JP2002226214A - New lithium manganese complex oxide and its production method and application thereof - Google Patents

New lithium manganese complex oxide and its production method and application thereof

Info

Publication number
JP2002226214A
JP2002226214A JP2001019023A JP2001019023A JP2002226214A JP 2002226214 A JP2002226214 A JP 2002226214A JP 2001019023 A JP2001019023 A JP 2001019023A JP 2001019023 A JP2001019023 A JP 2001019023A JP 2002226214 A JP2002226214 A JP 2002226214A
Authority
JP
Japan
Prior art keywords
lithium
manganese
composite oxide
lithium manganese
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001019023A
Other languages
Japanese (ja)
Other versions
JP4876316B2 (en
Inventor
Masaki Okada
岡田昌樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2001019023A priority Critical patent/JP4876316B2/en
Publication of JP2002226214A publication Critical patent/JP2002226214A/en
Application granted granted Critical
Publication of JP4876316B2 publication Critical patent/JP4876316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a new lithium manganese complex oxide and to provide its production method, furthermore to provide a manganese type lithium secondary cell excellent in high-rate charge and discharge characteristics using the lithium manganese complex oxide as a cathode active material. SOLUTION: The lithium manganese complex oxide which has a spinel type crystal structure is denoted by the formula; Li1+XMn2-Y-ZMZO4+δ(M is one or more elements selected from Ni, Co, Fe, Cr, Cu, B, Al, Ga and In, 0<=X<=1/3, 0<=Y<=1/3, 9<Z<=0.25, -0.14<=δ<=0.5) and its average particle size is 5-20 μm, its BET specific surface area is below 1.0 m2.g-1 and the average crystalline diameter determined by Hall method is above 1,000 angstrom. The production method for the lithium manganese complex oxide and the lithium secondary cell using this lithium manganese complex oxide as a cathode are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は新規なリチウムマ
ンガン酸化物に関するものであって、詳しくは、一般式
Li1+XMn2-Y-ZZ4+ δ(式中MはNi、Co、F
e、Cr、Cu,B、Al、Ga、Inから選ばれる少
なくとも一種類以上の元素であり、0≦X≦1/3,0
≦Y≦1/3,0<Z≦0.25,−0.14≦δ≦
0.5)で表され、平均粒子径が5〜20μm、BET
比表面積が1.0m2・g-1以下、Hallの方法から
求めた平均結晶子径が1000オングストローム以上の
スピネル型結晶構造からなるリチウムマンガン複合酸化
物とその製造方法及びそのリチウムマンガン酸化物を正
極活物質に用いるリチウム二次電池に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel lithium manganese oxide, and more specifically, to a general formula Li 1 + X Mn 2-YZM Z O 4+ δ (where M is Ni, Co, F
e, at least one element selected from the group consisting of Cr, Cu, B, Al, Ga and In, where 0 ≦ X ≦ 1 / 3,0
≦ Y ≦ 1/3, 0 <Z ≦ 0.25, −0.14 ≦ δ ≦
0.5), having an average particle diameter of 5 to 20 μm and a BET
A lithium manganese composite oxide having a spinel type crystal structure having a specific surface area of 1.0 m 2 · g −1 or less and an average crystallite diameter determined by Hall's method of 1000 Å or more, a method for producing the same, and a lithium manganese oxide thereof The present invention relates to a lithium secondary battery used for a positive electrode active material.

【0002】マンガン系材料は、安価で、原料のマンガ
ンが資源的に豊富で、環境に対して優しい材料であるこ
とから、各種用途に対して有望な材料のひとつである。
A manganese-based material is one of promising materials for various uses because it is inexpensive, is rich in manganese as a raw material, and is environmentally friendly.

【0003】リチウム二次電池は、理論上、高いエネル
ギー密度の電池が構成可能であることから、次世代を担
う新型二次電池として幅広い分野への適用が進められて
おり、一部で既に実用化されたものも含めて、高性能化
を目指した研究が進められている。
[0003] Since lithium secondary batteries can theoretically be constructed with a high energy density, they are being applied to a wide range of fields as new types of secondary batteries for the next generation. Research aimed at improving performance, including those that have been developed, is being pursued.

【0004】[0004]

【従来の技術】パーソナルユースのモバイル機器の普及
に伴って、小型、軽量でエネルギー密度の高いリチウム
二次電池の開発が強く望まれるようになり、負極にリチ
ウムを吸蔵、放出可能な炭素質材料を用いたリチウムイ
オン電池が実用化された。
2. Description of the Related Art With the spread of mobile devices for personal use, the development of a small, lightweight, and high energy density lithium secondary battery has been strongly desired, and a carbonaceous material capable of inserting and extracting lithium in a negative electrode. Lithium-ion batteries using Pt have been commercialized.

【0005】現在のリチウムイオン電池の正極材料に
は、リチウムコバルト酸化物(以下LiCoO2と表
記)が主に使用されているが、コバルト原料が高価であ
ることから代替材料の開発が望まれている。
[0005] At present, lithium cobalt oxide (hereinafter referred to as LiCoO 2 ) is mainly used as a positive electrode material of a lithium ion battery. However, since a cobalt raw material is expensive, development of an alternative material is desired. I have.

【0006】LiCoO2に代わる4V級の起電力を示
す正極材料としては、リチウムニッケル酸化物(以下L
iNiO2と表記)やリチウムマンガンスピネル(以下
LiMn24と表記)が挙げられるが、資源的に豊富で
安価であることや環境への影響が小さいこと、電池にし
た場合の安全性が確保し易いことなどから、ハイブリッ
ドタイプの電気自動車用の電池や燃料電池の補助電源と
しての適用に対してはLiMn24が最も優れた正極材
料と考えられており、適用の検討が鋭意進められ、一部
で既に実用化に至っている。
[0006] As a positive electrode material showing a 4 V class electromotive force in place of LiCoO 2 , lithium nickel oxide (hereinafter referred to as L
iNiO 2 ) and lithium manganese spinel (hereinafter referred to as LiMn 2 O 4 ), which are abundant and inexpensive in terms of resources, have little impact on the environment, and ensure safety when used in batteries. LiMn 2 O 4 is considered to be the best cathode material for use as an auxiliary power source for batteries for hybrid-type electric vehicles and fuel cells because of its ease of use. Some have already been put into practical use.

【0007】ハイブリッドタイプの電気自動車用電池で
は、自動車が発進する際や加速する際のパワーアシスト
性能、および減速時の運動エネルギーの回生性能が重要
であり、短時間で大きな電流を出し入れする能力(=ハ
イレート充放電特性)が要求される。このような要求に
対しては、これまで電池構造や電極構造の最適化などに
よる対応が成されてきたが、更なる電池性能の向上に対
しては正極材料自身の改良が重要である。また、LiM
24の高温安定性は、LiCoO2やLiNiO2に比
べて劣ることから、この点の改善も重要である。
In a hybrid-type battery for an electric vehicle, power assist performance when the vehicle starts or accelerates, and regenerative performance of kinetic energy during deceleration are important, and the ability to input and output a large current in a short time ( = High rate charge / discharge characteristics). Although such demands have been met by optimizing the battery structure and electrode structure, improvement of the positive electrode material itself is important for further improvement of battery performance. Also, LiM
Since the high-temperature stability of n 2 O 4 is inferior to LiCoO 2 and LiNiO 2 , improvement in this point is also important.

【0008】[0008]

【発明が解決しようとする課題】本願発明の目的は、優
れたハイレート充放電特性と高温安定性を兼ね備えた新
規なリチウムマンガン酸化物とその製造方法を提案し、
さらに、この化合物を正極活物質に用いた高出力なリチ
ウム二次電池を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to propose a novel lithium manganese oxide having excellent high-rate charge / discharge characteristics and high-temperature stability, and a method for producing the same.
Another object of the present invention is to provide a high-output lithium secondary battery using the compound as a positive electrode active material.

【0009】[0009]

【課題を解決するための手段】LiMn24のハイレー
ト充放電特性と高温安定性を同時に向上させることを目
的に鋭意検討を行った結果、マンガンの平均酸化数が8
/3以上のマンガン化合物と、リチウム化合物と、N
i、Co、Fe、Cr、Cu、B、Al、Ga、Inか
ら選ばれる少なくとも一種類以上の金属材料との混合物
を所定の方法で焼成することで、一般式Li1+XMn
2-Y-ZZ4+ δ(式中MはNi、Co、Fe、Cr、C
u、B、Al、Ga、Inから選ばれる少なくとも一種
類以上であり、0≦X≦1/3,0≦Y≦1/3,0<
Z≦0.25,−0.14≦δ≦0.5)で表され、平
均粒子径が5〜20μm、BET比表面積が1.0m2
・g-1以下、Hallの方法から求めた平均結晶子径が
1000オングストローム以上である新規なスピネル型
結晶構造のリチウムマンガン複合酸化物が合成可能であ
り、さらに、これをリチウム二次電池の正極活物質に用
いることで、ハイレート充放電特性と高温安定性を兼ね
備えたマンガン系リチウム二次電池が構成できることを
見出し、本願発明を完成するに至った。
Means for Solving the Problems As a result of diligent studies aimed at simultaneously improving the high-rate charge / discharge characteristics and high-temperature stability of LiMn 2 O 4 , the average oxidation number of manganese was 8%.
/ 3 or more manganese compound, lithium compound and N
By baking a mixture with at least one metal material selected from i, Co, Fe, Cr, Cu, B, Al, Ga, and In by a predetermined method, a general formula Li 1 + X Mn is obtained.
2-YZ M Z O 4+ δ ( wherein M is Ni, Co, Fe, Cr, C
at least one selected from u, B, Al, Ga, and In, and 0 ≦ X ≦ 1/3, 0 ≦ Y ≦ 1/3, 0 <
Z ≦ 0.25, −0.14 ≦ δ ≦ 0.5), the average particle diameter is 5 to 20 μm, and the BET specific surface area is 1.0 m 2.
G- 1 or less, a novel spinel-type lithium manganese composite oxide having an average crystallite diameter of 1000 angstroms or more determined by the Hall method can be synthesized, and this can be used as a positive electrode of a lithium secondary battery. The inventors have found that a manganese-based lithium secondary battery having both high-rate charge / discharge characteristics and high-temperature stability can be constituted by using the active material, and have completed the present invention.

【0010】以下、本願発明を具体的に説明する。Hereinafter, the present invention will be described specifically.

【0011】一般式Li1+XMn2-Y-ZZ4+ δ(式中
MはNi、Co、Fe、Cr、Cu、B、Al、Ga、
Inから選ばれる少なくとも一種類以上の元素であり、
0≦X≦1/3,0≦Y≦1/3,0<Z≦0.25,
−0.14≦δ≦0.5)で表され、スピネル型結晶構
造を持つ酸化物である。本発明の化合物は、リチウム,
マンガン,金属元素M(ここで、MはNi、Co、F
e、Cr、Cu、B、Al、Ga、Inから選ばれる少
なくとも一種類以上の元素),および酸素で構成され、
立方密充填した酸素配列中の四面体位置の8aサイトを
リチウムが、八面体位置の16dサイトをマンガンと金
属元素M、又はリチウムとマンガン並びに金属元素Mが
占有している。リチウム、マンガン、金属元素Mの各サ
イトの占有率は上記一般式の範囲であればスピネル型結
晶構造の酸化物となる。
The general formula Li 1 + X Mn 2-YZ M Z O 4+ δ (where M is Ni, Co, Fe, Cr, Cu, B, Al, Ga,
At least one element selected from In,
0 ≦ X ≦ 1/3, 0 ≦ Y ≦ 1/3, 0 <Z ≦ 0.25
−0.14 ≦ δ ≦ 0.5) and an oxide having a spinel-type crystal structure. The compound of the present invention comprises lithium,
Manganese, metal element M (where M is Ni, Co, F
e, at least one element selected from the group consisting of e, Cr, Cu, B, Al, Ga, and In), and oxygen.
Lithium occupies the 8a site at the tetrahedral position and manganese and metal element M, or manganese and metal element M, or lithium and manganese and metal element M occupies the 16d site at the octahedral position in the cubic densely packed oxygen array. If the occupancy of each site of lithium, manganese, and the metal element M is within the range of the above general formula, the oxide will have a spinel crystal structure.

【0012】本願発明のリチウムマンガン酸化物は、リ
チウム、マンガンおよび酸素の各元素以外にNi、C
o、Fe、Cr、Cu、B、Al、Ga、Inから選ば
れる少なくとも一種類以上の元素を含むことが重要であ
る。これらの元素を含有させることによって高温におけ
る安定性が改善される。
The lithium manganese oxide according to the present invention includes Ni, C and the like in addition to lithium, manganese and oxygen.
It is important to include at least one or more elements selected from o, Fe, Cr, Cu, B, Al, Ga, and In. By including these elements, stability at high temperatures is improved.

【0013】本願発明のリチウムマンガン酸化物は、平
均粒子径が5〜20μmであることが必須である。平均
粒子径が5μm未満の場合、高温安定性の低下が顕著に
なり、加えて電極を作製する際の作業性が悪くなること
から好ましくない。また、20μmを越えた場合にでは
ハイレート充放電特性が著しく低下する。
It is essential that the lithium manganese oxide of the present invention has an average particle diameter of 5 to 20 μm. If the average particle size is less than 5 μm, the stability at high temperatures is remarkably reduced, and in addition, the workability at the time of producing an electrode is not preferable. On the other hand, when the thickness exceeds 20 μm, the high-rate charge / discharge characteristics are significantly reduced.

【0014】本願発明のリチウムマンガン酸化物は、B
ET比表面積が1.0m2・g-1以下であることが必須
である。BET比表面積が大きいほど電解液との接触や
導電材料との接触が良好になりハイレート充放電性能に
対しては有利になるが、高温安定性の低下や電極作製時
の作業性が悪くなることからBET比表面積は1.0m
2・g-1以下が良い。
The lithium manganese oxide of the present invention is
It is essential that the ET specific surface area be 1.0 m 2 · g -1 or less. The larger the BET specific surface area, the better the contact with the electrolytic solution and the conductive material, which is advantageous for high-rate charge / discharge performance, but lowers high-temperature stability and deteriorates workability during electrode fabrication. The BET specific surface area is 1.0m
2 · g -1 or less is good.

【0015】本願発明のリチウムマンガン酸化物は、H
allの方法から求めた平均結晶子径が1000オング
ストローム以上であることが必須である。平均結晶子径
が上記範囲であれば、本発明の平均粒子径およびBET
比表面積の範囲においても良好なハイレート充放電特性
が達成可能となる。
[0015] The lithium manganese oxide of the present invention is H
It is essential that the average crystallite diameter determined by the All method is 1000 Å or more. If the average crystallite diameter is in the above range, the average particle diameter and BET of the present invention
Good high-rate charge / discharge characteristics can be achieved even in the range of the specific surface area.

【0016】スピネル構造を持つリチウムマンガン酸化
物では、8aサイトのリチウムが空の16cサイトを介
して固相内を拡散することで充放電反応が進む。リチウ
ムイオンの移動のし易さ、即ちハイレート充放電性能
は、固相内部のリチウム拡散経路の発達程度に影響を受
けることが考えられ、従って、結晶構造の発達したもの
ほどハイレート充放電性能が良好になると考えられる。
ハイブリッドタイプの電気自動車用電池用途では、少な
くとも5C(電池容量を1/5時間で充電あるいは放電
する条件)以上での充放電が必要であり、詳細について
は不明だが、発明者の検討によれば、Hall方法で求
めた平均結晶子径が1000オングストローム以上で著
しいハイレート特性の改善が認められた。なお、平均結
晶子径は単位格子の繰り返し発達程度を表わす指標で、
この値が大きいものほど結晶が発達していることを表わ
す。本発明のHallの方法は、例えば、X線回折の手
引改定第四版(理学電機株式会社)の75ページ以降に
記載されているように、粉末X線回折測定によって得ら
れる各回折ピークの回折位置と、ピークの広がり、すな
わち半値幅から平均結晶子径を求める方法である。
In the lithium manganese oxide having a spinel structure, the charge / discharge reaction proceeds as lithium at the 8a site diffuses in the solid phase through the empty 16c site. It is considered that the ease of movement of lithium ions, that is, the high-rate charge / discharge performance is affected by the degree of development of the lithium diffusion path inside the solid phase. Therefore, the higher the crystal structure, the better the high-rate charge / discharge performance. It is thought to be.
For use in hybrid-type electric vehicle batteries, it is necessary to charge or discharge at least 5C (conditions for charging or discharging the battery capacity in 1/5 hour), and details are unknown. When the average crystallite diameter determined by the Hall method was 1000 angstroms or more, remarkable improvement in high rate characteristics was observed. The average crystallite diameter is an index indicating the degree of repetitive development of the unit cell,
The larger the value, the more developed the crystal. The Hall method of the present invention can be applied to the diffraction of each diffraction peak obtained by powder X-ray diffraction measurement, for example, as described on page 75 and subsequent pages of X-ray diffraction guide revised 4th edition (Rigaku Corporation). In this method, the average crystallite diameter is determined from the position and the spread of the peak, that is, the half width.

【0017】層状構造のLiCoO2やLiNiO2では
2次元のリチウム固相内拡散が起こることに対して、ス
ピネル構造では3次元的に発達したリチウムの拡散経路
によってリチウムの固相内拡散が起こるためにハイレー
ト特性が優れることは容易に想定されるが、本発明のよ
うに、平均粒子径を5〜20μm、BET比表面積を
1.0m2・g-1以下、平均結晶子径を1000オング
ストローム以上とすることで、電極作製の容易さとハイ
レート充放電特性の両方を両立することが初めて可能と
なる。
In the case of a layered structure LiCoO 2 or LiNiO 2 , two-dimensional lithium diffusion in the solid phase occurs, whereas in the spinel structure, three-dimensionally developed lithium diffusion paths cause the lithium diffusion in the solid phase. It is easily assumed that the high-rate characteristics are excellent, but as in the present invention, the average particle diameter is 5 to 20 μm, the BET specific surface area is 1.0 m 2 · g −1 or less, and the average crystallite diameter is 1000 Å or more. By doing so, it is possible for the first time to achieve both easy electrode fabrication and high-rate charge / discharge characteristics.

【0018】本願発明のリチウムマンガン酸化物は、マ
ンガンの平均酸化数が8/3以上のマンガン化合物と、
リチウム化合物と、Ni、Co、Fe、Cr、Cu、
B、Al、Ga、Inから選ばれる少なくとも一種類以
上の金属材料との混合物を、最初に500℃以下の温度
で焼成を行った後に、500℃を超えて950℃以下の
温度で第2の焼成を行い、その後の500℃までの冷却
を1時間当たり20℃以下の速度で行うことで合成され
る。最初に500℃以下の温度で第1の焼成を行うこと
でマンガン化合物、リチウム化合物および金属元素Mと
の複合化反応が均一に進み易くなり、500℃を超えて
950℃以下の温度で第2の焼成を行うことによって、
結晶構造が充分発達したリチウムマンガン複合酸化物が
合成できる。さらに、リチウムマンガン酸化物は高温時
に酸素を放出吸収する性質を示すことから、降温過程に
おける酸素の再吸収を考慮して第2の焼成後の冷却を1
時間当たり20℃以下の速度で行うことが、組成均一な
結晶構造の発達したリチウムマンガン複合酸化物を合成
する上で重要である。なお、焼成は大気中もしくは酸素
含有量が18%以上の気体気流中で行うことが好まし
く、特に、第2の焼成ではこの条件がより好ましい。
The lithium manganese oxide of the present invention comprises a manganese compound having an average manganese oxidation number of 8/3 or more;
Lithium compound, Ni, Co, Fe, Cr, Cu,
A mixture with at least one or more metal materials selected from B, Al, Ga, and In is first fired at a temperature of 500 ° C. or less, and then a second temperature at a temperature of more than 500 ° C. and 950 ° C. or less. It is synthesized by firing and then cooling to 500 ° C. at a rate of 20 ° C. or less per hour. By first performing the first baking at a temperature of 500 ° C. or less, the compounding reaction with the manganese compound, lithium compound, and metal element M easily proceeds uniformly, and the second baking is performed at a temperature exceeding 500 ° C. and 950 ° C. or less. By firing the
A lithium manganese composite oxide having a sufficiently developed crystal structure can be synthesized. Further, since lithium manganese oxide exhibits a property of releasing and absorbing oxygen at a high temperature, cooling after the second baking is performed by 1 in consideration of re-absorption of oxygen in the temperature decreasing process.
It is important to perform the reaction at a rate of 20 ° C. or less per hour for synthesizing a lithium manganese composite oxide having a uniform crystal structure. Note that the firing is preferably performed in the air or in a gas stream having an oxygen content of 18% or more, and in particular, this condition is more preferable in the second firing.

【0019】本願発明のリチウムマンガン酸化物の合成
において、マンガンの平均酸化数が8/3以上のマンガ
ン化合物を用いることが重要である。合成に用いるマン
ガン化合物は、化合物中のマンガンの平均酸化数が8/
3以上であればいかなるものを用いても良い。本発明を
制限するものではないが、例えば、酸化物としては、各
種結晶形態のいわゆる二酸化マンガン、三二酸化マンガ
ン、水和酸化マンガン(MnOOH)、四三酸化マンガ
ンなどの酸化物や、マンガン化合物を500℃以上の温
度で熱処理して合成したマンガンの平均酸化数が8/3
以上のマンガン酸化物が例示される。詳細については不
明だが、これらの中でも、三二酸化マンガンを用いるこ
とで、組成の均一な結晶構造が発達したリチウムマンガ
ン複合酸化物の合成が容易になる。
In the synthesis of the lithium manganese oxide of the present invention, it is important to use a manganese compound having an average manganese oxidation number of 8/3 or more. The manganese compound used in the synthesis has an average oxidation number of manganese in the compound of 8 /
Any three or more may be used. Although not limiting the present invention, examples of the oxide include oxides such as various crystalline forms of manganese dioxide, manganese trioxide, hydrated manganese oxide (MnOOH), and manganese tetraoxide, and manganese compounds. The average oxidation number of manganese synthesized by heat treatment at a temperature of 500 ° C. or more is 8/3
The above manganese oxides are exemplified. Although the details are unknown, among these, the use of manganese trioxide facilitates the synthesis of a lithium manganese composite oxide having a uniform crystal structure.

【0020】合成に用いるリチウム化合物は、マンガン
の平均酸化数が8/3以上の化合物と500℃以下の温
度で複合化反応が始まる化合物であればいかなるものを
用いても良い。本発明を制限するものではないが、例え
ば、炭酸リチウム、水酸化リチウム、硝酸リチウム、酢
酸リチウム、ヨウ化リチウムなどが例示されるが、混合
をより均一に行うためには、平均粒径が10μm以下の
リチウム化合物を用いることが好ましい。
As the lithium compound used in the synthesis, any compound may be used as long as the compound starts to form a complex at a temperature of 500 ° C. or less with a compound having an average oxidation number of manganese of 8/3 or more. Although the present invention is not limited thereto, for example, lithium carbonate, lithium hydroxide, lithium nitrate, lithium acetate, lithium iodide and the like are exemplified. In order to perform mixing more uniformly, the average particle diameter is 10 μm. It is preferable to use the following lithium compounds.

【0021】合成に用いる金属元素Mには、500℃以
下の温度でマンガン原料、リチウム原料と複合化反応が
始まる化合物であればいかなるものを用いても良い。本
発明を制限するものではないが、例えば、Ni、Co、
Fe、Cr、Cu,B、Al、Ga、Inの炭酸塩、硝
酸塩、水酸化物、酸化物などが例示される。
As the metal element M used for the synthesis, any compound may be used as long as it is a compound which starts a complexing reaction with a manganese raw material and a lithium raw material at a temperature of 500 ° C. or less. Without limiting the invention, for example, Ni, Co,
Examples thereof include carbonates, nitrates, hydroxides, and oxides of Fe, Cr, Cu, B, Al, Ga, and In.

【0022】本願発明のリチウム二次電池の負極として
は、リチウム金属、リチウム合金、リチウムを予め吸蔵
した、リチウムを吸蔵放出可能な化合物を用いることが
できる。
As the negative electrode of the lithium secondary battery of the present invention, a lithium metal, a lithium alloy, or a compound capable of storing and releasing lithium, which has previously stored lithium, can be used.

【0023】リチウム合金としては、本発明を制限する
ものではないが、例えば、リチウム/スズ合金、リチウ
ム/アルミニウム合金、リチウム/鉛合金等が例示され
る。
The lithium alloy is not limited to the present invention, and examples thereof include a lithium / tin alloy, a lithium / aluminum alloy, and a lithium / lead alloy.

【0024】リチウムを吸蔵放出可能な化合物として
は、本発明を制限するものではないが、例えば、グラフ
ァイトや黒鉛等の炭素材料や、鉄の酸化物、コバルトの
酸化物が例示される。
The compound capable of inserting and extracting lithium is not limited to the present invention, and examples thereof include carbon materials such as graphite and graphite, iron oxides and cobalt oxides.

【0025】また、本願発明のリチウム二次電池の電解
質は、特に制限されないが、例えば、炭酸プロレン、炭
酸ジエチル等のカーボネート類や、スルホラン、ジメチ
ルスルホキシド等のスルホラン類、γブチロラクトン等
のラクトン類、ジメチルスルホキシド等のエーテル類の
少なくとも1種類以上の有機溶媒に、過塩素酸リチウ
ム、四フッ化ホウ酸リチウム、六フッ化リン酸リチウ
ム、トリフルオロメタンスルホン酸等のリチウム塩の少
なくとも1種類以上を溶解したものや、無機系および有
機系のリチウムイオン導電性の固体電解質などを用いる
ことができる。
The electrolyte of the lithium secondary battery of the present invention is not particularly limited. Examples thereof include carbonates such as prolene carbonate and diethyl carbonate; sulfolane such as sulfolane and dimethyl sulfoxide; lactones such as γ-butyrolactone; Dissolve at least one lithium salt such as lithium perchlorate, lithium tetrafluoroborate, lithium hexafluorophosphate, trifluoromethanesulfonic acid, etc. in at least one organic solvent such as ether such as dimethyl sulfoxide. In addition, inorganic and organic lithium-ion conductive solid electrolytes and the like can be used.

【0026】本願発明で得られたリチウムマンガン複合
酸化物を正極活物質に用いて、図1に示す電池を構成し
た。
A battery shown in FIG. 1 was constructed using the lithium-manganese composite oxide obtained in the present invention as a positive electrode active material.

【0027】図中において、1:正極リード線、2:正
極集電用メッシュ、3:正極、4:セパレータ、5:負
極、6:負極集電用メッシュ、7:負極用リード線、
8:容器、を示す。
In the drawing, 1: positive electrode lead wire, 2: positive electrode current collecting mesh, 3: positive electrode, 4: separator, 5: negative electrode, 6: negative electrode current collecting mesh, 7: negative electrode lead wire,
8: Container.

【0028】以下に、本願発明の具体例として実施例を
示すが、本願発明はこれらの実施例により制限されるも
のではない。
Examples will be shown below as specific examples of the present invention, but the present invention is not limited by these examples.

【0029】なお、本願発明の実施例および比較例にお
ける粉末X線回折測定、平均結晶子径εの算出は、以下
に示す方法で行った。
Incidentally, the powder X-ray diffraction measurement and the calculation of the average crystallite diameter ε in Examples and Comparative Examples of the present invention were performed by the following methods.

【0030】 粉末X線回折測定 測定機種 マックサイエンス社製 MXP3 照射 Cu Kα線 測定モード ステップスキャン スキャン条件 2θとして0.04° 計測時間 5秒 測定範囲 2θとして5°から80° 平均結晶子径の算出Hallの方法:β・cosθ/λ
=2・η・sinθ/λ+1/ε2本以上の回折線のプ
ロファイルを測定して、β・cosθ/λをY軸に、2
・η・sinθ/λをX軸にプロットして得られた直線
のX軸との切片の値の逆数が平均結晶子径の値εにな
る。
X-ray powder diffraction measurement Measurement model MXS3 manufactured by Mac Science Inc. Irradiation Cu Kα ray Measurement mode Step scan Scan condition 0.04 ° as 2θ Measurement time 5 seconds Measurement range 2θ from 5 ° to 80 ° Calculation of average crystallite diameter Hall's method: β · cos θ / λ
= 2 · η · sin θ / λ + 1 / ε The profile of two or more diffraction lines is measured, and β · cos θ / λ is set to 2 on the Y axis.
The reciprocal of the intercept of the straight line obtained by plotting η · sin θ / λ on the X axis is the average crystallite diameter value ε.

【0031】ここで、β:半値幅、λ:測定X線波長、
θ:回折線のブラック角 ε:結晶子径の平均の大きさ、η:結晶の不均一歪みの
値を表わす。
Here, β: half width, λ: measured X-ray wavelength,
θ: Black angle of diffraction line ε: Average size of crystallite diameter, η: Non-uniform strain value of crystal

【0032】なお、BET比表面積は窒素吸着法によっ
て、また、平均粒子径はマイクロトラックによって測定
した。
The BET specific surface area was measured by a nitrogen adsorption method, and the average particle diameter was measured by a Microtrac.

【0033】[0033]

【実施例】[リチウムマンガン複合酸化物の製造] 実施例1 (LiMn1.8Al0.24の合成)実施例1として、L
iMn1.8Al0.24を以下の方法によって作成した。
EXAMPLES [Production of lithium manganese composite oxide] Example 1 (Synthesis of LiMn 1.8 Al 0.2 O 4 )
iMn 1.8 Al 0.2 O 4 was prepared by the following method.

【0034】炭酸リチウム、水酸化アルミニウムと三二
酸化マンガンをモル比でLi:Mn:Al比が1.0:
1.8:0.2になるように混合した後に、第1の焼成
として、大気中で450℃の温度で12時間焼成を行っ
た。次に、これを室温まで降温した後に、粉砕・混合処
理を行った後に、第2の焼成として大気中で800℃の
温度で24時間焼成した。粉末X線回折測定の結果か
ら、得られた化合物はスピネル構造を持つことが分かっ
た。生成物の化学組成分析の結果、εの値、平均粒子径
およびBET比表面積を表1に示した。
Li: Mn: Al molar ratio of lithium carbonate, aluminum hydroxide and manganese trioxide is 1.0:
After mixing at 1.8: 0.2, the first baking was performed in air at 450 ° C. for 12 hours. Next, after the temperature was lowered to room temperature, pulverization and mixing were performed, and then the second firing was performed at 800 ° C. in the air for 24 hours. From the result of the powder X-ray diffraction measurement, it was found that the obtained compound had a spinel structure. Table 1 shows the value of ε, the average particle diameter, and the BET specific surface area as a result of the chemical composition analysis of the product.

【0035】実施例2 (LiMn1.8Ni0.54の合成)実施例2として、金
属元素に水酸化コバルトを用いて、モル比でLi:M
n:Ni比が1.0:1.8:0.5になるように混合
した以外は、実施例1と同様にしてリチウムマンガン複
合酸化物を合成した。粉末X線回折測定の結果から、得
られた化合物はスピネル構造を持つことが分かった。得
られた化合物の化学組成分析の結果、εの値、平均粒子
径およびBET比表面積を表1に示した。
Example 2 (Synthesis of LiMn 1.8 Ni 0.5 O 4 ) As Example 2, cobalt hydroxide was used as the metal element and Li: M was used in a molar ratio of Li: M.
A lithium manganese composite oxide was synthesized in the same manner as in Example 1 except that the n: Ni ratio was mixed so as to be 1.0: 1.8: 0.5. From the result of the powder X-ray diffraction measurement, it was found that the obtained compound had a spinel structure. As a result of chemical composition analysis of the obtained compound, the value of ε, the average particle diameter, and the BET specific surface area are shown in Table 1.

【0036】実施例3 (LiMn1.9Co0.14の合成)実施例3として、金
属元素に硝酸鉄の9水和物を用いて、モル比でLi:M
n:Fe比が1.0:1.9:0.1になるように混合
した以外は、実施例1と同様にしてリチウムマンガン複
合酸化物を合成した。粉末X線回折測定の結果から、得
られた化合物はスピネル構造を持つことが分かった。化
学組成分析の結果、εの値、平均粒子径およびBET比
表面積を表1に示した。
Example 3 (Synthesis of LiMn 1.9 Co 0.1 O 4 ) As Example 3, a 9: 9 hydrate of iron nitrate was used as a metal element, and Li: M was used in a molar ratio.
A lithium manganese composite oxide was synthesized in the same manner as in Example 1, except that the n: Fe ratio was mixed so as to be 1.0: 1.9: 0.1. From the result of the powder X-ray diffraction measurement, it was found that the obtained compound had a spinel structure. As a result of the chemical composition analysis, Table 1 shows the value of ε, the average particle diameter, and the BET specific surface area.

【0037】実施例4 (LiMn1.8Cr0.24の合成)実施例4として、金
属元素に三二酸化クロムを用いて、モル比でLi:M
n:Cr比が1.0:1.8:0.2になるように混合
した以外は、実施例1と同様にしてリチウムマンガン複
合酸化物を合成した。粉末X線回折測定の結果から、得
られた化合物はスピネル結晶構造を持つことが分かっ
た。得られた化合物の化学組成分析の結果、εの値、平
均粒子径およびBET比表面積の値を表1に示した。
Example 4 (Synthesis of LiMn 1.8 Cr 0.2 O 4 ) As Example 4, chromium trioxide was used as the metal element and Li: M was used in a molar ratio of Li: M.
A lithium manganese composite oxide was synthesized in the same manner as in Example 1, except that the n: Cr ratio was mixed so as to be 1.0: 1.8: 0.2. From the result of the powder X-ray diffraction measurement, it was found that the obtained compound had a spinel crystal structure. As a result of chemical composition analysis of the obtained compound, the value of ε, the average particle diameter, and the value of the BET specific surface area are shown in Table 1.

【0038】実施例5 (LiMn1.8Cu0.24の合成)実施例5として、金
属材料に硝酸銅の3水和物を用いて、モル比でLi:M
n:Cu比が1.0:1.8:0.2になるように混合
した以外は、実施例1と同様にしてリチウムマンガン複
合酸化物を合成した。粉末X線回折測定の結果から、粉
末X線回折測定の結果から、得られた化合物はスピネル
結晶構造を持つことが分かった。得られた化合物の化学
組成分析の結果、εの値、平均粒子径およびBET比表
面積の値を表1に示した。
Example 5 (Synthesis of LiMn 1.8 Cu 0.2 O 4 ) As Example 5, using a copper nitrate trihydrate as a metal material, a molar ratio of Li: M
A lithium manganese composite oxide was synthesized in the same manner as in Example 1, except that the n: Cu ratio was mixed so as to be 1.0: 1.8: 0.2. From the result of the powder X-ray diffraction measurement, it was found from the result of the powder X-ray diffraction measurement that the obtained compound had a spinel crystal structure. As a result of chemical composition analysis of the obtained compound, the value of ε, the average particle diameter, and the value of the BET specific surface area are shown in Table 1.

【0039】比較例1 比較例1として、第2の焼成後の冷却速度を1時間あた
り100℃とした以外は、実施例1と同様にしてLiM
1.8Al0.24を合成した。粉末X線回折測定の結果
から、得られた化合物はスピネル単相であることが分か
った。化学組成分析の結果、εの値、平均粒子径および
BET比表面積の値を表1に示した。
Comparative Example 1 As Comparative Example 1, LiMn was prepared in the same manner as in Example 1 except that the cooling rate after the second baking was 100 ° C. per hour.
n 1.8 Al 0.2 O 4 was synthesized. From the result of the powder X-ray diffraction measurement, it was found that the obtained compound was a spinel single phase. As a result of the chemical composition analysis, Table 1 shows the value of ε, the average particle diameter, and the value of the BET specific surface area.

【0040】[電池の構成]実施例1〜5及び比較例1
で製造したリチウムマンガン複合酸化物を、導電剤のポ
リテトラフルオロエチレンとアセチレンブラックとの混
合物(商品名:TAB−2)を重量比で2:1になるよ
うに混合した。混合物の75mgを1ton・cm-2
圧力で、16mmφのメッシュ(SUS 316)上に
ペレット状に成形した後に、200℃で5時間、減圧乾
燥処理を行った。
[Structure of Battery] Examples 1 to 5 and Comparative Example 1
Was mixed with a mixture of polytetrafluoroethylene and acetylene black (trade name: TAB-2) as conductive agents at a weight ratio of 2: 1. After 75 mg of the mixture was formed into a pellet on a 16 mmφ mesh (SUS 316) at a pressure of 1 ton · cm −2 , a vacuum drying treatment was performed at 200 ° C. for 5 hours.

【0041】これを、図1の3の正極に用いて、図1の
5の負極には、リチウム箔(厚さ0.2mm)から切り
抜いたリチウム片を用いて、電解液には、プロピレンカ
ーボネートと炭酸ジメチルの体積比1:2の混合溶媒
に、六フッ化リン酸リチウムを1mol・dm-3の濃度
に溶解した有機電解液を図1の4のセパレータに含浸さ
せて、断面積2cm2の図1に示した電池を構成した。
This was used for the positive electrode in FIG. 1, 3 for the negative electrode in FIG. 1, a lithium piece cut out of a lithium foil (thickness 0.2 mm) for the negative electrode in FIG. 1, and propylene carbonate for the electrolyte. the volume ratio of dimethyl carbonate 1: 2 mixed solvent of, impregnated with organic electrolyte prepared by dissolving lithium hexafluorophosphate in a concentration of 1 mol · dm -3 to 4 of the separator of Figure 1, the cross-sectional area 2 cm 2 The battery shown in FIG.

【0042】[レート特性の評価]上記方法で作成した
電池を用いて、はじめに0.4mA・cm-2の一定電流
で、電池電圧が4.5Vから3.5Vの間で5サイクル
充放電を繰り返した。次に、0.4mA・cm-2の一定
電流で電池電圧が4.5Vになるまで充電を行った後、
5mA・cm-2の一定電流で3.5Vまで放電を行っ
た。表1に、5サイクル目の0.4mA・cm-2での放
電容量に対する5mA・cm-2での放電容量の割合、す
なわち容量維持率を示した。
[Evaluation of Rate Characteristics] First, using the battery prepared by the above method, charging and discharging for 5 cycles were performed at a constant current of 0.4 mA · cm −2 and a battery voltage of 4.5 V to 3.5 V. Repeated. Next, after charging the battery at a constant current of 0.4 mA · cm −2 until the battery voltage becomes 4.5 V,
Discharge was performed to 3.5 V at a constant current of 5 mA · cm −2 . Table 1, the ratio of the discharge capacity at 5 mA · cm -2 to the discharge capacity at 0.4 mA · cm -2 at the fifth cycle, i.e. exhibited a capacity retention rate.

【0043】[0043]

【表1】 実施例1〜5で合成したリチウムマンガン酸化物は、い
ずれも95%程度の高い容量維持率を示した。一方、比
較例で合成したリチウムマンガン複合酸化物の容量維持
率は、90%であった。
[Table 1] Each of the lithium manganese oxides synthesized in Examples 1 to 5 showed a high capacity retention of about 95%. On the other hand, the capacity retention of the lithium manganese composite oxide synthesized in the comparative example was 90%.

【0044】[0044]

【発明の効果】以上述べてきたとおり、マンガンの平均
酸化数が8/3以上のマンガン化合物と、リチウム化合
物と、Ni、Co、Fe、Cr、Cu、B、Al、G
a、Inから選ばれる少なくとも一種類以上の金属材料
との混合物を焼成することで、一般式Li1+XMn2-Y-Z
Z4+ δ(式中MはNi、Co、Fe、Cr、Cu、
B、Al、Ga、Inから選ばれる少なくとも一種類以
上であり、0≦X≦1/3,0≦Y≦1/3,0<Z≦
0.25,−0.14≦δ≦0.5)で表され、平均粒
子径が5〜20μm、BET比表面積が1.0m2・g
-1以下、Hallの方法から求めた平均結晶子径が10
00オングストローム以上である新規なスピネル型結晶
構造のリチウムマンガン複合酸化物を合成することが可
能となり、これをリチウム二次電池の正極活物質に用い
ることで、従来の材料では達成することができなかっ
た、ハイレート充放電特性と高温安定性を兼ね備えたマ
ンガン系リチウム二次電池が構成できることを見出し
た。
As described above, a manganese compound having an average manganese oxidation number of 8/3 or more, a lithium compound, Ni, Co, Fe, Cr, Cu, B, Al, G
a, by baking a mixture with at least one or more metal materials selected from In, a general formula Li 1 + X Mn 2-YZ
M Z O 4+ δ (where M is Ni, Co, Fe, Cr, Cu,
At least one selected from the group consisting of B, Al, Ga, and In, and 0 ≦ X ≦ 1/3, 0 ≦ Y ≦ 1/3, 0 <Z ≦
0.25, −0.14 ≦ δ ≦ 0.5), the average particle diameter is 5 to 20 μm, and the BET specific surface area is 1.0 m 2 · g.
-1 or less, the average crystallite diameter determined by the Hall method is 10
It is possible to synthesize a novel lithium manganese composite oxide having a spinel-type crystal structure of not less than 00 angstroms, and this cannot be achieved with conventional materials by using this as a positive electrode active material of a lithium secondary battery. In addition, they have found that a manganese-based lithium secondary battery having both high-rate charge / discharge characteristics and high-temperature stability can be constructed.

【0045】ハイレート充放電特性の優れるリチウムマ
ンガン複合酸化物を見出したことは、産業上有益な知見
である。
The finding of a lithium manganese composite oxide having excellent high-rate charge / discharge characteristics is an industrially useful finding.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例及び比較例で構成した電池の実施態様を
示す図である。
FIG. 1 is a diagram showing an embodiment of a battery constituted by an example and a comparative example.

【符号の説明】[Explanation of symbols]

1 正極リード線 2 正極集電用リード線 3 正極 4 セパレータ 5 負極 6 負極集電用メッシュ 7 負極用リード線 8 容器 REFERENCE SIGNS LIST 1 positive electrode lead 2 positive electrode current collecting lead 3 positive electrode 4 separator 5 negative electrode 6 negative electrode current collecting mesh 7 negative electrode lead 8 container

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // H01M 4/58 H01M 4/58 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // H01M 4/58 H01M 4/58

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】一般式Li1+XMn2-Y-ZZ4+ δ(式中
MはNi、Co、Fe、Cr、Cu、B、Al、Ga、
Inから選ばれる少なくとも一種類以上の元素であり、
0≦X≦1/3,0≦Y≦1/3,0<Z≦0.25,
−0.14≦δ≦0.5)で表され、平均粒子径が5〜
20μm、BET比表面積が1.0m2・g-1以下であ
り、且つ、Hallの方法から求めた平均結晶子径が1
000オングストローム以上であることを特徴とするス
ピネル型結晶構造からなるリチウムマンガン複合酸化
物。
1. The general formula Li 1 + X Mn 2-YZ M Z O 4+ δ (where M is Ni, Co, Fe, Cr, Cu, B, Al, Ga,
At least one element selected from In,
0 ≦ X ≦ 1/3, 0 ≦ Y ≦ 1/3, 0 <Z ≦ 0.25
−0.14 ≦ δ ≦ 0.5), and the average particle diameter is 5 to 5.
20 μm, the BET specific surface area is 1.0 m 2 · g −1 or less, and the average crystallite diameter determined by the Hall method is 1
A lithium manganese composite oxide having a spinel-type crystal structure, wherein the lithium manganese composite oxide has a molecular weight of 000 Å or more.
【請求項2】マンガンの平均酸化数が8/3以上のマン
ガン化合物と、リチウム化合物と、Ni、Co、Fe、
Cr、Cu、B、Al、Ga、Inから選ばれる少なく
とも一種類以上の元素化合物との混合物を、最初に50
0℃以下の温度で第1の焼成を行った後に、500℃を
超えて950℃以下の温度で第2の焼成を行い、その後
に500℃まで冷却するのに1時間当たり20℃以下の
速度で行うことを特徴とする請求項1記載のリチウムマ
ンガン複合酸化物の製造方法。
2. A manganese compound having an average manganese oxidation number of 8/3 or more, a lithium compound, Ni, Co, Fe,
First, a mixture with at least one or more elemental compounds selected from Cr, Cu, B, Al, Ga, and In is mixed with 50
After performing the first baking at a temperature of 0 ° C. or less, the second baking is performed at a temperature of more than 500 ° C. and 950 ° C. or less, and then a rate of 20 ° C. or less per hour to cool to 500 ° C. The method for producing a lithium manganese composite oxide according to claim 1, wherein the method is performed.
【請求項3】平均酸化数が8/3以上のマンガン化合物
が三二酸化マンガンであることを特徴とする請求項2記
載のリチウムマンガン複合酸化物の製造方法。
3. The method for producing a lithium manganese composite oxide according to claim 2, wherein the manganese compound having an average oxidation number of 8/3 or more is manganese trioxide.
【請求項4】リチウム、リチウム合金及びリチウムを吸
蔵放出可能な化合物から選ばれる少なくとも1種類以上
の物質を負極に、非水電解質を電解質に、請求項1のリ
チウムマンガン複合酸化物を正極に用いたリチウム二次
電池。
4. A lithium-manganese composite oxide according to claim 1, wherein at least one or more substances selected from lithium, lithium alloys and compounds capable of inserting and extracting lithium are used as a negative electrode, a non-aqueous electrolyte is used as an electrolyte, and the lithium-manganese composite oxide according to claim 1 is used as a positive electrode. Lithium secondary battery.
JP2001019023A 2001-01-26 2001-01-26 Novel lithium manganese composite oxide, method for producing the same, and use thereof Expired - Fee Related JP4876316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001019023A JP4876316B2 (en) 2001-01-26 2001-01-26 Novel lithium manganese composite oxide, method for producing the same, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001019023A JP4876316B2 (en) 2001-01-26 2001-01-26 Novel lithium manganese composite oxide, method for producing the same, and use thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011205225A Division JP5482755B2 (en) 2011-09-20 2011-09-20 Novel lithium manganese composite oxide, method for producing the same, and use thereof

Publications (2)

Publication Number Publication Date
JP2002226214A true JP2002226214A (en) 2002-08-14
JP4876316B2 JP4876316B2 (en) 2012-02-15

Family

ID=18884968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001019023A Expired - Fee Related JP4876316B2 (en) 2001-01-26 2001-01-26 Novel lithium manganese composite oxide, method for producing the same, and use thereof

Country Status (1)

Country Link
JP (1) JP4876316B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004049474A1 (en) * 2002-11-22 2004-06-10 Mitsui Mining & Smelting Co., Ltd. POSITIVE ELECTRODE MATERIAL FOR Li ION SECONDARY BATTERY
JP2004311427A (en) * 2003-03-25 2004-11-04 Hitachi Metals Ltd Positive electrode active material for lithium secondary battery and its manufacturing method and non-aqueous lithium secondary battery
JP2005302510A (en) * 2004-04-12 2005-10-27 Rikogaku Shinkokai Lithium-ion secondary battery
WO2006004279A1 (en) * 2004-03-29 2006-01-12 Lg Chem, Ltd. Lithium secondary battery with high power
JP2006114408A (en) * 2004-10-15 2006-04-27 Izumi Taniguchi Lithium manganese complex oxide particle and positive electrode for secondary battery using this, as well as lithium secondary battery
WO2009011157A1 (en) 2007-07-19 2009-01-22 Nippon Mining & Metals Co., Ltd. Lithium-manganese double oxide for lithium ion batteries and process for the production of the double oxide
US7927741B2 (en) 2007-01-26 2011-04-19 Mitsui Mining & Smelting Co., Ltd. Lithium transition metal oxide having layered structure
JP2012216548A (en) * 2011-03-31 2012-11-08 Toda Kogyo Corp Active material powder for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US9153815B2 (en) 2012-04-09 2015-10-06 Sony Corporation Cathode active material, cathode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2022513679A (en) * 2018-11-30 2022-02-09 エルジー エナジー ソリューション リミテッド Lithium manganese-based positive electrode active material with octahedral structure, positive electrode containing this, and lithium secondary battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275276A (en) * 1993-03-18 1994-09-30 Masayuki Yoshio Manufacture of spinel limn2o4 with high surface area and its application to nonaqueous battery
JPH082921A (en) * 1994-06-20 1996-01-09 Tosoh Corp Lithium-manganese double oxide, its production and use
JPH10275613A (en) * 1997-03-28 1998-10-13 Mitsubishi Chem Corp Nonaqueous electrolyte secondary battery
JPH11214003A (en) * 1998-01-29 1999-08-06 Mitsubishi Chemical Corp Lithium secondary battery
JP2000072443A (en) * 1998-08-26 2000-03-07 Ube Ind Ltd Production of lithium manganese multiple oxide and its use
JP2000154022A (en) * 1998-11-18 2000-06-06 Tosoh Corp Lithium manganese double oxide, its production and its use
JP2000203843A (en) * 1999-01-12 2000-07-25 Ube Ind Ltd Anodic active material for lithium secondary battery and its production and use
JP2000340231A (en) * 1998-10-22 2000-12-08 Toyota Central Res & Dev Lab Inc Positive electrode active material for lithium secondary battery, manufacture of same, lithium secondary battery using same, and method for aging lithium secondary battery
JP2001319648A (en) * 2000-05-08 2001-11-16 Univ Saga Spinel manganese oxide for lithium secondary battery and lithium ion battery using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275276A (en) * 1993-03-18 1994-09-30 Masayuki Yoshio Manufacture of spinel limn2o4 with high surface area and its application to nonaqueous battery
JPH082921A (en) * 1994-06-20 1996-01-09 Tosoh Corp Lithium-manganese double oxide, its production and use
JPH10275613A (en) * 1997-03-28 1998-10-13 Mitsubishi Chem Corp Nonaqueous electrolyte secondary battery
JPH11214003A (en) * 1998-01-29 1999-08-06 Mitsubishi Chemical Corp Lithium secondary battery
JP2000072443A (en) * 1998-08-26 2000-03-07 Ube Ind Ltd Production of lithium manganese multiple oxide and its use
JP2000340231A (en) * 1998-10-22 2000-12-08 Toyota Central Res & Dev Lab Inc Positive electrode active material for lithium secondary battery, manufacture of same, lithium secondary battery using same, and method for aging lithium secondary battery
JP2000154022A (en) * 1998-11-18 2000-06-06 Tosoh Corp Lithium manganese double oxide, its production and its use
JP2000203843A (en) * 1999-01-12 2000-07-25 Ube Ind Ltd Anodic active material for lithium secondary battery and its production and use
JP2001319648A (en) * 2000-05-08 2001-11-16 Univ Saga Spinel manganese oxide for lithium secondary battery and lithium ion battery using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004049474A1 (en) * 2002-11-22 2004-06-10 Mitsui Mining & Smelting Co., Ltd. POSITIVE ELECTRODE MATERIAL FOR Li ION SECONDARY BATTERY
JP2004311427A (en) * 2003-03-25 2004-11-04 Hitachi Metals Ltd Positive electrode active material for lithium secondary battery and its manufacturing method and non-aqueous lithium secondary battery
WO2006004279A1 (en) * 2004-03-29 2006-01-12 Lg Chem, Ltd. Lithium secondary battery with high power
JP2005302510A (en) * 2004-04-12 2005-10-27 Rikogaku Shinkokai Lithium-ion secondary battery
JP2006114408A (en) * 2004-10-15 2006-04-27 Izumi Taniguchi Lithium manganese complex oxide particle and positive electrode for secondary battery using this, as well as lithium secondary battery
US7927741B2 (en) 2007-01-26 2011-04-19 Mitsui Mining & Smelting Co., Ltd. Lithium transition metal oxide having layered structure
WO2009011157A1 (en) 2007-07-19 2009-01-22 Nippon Mining & Metals Co., Ltd. Lithium-manganese double oxide for lithium ion batteries and process for the production of the double oxide
US8114309B2 (en) 2007-07-19 2012-02-14 Jx Nippon Mining & Metals Corporation Lithium-manganese composite oxides for lithium ion battery and process for preparing same
JP2012216548A (en) * 2011-03-31 2012-11-08 Toda Kogyo Corp Active material powder for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US9153815B2 (en) 2012-04-09 2015-10-06 Sony Corporation Cathode active material, cathode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2022513679A (en) * 2018-11-30 2022-02-09 エルジー エナジー ソリューション リミテッド Lithium manganese-based positive electrode active material with octahedral structure, positive electrode containing this, and lithium secondary battery
JP7222592B2 (en) 2018-11-30 2023-02-15 エルジー エナジー ソリューション リミテッド Octahedral lithium-manganese positive electrode active material, positive electrode and lithium secondary battery containing the same

Also Published As

Publication number Publication date
JP4876316B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP6107832B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
KR101587293B1 (en) Li-Ni-BASED COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP3614670B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
JP3922040B2 (en) Lithium manganese composite oxide, method for producing the same, and use thereof
JP2000133262A (en) Nonaqueous electrolyte secondary battery
JP4086654B2 (en) Lithium-containing composite oxide, method for producing the same, and non-aqueous secondary battery
JPH08217452A (en) Needle manganese complex oxide, production and use thereof
JPWO2017119411A1 (en) Lithium iron manganese complex oxide
JP6872816B2 (en) Nickel-manganese-based composite oxide and its manufacturing method
JP3120789B2 (en) Non-aqueous electrolyte secondary battery
JP3876673B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP3661183B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP4876316B2 (en) Novel lithium manganese composite oxide, method for producing the same, and use thereof
JP6791112B2 (en) Manufacturing method of positive electrode material for non-aqueous secondary batteries
US20150037677A1 (en) Positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the same, and non-aqueous electrolyte secondary battery
JP5207360B2 (en) Lithium manganese oxide powder particles, production method thereof, and lithium secondary battery using the same as a positive electrode active material
JP2013060319A (en) Lithium manganese (iv) nickel (iii)-based oxide, positive electrode active material for lithium ion secondary battery containing the oxide, lithium ion secondary battery using the material, and vehicle carrying the battery
CN116799201A (en) Halide-based positive electrode active material, and synthesis method and application thereof
JP5482755B2 (en) Novel lithium manganese composite oxide, method for producing the same, and use thereof
JP4544404B2 (en) Lithium manganese composite oxide, method for producing the same, and use thereof
JPH08217451A (en) Needle manganese complex oxide, production and use thereof
JP2000154022A (en) Lithium manganese double oxide, its production and its use
JP3921697B2 (en) Lithium manganese spinel, method for producing the same, and use thereof
JP2000154021A (en) New lithium manganese oxide, its production and its use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R151 Written notification of patent or utility model registration

Ref document number: 4876316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees