JP2002317254A - Nonoriented silicon steel sheet having excellent high frequency magnetic property used after heating stage subsequently to finish annealing and production method therefor - Google Patents

Nonoriented silicon steel sheet having excellent high frequency magnetic property used after heating stage subsequently to finish annealing and production method therefor

Info

Publication number
JP2002317254A
JP2002317254A JP2001377230A JP2001377230A JP2002317254A JP 2002317254 A JP2002317254 A JP 2002317254A JP 2001377230 A JP2001377230 A JP 2001377230A JP 2001377230 A JP2001377230 A JP 2001377230A JP 2002317254 A JP2002317254 A JP 2002317254A
Authority
JP
Japan
Prior art keywords
less
steel sheet
annealing
electrical steel
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001377230A
Other languages
Japanese (ja)
Inventor
Takashi Sagawa
孝 寒川
Yoshihiko Oda
善彦 尾田
Yoshihiko Ono
義彦 小野
Yasushi Tanaka
靖 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2001377230A priority Critical patent/JP2002317254A/en
Publication of JP2002317254A publication Critical patent/JP2002317254A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • Y02T10/641

Abstract

PROBLEM TO BE SOLVED: To provide a nonoriented silicon steel sheet which exhibits low core loss in high frequency, and is suitable as electric materials such as core materials used in high frequency. SOLUTION: The nonoriented silicon steel sheet having excellent high frequency magnetic properties has a composition containing, by weight, <=0.0015% C, 1.0 to 4.0% Si, 0.1 to 2.0% Al, 0.05 to 2.0% Mn, <=0.1% (inclusive of zero) P, <=0.005% (inclusive of zero) N, <=0.02% (inclusive of zero) S and 0.4 to 5.0% Cr, and the balance substantially Fe.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、仕上げ焼鈍後にさ
らに加熱過程を経て、電気機器の鉄心材料等に、高周波
(200Hz〜1KHz)で用いられる無方向性電磁鋼板及びそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet used at a high frequency (200 Hz to 1 KHz) for a core material of electric equipment through a heating process after finish annealing, and a method of manufacturing the same. .

【0002】[0002]

【従来の技術】近年、電気機器の小型化、高効率化の観
点から機器の駆動周波数の高周波化が進んでいる。それ
に伴い、コア材として使用される無方向性電磁鋼板にも
高周波鉄損の低い材料が望まれている。
2. Description of the Related Art In recent years, the driving frequency of electric equipment has been increased from the viewpoint of miniaturization and higher efficiency of electric equipment. Accordingly, a material having low high-frequency iron loss is also desired for a non-oriented electrical steel sheet used as a core material.

【0003】従来、高周波鉄損を低減する技術として
は、Crに着眼した技術がある。例えば、特開平11−2
29095号公報には、Crを0.5〜5.5%添加することに
より高周波鉄損を低減する技法が提案されている。ま
た、特開平12−119822号公報には、Crを1〜8
%添加して鋼板のフェライト粒径を100〜200μmに規定
することにより高周波鉄損を低減する技法が提案されて
いる。
Conventionally, as a technique for reducing high-frequency iron loss, there is a technique focusing on Cr. For example, JP-A-11-2
No. 29095 proposes a technique for reducing high-frequency iron loss by adding 0.5 to 5.5% of Cr. Also, Japanese Patent Application Laid-Open No. 12-119822 discloses that
A technique has been proposed to reduce the high-frequency iron loss by defining the ferrite grain size of the steel sheet to 100 to 200 μm by adding%.

【0004】ところで、高効率用エアコン、冷蔵庫など
のコンプレッサーモータでは、コア材となる無方向性電
磁鋼板を打ち抜き加工後に積層したのち、加工ひずみを
除去する目的で磁性焼鈍と呼ばれる熱処理が施された
り、ブルーイング焼きばめ等の熱処理が施されることが
ある。しかし、従来のCr添加による鉄損低減技法は、仕
上焼鈍後の高周波鉄損の低減についてのみ言及されてお
り、磁性焼鈍や熱処理等を行わずそのまま使用すること
を前提としたものである。これら磁性焼鈍や熱処理等前
に鉄損値が低い材料が、磁性焼鈍や熱処理等後にも鉄損
値が低いとは限らず、このような鋼板を、そのまま磁性
焼鈍や熱処理等を行う材料として使用することはできな
い。よって、磁性焼鈍や熱処理等を行った後において
も、高周波特性に優れた無方向性電磁鋼板の開発が望ま
れている。
[0004] In a compressor motor for a high-efficiency air conditioner, refrigerator, or the like, a non-oriented electrical steel sheet serving as a core material is punched, laminated, and then subjected to a heat treatment called magnetic annealing for the purpose of removing processing strain. , Bluing shrink fit or the like. However, the conventional technique for reducing iron loss by adding Cr mentions only reduction of high-frequency iron loss after finish annealing, and is based on the premise that magnetic iron, heat treatment, and the like are used as they are. Materials with low iron loss values before magnetic annealing or heat treatment, etc., do not always have low iron loss values even after magnetic annealing, heat treatment, etc., and such steel sheets are used as they are as materials for magnetic annealing, heat treatment, etc. I can't. Therefore, development of a non-oriented electrical steel sheet having excellent high-frequency characteristics even after magnetic annealing, heat treatment, or the like is desired.

【0005】本発明はこのような事情に鑑みてなされた
もので、磁性焼鈍や熱処理等を行った後においても、高
周波(200Hz〜1KHz)において低い鉄損を示し、高周波
で使用されるコア材等の電機材料として用いるのに適当
な無方向性電磁鋼板及びその製造方法を提供することを
課題とする。
The present invention has been made in view of such circumstances, and shows a low core loss at a high frequency (200 Hz to 1 KHz) even after magnetic annealing, heat treatment, and the like, and a core material used at a high frequency. It is an object of the present invention to provide a non-oriented electrical steel sheet suitable for use as an electric machine material and the like, and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
の第1の手段は、重量%でC:0.0015%以下、Si:4%
以下、Al:2%以下、Mn:0.05〜2%、P:0.1%以
下、N:0.005%以下、S:0.02%以下、Cr:0.4〜5%
を含有し、残部が実質的にFeからなる仕上げ焼鈍後にさ
らに加熱過程を経て使用される高周波磁気特性に優れた
無方向性電磁鋼板(請求項1)である。
The first means for solving the above-mentioned problems is that, by weight%, C: 0.0015% or less, Si: 4%
Hereinafter, Al: 2% or less, Mn: 0.05 to 2%, P: 0.1% or less, N: 0.005% or less, S: 0.02% or less, Cr: 0.4 to 5%
Is a non-oriented electrical steel sheet having excellent high-frequency magnetic properties and used through a heating process after finish annealing in which the balance substantially consists of Fe (Claim 1).

【0007】前記課題を解決するための第2の手段は、
重量%でC:0.0009%以下、Si:4%以下、Al:2%以
下、Mn:0.05〜2%、P:0.1%以下、N:0.005%以
下、S:0.02%以下、Cr:0.4〜5%を含有し、残部が
実質的にFeからなる仕上げ焼鈍後にさらに加熱過程を経
て使用される高周波磁気特性に優れた無方向性電磁鋼板
(請求項2)である。
[0007] A second means for solving the above-mentioned problems is as follows.
C: 0.0009% or less, Si: 4% or less, Al: 2% or less, Mn: 0.05 to 2%, P: 0.1% or less, N: 0.005% or less, S: 0.02% or less, Cr: 0.4 to 100% by weight A non-oriented electrical steel sheet containing 5% and having a balance of substantially Fe, which is used after a final annealing and further through a heating process, and which is excellent in high-frequency magnetic properties (Claim 2).

【0008】前記課題を解決するための第3の手段は、
前記第1の手段又は第2の手段に係る無方向性電磁鋼板
の、Cr含有量の範囲を0.4〜1.4%に限定したことを特徴
とするもの(請求項3)である。
[0008] A third means for solving the above problems is as follows.
The non-oriented electrical steel sheet according to the first or second means is characterized in that the range of the Cr content is limited to 0.4 to 1.4% (Claim 3).

【0009】前記課題を解決するための第4の手段は、
重量%でC:0.005%以下、Si:4%以下、Al:2%以
下、Mn:0.05〜2%、P:0.1%以下、N:0.005%以
下、S:0.02%以下、Cr:0.4〜5%を含有し、残部が
実質的にFeからなるスラブを熱間圧延し、酸洗して所定
の板厚まで圧延したのち、連続焼鈍する工程中のいずれ
かの焼鈍において、還元性雰囲気の脱炭処理を行ない、
脱炭後のC量を0.0015%以下とすることを特徴とする前
記第1の手段である無方向性電磁鋼板の製造方法(請求
項4)である。
A fourth means for solving the above problem is as follows.
C: 0.005% or less, Si: 4% or less, Al: 2% or less, Mn: 0.05 to 2%, P: 0.1% or less, N: 0.005% or less, S: 0.02% or less, Cr: 0.4 to 100% by weight A slab containing 5% and the balance substantially consisting of Fe is hot-rolled, pickled and rolled to a predetermined thickness, and then subjected to a reducing atmosphere in any of the continuous annealing processes. After decarburizing,
The method for producing a non-oriented electrical steel sheet according to the first means, wherein the C content after decarburization is 0.0015% or less.

【0010】前記課題を解決するための第5の手段は、
重量%でC:0.005%以下、Si:4%以下、Al:2%以
下、Mn:0.05〜2%、P:0.1%以下、N:0.005%以
下、S:0.02%以下、Cr:0.4〜5%を含有し、残部が
実質的にFeからなるスラブを熱間圧延し、酸洗して所定
の板厚まで圧延したのち、連続焼鈍する工程中のいずれ
かの焼鈍において、還元性雰囲気の脱炭処理を行ない、
脱炭後のC量を0.0009%以下とすることを特徴とする前
記第2の手段である無方向性電磁鋼板の製造方法(請求
項5)である。
A fifth means for solving the above-mentioned problem is as follows.
C: 0.005% or less, Si: 4% or less, Al: 2% or less, Mn: 0.05 to 2%, P: 0.1% or less, N: 0.005% or less, S: 0.02% or less, Cr: 0.4 to 100% by weight A slab containing 5% and the balance substantially consisting of Fe is hot-rolled, pickled and rolled to a predetermined thickness, and then subjected to a reducing atmosphere in any of the continuous annealing processes. After decarburizing,
A method for producing a non-oriented electrical steel sheet as the second means, wherein the C content after decarburization is 0.0009% or less (Claim 5).

【0011】前記課題を解決するための第6の手段は、
前記第4の手段又は第5の手段である無方向性電磁鋼板
の製造方法において、スラブ中のCr含有量を0.4〜1.4%
に限定したことを特徴とする請求項3に記載の高周波磁
気特性に優れた無方向性電磁鋼板の製造方法(請求項
6)である。
A sixth means for solving the above-mentioned problem is as follows.
The method for producing a non-oriented electrical steel sheet according to the fourth or fifth means, wherein the slab has a Cr content of 0.4 to 1.4%.
A method for producing a non-oriented electrical steel sheet having excellent high-frequency magnetic properties according to claim 3 (claim 6).

【0012】ここに、「残部が実質的にFeからなる」と
いうのは、本発明の効果を無くさない範囲で、規定した
元素のほかにも、不可避不純物をはじめとする他の元素
が微量含まれているものが、本発明の範囲内に含まれる
ことを示すものである。また、表を含め、本明細書に記
載される鋼の成分を示す%は全て重量%であり、ppmも
重量ppmである。
Here, "the balance substantially consists of Fe" means that, in addition to the specified elements, a trace amount of other elements including unavoidable impurities is contained within a range not to impair the effects of the present invention. It is shown that what is included is included in the scope of the present invention. In addition, the percentages indicating the components of steel described in this specification, including the tables, are all percentages by weight, and ppm is also ppm by weight.

【0013】又、以上の全ての手段が対象とする無方向
性電磁鋼板は、用途発明であって、もっぱら、仕上げ焼
鈍後にさらに加熱過程を経て使用されるものに限られ、
この場合において格別の効果を有するものである。
[0013] The non-oriented electrical steel sheet to which all of the above means are applied is an invention for use, which is limited to one that is used through a heating process after finish annealing.
In this case, it has a special effect.

【0014】(発明に至る経緯とCrとCの限定理由)本
発明者らは、仕上げ焼鈍後そのまま使用するのでなく、
磁性焼鈍、ブルーイング、焼きばめ等の加熱処理により
300℃以上の加熱がされた後で用いる場合には、その加
熱後の冷却の際に炭化物が析出するため、磁気特性が悪
化し、従来知られていたようなCrを制御する方法では不
十分であることを見いだした。
(Circumstances leading to the invention and reasons for limiting Cr and C) The inventors of the present invention do not use the steel as it is after the finish annealing,
By heat treatment such as magnetic annealing, bluing, shrink fit
When used after heating at 300 ° C or higher, carbides precipitate during cooling after the heating, so the magnetic properties deteriorate, and the conventionally known method of controlling Cr is insufficient. Was found to be.

【0015】そして、所定量のCrを添加し、かつCを所
定の範囲に管理することにより、磁性焼鈍、ブルーイン
グ、焼きばめ等の加熱処理時における炭化物の析出を抑
制して高周波鉄損を低減できることを見出した。以下、
発明に至る経緯とCrとCの限定理由を、実験結果に基づ
いて詳細に説明する。
By adding a predetermined amount of Cr and controlling C within a predetermined range, the precipitation of carbides during heat treatment such as magnetic annealing, bluing, shrink fitting, etc. is suppressed, and high-frequency iron loss is suppressed. Can be reduced. Less than,
The circumstances leading to the invention and the reasons for limiting Cr and C will be described in detail based on experimental results.

【0016】まず、Crが磁性焼鈍後の磁気特性に及ぼす
影響を調査するため、C:0.0035%、Si:2.5%、Mn:
0.18%、P:0.01%、Al:1.0%、S:0.0005%、N:
0.0020%とし、Cr=tr.の鋼(鋼種X)とCrを1%含有さ
せた鋼(鋼種Y)を実験室にて溶解し、熱間圧延後に酸洗
して、100%H2雰囲気にて860℃×3hrの熱延板焼鈍を
行ない、板厚0.35mmまで圧延した。
First, in order to investigate the effect of Cr on magnetic properties after magnetic annealing, C: 0.0035%, Si: 2.5%, Mn:
0.18%, P: 0.01%, Al: 1.0%, S: 0.0005%, N:
0.0020%, steel of Cr = tr. (Steel type X) and steel containing 1% of Cr (steel type Y) are melted in a laboratory, hot-rolled, pickled, and then put in a 100% H 2 atmosphere. The sheet was annealed at 860 ° C. for 3 hours and rolled to a sheet thickness of 0.35 mm.

【0017】次いで、10%H2-90%N2雰囲気で1000℃
×1分間の仕上焼鈍を行ない、仕上焼鈍後の磁気特性を
測定した。さらに、100%N2雰囲気にて750℃×2hrの
磁性焼鈍後、磁気特性を測定した。ここで磁気特性の評
価は、外径45mm、内径33mmのリングサンプルを用い、1
次100ターン、2次100ターンの巻線したもので高周波特
性を測定した。表1に鋼XとYの仕上焼鈍後と磁性焼鈍
後の400Hzでの鉄損W1 0/400(W/kg)を示す。
Next, at 1000 ° C. in a 10% H 2 -90% N 2 atmosphere.
× 1 minute finish annealing was performed, and the magnetic properties after the finish annealing were measured. Furthermore, after magnetic annealing at 750 ° C. for 2 hours in a 100% N 2 atmosphere, the magnetic properties were measured. Here, the magnetic properties were evaluated using a ring sample having an outer diameter of 45 mm and an inner diameter of 33 mm.
The high-frequency characteristics were measured for the windings of the next 100 turns and the second 100 turns. Table 1 shows the iron loss W 1 0/400 (W / kg) at 400Hz and after magnetic annealing after the finish annealing of the steel X and Y.

【0018】[0018]

【表1】 [Table 1]

【0019】表1より、Cr添加鋼において磁性焼鈍後の
鉄損が劣化していることがわかる。この原因を調査する
ため、1%Cr添加鋼の磁性焼鈍後の組織観察を行った。
その結果、粒界及び粒内にCr炭化物が多数観察された。
さらに、Cr添加鋼の仕上焼鈍後のサンプルでは、このよ
うな炭化物は認められなかったことから、磁性焼鈍時に
Cr炭化物が析出し、磁壁の移動が妨げられたため、鉄損
が劣化したものと考えられる。
Table 1 shows that iron loss after magnetic annealing in Cr-added steel is deteriorated. In order to investigate the cause, the structure of the 1% Cr-added steel after the magnetic annealing was observed.
As a result, many Cr carbides were observed in the grain boundaries and in the grains.
Furthermore, in the sample after the finish annealing of the Cr-added steel, such a carbide was not recognized, and therefore, during the magnetic annealing,
It is probable that iron carbide deteriorated because Cr carbide precipitated and movement of the domain wall was hindered.

【0020】これまで、Cr添加による高周波鉄損を低減
する手法は数多く提案されているが、これらは全て仕上
焼鈍後の磁気特性のみに言及したものであり、磁性焼鈍
時のCr炭化物の析出は、これまでにはなかった新たな知
見である。しかし、Crを添加する場合、工業的には比較
的安価なフェロクロムを原料として使用するのが一般的
であるが、不純物からのCの混入が避けらない。
A number of methods have been proposed to reduce high-frequency iron loss by adding Cr. However, all of these methods refer only to the magnetic properties after finish annealing, and the precipitation of Cr carbide during magnetic annealing is not considered. This is a new finding that has never been seen before. However, when Cr is added, ferrochrome, which is relatively inexpensive industrially, is generally used as a raw material, but mixing of C from impurities cannot be avoided.

【0021】そこで、本発明者らは、製造工程中におい
て脱炭処理を行ない、磁性焼鈍時のCr炭化物の析出を抑
制することについて検討を重ねた。Cが磁性焼鈍後の磁
気特性に及ぼす影響を調査するため、C:0.0050%、S
i:2.5%、Mn:0.18%、P:0.01%、S:0.0005%、A
l:1.0%、Cr:1.0%、N:0.0020%の鋼を実験室にて
溶解し、熱間圧延後に酸洗した。
Therefore, the inventors of the present invention have conducted studies on decarburization during the manufacturing process to suppress the precipitation of Cr carbide during magnetic annealing. In order to investigate the effect of C on magnetic properties after magnetic annealing, C: 0.0050%, S
i: 2.5%, Mn: 0.18%, P: 0.01%, S: 0.0005%, A
l: 1.0%, Cr: 1.0%, N: 0.0020% steel was melted in a laboratory and pickled after hot rolling.

【0022】この後、表2にB〜Lとして示す条件にて
それぞれ脱炭処理を行ない、脱炭焼鈍を行わなかったA
を含め、それぞれ表2に示すC含有量とした。ついで10
0%H雰囲気にて860℃×3hrの熱延板焼鈍を行った。
さらに、板厚0.35mmまで圧延し、10%H2-90%N2雰囲
気で1000℃×1分間の仕上焼鈍を行ない、さらに、100
%N2雰囲気にて750℃×2hrの磁性焼鈍後、磁気特性を
測定した。
Thereafter, decarburization treatment was performed under the conditions shown as B to L in Table 2, and the decarburization annealing was not performed.
And the C content shown in Table 2 respectively. Then 10
The hot rolled sheet was annealed at 860 ° C. for 3 hours in a 0% H 2 atmosphere.
Further, the sheet was rolled to a sheet thickness of 0.35 mm, and subjected to finish annealing at 1000 ° C. for 1 minute in a 10% H 2 -90% N 2 atmosphere.
After magnetic annealing at 750 ° C. for 2 hours in a% N 2 atmosphere, the magnetic properties were measured.

【0023】[0023]

【表2】 [Table 2]

【0024】図1に、このようにして得られたサンプル
のC量と磁性焼鈍後の400Hzでの鉄損(W10/400)の相
関を示す。図1より、C量が15ppm超の領域で磁性焼鈍
後の鉄損が臨界的に増加していることがわかる。この原
因を調査するため、SEMにてC:0.0003%のサンプル
BとC:0.0035%のサンプルKを観察したところ、サン
プルKにおいて、粒界及び粒内にCr炭化物の析出が認め
られた。一方、サンプルBでは、このような炭化物の析
出は認められなかった。
FIG. 1 shows the correlation between the C content of the sample thus obtained and the iron loss (W 10/400 ) at 400 Hz after magnetic annealing. From FIG. 1, it can be seen that the iron loss after magnetic annealing is critically increased in the region where the C content exceeds 15 ppm. In order to investigate the cause, a sample B of C: 0.0003% and a sample K of C: 0.0035% were observed by SEM. As a result, in Sample K, precipitation of Cr carbide was recognized in the grain boundaries and in the grains. On the other hand, in sample B, such precipitation of carbide was not observed.

【0025】以上のことより、Cを0.0015%以下に管理
することにより、Cr炭化物の析出を抑制し、磁性焼鈍後
の磁気特性を低減できることがわかる。よって、本発明
においてはCの上限を0.0015%以下とする。しかし、鉄
損の観点からは、図1に示されるように0.0009%以下と
することがさらに望ましい。
From the above, it can be understood that by controlling C to 0.0015% or less, the precipitation of Cr carbide can be suppressed, and the magnetic properties after magnetic annealing can be reduced. Therefore, in the present invention, the upper limit of C is set to 0.0015% or less. However, from the viewpoint of iron loss, it is more desirable that the content be 0.0009% or less as shown in FIG.

【0026】このような炭化物の析出は300〜600℃の温
度域で生じており、磁性焼鈍の場合には均熱後の冷却時
に炭化物が析出することとなる。また、ブルーイング等
の熱処理においても500℃程度に材料が加熱されるた
め、冷却時に炭化物が析出する。よって、このような熱
履歴が付与される場合には、やはり、C量は0.0015%以
下とする必要がある。
Such carbide precipitation occurs in the temperature range of 300 to 600 ° C. In the case of magnetic annealing, carbide precipitates at the time of cooling after soaking. Further, even in heat treatment such as bluing, the material is heated to about 500 ° C., so that carbides are precipitated during cooling. Therefore, when such a heat history is given, the C content must be 0.0015% or less.

【0027】さらに、鉄損の観点からは、0.0009%以下
とすることがさらに望ましいことも同様である。このよ
うに、本発明の無方向性電磁鋼板は、仕上げ焼鈍の行わ
れた後で、さらに300℃以上に加熱されてから使用され
ることを前提としたもので、このような場合に、格別の
効果を有する。
Further, from the viewpoint of iron loss, the content is more preferably 0.0009% or less. Thus, the non-oriented electrical steel sheet of the present invention is based on the premise that it is used after being further heated to 300 ° C. or more after the finish annealing has been performed. Has the effect of

【0028】なお、図1において、黒丸でプロットされ
た点のC量は、左から順に、3、5、7、9、10、1
2、14、16、18、20、25、32、40、50
ppmである。
In FIG. 1, the C amounts at the points plotted by black circles are 3, 5, 7, 9, 10, 1 in order from the left.
2, 14, 16, 18, 20, 25, 32, 40, 50
ppm.

【0029】次に、Crが磁性焼鈍後の磁気特性に及ぼす
影響を調査するため、C:0.0035%、Si:2.5%、Mn:
0.18%、P:0.01%、S:0.0005%、Al:1.0%、N:0.0
020%、Cr:tr.〜5.5%の鋼を実験室にて溶解し、熱間
圧延後に酸洗した。その後、15%H2雰囲気、露点25℃
で750℃×2hrの脱炭焼鈍を行い、C量を0.0005%とし
た。そして、100%H2雰囲気にて860℃×3hrの熱延板
焼鈍を行ない、板厚0.35mmまで圧延した。次いで10%H
2-90%N2雰囲気にて1000℃×1分間の仕上焼鈍を行な
い、100%N2雰囲気にて750℃×2hrの磁性焼鈍後、磁
気特性を測定した。
Next, in order to investigate the effect of Cr on magnetic properties after magnetic annealing, C: 0.0035%, Si: 2.5%, Mn:
0.18%, P: 0.01%, S: 0.0005%, Al: 1.0%, N: 0.0
020%, Cr: tr.-5.5% steel was melted in a laboratory and pickled after hot rolling. Then, 15% H2 atmosphere, dew point 25 ℃
At 750 ° C. × 2 hours for decarburizing annealing to reduce the C content to 0.0005%. Then, hot rolled sheet annealing at 860 ° C. for 3 hours was performed in a 100% H 2 atmosphere, and the sheet was rolled to a sheet thickness of 0.35 mm. Then 10% H
Performs final annealing of 1000 ° C. × 1 minute at 2 -90% N 2 atmosphere, 750 ° C. × after magnetic annealing of 2hr at 100% N 2 atmosphere, magnetic characteristics were measured.

【0030】図2にCr量と磁性焼鈍後の400Hzでの鉄損
(W10/400)の相関を示す。図2より、Crが0.4%以上の
範囲にて、鉄損が臨界的に低下していることがわかる。
これは、電気抵抗の増大により渦電流損が減少したため
である。よって、本発明においては、Crの下限を0.4%
とする。一方、コストの観点、及びCr含有量が高くなる
と磁束密度が低くなることからCrの上限を5%とする。
しかし、鉄損は、図2に示すようにCrが0.4〜1.4%の範
囲で臨界的に低くなるので、Crの範囲をこの範囲とする
ことが好ましい。
FIG. 2 shows the amount of Cr and the iron loss at 400 Hz after magnetic annealing.
(W 10/400 ) is shown. From FIG. 2, it can be seen that the iron loss is critically reduced when Cr is in the range of 0.4% or more.
This is because the eddy current loss was reduced due to the increase in the electric resistance. Therefore, in the present invention, the lower limit of Cr is 0.4%
And On the other hand, the upper limit of Cr is set to 5% from the viewpoint of cost and since the magnetic flux density decreases as the Cr content increases.
However, as shown in FIG. 2, the iron loss becomes critically low when Cr is in the range of 0.4 to 1.4%. Therefore, it is preferable to set the range of Cr to this range.

【0031】なお、図2において黒丸で示されている点
のCr量は、0、0.25、0.45、0.6、0.85、1.0、1.2、1.
4、1.6、2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5%で
ある。
The Cr content at the points indicated by black circles in FIG. 2 is 0, 0.25, 0.45, 0.6, 0.85, 1.0, 1.2, 1.
4, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 and 5.5%.

【0032】(その他の成分の限定理由)次に、その他
の成分の限定理由について説明する。Si:Siは、4%を
超えると磁束密度が低下するため上限を4.0%とする。
なお鋼板の固有抵抗を上げるために有効な元素なので下
限を1.0%とすることが好ましい。Al:Alは、2.0%を超
えると磁束密度が劣化するので上限を2.0%とする。な
お、Siと同様、固有抵抗を上げるために有効な元素であ
るので、また、0.1%未満では微細なAlNを形成して粒
成長の阻害要因となるため、下限を0.1%とすることが
好ましい。
(Reasons for Limiting Other Components) Next, reasons for limiting other components will be described. Si: When Si exceeds 4%, the magnetic flux density decreases, so the upper limit is set to 4.0%.
Since the element is effective for increasing the specific resistance of the steel sheet, the lower limit is preferably set to 1.0%. Al: If Al exceeds 2.0%, the magnetic flux density deteriorates, so the upper limit is made 2.0%. It is to be noted that, like Si, it is an element effective for increasing the specific resistance, and if it is less than 0.1%, fine AlN is formed, which becomes a hindrance to grain growth, so the lower limit is preferably made 0.1%. .

【0033】Mn:Mnは、熱間圧延時の赤熱脆性を防止す
るために0.05%以上必要であるが、2%以上になると磁
束密度の低下を招くため0.05〜2.0%とする。P:P
は、0.1%を超えて含有させると鋼板が硬くなるため上
限を0.1%とする。N:Nは、AlNを形成して鉄損増大
の原因となるため、上限を0.005%とする。S:Sは、
0.02%を超えるとMnSの析出により鉄損増大の原因とな
るため、上限を0.02%とする。なお、本発明の効果を無
くさない範囲で、Sb、Snを添加すると、さらに鉄損を低
くすることができる。
Mn: Mn is required to be 0.05% or more in order to prevent red-hot brittleness during hot rolling, but if it exceeds 2%, the magnetic flux density is reduced, so Mn is set to 0.05 to 2.0%. P: P
If the content exceeds 0.1%, the steel sheet becomes hard, so the upper limit is set to 0.1%. N: Since N forms AlN and causes an increase in iron loss, the upper limit is made 0.005%. S: S is
If it exceeds 0.02%, the precipitation of MnS causes an increase in iron loss, so the upper limit is made 0.02%. In addition, if Sb and Sn are added within a range that does not lose the effect of the present invention, iron loss can be further reduced.

【0034】[0034]

【製造方法】本発明においては、C、Crを所定の範囲に
管理すれば、その他の製造方法は通常の無方向性電磁鋼
板を製造する方法でかまわない。すなわち、転炉で吹練
した溶鋼を脱ガス処理し所定の成分に調整し、引き続き
鋳造、熱間圧延を行う。ここで、Cを0.0015%以下にす
る手法は、製鋼段階の管理、もしくは熱延板焼鈍あるい
は仕上焼鈍時の還元性雰囲気での脱炭処理の手段のいず
れでもよい。しかし、前述のように、Crを本発明の範囲
とするとC含有量が増えるのが避けられないので、C含
有量の調整は、請求項4から請求項6に記載されている
ように脱炭焼鈍により行うことが好ましい。脱炭処理
は、熱延板焼鈍、もしくは仕上焼鈍、あるいはそれ以外
の焼鈍時のいずれで行ってもよい。また、熱間圧延時の
仕上焼鈍温度、巻取り温度は特に規定する必要はなく、
公知の無方向性電磁鋼板を製造する温度でかまわない。
[Manufacturing method] In the present invention, as long as C and Cr are controlled within a predetermined range, the other manufacturing method may be a method of manufacturing a normal non-oriented electrical steel sheet. That is, the molten steel blown in the converter is degassed and adjusted to a predetermined component, and subsequently casting and hot rolling are performed. Here, the method of reducing C to 0.0015% or less may be any method of controlling the steelmaking stage or decarburizing treatment in a reducing atmosphere during hot-rolled sheet annealing or finish annealing. However, as described above, if Cr is within the scope of the present invention, the C content is unavoidably increased. Therefore, the C content is adjusted by decarburization as described in claims 4 to 6. It is preferable to perform annealing. The decarburization treatment may be performed during hot-rolled sheet annealing, finish annealing, or any other annealing. Also, the finish annealing temperature during hot rolling and the winding temperature do not need to be particularly specified,
The temperature at which a known non-oriented electrical steel sheet is manufactured may be used.

【0035】次いで、熱延板焼鈍を行って1回の冷間圧
延、もしくは中間焼鈍をはさんだ2回以上の冷間圧延に
より所定の板厚とした後、仕上焼鈍を行う。ついで皮膜
を塗布して焼き付け、その後、需要家にて加工歪を除去
するため磁性焼鈍を行う。
Next, after hot-rolled sheet annealing is performed, cold-rolling is performed once or cold-rolling two or more times with intermediate annealing is performed to obtain a predetermined sheet thickness, and then finish annealing is performed. Next, a film is applied and baked, and thereafter, magnetic annealing is performed by a customer to remove processing strain.

【0036】[0036]

【実施例】(実施例1)表3に示す鋼を用い、転炉で吹
練した後に脱ガス処理を行うことにより所定の成分に調
整後鋳造し、スラブを1140℃で1hr加熱した後、板厚2.
0mmまで熱間圧延を行った。熱延仕上げ温度は750℃と
し、巻取り温度は610℃とした。その後酸洗し、100%H2
雰囲気にて860℃×3hrの熱延板焼鈍を行ない、次いで板
厚0.35mmまで圧延した。次いで、10%H-90%N
囲気において1000℃×1minの仕上焼鈍を行ない、100%
雰囲気にて750℃×2hrの磁性焼鈍後、磁気特性を
測定した。各鋼板の磁気特性(W10/400、B50)を表3に
併せて示す。表3よりCとCrを本発明範囲にした実験N
o.1〜9の鋼において、高周波鉄損が低く、かつ磁束密
度が高い材料が得られることがわかる。
EXAMPLES (Example 1) Using the steel shown in Table 3, the steel was blown in a converter and then degassed, adjusted to a predetermined composition and cast, and the slab was heated at 1140 ° C for 1 hour. Board thickness 2.
Hot rolling was performed to 0 mm. The hot rolling finishing temperature was 750 ° C, and the winding temperature was 610 ° C. After that, pickle and 100% H2
The hot rolled sheet was annealed at 860 ° C. for 3 hours in an atmosphere, and then rolled to a sheet thickness of 0.35 mm. Then, in a 10% H 2 -90% N 2 atmosphere, finish annealing at 1000 ° C. × 1 min is performed, and 100%
After magnetic annealing at 750 ° C. for 2 hours in an N 2 atmosphere, the magnetic properties were measured. Magnetic properties of each steel sheet (W 10/400, B 50) are also shown in Table 3. From Table 3, the experiment N in which C and Cr were within the scope of the present invention.
In the steels of o.1 to 9, it is understood that a material having a low high-frequency iron loss and a high magnetic flux density can be obtained.

【0037】それに対し、No.10の鋼ではCr含有量が低
いので鉄損が高くなっている。また、No.11の鋼ではCr
含有量が高いので、磁束密度が低くなっている。No.12
〜15の鋼においては、C含有量が高いので、いずれも鉄
損が高くなっている。No.16、17、18の鋼では、それぞ
れSi、Al、Mnが本発明の範囲を外れているので、磁束密
度が低くなっている。No.19、No.20の鋼では、それぞれ
S、Nが本発明の範囲を外れているので、鉄損が高くな
っている。
On the other hand, in the steel of No. 10, the iron content is high because the Cr content is low. In the case of No. 11 steel, Cr
Due to the high content, the magnetic flux density is low. No.12
In steels Nos. To 15, the iron content is high because the C content is high. In the steels of Nos. 16, 17, and 18, Si, Al, and Mn are out of the range of the present invention, respectively, so that the magnetic flux density is low. In the steels of No. 19 and No. 20, S and N are out of the range of the present invention, respectively, so that the iron loss is high.

【0038】[0038]

【表3】 [Table 3]

【0039】(実施例2)表4に示す鋼を用い、転炉で
吹練した後に脱ガス処理を行うことにより所定の成分に
調整後鋳造し、スラブを1140℃で1hr加熱した後、板厚
2.0mmまで熱間圧延を行った。熱延仕上げ温度は750℃と
し、巻取り温度は610℃とした。その後酸洗し、100%H
雰囲気にて860℃×3hrの熱延板焼鈍を行った。つい
で板厚0.35mmまで圧延し、10%H-90%N雰囲気に
おいて1000℃×1minの仕上焼鈍を行ない、続いて100%
雰囲気での750℃×2hrの磁性焼鈍後、磁気特性を
測定した。各鋼種の脱炭処理は、表4に示す条件にて行
った。各鋼板の脱炭後のC量と磁性焼鈍後の磁気特性
(W10/400,B50)を表4に併せて示す。表4、
表5よりCとCrを本発明範囲にした実験No.1〜12の鋼
において、高周波鉄損が低く、かつ磁束密度が高い材料
が得られることがわかる。
(Example 2) Using the steel shown in Table 4, the steel was blown in a converter and then degassed, adjusted to a predetermined composition and cast, and the slab was heated at 1140 ° C for 1 hour. Thick
Hot rolling was performed to 2.0 mm. The hot rolling finishing temperature was 750 ° C, and the winding temperature was 610 ° C. Then pickled, 100% H
Hot rolled sheet annealing at 860 ° C. for 3 hours was performed in two atmospheres. Then, the sheet was rolled to a thickness of 0.35 mm, and subjected to finish annealing at 1000 ° C. for 1 minute in a 10% H 2 -90% N 2 atmosphere, followed by 100%
After magnetic annealing of 750 ° C. × 2 hr in an N 2 atmosphere, magnetic characteristics were measured. The decarburization treatment of each steel type was performed under the conditions shown in Table 4. Table 4 shows the C content of each steel sheet after decarburization and the magnetic properties (W 10/400 , B 50 ) after magnetic annealing. Table 4,
From Table 5, it can be seen that, in the steels of Experiment Nos. 1 to 12 in which C and Cr are in the range of the present invention, a material having low high-frequency iron loss and high magnetic flux density can be obtained.

【0040】それに対し、No.13の鋼ではCr含有量が低
いので鉄損が高くなっている。また、No.14の鋼ではCr
含有量が高いので、磁束密度が低くなっている。No.15
〜20の鋼においては、C含有量が高いので、いずれも鉄
損が高くなっている。No.21、22、23の鋼では、それぞ
れSi、Al、Mnが本発明の範囲を外れているので、磁束密
度が低くなっている。No.24、No.25の鋼では、それぞれ
S、Nが本発明の範囲を外れているので、鉄損が高くな
っている。
On the other hand, the No. 13 steel has a high Cr loss due to a low Cr content. In the case of No. 14 steel, Cr
Due to the high content, the magnetic flux density is low. No.15
In steels No. to No. 20, since the C content is high, the iron loss is high in each case. In the steels of Nos. 21, 22, and 23, since Si, Al, and Mn are out of the range of the present invention, the magnetic flux density is low. In steels No. 24 and No. 25, S and N are out of the range of the present invention, respectively, so that iron loss is high.

【0041】[0041]

【表4】 [Table 4]

【0042】[0042]

【表5】 (実施例3)表6にブーイング相当熱処理である500℃
×1hrの加熱を施した結果を示す。これより、C≦15ppm
で優れた鉄損が得られることがわかる。
[Table 5] (Example 3) Table 6 shows 500 ° C which is a heat treatment equivalent to booing.
The results of heating for 1 hour are shown. From this, C ≦ 15ppm
It can be seen that excellent iron loss can be obtained from the results.

【表6】 [Table 6]

【発明の効果】以上に述べたように、本発明によれば、
炭化物の析出を抑制することができるので、仕上げ焼鈍
後にさらに加熱過程を経て使用される高周波鉄損の低い
無方向性電磁鋼板が得られる。
As described above, according to the present invention,
Since the precipitation of carbides can be suppressed, a non-oriented electrical steel sheet having low high-frequency iron loss and used through a heating process after finish annealing can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】C含有量と鉄損W10/400との関係を示す図であ
る。
FIG. 1 is a diagram showing the relationship between the C content and iron loss W 10/400 .

【図2】Cr含有量と鉄損W10/400との関係を示す図であ
る。
FIG. 2 is a diagram showing the relationship between the Cr content and iron loss W 10/400 .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野 義彦 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 田中 靖 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K033 AA01 CA07 CA08 CA09 FA00 GA00 JA00 JA04 KA00 RA03 SA00 SA01 SA02 SA03 5E041 AA02 CA01 CA04 NN01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshihiko Ono 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Yasushi Tanaka 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Date F-term (reference) in Honko Pipe Co., Ltd. 4K033 AA01 CA07 CA08 CA09 FA00 GA00 JA00 JA04 KA00 RA03 SA00 SA01 SA02 SA03 5E041 AA02 CA01 CA04 NN01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量%でC:0.0015%以下、Si:4%以
下、Al:2%以下、Mn:0.05〜2%、P:0.1%以下、
N:0.005%以下、S:0.02%以下、Cr:0.4〜5%を含
有し、残部が実質的にFeからなる仕上げ焼鈍後にさらに
加熱過程を経て使用される高周波磁気特性に優れた無方
向性電磁鋼板。
(1) C: 0.0015% or less, Si: 4% or less, Al: 2% or less, Mn: 0.05 to 2%, P: 0.1% or less by weight%
N: 0.005% or less, S: 0.02% or less, Cr: 0.4 to 5%, the balance is substantially Fe, and after the final annealing, it is used through a heating process after the final annealing. Electrical steel sheet.
【請求項2】 重量%でC:0.0009%以下、Si:4%以
下、Al:2%以下、Mn:0.05〜2%、P:0.1%以下、
N:0.005%以下、S:0.02%以下、Cr:0.4〜5%を含
有し、残部が実質的にFeからなる仕上げ焼鈍後にさらに
加熱過程を経て使用される高周波磁気特性に優れた無方
向性電磁鋼板。
2. In weight%, C: 0.0009% or less, Si: 4% or less, Al: 2% or less, Mn: 0.05 to 2%, P: 0.1% or less,
N: 0.005% or less, S: 0.02% or less, Cr: 0.4 to 5%, the balance is substantially Fe, and after the final annealing, it is used through a heating process after the final annealing. Electrical steel sheet.
【請求項3】 請求項1又は請求項2に記載の無方向性
電磁鋼板の、Cr含有量の範囲を0.4〜1.4%に限定したこ
とを特徴とする仕上げ焼鈍後にさらに加熱過程を経て使
用される高周波磁気特性に優れた無方向性電磁鋼板。
3. The non-oriented electrical steel sheet according to claim 1 or 2, wherein the range of Cr content is limited to 0.4 to 1.4%. Non-oriented electrical steel sheet with excellent high frequency magnetic properties.
【請求項4】 重量%でC:0.005%以下、Si:4%以
下、Al:2%以下、Mn:0.05〜2%、P:0.1%以下、
N:0.005%以下、S:0.02%以下、Cr:0.4〜5%を含
有し、残部が実質的にFeからなるスラブを熱間圧延し、
酸洗して所定の板厚まで圧延したのち、連続焼鈍する工
程中のいずれかの焼鈍において、還元性雰囲気の脱炭処
理を行ない、脱炭後のC量を0.0015%以下とすることを
特徴とする請求項1に記載の仕上げ焼鈍後にさらに加熱
過程を経て使用される高周波磁気特性に優れた無方向性
電磁鋼板の製造方法。
4. C: 0.005% or less by weight, Si: 4% or less, Al: 2% or less, Mn: 0.05 to 2%, P: 0.1% or less,
A slab containing N: 0.005% or less, S: 0.02% or less, Cr: 0.4 to 5%, and the balance substantially consisting of Fe is hot-rolled,
After pickling and rolling to a predetermined thickness, in any of the continuous annealing processes, a decarburizing treatment is performed in a reducing atmosphere to reduce the C content after decarburizing to 0.0015% or less. A method for producing a non-oriented electrical steel sheet having excellent high-frequency magnetic properties, which is used through a heating process after the finish annealing according to claim 1.
【請求項5】 重量%でC:0.005%以下、Si:4%以
下、Al:2%以下、Mn:0.05〜2%、P:0.1%以下、
N:0.005%以下、S:0.02%以下、Cr:0.4〜5%を含
有し、残部が実質的にFeからなるスラブを熱間圧延し、
酸洗して所定の板厚まで圧延したのち、連続焼鈍する工
程中のいずれかの焼鈍において、還元性雰囲気の脱炭処
理を行ない、脱炭後のC量を0.0009%以下とすることを
特徴とする請求項2に記載の仕上げ焼鈍後にさらに加熱
過程を経て使用される高周波磁気特性に優れた無方向性
電磁鋼板の製造方法。
5. C: 0.005% or less by weight, Si: 4% or less, Al: 2% or less, Mn: 0.05 to 2%, P: 0.1% or less,
A slab containing N: 0.005% or less, S: 0.02% or less, Cr: 0.4 to 5%, and the balance substantially consisting of Fe is hot-rolled,
After pickling and rolling to a predetermined thickness, in any of the continuous annealing processes, decarburizing treatment is performed in a reducing atmosphere to reduce the C content after decarburization to 0.0009% or less. 3. A method for producing a non-oriented electrical steel sheet having excellent high-frequency magnetic properties, which is used through a heating process after the finish annealing according to claim 2.
【請求項6】 請求項4又は請求項5に記載の高周波磁
気特性に優れた無方向性電磁鋼板の製造方法において、
スラブ中のCr含有量を0.4〜1.4%に限定したことを特徴
とする請求項3に記載の仕上げ焼鈍後にさらに加熱過程
を経て使用される高周波磁気特性に優れた無方向性電磁
鋼板の製造方法。
6. The method for producing a non-oriented electrical steel sheet excellent in high-frequency magnetic properties according to claim 4 or 5,
4. The method for producing a non-oriented electrical steel sheet having excellent high-frequency magnetic properties, wherein the Cr content in the slab is limited to 0.4 to 1.4% and further used after a final annealing step through a heating process. .
JP2001377230A 2000-12-22 2001-12-11 Nonoriented silicon steel sheet having excellent high frequency magnetic property used after heating stage subsequently to finish annealing and production method therefor Withdrawn JP2002317254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001377230A JP2002317254A (en) 2000-12-22 2001-12-11 Nonoriented silicon steel sheet having excellent high frequency magnetic property used after heating stage subsequently to finish annealing and production method therefor

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000389824 2000-12-22
JP2000-389824 2000-12-22
JP2001-34962 2001-02-13
JP2001034962 2001-02-13
JP2001377230A JP2002317254A (en) 2000-12-22 2001-12-11 Nonoriented silicon steel sheet having excellent high frequency magnetic property used after heating stage subsequently to finish annealing and production method therefor

Publications (1)

Publication Number Publication Date
JP2002317254A true JP2002317254A (en) 2002-10-31

Family

ID=27345502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001377230A Withdrawn JP2002317254A (en) 2000-12-22 2001-12-11 Nonoriented silicon steel sheet having excellent high frequency magnetic property used after heating stage subsequently to finish annealing and production method therefor

Country Status (1)

Country Link
JP (1) JP2002317254A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219795A (en) * 2010-04-06 2011-11-04 Nippon Steel Corp Non-oriented electrical steel sheet having excellent high frequency core loss, and method of producing the same
WO2013179438A1 (en) 2012-05-31 2013-12-05 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219795A (en) * 2010-04-06 2011-11-04 Nippon Steel Corp Non-oriented electrical steel sheet having excellent high frequency core loss, and method of producing the same
WO2013179438A1 (en) 2012-05-31 2013-12-05 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet

Similar Documents

Publication Publication Date Title
CN108463569B (en) Non-oriented electromagnetic steel sheet and method for producing same
JP2000129410A (en) Nonoriented silicon steel sheet high in magnetic flux density
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JPH055126A (en) Production of nonoriented silicon steel sheet
JP2005002401A (en) Method for producing non-oriented silicon steel sheet
JP2002317254A (en) Nonoriented silicon steel sheet having excellent high frequency magnetic property used after heating stage subsequently to finish annealing and production method therefor
JPH0949023A (en) Production of grain oriented silicon steel sheet excellent in iron loss
JP2003013190A (en) High-grade non-oriented magnetic steel sheet
JP2003034820A (en) Method for manufacturing grain-oriented electrical steel sheet superior in blanking property having no undercoat film
JP2002294417A (en) Non-oriented electromagnetic steel sheet superior in fatigue characteristics
JP3947964B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing
JP7001210B1 (en) Non-oriented electrical steel sheet and its manufacturing method
JP4259002B2 (en) Method for producing grain-oriented electrical steel sheet
JPH08279408A (en) Manufacture of unidirectional electromagnetic steel sheet being excellent in magnetic characteristics
CN115003845B (en) Non-oriented electrical steel sheet and method for manufacturing same
JP7328597B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP3331402B2 (en) Manufacturing method of semi-process non-oriented electrical steel sheet with excellent all-around magnetic properties
JP2002226953A (en) Nonoriented silicon steel sheet for high frequency having excellent low magnetic field characteristic
JPH0860247A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JP2003034821A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with high magnetic-flux density having no undercoat film
JP4277529B2 (en) Method for producing grain-oriented electrical steel sheet having no undercoat
JPH11229036A (en) Production of ultrahigh magnetic flux density grain oriented silicon steel sheet
JP2003027197A (en) Nonoriented silicon steel sheet having excellent high frequency property
JP2002212688A (en) Nonoriented silicon steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070104

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070223