sheet having excellent surface properties and iron loss characteristics, and non-oriented electrical steel sheet having excellent surface properties and iron loss characteristics

Country Status (1)

Country Link
JP (1) JP4244393B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112301192B (en) * 2020-10-13 2022-08-09 安阳钢铁股份有限公司 Vertical annealing process of low-carbon-content cold-rolled non-oriented silicon steel galvanizing unit

Also Published As

Publication number Publication date
JPH11229035A (en) 1999-08-24

Similar Documents

Publication Publication Date Title
CN108463569B (en) Non-oriented electromagnetic steel sheet and method for producing same
CN113166869B (en) Non-oriented electromagnetic steel sheet and method for producing same
WO2018221126A1 (en) Non-oriented electromagnetic steel sheet and production method therefor
KR20170075592A (en) Non-orientied electrical steel sheet and method for manufacturing the same
US11946123B2 (en) Method of producing a non-oriented electrical steel sheet
JP2023507436A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6801464B2 (en) Non-oriented electrical steel sheet
JP6816516B2 (en) Non-oriented electrical steel sheet
JPWO2005100627A1 (en) Nondirectional electromagnetic copper plate with excellent punching workability and magnetic properties after strain relief annealing and its manufacturing method
JP4244393B2 (en) Method for producing non-oriented electrical steel sheet having excellent surface properties and iron loss characteristics, and non-oriented electrical steel sheet having excellent surface properties and iron loss characteristics
JP2000273549A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
TW202134448A (en) Hot-rolled steel sheet for non-oriented electromagnetic steel sheets, non-oriented electromagnetic steel sheet, and method for manufacturing same
JP7529131B2 (en) Finish annealing equipment for non-oriented electrical steel sheets, finish annealing method for non-oriented electrical steel sheets, and manufacturing method thereof
JP3424178B2 (en) Non-oriented electrical steel sheet with low iron loss
JP2888229B2 (en) Non-oriented electrical steel sheet for high frequency
JPH1161260A (en) Manufacture of nonoriented silicon steel sheet with low iron loss
JP2819993B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP3183451B2 (en) Manufacturing method of cold rolled steel sheet for enamel
TW202419640A (en) Non-oriented electromagnetic steel sheet and production method for same
JP4214739B2 (en) Method for producing non-oriented electrical steel sheet
JP2003247052A (en) Nonoriented silicon steel sheet having excellent high frequency property
JPH11302741A (en) Production of nonoriented silicon steel sheet low in core loss and nonoriented silicon steel sheet low in core loss
JPH11315327A (en) Manufacture of non-oriented silicon steel sheet with low iron loss, and non-oriented silicon steel sheet with low iron loss
JPH11124626A (en) Production of nonoriented silicon steel sheet reduced in iron loss
JP2002317254A (en) Nonoriented silicon steel sheet having excellent high frequency magnetic property used after heating stage subsequently to finish annealing and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081229

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees