JPH11214003A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH11214003A
JPH11214003A JP10016748A JP1674898A JPH11214003A JP H11214003 A JPH11214003 A JP H11214003A JP 10016748 A JP10016748 A JP 10016748A JP 1674898 A JP1674898 A JP 1674898A JP H11214003 A JPH11214003 A JP H11214003A
Authority
JP
Japan
Prior art keywords
lithium
crystallite
positive electrode
distortion
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10016748A
Other languages
Japanese (ja)
Other versions
JP3578902B2 (en
Inventor
Kenji Shizuka
賢治 志塚
Hiroshi Wada
博 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP01674898A priority Critical patent/JP3578902B2/en
Publication of JPH11214003A publication Critical patent/JPH11214003A/en
Application granted granted Critical
Publication of JP3578902B2 publication Critical patent/JP3578902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain capacity deterioration accompanying cycling, especially while keeping a high capacitance by improving electrochemical performance of a nonaqueous electrolytic solution battery that a spinel-based lithium manganese oxide is used as an electrode active material. SOLUTION: This lithium secondary battery uses lithium, including metallic oxide which can feeds/discharges lithium in an positive electrode. Lithium including metallic oxide is represented by a general formula (chemical formula 1): Li(Mn2-x /Lix )O4 (0<=X<=0.05), and nonuniform distortion η of a crystallite for a distortion X-ray diffraction pattern is within a range 0<=η<=1.25×10<-3> in formula (1); βcosθ=λ/D+2ηsinθ(where represents β integrated width (rad), θthe diffraction angles (degrees), λ is 1.54056 Å (CuK α), D the crystal size (Å), and η the non-uniform distortion of crystallite are represented respectively).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はリチウム二次電池の改
良、特に正極活物質の改良に関わり、電池の充放電容量
及びサイクル特性の向上を意図するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the improvement of a lithium secondary battery, particularly to the improvement of a positive electrode active material, and is intended to improve the charge / discharge capacity and cycle characteristics of the battery.

【0002】[0002]

【従来の技術】リチウム二次電池の正極活物質として、
マンガンとリチウムの複合酸化物であるLiMn2 4
が提案され、研究が盛んに行われている。高電圧・高エ
ネルギー密度という特徴を有しているものの、充放電サ
イクル寿命が短いといった課題を有しており、実用電池
としての利用には至っていない。これまで、特開平7−
282798等に開示されているようにリチウムを過剰
にしてLi1+X Mn2-X4 としたり、特開平3−10
8261、特開平3−219571等に開示されている
ようにマンガンの一部をCo、Cr等の他の金属で置換
してLiMn2-XCoX 4 、LiMn2-X CrX 4
として、リチウムマンガン酸化物の改質を図り、サイク
ル特性を改良することが提案されているがこれらの改質
方法では充放電容量の低下を招くため、充放電容量を低
下させることなくサイクル特性が改善されたリチウムマ
ンガン酸化物が望まれていた。
2. Description of the Related Art As a positive electrode active material of a lithium secondary battery,
LiMn 2 O 4 which is a composite oxide of manganese and lithium
Has been proposed and research is being actively conducted. Although it has the characteristics of high voltage and high energy density, it has the problem that the charge / discharge cycle life is short, and has not been used as a practical battery. Until now, JP-A-7-
Or the Li 1 + X Mn 2-X O 4 with an excess of lithium as disclosed such as 282,798, JP-A-3-10
8261, LiMn 2-X Co X O 4 a part of manganese as disclosed in JP-A-3-219571, etc. Co, and replaced with other metals such as Cr, LiMn 2-X Cr X 0 4
It has been proposed to improve the cycle characteristics by reforming the lithium manganese oxide.However, since these reforming methods cause a decrease in the charge / discharge capacity, the cycle characteristics are reduced without reducing the charge / discharge capacity. Improved lithium manganese oxides have been desired.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記問題点
に鑑み、充放電容量を高い値に維持しつつも、充放電サ
イクルに伴う容量劣化の少ないスピネル系リチウムマン
ガン酸化物を正極活物質材料としたリチウムイオン二次
電池を提供しようとするものである。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a spinel-based lithium manganese oxide having a small charge / discharge cycle and a small capacity deterioration while maintaining a high charge / discharge capacity. An object of the present invention is to provide a lithium ion secondary battery as a material.

【0004】[0004]

【課題を解決するための手段】課題解決の手段は、正極
の主たる活物質として一般式
Means for solving the problem is to use a general formula as a main active material of the positive electrode.

【0005】[0005]

【化2】Li( Mn2-x Lix ) O4 Embedded image Li (Mn 2-x Li x ) O 4

【0006】(ただし、0≦X≦0. 05)で示される
立方晶スピネル結晶のX線回折パターンにおける不均一
歪ηが、0≦η≦1. 25×10-3の範囲にあるリチウ
ムマンガン酸化物を使用することにある。スピネル系リ
チウムマンガン酸化物(LiMn2 4 )を正極活物質
とした電池において、4V(Li対極の時)領域におけ
る正極の充放電反応は次式で示される。
Lithium manganese having a non-uniform strain η in the X-ray diffraction pattern of a cubic spinel crystal represented by (0 ≦ X ≦ 0.05) in the range of 0 ≦ η ≦ 1.25 × 10 -3 The use of oxides. In a battery using a spinel-based lithium manganese oxide (LiMn 2 O 4 ) as a positive electrode active material, the charge / discharge reaction of the positive electrode in a 4 V (when Li counter electrode) region is represented by the following equation.

【0007】[0007]

【数2】 LiMn2 4 ⇔Li1-n Mn2 4 +nLi+ +ne- (2) [Number 2] LiMn 2 O 4 ⇔Li 1-n Mn 2 O 4 + nLi + + ne - (2)

【0008】従来、スピネル系リチウムマンガン酸化物
は、上記充放電反応を繰り返して行わせると、充放電機
能を失い易いという性質を有している。そこでLiを過
剰に仕込んで合成したり、Mnサイトの一部をCo、C
rなどの金属で置換することで結晶構造を緻密化し、充
放電機能の低下を改善することが可能である。しかし、
Mnサイトの他の陽イオン置換に着目した従来の手法で
は容量が小さくなってしまうという欠点があるので、根
本的な改善法とは言い難い。そこで本発明者らは鋭意検
討を行った結果、電池特性と結晶子の不均一歪との間に
相関があり、不均一歪の増大に伴い、電池特性が低下す
ることを見出した。すなわち、一定以上に高容量を維持
しつつも充放電サイクルに伴う容量劣化の少ないスピネ
ル系リチウムマンガン酸化物は、Li/Mnモル比が定
比近傍であって、かつX線回折パターンにおける結晶子
の不均一歪が規定値以下に小さいことを実験的につきと
めた。
[0008] Conventionally, spinel lithium manganese oxide has a property that the charge / discharge function is easily lost when the above charge / discharge reaction is repeatedly performed. Therefore, an excessive amount of Li is charged for synthesis, or a part of the Mn site is changed to Co, C
By substituting with a metal such as r, the crystal structure can be made denser, and the deterioration of the charge / discharge function can be improved. But,
The conventional method focusing on the other cation substitution of the Mn site has a drawback that the capacity is reduced, so it cannot be said to be a fundamental improvement method. Thus, the present inventors have conducted intensive studies, and as a result, have found that there is a correlation between the battery characteristics and the non-uniform strain of crystallites, and that the battery characteristics decrease as the non-uniform strain increases. That is, a spinel-based lithium manganese oxide having a small capacity deterioration due to a charge / discharge cycle while maintaining a high capacity over a certain level has a Li / Mn molar ratio close to a constant ratio and a crystallite in an X-ray diffraction pattern. It was experimentally found that the non-uniform strain of was smaller than a specified value.

【0009】このような不均一歪の発生にはいくつかの
理由があると考えられるが、主として以下に記述する2
点が大きく影響していると推察される。一つは、Li/
Mn比が定比近傍のリチウムマンガン酸化物を合成した
場合、その比率が1/2に限りなく近づく程、そのMn
平均原子価は低下し、Li過剰の場合と比較して、Mn
3+Jahn−Tellerイオンの割合が多くなる。そ
のため、結晶構造に不均一な歪みがより生じ易くなる。
もう一つはMn出発原料の粒子サイズがばらついている
と、反応が不均一に進行するためこれによって組成変動
が起こり、結晶子の不均一歪が発生する。この場合、L
iがある程度過剰のものであっても不均一歪が生成する
と考えられる。これらの理由によって、サイクル特性が
悪かったものと考えられる。したがって、適当な出発原
料を使用したり、好ましい合成法を適用しないと規定し
た範囲内のものを得るのは容易ではない。
It is considered that such non-uniform distortion is generated for several reasons.
It is presumed that this has had a significant effect. One is Li /
When synthesizing a lithium manganese oxide having a Mn ratio close to a constant ratio, the closer the ratio is to 1/2, the more the Mn ratio increases.
The average valence decreases, and Mn is reduced as compared with the case of excess Li.
The proportion of 3+ Jahn-Teller ions increases. For this reason, uneven distortion is more likely to occur in the crystal structure.
Secondly, if the particle size of the Mn starting material varies, the reaction proceeds non-uniformly, thereby causing a composition variation and generating non-uniform distortion of crystallites. In this case, L
It is considered that non-uniform distortion is generated even if i is excessively large. It is considered that the cycle characteristics were poor for these reasons. Therefore, it is not easy to use a suitable starting material or to obtain a material within a range defined without applying a preferable synthesis method.

【0010】立方晶LiMn2 4 の不均一歪とサイク
ル特性の相関は既に電気化学会第64回大会要旨集[3A1
0],p31(1997)、電池技術委員会資料9−7で報告されて
おり、不均一歪の小さいものはサイクル特性が良好であ
ると指摘している。しかし、MnサイトへのLi置換量
や不均一歪の範囲については何ら言及されていない。本
願発明では、Li( Mn2-x Lix ) O4 のX値及び不
均一歪ηと容量・サイクル特性バランスとの相関を調べ
たところ、X, ηが規定された範囲にあるものが容量・
サイクル特性バランスに優れ、これを逸脱すると本願発
明を満たす性能が発揮されないことが分かった。
The correlation between the heterogeneous strain of cubic LiMn 2 O 4 and the cycle characteristics has already been described in the summary of the 64th Annual Meeting of the Institute of Electrical Engineers of Japan [3A1
0], p31 (1997), and Battery Engineering Committee Material 9-7, which point out that those with small non-uniform strain have good cycle characteristics. However, there is no mention of the amount of Li substitution at the Mn site or the range of non-uniform strain. In the present invention, the correlation between the X value and the non-uniform strain η of Li (Mn 2-x Li x ) O 4 and the capacity-cycle characteristic balance was examined.・
It was found that the cycle characteristic balance was excellent, and if it deviated from this, the performance satisfying the present invention was not exhibited.

【0011】以上より、一般式Li( Mn2-x Lix )
4 のX値を限定し、X線回折パターンにおける結晶子
の不均一歪を限定することによって高い容量を維持させ
ながらサイクル特性を改善することが可能となり、本願
発明を完成するに至った。すなわち、本発明によれば、
一般式
From the above, the general formula Li (Mn 2-x Li x )
By limiting the X value of O 4 and limiting the non-uniform distortion of crystallites in the X-ray diffraction pattern, the cycle characteristics can be improved while maintaining a high capacity, and the present invention has been completed. That is, according to the present invention,
General formula

【0012】[0012]

【化3】Li( Mn2-x Lix ) O4 Embedded image Li (Mn 2-x Li x ) O 4

【0013】(ただし、0≦X≦0. 05) で示され、
かつ、そのX線回折パターンにおける結晶子の不均一歪
ηが式(1)
(Where 0 ≦ X ≦ 0.05)
In addition, the non-uniform strain η of the crystallite in the X-ray diffraction pattern is given by the equation (1)

【0014】[0014]

【数3】 βcos θ=λ/D+2ηsin θ (1) (3) βcos θ = λ / D + 2η sin θ (1)

【0015】(ただし、βは積分幅(rad) 、θは回折角
(゜)、λは1.54056Å(CuK α)、Dは結
晶子サイズ(Å)、ηは結晶子の不均一歪を表す。)に
おいて、0≦η≦1. 25×10-3の範囲にあるスピネ
ル系リチウム含有金属酸化物を使用することにより、初
期放電容量が大きく、加えてサイクル特性に優れている
ので100th後の放電容量が115mAh/g以上の
ものが得られる。
(Where β is the integral width (rad), θ is the diffraction angle (゜), λ is 1.54056 ° (CuKα), D is the crystallite size (Å), and η is the nonuniform strain of the crystallite. ), The use of a spinel-based lithium-containing metal oxide in the range of 0 ≦ η ≦ 1.25 × 10 −3 results in a large initial discharge capacity and excellent cycle characteristics. With a discharge capacity of 115 mAh / g or more.

【0016】なお、本発明では正極活物質となるLi(
Mn2-x Lix ) O4 (ただし、0≦X≦0. 05)で
示される立方晶スピネル結晶におけるLi過剰量が0≦
X≦0. 05、X線回折パターンにおける不均一歪η
が、0≦η≦1. 25×10-3の範囲にあると規定して
いるがこの範囲は電池系において正極活物質からリチウ
ムが脱ドープされる前の初期の状態の範囲を示してい
る。この範囲を逸脱すると所望の電池特性を得るのが困
難となる。ここでXのさらに好ましい上限は0. 30、
最も好ましい上限は0. 20、ηのさらに好ましい値は
1.00×10-3以下、最も好ましい値は0. 75×1
-3以下である。なお酸素量に関しては形式的に4と記
載しているが、その不定比性は公知であり、特に限定さ
れないが定比に近いほど好ましい。
It should be noted that in the present invention, Li (
Mn 2-x Li x ) O 4 (provided that 0 ≦ X ≦ 0.05) where the Li excess amount in the cubic spinel crystal is 0 ≦
X ≦ 0.05, non-uniform strain η in X-ray diffraction pattern
Satisfies the range of 0 ≦ η ≦ 1.25 × 10 −3 , which indicates the range of the initial state before lithium is dedoped from the positive electrode active material in the battery system. . Outside of this range, it becomes difficult to obtain desired battery characteristics. Here, the more preferable upper limit of X is 0.30,
The most preferable upper limit is 0.20, the more preferable value of η is 1.00 × 10 −3 or less, and the most preferable value is 0.75 × 1.
0 -3 or less. The amount of oxygen is formally described as 4, but its non-stoichiometric property is known and is not particularly limited, but the closer to the constant ratio, the more preferable.

【0017】このようなLi( Mn2-x Lix ) O
4 は、マンガン化合物とリチウム化合物を出発原料とし
て混合した混合物を焼成することで生成される。混合は
通常の方法でよく、両原料を乾式混合する方法、湿式混
合する方法、リチウム塩水溶液中にマンガン化合物を懸
濁させた後、該懸濁液を乾燥する方法、共沈させる方
法、または、ボールミルで粉砕混合する方法など均一に
混合できる方法であればよい。
Such Li (Mn 2-x Li x ) O
4 is produced by firing a mixture of a manganese compound and a lithium compound as starting materials. Mixing may be a usual method, a method of dry-mixing both raw materials, a method of wet mixing, a method of suspending a manganese compound in a lithium salt aqueous solution, a method of drying the suspension, a method of coprecipitation, or Any method can be used as long as it can be uniformly mixed, such as a method of pulverizing and mixing with a ball mill.

【0018】この出発原料に用いられるリチウム化合物
としては、Li2 CO3 、LiNO 3 、LiOH、Li
OH・H2 O、LiCl、CH3 COOLi、Li2
ジカルボン酸Li等が挙げられ、中でもLiOH・H2
O、LiOHあるいはジカルボン酸Liを用いることが
好ましい。
Lithium compound used for this starting material
As LiTwoCOThree, LiNO Three, LiOH, Li
OH ・ HTwoO, LiCl, CHThreeCOOLi, LiTwoO
Licarboxylic acid Li and the like, among which LiOH.HTwo
Use of O, LiOH or Li dicarboxylate
preferable.

【0019】また、マンガン化合物としては、粒子サイ
ズにばらつきのないものが好ましい。具体的には、Mn
2 3 等のマンガン酸化物、MnCO3 、Mn(N
3 2、ジカルボン酸マンガン等のマンガン塩等が挙
げられるが、中でもMn2 3 、ジカルボン酸マンガン
を用いることが好ましく、この場合のMn2 3 はMn
CO3 やMnO2 などの化合物を適切に熱処理して作製
したものを用いても構わない。なお、γ- MnO2 は凝
集粒子サイズのばらつきが比較的大きいのでこれとLi
出発原料を直接反応させるのは好ましくない。
As the manganese compound, a manganese compound having no variation in particle size is preferable. Specifically, Mn
Manganese oxides such as 2 O 3 , MnCO 3 , Mn (N
O 3 ) 2 , manganese salts such as manganese dicarboxylate and the like, among which Mn 2 O 3 and manganese dicarboxylate are preferably used. In this case, Mn 2 O 3
A material prepared by appropriately heat-treating a compound such as CO 3 or MnO 2 may be used. Since γ-MnO 2 has a relatively large variation in the aggregated particle size,
It is not preferred to react the starting materials directly.

【0020】本発明のリチウムマンガン酸化物は、例え
ば特願平8−120068、特願平8−125574、
特願平9−077235、特願平9−089568に開
示されている方法で作製すると比較的容易に得られる。
具体的な製造方法の一例として、γ−MnO2 を800
℃で24時間、大気中で加熱して得たMn2 3 とLi
OH・H2 OをLiとMnのモル比で1:2になるよう
に混合した混合物を仮焼後、800℃、24時間、大気
中で本焼した後、600℃、500℃、450℃、40
0℃、350℃と各3時間ずつ保持しながら段階的に1
℃/min.の速度で降温し、350℃以降から炉冷す
る方法や、リチウム塩とマンガン塩の非水溶液をジカル
ボン酸塩共沈法により共沈させた粉末を焼成する方法な
どを挙げることができる。この時のサンプルの冷却方法
としては急冷すると酸素欠損が生じやすくなるので好ま
しくない。なお、本発明は先に示した製造方法によって
何ら限定されるものではない。
The lithium manganese oxide of the present invention is disclosed in, for example, Japanese Patent Application Nos. 08-120068, 8-125574,
It can be obtained relatively easily by using the methods disclosed in Japanese Patent Application Nos. 9-077235 and 9-089568.
As an example of a specific manufacturing method, γ-MnO 2 is 800
Mn 2 O 3 and Li obtained by heating in air at 24 ° C. for 24 hours
A mixture obtained by mixing OH.H 2 O at a molar ratio of Li and Mn of 1: 2 is calcined, then calcined at 800 ° C. for 24 hours in the air, and then 600 ° C., 500 ° C., 450 ° C. , 40
While maintaining the temperature at 0 ° C. and 350 ° C. for 3 hours, 1
° C / min. And a method in which a non-aqueous solution of a lithium salt and a manganese salt is co-precipitated by a dicarboxylate co-precipitation method, and a method of firing the powder is performed. As a cooling method of the sample at this time, rapid cooling is not preferable because oxygen deficiency tends to occur. The present invention is not limited by the manufacturing method described above.

【0021】以上のような一般式Li( Mn2-x
x ) O4 (ただし、0≦X≦0. 05)を持ち、結晶
子の不均一歪の範囲を規定したスピネル系リチウムマン
ガン酸化物よりなる正極と組み合わせて用いられる負極
活物質としては、通常、この種の非水電解液二次電池に
用いられる材料がいずれも使用可能である。
The general formula Li (Mn 2-x L
i x) O 4 (provided that, 0 ≦ X ≦ 0. 05 ) has, as the negative electrode active material used in combination with a positive electrode made of the spinel type lithium manganese oxide which defines the scope of the non-uniform strain of crystallite, In general, any of the materials used for this type of non-aqueous electrolyte secondary battery can be used.

【0022】例えば、リチウムやリチウム合金であって
もよいが、より安全性の高いリチウムを挿入・放出でき
る化合物、特には炭素材料が好ましい。この炭素材料は
特に限定されないが、黒鉛、及び石炭系コークス、石油
系コークス、石炭系ピッチの炭化物、石油系ピッチの炭
化物、ニードルコークス、ピッチコークス、フェノール
樹脂、結晶セルロース等の炭化物等及びこれらを一部黒
鉛化した炭素材、ファーネスブラック、アセチレンブラ
ック、ピッチ系炭素繊維等が挙げられる。
For example, lithium or a lithium alloy may be used, but a compound that can insert and release lithium with higher safety, particularly a carbon material, is preferable. This carbon material is not particularly limited, graphite, coal-based coke, petroleum-based coke, coal-based pitch carbide, petroleum-based pitch carbide, needle coke, pitch coke, phenolic resin, carbides such as crystalline cellulose and the like. Examples thereof include partially graphitized carbon materials, furnace black, acetylene black, and pitch-based carbon fibers.

【0023】負極は、負極活物質と結着剤( バインダ
ー) とを溶媒でスラリー化したものを塗布し乾燥したも
のを用いることができる。正極は、正極活物質と結着剤
( バインダー) と導電剤とを溶媒でスラリー化したもの
を塗布し乾燥したものを用いることができる。負極、正
極活物質の結着剤( バインダー) としては、例えばポリ
フッ化ビニリデン、ポリテトラフルオロエチレン、EP
DM( エチレン−プロピレン−ジエン三元共重合体) 、
SBR( スチレン−ブタジエンゴム) 、NBR( アクリ
ロニトリル−ブタジエンゴム) 、フッ素ゴム等が挙げら
れるが、これらに限定されない。
As the negative electrode, a negative electrode active material and a binder (binder) slurried with a solvent, applied and dried, can be used. The positive electrode consists of a positive electrode active material and a binder
A slurry obtained by slurrying the binder and the conductive agent with a solvent is applied and dried. As the binder (binder) for the negative electrode and the positive electrode active material, for example, polyvinylidene fluoride, polytetrafluoroethylene, EP
DM (ethylene-propylene-diene terpolymer),
Examples include, but are not limited to, SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), and fluororubber.

【0024】正極の導電剤としては、黒鉛の微粒子、ア
セチレンブラック等のカーボンブラック、ニードルコー
クス等の無定形炭素の微粒子等が使用されるが、これら
に限定されない。また、セパレーターを使用する場合に
は、通常、セパレーターとして、微多孔性の高分子フィ
ルムが用いられ、ナイロン、セルロースアセテート、ニ
トロセルロース、ポリスルホン、ポリアクリロニトリ
ル、ポリフッ化ビニリデン、ポリプロピレン、ポリエチ
レン、ポリブテン等のポリオレフィン高分子よりなるも
のが用いられる。セパレーターの化学的及び電気化学的
安定性は重要な因子である。この点からポリオレフィン
系高分子が好ましく、電池セパレーターの目的の一つで
ある自己閉塞温度の点からポリエチレン製であることが
望ましい。
Examples of the conductive agent for the positive electrode include, but are not limited to, graphite fine particles, carbon black such as acetylene black, and amorphous carbon fine particles such as needle coke. Also, when using a separator, usually, a microporous polymer film is used as a separator, nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, polypropylene, polyethylene, polybutene, etc. What consists of a polyolefin polymer is used. The chemical and electrochemical stability of the separator is an important factor. In this respect, a polyolefin-based polymer is preferable, and it is preferable that the battery separator be made of polyethylene from the viewpoint of the self-closing temperature, which is one of the purposes of the battery separator.

【0025】ポリエチレンセパレーターの場合、高温形
状維持性の点から超高分子量ポリエチレンであることが
好ましく、その分子量の下限は好ましくは50万、さら
に好ましくは100万、最も好ましくは150万であ
る。他方分子量の上限は、好ましくは500万、更に好
ましくは400万、最も好ましくは300万である。分
子量が大きすぎると、流動性が低すぎて加熱された時セ
パレーターの孔が閉塞しない場合があるからである。
In the case of a polyethylene separator, ultrahigh molecular weight polyethylene is preferable from the viewpoint of high-temperature shape retention, and the lower limit of the molecular weight is preferably 500,000, more preferably 1,000,000, and most preferably 1.5 million. On the other hand, the upper limit of the molecular weight is preferably 5,000,000, more preferably 4,000,000, and most preferably 3,000,000. If the molecular weight is too large, the fluidity is too low and the pores of the separator may not be closed when heated.

【0026】また、本発明のリチウム二次電池における
イオン伝導体には、たとえば公知の有機電解液、高分子
固体電解質、ゲル状電解質、無機固体電解質等を用いる
ことができるが、中でも有機電解液が好ましい。有機電
解液は、有機溶媒と溶質から構成される。
As the ionic conductor in the lithium secondary battery of the present invention, for example, known organic electrolytes, polymer solid electrolytes, gel electrolytes, inorganic solid electrolytes and the like can be used. Is preferred. The organic electrolyte is composed of an organic solvent and a solute.

【0027】有機溶媒としては特に限定されるものでは
ないが、例えばカーボネート類、エーテル類、ケトン
類、スルホラン系化合物、ラクトン類、ニトリル類、塩
素化炭化水素類、エーテル類、アミン類、エステル類、
アミド類、リン酸エステル化合物等を使用することがで
きる。これらの代表的なものを列挙すると、プロピレン
カーボネート、エチレンカーボネート、ビニレンカーボ
ネート、テトラヒドロフラン、2−メチルテトラヒドロ
フラン、1,4−ジオキサン、4−メチル−2−ペンタ
ノン、1,2−ジメトキシエタン、1,2−ジエトキシ
エタン、γ−ブチロラクトン、1,3−ジオキソラン、
4−メチル−1,3−ジオキソラン、ジエチルエーテ
ル、スルホラン、メチルスルホラン、アセトニトリル、
プロピオニトリル、ベンゾニトリル、ブチロニトリル、
バレロニトリル、1,2−ジクロロエタン、ジメチルホ
ルムアミド、ジメチルスルホキシド、リン酸トリメチ
ル、リン酸トリエチル等の単独もしくは二種類以上の混
合溶媒が使用できる。
The organic solvent is not particularly restricted but includes, for example, carbonates, ethers, ketones, sulfolane compounds, lactones, nitriles, chlorinated hydrocarbons, ethers, amines and esters. ,
Amides, phosphate compounds and the like can be used. When these representatives are listed, propylene carbonate, ethylene carbonate, vinylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 4-methyl-2-pentanone, 1,2-dimethoxyethane, 1,2 -Diethoxyethane, γ-butyrolactone, 1,3-dioxolane,
4-methyl-1,3-dioxolan, diethyl ether, sulfolane, methylsulfolane, acetonitrile,
Propionitrile, benzonitrile, butyronitrile,
A single solvent or a mixture of two or more solvents such as valeronitrile, 1,2-dichloroethane, dimethylformamide, dimethylsulfoxide, trimethyl phosphate, and triethyl phosphate can be used.

【0028】また、この溶媒に溶解させる溶質として
は、従来公知のいずれもが使用でき、LiCl4 、Li
AsF6 、LiPF6 、LiBF4 、LiB(C
6 5 4 、LiCl、LiBr、CH3 SO3 Li、
CF3 SO3 Li等が用いられる。高分子固体電解質を
使用する場合にも、この高分子化合物に公知のものを用
いることができ、特にリチウムイオンに対するイオン導
電性の高い高分子化合物を使用することが好ましく、例
えば、ポリエチレンオキサイド、ポリプロピレンオキサ
イド、ポリエチレンイミン等が好ましく使用される。ま
たこの高分子化合物に対して上記の溶質と共に、上記の
溶媒を加えてゲル状電解質として使用することも可能で
ある。
[0028] As the solute to be dissolved in the solvent, and any known can be used, LiCl 4, Li
AsF 6 , LiPF 6 , LiBF 4 , LiB (C
6 H 5) 4, LiCl, LiBr, CH 3 SO 3 Li,
CF 3 SO 3 Li or the like is used. In the case of using a polymer solid electrolyte, a known polymer compound can be used, and it is particularly preferable to use a polymer compound having high ion conductivity with respect to lithium ions. For example, polyethylene oxide, polypropylene Oxide, polyethyleneimine and the like are preferably used. It is also possible to add the above solvent together with the above solute to the polymer compound and use it as a gel electrolyte.

【0029】無機固体電解質を使用する場合にも、この
無機物に公知の結晶質、非晶質固体電解質を用いること
ができる。結晶質の固体電解質としては、例えばLi
l、Li3 N、Li1+x x Ti2-x (PO4 3 (M
=Al、Sc、Y、La)、Li0.5-3xRE0.5+x Ti
3 (RE=La、Pr、Nd、Sm)等が挙げられ、
非晶質の固体電解質としては、例えば4.9Lil−3
4.1Li2 O−61B 2 5 、33.3Li2 O−6
6.7SiO2 等の酸化物ガラスや0.45Lil−
0.37Li2 S−0.18P2 5 、0.44Lil
−0.30Li2 S−0.26B2 3 、0.30Li
l−0.42Li2 S−0.28SiS2 等の硫化物ガ
ラス等が挙げられる。これらのうち少なくとも1種以上
のものを用いることができる。
When an inorganic solid electrolyte is used,
Use of known crystalline and amorphous solid electrolytes for inorganic substances
Can be. As a crystalline solid electrolyte, for example, Li
l, LiThreeN, Li1 + xMxTi2-x(POFour)Three(M
= Al, Sc, Y, La), Li0.5-3xRE0.5 + xTi
OThree(RE = La, Pr, Nd, Sm) and the like,
As an amorphous solid electrolyte, for example, 4.9 Lil-3
4.1LiTwoO-61B TwoOFive, 33.3LiTwoO-6
6.7 SiOTwoOxide glass such as 0.45Lil-
0.37LiTwoS-0.18PTwoSFive, 0.44Lil
−0.30LiTwoS-0.26BTwoSThree, 0.30Li
1-0.42LiTwoS-0.28SiSTwoSulfide gas
Lath and the like. At least one of these
Can be used.

【0030】[0030]

【実施例】以下実施例によって本発明の方法をさらに具
体的に説明するが、本発明はこれらにより何ら制限され
るものではない。本発明の実施例および比較例を表1に
示す。ここで、初期放電容量並びに容量維持率を評価す
るに当たり、負極として金属Liを用いており、初期放
電容量は正極活物質1g当たりに換算している。
EXAMPLES The method of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. Table 1 shows examples and comparative examples of the present invention. Here, in evaluating the initial discharge capacity and the capacity retention ratio, metal Li was used as the negative electrode, and the initial discharge capacity was converted per 1 g of the positive electrode active material.

【0031】実施例1 1mol/lのLiNO3 と1mol/lのMn(NO
3 2 ・6H2 0のエタノール溶液をLi/Mnのモル
比が1/2となるように混合した溶液を攪拌させ、その
中に1.5倍当量のシュウ酸エタノール溶液を徐々に添
加した。この共沈溶液を2時間攪拌し、次にトリエチル
アミンでpH6.87に調整し、更に3時間攪拌した
後、静置して共沈させた。その後、濾過、乾燥すること
により共沈粉(Li2 (C2 4 )とMn(C2 4
の混合粉)を調製した。得られた共沈粉を焼成すること
により、LiMn2 4 の合成を行った。なお焼成条件
は、まず温度;400℃、時間;6hr、昇降温速度;
5℃/min.とし、大気中で熱分解し、次に温度;7
50℃、時間;24hr、昇温速度;5℃/min.と
し、大気中で焼成を行い、次に0.2℃/min.で4
50℃まで冷却後、6hr保持し、次に室温まで5℃/
min.で冷却した。
Example 1 1 mol / l of LiNO 3 and 1 mol / l of Mn (NO
3) 2 · 6H 2 0 in ethanol solution was stirred mixed solution such that the molar ratio of Li / Mn is 1/2, was slowly added 1.5 equivalents of oxalic acid in ethanol solution therein . This coprecipitation solution was stirred for 2 hours, then adjusted to pH 6.87 with triethylamine, and further stirred for 3 hours, and allowed to stand for coprecipitation. Thereafter, the precipitate is filtered and dried to form a coprecipitated powder (Li 2 (C 2 O 4 ) and Mn (C 2 O 4 ).
Was prepared. By burning the obtained coprecipitated powder, LiMn 2 O 4 was synthesized. The firing conditions were as follows: temperature: 400 ° C., time: 6 hr, temperature rise / fall rate;
5 ° C / min. And pyrolyze in air, then temperature; 7
50 ° C., time: 24 hr, heating rate: 5 ° C./min. Then, firing is performed in the air, and then 0.2 ° C./min. At 4
After cooling to 50 ° C, the temperature is maintained for 6 hours, and then to room temperature at 5 ° C /
min. And cooled.

【0032】実施例2 Li2 CO3 とMnCO3 をLi/Mn=1/2の割合
で乳鉢を用いて湿式混合した後、混合物を大気中で45
0、500、550、600℃と各12時間ずつ保持し
ながら段階的に昇温し、次に750℃、48時間、大気
中で本焼した後、450℃まで0.2℃/min.の速
度で徐冷した。
Example 2 Li 2 CO 3 and MnCO 3 were wet-mixed using a mortar at a ratio of Li / Mn = 1/2, and the mixture was air-mixed for 45 minutes.
The temperature was raised stepwise while maintaining the temperature at 0, 500, 550, and 600 ° C. for 12 hours, and then calcined at 750 ° C. for 48 hours in the air, and then 0.2 ° C./min. Cooled slowly at the speed.

【0033】実施例3 γ−MnO2 を800℃で24時間、大気中で加熱して
得たMn2 3 とLiOH・H2 Oとを出発原料とし、
リチウムとマンガンの原子比が1:2となるように配合
した。この配合物にエタノールを加え、乳鉢中でよくす
りつぶし、均一な混合物とした。得られた混合物を大気
中で500℃、24時間仮焼した。次に大気中で800
℃、24時間本焼した後、600、500、450、4
00、350℃と各3時間ずつ保持しながら段階的に1
℃/min.の速度で降温し、350℃以降は炉冷し
た。
Example 3 Mn 2 O 3 obtained by heating γ-MnO 2 in air at 800 ° C. for 24 hours and LiOH · H 2 O were used as starting materials.
It was blended so that the atomic ratio of lithium and manganese was 1: 2. Ethanol was added to this formulation and ground well in a mortar to form a uniform mixture. The obtained mixture was calcined in air at 500 ° C. for 24 hours. Then 800 in the atmosphere
After firing for 24 hours at 600 ° C, 500, 450, 4
While maintaining the temperature at 00 and 350 ° C. for 3 hours each,
° C / min. Then, the temperature was lowered at 350 ° C. and the furnace was cooled after 350 ° C.

【0034】比較例1 γ−MnO2 を800℃で4時間、大気中で加熱して得
たMn2 3 とLiOH・H2 Oとを出発原料とし、リ
チウムとマンガンの原子比が1/2となるように配合し
た。この配合物にエタノールを加え、乳鉢中でよくすり
つぶし、均一な混合物とした。得られた混合物を大気中
で500℃、24時間仮焼した。次に大気中で800
℃、24時間本焼した後、600、500、450、4
00、350℃と各3時間ずつ保持しながら段階的に1
℃/min.の速度で降温し、350℃以降は炉冷し
た。
[0034] 4 hours Comparative Example 1 γ-MnO 2 800 ℃, and Mn 2 O 3 and LiOH · H 2 O was obtained by heating in air was used as a starting material, the atomic ratio of lithium and manganese 1 / 2 was added. Ethanol was added to this formulation and ground well in a mortar to form a uniform mixture. The obtained mixture was calcined in air at 500 ° C. for 24 hours. Then 800 in the atmosphere
After firing for 24 hours at 600 ° C, 500, 450, 4
While maintaining the temperature at 00 and 350 ° C. for 3 hours each,
° C / min. Then, the temperature was lowered at 350 ° C., and the furnace was cooled after 350 ° C.

【0035】比較例2 LiOH・H2 Oとγ−MnO2 をLi/Mn=1/2
の割合で乳鉢を用いて湿式混合した後、混合物を大気中
で400℃、6時間仮焼した。次に大気中で750℃、
24時間本焼した後、450℃まで0.2℃/min.
の速度で徐冷した。
Comparative Example 2 LiOH.H 2 O and γ-MnO 2 were mixed with Li / Mn = 1/2.
, And the mixture was calcined in the air at 400 ° C. for 6 hours. Next, at 750 ° C in air
After firing for 24 hours, the temperature was increased to 450 ° C. at 0.2 ° C./min.
Cooled slowly at the speed.

【0036】比較例3 LiOH・H2 Oとγ−MnO2 をLi/Mn=1/2
の割合で乳鉢を用いて湿式混合した後、混合物を大気中
で450、500、550、600℃と各12時間ずつ
保持しながら段階的に昇温し、次に750℃、48時
間、大気中で本焼した後、450℃まで0.2℃/mi
n.の速度で徐冷した。粉末X線回折測定により実施例
及び比較例で合成したサンプルは全て室温で立方晶の単
一相であることを確認した。本発明の実施例及び比較例
における粉末X線回折パターンは、以下の条件で測定し
た。
Comparative Example 3 LiOH.H 2 O and γ-MnO 2 were mixed with Li / Mn = 1/2.
, Using a mortar, wet-mixing the mixture at 450, 500, 550, and 600 ° C. in the air in a stepwise manner while maintaining the temperature for 12 hours, and then 750 ° C. for 48 hours in the air. After firing at 0.2 ° C / mi up to 450 ° C
n. Cooled slowly at the speed. By powder X-ray diffraction measurement, it was confirmed that all the samples synthesized in Examples and Comparative Examples were cubic single phases at room temperature. The powder X-ray diffraction patterns in Examples and Comparative Examples of the present invention were measured under the following conditions.

【0037】 測定機種: 理学社製 LINT1500 照射X線: Cu Kα線 管電圧: 50kV 管電流: 200mA 発散、散乱スリット: 1/4゜ 受光スリット: 0.15mm スキャンタイプ: ステップ ステップサイズ: 0.004゜ ステップ当たりの時間: 5秒 測定範囲:2θとして30〜31、35〜37、37〜
38.5、63〜65、75〜78、80〜82度
Measurement model: LINT 1500 manufactured by Rigaku Corporation Irradiated X-ray: Cu Kα ray Tube voltage: 50 kV Tube current: 200 mA Divergence, scattering slit: 1/4 mm Light receiving slit: 0.15 mm Scan type: Step Step size: 0.004時間 Time per step: 5 seconds Measurement range: 30 to 31, 35 to 37, 37 to 2θ
38.5, 63-65, 75-78, 80-82 degrees

【0038】結晶子の不均一歪ηは上記した条件のもと
で測定された結果よりそれぞれ次式
The non-uniform strain η of the crystallite can be calculated from the results obtained under the above conditions by the following equations.

【0039】[0039]

【数4】 βcos θ=λ/D+2ηsin θ (1) Equation 4 βcos θ = λ / D + 2η sin θ (1)

【0040】(ただし、βは積分幅(rad) 、θは回折角
(゜)、λは1.54056Å(CuK α)、Dは結
晶子サイズ(Å)、ηは結晶子の不均一歪を表す。)を
用い、面反射(220)(311)(222)(44
0)(533)(622)(444)の回折角θと積分
幅βを代入し、横軸をsin θ、縦軸をβcos θとした際
の傾き(2η)を2で割ることにより求めた。表1の実
施例及び比較例におけるX値は以下に示す方法で求め
た。
(Where β is the integral width (rad), θ is the diffraction angle (゜), λ is 1.54056 ° (CuKα), D is the crystallite size (Å), and η is the nonuniform strain of the crystallite. Surface reflection (220) (311) (222) (44)
0), (533), (622), and (444) were substituted by the diffraction angle θ and the integration width β, and the slope (2η) when the horizontal axis was sin θ and the vertical axis was βcos θ was divided by 2. . X values in Examples and Comparative Examples in Table 1 were determined by the following methods.

【0041】(Li の全量分析)50℃、1時間の真空乾
燥処理後、精秤したリチウムマンガン酸化物を塩酸酸性
溶液中で加熱させ、測定溶液を調製した。原子吸光装置
を用い、検量線法によってLi濃度を求め、一定重量当
たりのLi含有量を算出した。
(Analysis of total amount of Li) After vacuum drying at 50 ° C for 1 hour, a precisely weighed lithium manganese oxide was heated in an acid solution of hydrochloric acid to prepare a measurement solution. Using an atomic absorption spectrometer, the Li concentration was determined by the calibration curve method, and the Li content per constant weight was calculated.

【0042】(Mn の全量分析:EDTA キレート滴定)50
℃、1時間の真空乾燥処理後、精秤したリチウムマンガ
ン酸化物を塩酸酸性溶液中で加熱させ、測定溶液を調製
した。溶液をホールピペットにてコニカルビーカーに分
取し、少過剰の0.01M-EDTA溶液を加えた。次に純水を加
えて全量を75mlとし、8N−NaOH水溶液とアン
モニア緩衝液を適当量加えてpH10に調整した。純水
で全量が100mlとなるように調整し、その後BT指
示薬を滴下した。滴定溶液として0.01M−Mgイオ
ン標準溶液を使用し、ミクロビュレットにて滴定を行っ
た。BT指示薬の色が青から赤に変色したところを終点
とした。この時の滴定結果より、一定重量当たりのMn
含有量を算出した。
(Total analysis of Mn: EDTA chelate titration) 50
After vacuum drying at 1 ° C. for 1 hour, the precisely weighed lithium manganese oxide was heated in a hydrochloric acid solution to prepare a measurement solution. The solution was fractionated into a conical beaker with a whole pipette, and a small excess of 0.01M-EDTA solution was added. Next, pure water was added to adjust the total volume to 75 ml, and the pH was adjusted to 10 by adding an appropriate amount of an 8N-NaOH aqueous solution and an ammonia buffer. The total volume was adjusted to 100 ml with pure water, and then the BT indicator was added dropwise. Using a 0.01 M-Mg ion standard solution as a titration solution, titration was performed with a microburette. The point at which the color of the BT indicator changed from blue to red was defined as the end point. From the titration result at this time, Mn per a constant weight
The content was calculated.

【0043】(Li とMnの組成比)前記で求めたLiの定
量結果とMnの定量結果よりLiとMnの組成比を算出
した。尚、Li/Mnのモル比率が1/2以上の時は、
生成物の組成は結晶学的にLi( Mn2-x Lix ) O4
となるので、組成比は総和が3になるように求めた。
(Composition ratio of Li and Mn) The composition ratio of Li and Mn was calculated from the quantification results of Li and Mn obtained above. When the molar ratio of Li / Mn is 1/2 or more,
The composition of the product is crystallographically Li (Mn 2-x Li x ) O 4
Therefore, the composition ratio was determined so that the total sum would be 3.

【0044】電池の製造法及び充放電条件について以下
に説明する。表1に示した如く合成した正極活物質と導
電剤としてのアセチレンブラック及び結着剤としてのポ
リ4フッ化エチレン樹脂を重量比で75:20:5の割
合で混合して正極合剤とした。また、正極合剤0.1g
を直径16mmに1ton/cm2 でプレス成型して正
極とした。図2の正極1の上にセパレーター3として多
孔性ポリプロピレンフィルムを置いた。負極4とした直
径16mm、厚さ0.4mmのリチウム板を、ポリプロ
ピレン製ガスケット5を付けた封口管6に圧着した。非
水電解液として1 モル/lの過塩素酸リチウムを溶解し
たエチレンカーボネート+1,2−ジメトキシエタン
(50vol%:50vol%)溶液を用い、これをセ
パレーター3上及び負極4上に加えた。この後、電池を
封口した。これらの電池の充放電サイクル特性の比較を
行った。なお、本実施例における充放電サイクル試験
は、充放電電流2mA、電圧範囲が4.35Vから3.
2Vの間で定電流充放電することで行った。これらの結
果を表1及び図1に示す。
The method for producing the battery and the charge / discharge conditions will be described below. The cathode active material synthesized as shown in Table 1 was mixed with acetylene black as a conductive agent and polytetrafluoroethylene resin as a binder at a weight ratio of 75: 20: 5 to form a cathode mixture. . In addition, 0.1 g of the positive electrode mixture
Was press-formed at a diameter of 16 mm at 1 ton / cm 2 to obtain a positive electrode. A porous polypropylene film was placed as a separator 3 on the positive electrode 1 in FIG. A lithium plate having a diameter of 16 mm and a thickness of 0.4 mm serving as the negative electrode 4 was pressure-bonded to a sealing tube 6 provided with a polypropylene gasket 5. As a non-aqueous electrolyte, a solution of ethylene carbonate + 1,2-dimethoxyethane (50 vol%: 50 vol%) in which 1 mol / l of lithium perchlorate was dissolved was used, and the solution was added on the separator 3 and the negative electrode 4. Thereafter, the battery was sealed. The charge / discharge cycle characteristics of these batteries were compared. In the charge / discharge cycle test in this example, the charge / discharge current was 2 mA, and the voltage range was 4.35 V to 3.35 V.
This was performed by charging and discharging at a constant current between 2V. The results are shown in Table 1 and FIG.

【0045】[0045]

【表1】 結晶子の不均一歪ηと初期(1th)・100th後の
放電容量並びに100th放電容量維持率
[Table 1] Non-uniform strain η of crystallite, discharge capacity after initial (1th) / 100th, and 100th discharge capacity retention ratio

【0046】本発明にかなう実施例では、初期放電容量
が大きく、加えてサイクル特性に優れているので、10
0th後の放電容量が115mAh/g以上であること
がわかる。本実施例では電池の負極材料として金属リチ
ウムを用いているが、リチウム合金またはリチウムを挿
入・放出することができる化合物を用いた場合にも同様
の結果を得ている。
In the examples according to the present invention, since the initial discharge capacity is large and the cycle characteristics are excellent,
It can be seen that the discharge capacity after 0th is 115 mAh / g or more. In this embodiment, lithium metal is used as the negative electrode material of the battery. However, similar results are obtained when a lithium alloy or a compound capable of inserting and releasing lithium is used.

【0047】[0047]

【発明の効果】以上の様に、正極の活物質材料に一般式
Li( Mn2-x Lix ) O4 (ただし、0≦X≦0. 0
5)で示される立方晶スピネル結晶のX線回折パターン
における不均一歪ηが、0≦η≦1. 25×10-3の範
囲にあるリチウムマンガン酸化物を使用すれば、高い充
放電容量を維持したままサイクル特性が改善された電池
となる。その結果、安価な材料のリチウムマンガン酸化
物が正極材料として使用可能となり、高性能で安全で安
価なリチウムイオン二次電池が広い用途に供給できるよ
うになりその工業的価値は大である。
As described above, as the active material of the positive electrode, the general formula Li (Mn 2-x Li x ) O 4 (where 0 ≦ X ≦ 0.0
If a lithium manganese oxide having a non-uniform strain η in the range of 0 ≦ η ≦ 1.25 × 10 −3 in the X-ray diffraction pattern of the cubic spinel crystal shown in 5) is used, a high charge / discharge capacity can be obtained. A battery with improved cycle characteristics is maintained. As a result, inexpensive lithium manganese oxide can be used as a cathode material, and a high-performance, safe and inexpensive lithium-ion secondary battery can be supplied to a wide range of uses, and its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ηと電池性能(100th放電容量)の相関図FIG. 1 is a correlation diagram between η and battery performance (100th discharge capacity).

【図2】本発明の実施例の非水電解液二次電池用活物質
の製造法の試験に用いたコイン型電池の縦断面図
FIG. 2 is a longitudinal sectional view of a coin-type battery used in a test of a method of manufacturing an active material for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 ケース 3 セパレーター 4 負極 5 ガスケット 6 封口缶 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Case 3 Separator 4 Negative electrode 5 Gasket 6 Sealing can

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極にリチウムを挿入・放出することが
できるリチウム含有金属酸化物を用いたリチウム二次電
池において、該リチウム含有金属酸化物が、一般式 【化1】Li( Mn2-x Lix ) O4 (ただし、0≦X≦0. 05) で示され、かつ、そのX
線回折パターンにおける結晶子の不均一歪ηが式(1) 【数1】 βcos θ=λ/D+2ηsin θ (1) (ただし、βは積分幅(rad) 、θは回折角(゜)、λは
1.54056Å(CuK α)、Dは結晶子サイズ
(Å)、ηは結晶子の不均一歪を表す。)において、0
≦η≦1. 25×10-3の範囲にあることを特徴とする
リチウム二次電池。
In a lithium secondary battery using a lithium-containing metal oxide capable of inserting and releasing lithium into a positive electrode, the lithium-containing metal oxide has a general formula: Li (Mn 2-x Li x ) O 4 (where 0 ≦ X ≦ 0.05), and the X
The non-uniform strain η of the crystallite in the line diffraction pattern is expressed by the following equation (1): β cos θ = λ / D + 2η sin θ (1) (where β is the integral width (rad), θ is the diffraction angle (゜), λ Is 1.54056 ° (CuKα), D is the crystallite size (Å), and η is the non-uniform strain of the crystallite.)
.Ltoreq..ltoreq.≤1.25.times.10.sup.- 3 .
JP01674898A 1998-01-29 1998-01-29 Lithium secondary battery Expired - Fee Related JP3578902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01674898A JP3578902B2 (en) 1998-01-29 1998-01-29 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01674898A JP3578902B2 (en) 1998-01-29 1998-01-29 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH11214003A true JPH11214003A (en) 1999-08-06
JP3578902B2 JP3578902B2 (en) 2004-10-20

Family

ID=11924897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01674898A Expired - Fee Related JP3578902B2 (en) 1998-01-29 1998-01-29 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3578902B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226214A (en) * 2001-01-26 2002-08-14 Tosoh Corp New lithium manganese complex oxide and its production method and application thereof
JP2011155003A (en) * 2011-01-07 2011-08-11 Hitachi Metals Ltd Cathode active material for nonaqueous lithium secondary battery and producing method therefor
WO2012008480A1 (en) * 2010-07-16 2012-01-19 三井金属鉱業株式会社 Spinel-type lithium transition metal oxide and positive electrode active material substance for lithium batteries
JP2012036085A (en) * 2011-09-20 2012-02-23 Tosoh Corp Novel lithium manganese composite oxide, and production method thereof and use thereof
JP2020161456A (en) * 2019-03-28 2020-10-01 住友大阪セメント株式会社 Positive electrode material for lithium-ion secondary battery, positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226214A (en) * 2001-01-26 2002-08-14 Tosoh Corp New lithium manganese complex oxide and its production method and application thereof
WO2012008480A1 (en) * 2010-07-16 2012-01-19 三井金属鉱業株式会社 Spinel-type lithium transition metal oxide and positive electrode active material substance for lithium batteries
JP4939670B2 (en) * 2010-07-16 2012-05-30 三井金属鉱業株式会社 Spinel type lithium transition metal oxide and cathode active material for lithium battery
US8734998B2 (en) 2010-07-16 2014-05-27 Mitsui Mining & Smelting Co., Ltd. Spinel-type lithium transition metal oxide and positive electrode active material for lithium battery
JP2011155003A (en) * 2011-01-07 2011-08-11 Hitachi Metals Ltd Cathode active material for nonaqueous lithium secondary battery and producing method therefor
JP2012036085A (en) * 2011-09-20 2012-02-23 Tosoh Corp Novel lithium manganese composite oxide, and production method thereof and use thereof
JP2020161456A (en) * 2019-03-28 2020-10-01 住友大阪セメント株式会社 Positive electrode material for lithium-ion secondary battery, positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
CN111755673A (en) * 2019-03-28 2020-10-09 住友大阪水泥股份有限公司 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US11158852B2 (en) 2019-03-28 2021-10-26 Sumitomo Osaka Cement Co., Ltd. Positive electrode material for lithium-ion secondary batteries, positive electrode for lithium-ion secondary batteries, and lithium-ion secondary battery

Also Published As

Publication number Publication date
JP3578902B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
EP2868630B1 (en) Polycrystalline lithium manganese oxide particles, method for preparing same, and anode active material containing polycrystalline lithium manganese oxide particles
KR100916088B1 (en) Nonaqueous Electrolytic Secondary Battery and Method of Manufacturing the Same
KR102140969B1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method of same, and nonaqueous electrolyte secondary battery using same
JP4111806B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP4086654B2 (en) Lithium-containing composite oxide, method for producing the same, and non-aqueous secondary battery
JP2008120679A5 (en)
JP2013129589A (en) Composite oxide, method for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery
KR20150078672A (en) Complx metal precursor for lithium secondary battery, method for production thereof, cathode active material, lithium secondary battery including the same
JP2011204695A (en) Positive electrode active material, positive electrode, and secondary battery
JP3887983B2 (en) Positive electrode material for lithium secondary battery and lithium secondary battery
JP3578902B2 (en) Lithium secondary battery
JPH0935712A (en) Positive electrode active material, its manufacture and nonaqueous electrolyte secondary battery using it
JPH1079250A (en) Positive electrode active material, its manufacture, and nonaqueous solvent secondary battery using it
JPH10324521A (en) Lithium-manganese multiple oxide, its production and its use
JPH11162510A (en) Nonaqueous electrolyte secondary battery
JP3769052B2 (en) Method for producing tin-added lithium nickelate for active material of lithium secondary battery positive electrode
JP4884995B2 (en) Positive electrode active material, positive electrode and secondary battery
JP2002348121A (en) Method for manufacturing lithium nickel compound oxide
JPH11273679A (en) Lithium secondary battery
JP3632374B2 (en) Secondary battery
JP3975505B2 (en) Method for producing lithium manganate and non-aqueous solvent secondary battery
JPH1021914A (en) Non-aqueous electrolyte secondary battery
JP3736169B2 (en) Positive electrode material for lithium secondary battery and lithium secondary battery
JP2002321919A (en) Lithium manganese compound oxide and lithium secondary battery
JPH1145714A (en) Secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040422

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees