JP3876673B2 - Cathode active material for non-aqueous electrolyte secondary battery - Google Patents

Cathode active material for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP3876673B2
JP3876673B2 JP2001310165A JP2001310165A JP3876673B2 JP 3876673 B2 JP3876673 B2 JP 3876673B2 JP 2001310165 A JP2001310165 A JP 2001310165A JP 2001310165 A JP2001310165 A JP 2001310165A JP 3876673 B2 JP3876673 B2 JP 3876673B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
lithium
electrode active
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001310165A
Other languages
Japanese (ja)
Other versions
JP2003123749A (en
Inventor
竜一 葛尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001310165A priority Critical patent/JP3876673B2/en
Publication of JP2003123749A publication Critical patent/JP2003123749A/en
Application granted granted Critical
Publication of JP3876673B2 publication Critical patent/JP3876673B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、非水系電解質二次電池用正極活物質に関し、特に、正極材料として用いたときに、電池の初期容量を損なうことなく、熱安定性を向上させることが可能となる非水系二次電池用正極活物質に関する。
【0002】
【従来の技術】
近年、携帯電話やノート型パソコンなどの携帯機器の普及にともない、高いエネルギー密度を有する小型、軽量な二次電池の開発が強く望まれている。このようなものとしてリチウム、リチウム合金、金属酸化物あるいはカーボンを負極として用いるリチウムイオン二次電池があり、研究開発が盛んに行われている。
【0003】
リチウム複合酸化物、特に、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO2)を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高エネルギー密度を有する電池として期待され、実用化が進んでいる。リチウムコバルト複合酸化物を用いた電池では、優れた初期容量特性やサイクル特性を得るための開発が、これまで数多く行われてきており、すでにさまざまな成果が得られている。
【0004】
しかし、リチウムコバルト複合酸化物は、原料に希産で高価なコバルト化合物を正極活物質に用いるため、正極活物質のコストアップ、さらには電池のコストアップの原因となり、正極活物質の改良が望まれている。正極活物質のコストを下げ、より安価なリチウムイオン二次電池の製造が可能となることは、現在普及している携帯機器の軽量、小型化において、工業的に大きな意義を持つ。
【0005】
リチウムイオン二次電池用正極活物質の新たな材料としては、コバルトよりも安価なマンガンを用いたリチウムマンガン複合酸化物(LiMn24)や、ニッケルを用いたリチウムニッケル複合酸化物(LiNiO2)を挙げることができる。
【0006】
リチウムマンガン複合酸化物は、原料が安価である上、正極材料として熱安定性に優れるため、リチウムコバルト複合酸化物の有力な代替材料であるといえるが、理論容量がリチウムコバルト複合酸化物のおよそ半分程度しかなく、年々高まるリチウムイオン二次電池の高容量化の要求に応えるのが難しいという欠点を持つ。
【0007】
一方、リチウムニッケル複合酸化物は、リチウムコバルト複合酸化物よりも低い電気化学ポテンシャルを示すため、より高容量が期待でき、コバルト系と同様に高い電池電圧を示すことから、開発が盛んに行われている。しかし、純粋にニッケルのみで合成したリチウムニッケル複合酸化物を正極活物質としてリチウムイオン二次電池を作製した場合、コバルト系に比べサイクル特性が劣り、また、高温環境下での使用や保存で、比較的電池性能を損ないやすい。
【0008】
このような欠点を解決するためにニッケルの一部を他の金属で置換したリチウムニッケル複合酸化物、例えば特開平8−213015号では、リチウムイオン二次電池の自己放電特性やサイクル特性を向上させることを目的として、LixNiaCobc2(0.8≦x≦1.2、0.01≦a≦0.99、0.01≦b≦0.99、0.01≦c≦0.3、0.8≦a+b+c≦1.2、MはAl、V、Mn、Fe、Cu及びZnから選ばれる少なくとも1種の元素)で表されるリチウムニッケル複合酸化物が提案されている。
【0009】
また、特開平8−45509号では、高温環境下での保存や使用に際して良好な電池性能を維持できる正極活物質として、LiwNixCoyz2(0.05≦w≦1.10、0.5≦x≦0.995、0.005≦z≦0.20、x+y+z=1)で表されるリチウムニッケル複合酸化物が提案されている。
【0010】
さらに、特開平8−321299号では、サイクル特性や耐過充電性を向上させることを目的として、ニッケルの5at%以下をガリウムで置換したリチウム含有複合酸化物が提案されている。
【0011】
しかしながら、これらのような従来の製造方法によって得られたリチウムニッケル複合酸化物では、リチウムコバルト複合酸化物に比べて充電容量、放電容量がともに高く、サイクル特性も改善されているが、満充電状態で高温環境下に放置しておくと、リチウムコバルト複合酸化物に比べて低い温度から酸素放出を伴う分解が始まり、その結果、電池の内部圧力が上昇して、最悪の場合、電池が爆発する危険を有している。
【0012】
このような問題を解決するために、例えば特開平5−242891号では、リチウムイオン二次電池の正極材料の熱的安定性を向上させることを目的として、LiabNicCode(MはAl、Mn、Sn、In、Fe、V、Cu、Mg、Ti、Zn、Moからなる群から選択される少なくとも一種の金属であり、かつ0<a<1.3、0.02≦b≦0.5、0.02≦d/c+d≦0.9、1.8<e<2.2、b+c+d=1である)で表されるリチウム含有複合酸化物が提案されている。しかし、熱安定性の向上に有効な量のM元素でニッケルを置換すると、電池性能として最も重要である初期容量が大きく低下するという問題がある。
【0013】
このように、これまで報告されてきたような、熱安定性の向上のために、ニッケルの一部を別の元素で置換したリチウムニッケル複合酸化物を正極活物質とした非水系電解質二次電池は、確かに熱安定性の向上の効果があるものの、置換した分だけ初期容量が低下するという問題点を有していた。
【0014】
【発明が解決しようとする課題】
本発明は、このような問題点に着目してなされたもので、本発明の課題は、初期容量をほとんど犠牲にすることなく、熱安定性の高い非水系電解質二次電池用正極活物質を提供することにある。
【0015】
【課題を解決するための手段】
リチウムニッケル複合酸化物を正極活物質として考えた場合、リチウムの脱離挿入によって充放電が行われる。200mAh/g程度の満充電状態は、LiNiO2から約7割のリチウムが脱離した状態である。すなわち、Li0.3NiO2となっているわけであるが、このとき、ニッケルはその一部が3価および4価となっている。4価のニッケルは熱的に非常に不安定で、高温にすると容易に酸素を放出して2価(NiO)となりやすい。
【0016】
なお、正極活物質の熱的挙動は、充電状態にある正極材料を電解液の存在下で示差走査熱量測定を行い、その発熱量を見ることで評価できる。また、質量分析法を用いて、発生するガス種を調べることによって、熱的挙動をより具体的に考察することが可能となる。
【0017】
リチウムニッケル複合酸化物が正極材料として熱安定性に劣る理由として、酸素を放出して分解する分解開始温度が、リチウムコバルト複合酸化物と比較して低く、このとき放出された酸素が電解液と反応して燃焼反応が起こることや、ニッケル自体が触媒となって、電解液の分解反応を促進することなどが原因と考えられている。
【0018】
従って、リチウムニッケル複合酸化物の正極材料としての熱安定性を改善するには、リチウムニッケル複合酸化物を組成面から改良して、分解開始温度を高くする方法が考えられる。
【0019】
すなわち、前述のように4価のニッケルが熱的に不安定であることに原因があるので、ニッケルの価数を下げるような元素をリチウムニッケル複合酸化物に固溶させることによって、分解開始温度を高くすることができる。または、価数変化の起こりにくい安定な元素を固溶させる方法でも、分解開始温度を高くすることができる。いずれの方法でも、酸素放出を伴う分解開始温度を高温側へシフトさせることが可能で、結果として、リチウムニッケル複合酸化物の正極材料としての熱安定性が増大する。
【0020】
しかしながら、これらの方法では、結果的にリチウムニッケル複合酸化物からある程度以上にリチウムを引き抜くことができないのであり、リチウムの脱離が不充分な結果、必然的に容量を犠牲にする。すなわち、リチウムニッケル複合酸化物の正極材料としての熱安定性の増大は、一定電位までに引き抜けるリチウム量の低減をともなう。
【0021】
正極活物質自体の熱安定性だけに目を向けるのではなく、電池の熱安定性という観点で見た場合、正極活物質の分解開始温度を高くすること以外に、改善を求めることができる。
【0022】
リチウムニッケル複合酸化物が熱安定性に劣るのは、前述したように分解によって放出される酸素が電解液と反応する(燃焼する)ためであるから、たとえ分解開始温度が同じであっても、放出される酸素が少なければ、電解液との反応はマイルドになり、熱安定性が改善されたといえる。
【0023】
本発明者らは、このような観点からリチウムニッケル複合酸化物を正極材料に使用した電池の熱安定性に関する種々研究を進めた結果、ニッケルの一部を他の元素で置換するのではなく、酸素を吸収する能力を持つ化合物(以下、酸素吸収化合物という)を添加することによって、熱安定性に優れた非水系電解質二次電池が得られることを見いだし、本発明を完成するに至った。
【0024】
本発明の非水系電解質二次電池用正極活物質は、主成分がLiNi1-xx2(但し、Co、Mn、Fe、Cu、Zn、Mg、Ti、AlおよびGaからなる群より選ばれた少なくとも1種以上の金属で、0.2>x≧0)で表されるLi−Ni複合酸化物であって、さらに、インジウム化合物およびタンタル化合物から選ばれた1種以上の酸素吸収化合物を含有しており、該非水系電解質二次電池用正極活物質を用いて電池を作製し、充電終了後取り出した該非水系電解質二次電池用正極活物質のTG−MS測定において、250℃以上の温度で二酸化炭素の放出を示すピークが存在しない。
【0025】
酸素吸収化合物の添加に際しては、酸素吸収能力に応じて添加量を決定する必要があり、酸素吸収能力が十分大きければ、添加量は十分少なくすることが可能である。必要以上に添加量を多くしても、その質量分だけ質量当たりの初期容量が減少するだけで、電池の熱安定性に対する効果はほとんど変化しない。
【0026】
本発明者らが研究を深めた結果、酸素吸収化合物は、ニッケルと元素Mの合計に対するモル比で2%を超えると、質量当たりの初期容量の低下が大きくなるため、望ましくないことを見いだした。
【0027】
すなわち、本発明の非水系電解質二次電池用正極活物質においては、ニッケルと元素Mの合計に対する前記酸素吸収化合物のモル比が2%以下であることが好ましい。
【0028】
さらに、本発明の非水系電解質二次電池用正極活物質においては、該酸素吸収化合物が、In、Taのいずれか1種以上とLiとの酸化物、より具体的には、LiInO2であることが好ましい。なお、配合時と、正極活物質とでは、インジウム化合物およびタンタル化合物の存在形態が異なりうる。
【0029】
本発明による正極活物質には、熱安定性に劣るLiNiO2を用いても、効果があることはもちろんであるが、サイクル特性を改善するために、Niの一部をCoなどの別元素で置換したり、導電率改善のためにNiの一部をMgなどの別元素で置換することも可能である。また、Niの一部をMn、Ti、Al、Gaなどの別元素で置換することによって、正極活物質自身に熱安定性効果を持たせて、さらに熱安定性に優れた正極活物質を得ることができる。これらの場合、置換率はモル比で0.2未満である。
【0030】
【発明の実施の形態】
本発明の正極活物質は、酸素を吸収する能力を持った化合物(酸素吸収化合物)を含有したリチウムニッケル複合酸化物であり、リチウムイオン二次電池の正極活物質として用いる。これにより、電池の初期容量をほとんど低下させることなく、熱安定性を向上させることができる。
【0031】
以下、本発明の一実施例を、好適な図面に基づいて詳述する。
【0032】
【実施例】
(実施例
市販の水酸化リチウム一水和物と、ニッケルとコバルトとアルミニウムとのモル比が83:14:3で固溶した複合水酸化物を、リチウムとニッケル+コバルト+アルミニウムとのモル比が1.03:1.00となるようにそれぞれ秤量し、十分に混合した。この混合粉末を、酸素流量3000cm 3 /minの気流中で、350℃で2時間仮焼した後、750℃で20時間焼成し、室温まで炉冷してLiNi 0.83 Co 0.14 Al 0.03 2 を得た。
【0033】
酸素吸収化合物としてインジウム化合物を用いた。すなわち、市販の水酸化リチウム一水和物を純水に溶解し、リチウムとインジウムとのモル比が1:1になるように三酸化二インジウムを投入し、攪拌した。この水溶液に、インジウムとニッケル+コバルト+アルミニウムとのモル比が0.010:1.00となるように、得られたLiNi0.83Co0.14Al0. 032を投入し、加熱攪拌して、乾燥した。得られた乾燥物を、酸素流量3000cm3/minの気流中で、750℃で20時間焼成し、室温まで炉冷して、インジウム含有リチウムニッケル複合酸化物からなる正極活物質を得た。
【0034】
得られた正極活物質を、CuのKα線を用いた粉末X線回折(理学電機社製、型式RAD−γVB)で分析したところ、六方晶に帰属されるリチウムニッケル複合酸化物の他に、酸素吸収材としてのLiInO2のピークが確認できた。X線回折パターンから計算したリチウムニッケル複合酸化物の格子定数は、インジウムを添加する前のリチウムニッケル複合酸化物の格子定数とほぼ一致しており、インジウムはリチウムニッケル複合酸化物には固溶していないと推定された。当該正極活物質の組成を分析したところ、インジウムとニッケル+コバルト+アルミニウムとのモル比は0.01:1.00であり、インジウムは固溶していなかったことと考え合わせると、リチウムニッケル複合酸化物に対する酸素吸収材としてのLiInO2のモル比は1%であったといえる。
【0035】
得られた正極活物質を用いて以下のように電池を作製し、充放電容量を測定した。
【0036】
前記正極活物質の粉末87質量%に、アセチレンブラック5質量%およびPVDF(ポリ沸化ビニリデン)8質量%を混合し、NMP(n−メチルピロリドン)を加えペースト化した。これを20μm厚のアルミニウム箔に、乾燥後の活物質質量が0.025g/cm 2 になるように塗布し、120℃で真空乾燥を行い、1cmφの円板状に打ち抜いて正極とした。負極としてリチウム金属を、電解液には1MのLiClO 4 を支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液を用いた。ポリエチレンからなるセパレータに電解液を染み込ませ、露点が−80℃に管理されたAr雰囲気のグローブボックス中で、図1に示したような2032型のコイン電池を作製した。作製した電池は24時間程度放置し、OCVが安定した後、正極に対する電流密度を0.5mA/cm 2 とし、カットオフ電圧4.3−3.0Vで充放電試験を行った。得られた1サイクル目の質量あたりの放電容量(初期容量)を表1に示す。
【0037】
また、同様な方法でもう一つ電池を作製し、正極に対する質量当たりの電流密度を6mA/gとして196mAh/gまで充電した。充電終了後、この電池を分解して、取り出した正極材料2.4mgに対して、電解液として1MのLiClO 4 を支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液2.0mgを加えて、アルミニウム製の密閉容器に封入し、示差走査熱量測定を行った。また、取り出した正極材料のTG−MS測定(マックサイエンス社製、型式IG−DTA 2020s)を実施し、加熱にともなう発生ガスを調べた。
【0038】
定結果を、表1、図2および図に示す。
【0039】
(実施例
市販の水酸化リチウム一水和物を純水に溶解し、リチウムとインジウムとのモル比が1:1になるように三酸化二インジウムを投入し、攪拌した。この水溶液に、インジウムとニッケル+コバルト+アルミニウムとのモル比が0.020:1.00となるように、実施例1と同様にして得たLiNi0.83Co0.14Al0. 032を投入し、加熱攪拌して、乾燥した。得られた乾燥物を、酸素流量3000cm3/minの気流中で、750℃で20時間焼成し、室温まで炉冷して、インジウム含有リチウムニッケル複合酸化物からなる正極活物質を得た。
【0040】
得られた正極活物質を、CuのKα線を用いた粉末X線回折で分析したところ、六方晶に帰属されるリチウムニッケル複合酸化物の他に、酸素吸収材としてのLiInO2のピークが確認できた。X線回折パターンから計算したリチウムニッケル複合酸化物の格子定数は、インジウムを添加する前のリチウムニッケル複合酸化物の格子定数とほぼ一致しており、インジウムはリチウムニッケル複合酸化物には固溶していないと推定された。当該正極活物質の組成を分析したところ、インジウムとニッケル+コバルト+アルミニウムとのモル比は0.02:1.00であり、インジウムは固溶していなかったことと考え合わせると、リチウムニッケル複合酸化物に対する酸素吸収材としてのLiInO2のモル比は2%であったといえる。
【0041】
初期容量の測定、示差走査熱量測定、およびTG−MS測定を、実施例1と同様に行った。測定結果を、表1、図2および図に示す。
【0042】
(比較例1)
市販の水酸化リチウム一水和物と、ニッケルとコバルトとアルミニウムとのモル比が83:14:3で固溶した複合水酸化物とを、リチウムとニッケル+コバルト+アルミニウムとのモル比が1.03:1.00となるようにそれぞれ秤量し、十分に混合した。この混合粉末を、酸素流量3000cm3/minの気流中で、350℃で2時間仮焼した後、750℃で20時間焼成し、室温まで炉冷してリチウムニッケル複合酸化物からなる正極活物質を得た。
【0043】
得られた正極活物質を、CuのKα線を用いた粉末X線回折で分析したところ、六方晶に帰属されるリチウムニッケル複合酸化物のみが確認できた。
【0044】
当該正極活物質の組成を分析したところ、リチウムとニッケル+コバルト+アルミニウムとのモル比は1.03:1.00であった。
【0045】
初期容量の測定、示差走査熱量測定、およびTG−MS測定を、実施例1と同様に行った。測定結果を、表1、図2および図に示す。
【0046】
【表1】

Figure 0003876673
【0047】
表1から、実施例1〜の電池の初期容量は、比較例1の電池の初期容量と比較して、酸素吸収化合物の添加量に応じてわずかに初期容量が減少しているものの、2at%以下の酸素吸収化合物の添加では、初期容量の減少が、実用上まったく問題ない程度に抑えられる。
【0048】
また、図2に示した示差走査熱量測定により、実施例1〜の正極材料は、比較例1の正極材料に見られるような急激な発熱が緩和され、比較的マイルドな反応となっており、いずれも熱安定性の改善に大きな効果があることがわかる。
【0049】
図3〜図のTG−MS測定結果を見ると、通常、正極材料が分解すると放出される酸素が見られないのは、この酸素が電解液と反応(燃焼)して二酸化炭素に変化しているためである。正極活物質の分解に対応する250℃以上の二酸化炭素の挙動を見てみると、図に示した比較例1の正極材料では、電解液の反応による二酸化炭素の放出が見られるが、図3〜に示した実施例1〜の正極材料では、二酸化炭素の放出が見られない。これは、正極活物質から放出される酸素が酸素吸収化合物によって吸収されているためであり、電解液との反応が抑えられ、結果として二酸化炭素の発生が抑えられたと考えられる。このように、正極材料に、酸素を吸収する化合物を共存させることによって、電解液の燃焼反応が緩和され、熱安定性改善に効果のあることがわかる。
【0050】
【発明の効果】
本発明による非水系電解質二次電池用正極活物質を使用した電池は、高い初期容量がほとんど損なわれずに、熱安定性が向上する。
【図面の簡単な説明】
【図1】 2032型コイン電池を示す一部破断斜視図である。
【図2】 実施例1〜、比較例1における示差走査熱量測定の測定結果を示すグラフである。
【図】 実施例におけるTG−MS測定の測定結果を示すグラフである。
【図】 実施例におけるTG−MS測定の測定結果を示すグラフである。
【図】 比較例1におけるTG−MS測定の測定結果を示すグラフである。
【符号の説明】
1 リチウム金属負極
2 セパレータ(電解液含浸)
3 正極(評価用電極)
4 ガスケット
5 負極缶
6 正極缶[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, and in particular, when used as a positive electrode material, a non-aqueous secondary battery that can improve thermal stability without impairing the initial capacity of the battery. The present invention relates to a positive electrode active material for a battery.
[0002]
[Prior art]
In recent years, with the widespread use of portable devices such as mobile phones and notebook computers, development of small and lightweight secondary batteries with high energy density is strongly desired. As such a lithium ion secondary battery using lithium, a lithium alloy, a metal oxide, or carbon as a negative electrode, research and development are actively performed.
[0003]
A lithium ion secondary battery using a lithium composite oxide, particularly a lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, as a positive electrode material has a high energy density because a high voltage of 4V can be obtained. Expected to be a battery and its practical application is progressing. A battery using a lithium cobalt composite oxide has been developed so far to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained.
[0004]
However, since lithium cobalt composite oxide uses a rare and expensive cobalt compound as a raw material for the positive electrode active material, it increases the cost of the positive electrode active material and further increases the cost of the battery. It is rare. Lowering the cost of the positive electrode active material and making it possible to manufacture a cheaper lithium ion secondary battery has a significant industrial significance in terms of reducing the weight and size of portable devices that are currently in widespread use.
[0005]
New materials for the positive electrode active material for lithium ion secondary batteries include lithium manganese composite oxide (LiMn 2 O 4 ) using manganese, which is cheaper than cobalt, and lithium nickel composite oxide (LiNiO 2 ) using nickel. ).
[0006]
Lithium manganese composite oxide is an inexpensive alternative material and excellent thermal stability as a positive electrode material, so it can be said that lithium manganese composite oxide is a powerful alternative to lithium cobalt composite oxide. It has only about a half, and it has the disadvantage that it is difficult to meet the demand for higher capacity lithium ion secondary batteries that are increasing year by year.
[0007]
On the other hand, since lithium nickel composite oxide shows a lower electrochemical potential than lithium cobalt composite oxide, it can be expected to have a higher capacity, and since it shows a high battery voltage as well as cobalt, it has been actively developed. ing. However, when a lithium-ion secondary battery is produced using a lithium-nickel composite oxide purely synthesized with only nickel as the positive electrode active material, the cycle characteristics are inferior to those of the cobalt system, and it can be used and stored in a high-temperature environment. Battery performance is relatively easy to lose.
[0008]
In order to solve such drawbacks, a lithium nickel composite oxide in which a part of nickel is replaced with another metal, for example, Japanese Patent Laid-Open No. 8-213015, improves self-discharge characteristics and cycle characteristics of a lithium ion secondary battery. purposes as, Li x Ni a Co b M c O 2 (0.8 ≦ x ≦ 1.2,0.01 ≦ a ≦ 0.99,0.01 ≦ b ≦ 0.99,0.01 ≦ that c ≦ 0.3, 0.8 ≦ a + b + c ≦ 1.2, and M is at least one element selected from Al, V, Mn, Fe, Cu and Zn). ing.
[0009]
JP-A-8-45509 discloses Li w Ni x Co y B z O 2 (0.05 ≦ w ≦ 1.) As a positive electrode active material capable of maintaining good battery performance during storage and use in a high temperature environment. 10, 0.5 ≦ x ≦ 0.995, 0.005 ≦ z ≦ 0.20, x + y + z = 1) has been proposed.
[0010]
Further, JP-A-8-32299 proposes a lithium-containing composite oxide in which 5 at% or less of nickel is substituted with gallium for the purpose of improving cycle characteristics and overcharge resistance.
[0011]
However, in the lithium nickel composite oxide obtained by the conventional manufacturing methods such as these, both the charge capacity and the discharge capacity are higher than those of the lithium cobalt composite oxide, and the cycle characteristics are improved. If left in a high temperature environment, decomposition starts with oxygen release from a lower temperature than lithium cobalt composite oxide, and as a result, the internal pressure of the battery rises, and in the worst case, the battery explodes. There is a danger.
[0012]
To solve such a problem, for example, in Japanese Patent Laid-Open No. 5-242891, for the purpose of improving the thermal stability of the positive electrode material of a lithium ion secondary battery, Li a M b Ni c Co d O e (M is at least one metal selected from the group consisting of Al, Mn, Sn, In, Fe, V, Cu, Mg, Ti, Zn, Mo, and 0 <a <1.3, 0.02. ≦ b ≦ 0.5, 0.02 ≦ d / c + d ≦ 0.9, 1.8 <e <2.2, and b + c + d = 1) have been proposed. However, when nickel is substituted with an amount of M element effective for improving thermal stability, there is a problem that the initial capacity, which is the most important as battery performance, is greatly reduced.
[0013]
As described above, in order to improve thermal stability, a non-aqueous electrolyte secondary battery using a lithium nickel composite oxide in which a part of nickel is replaced with another element as a positive electrode active material has been reported. Although there is an effect of improving the thermal stability, there is a problem that the initial capacity is reduced by the amount of replacement.
[0014]
[Problems to be solved by the invention]
The present invention has been made paying attention to such problems, and the object of the present invention is to provide a positive active material for a non-aqueous electrolyte secondary battery with high thermal stability without sacrificing the initial capacity. It is to provide.
[0015]
[Means for Solving the Problems]
When lithium nickel composite oxide is considered as the positive electrode active material, charging / discharging is performed by desorption and insertion of lithium. A fully charged state of about 200 mAh / g is a state in which about 70% of lithium is desorbed from LiNiO 2 . That is, it is Li 0.3 NiO 2 , but at this time, a part of nickel is trivalent and tetravalent. Tetravalent nickel is very unstable thermally and easily releases oxygen at high temperatures to become divalent (NiO).
[0016]
In addition, the thermal behavior of the positive electrode active material can be evaluated by performing differential scanning calorimetry on the positive electrode material in a charged state in the presence of an electrolytic solution and observing the calorific value thereof. Further, by examining the generated gas species using mass spectrometry, it becomes possible to more specifically consider the thermal behavior.
[0017]
The reason why lithium nickel composite oxide is inferior in thermal stability as a positive electrode material is that the decomposition start temperature at which oxygen is released and decomposed is lower than that of lithium cobalt composite oxide. The cause is considered to be that a combustion reaction occurs and nickel itself becomes a catalyst to promote the decomposition reaction of the electrolyte.
[0018]
Therefore, in order to improve the thermal stability of the lithium nickel composite oxide as the positive electrode material, a method of improving the lithium nickel composite oxide in terms of composition and increasing the decomposition start temperature can be considered.
[0019]
That is, as described above, there is a cause that the tetravalent nickel is thermally unstable. Therefore, by dissolving an element that lowers the valence of nickel in the lithium nickel composite oxide, the decomposition start temperature is increased. Can be high. Alternatively, the decomposition start temperature can be increased also by a method in which a stable element that does not easily change its valence is dissolved. In any method, the decomposition start temperature accompanied with oxygen release can be shifted to a high temperature side, and as a result, the thermal stability of the lithium nickel composite oxide as the positive electrode material is increased.
[0020]
However, in these methods, as a result, lithium cannot be extracted more than a certain amount from the lithium nickel composite oxide, and the capacity is inevitably sacrificed as a result of insufficient lithium desorption. That is, the increase in the thermal stability of the lithium nickel composite oxide as the positive electrode material is accompanied by a reduction in the amount of lithium that can be pulled out to a certain potential.
[0021]
In view of not only the thermal stability of the positive electrode active material itself but also from the viewpoint of the thermal stability of the battery, improvement can be sought in addition to increasing the decomposition start temperature of the positive electrode active material.
[0022]
The reason why the lithium nickel composite oxide is inferior in thermal stability is that, as described above, oxygen released by decomposition reacts (combusts) with the electrolyte solution, so even if the decomposition start temperature is the same, If less oxygen is released, the reaction with the electrolyte is milder and the thermal stability is improved.
[0023]
As a result of advancing various studies on the thermal stability of a battery using a lithium nickel composite oxide as a positive electrode material from such a point of view, the present inventors did not replace a part of nickel with another element, It has been found that a non-aqueous electrolyte secondary battery excellent in thermal stability can be obtained by adding a compound capable of absorbing oxygen (hereinafter referred to as oxygen-absorbing compound), and the present invention has been completed.
[0024]
The positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention has a main component of LiNi 1-x M x O 2 (however, from the group consisting of Co, Mn, Fe, Cu, Zn, Mg, Ti, Al and Ga) in at least one metal selected, 0.2> a x ≧ 0) Li-Ni composite oxide represented by additionally comprise one or more oxygen selected from Lee indium compound and a tantalum compound In a TG-MS measurement of the non-aqueous electrolyte secondary battery positive electrode active material containing an absorbing compound, producing a battery using the positive electrode active material for non-aqueous electrolyte secondary battery, and taken out after completion of charging, 250 ° C. There is no peak indicating the release of carbon dioxide at these temperatures.
[0025]
When the oxygen absorbing compound is added, it is necessary to determine the addition amount according to the oxygen absorption capability. If the oxygen absorption capability is sufficiently large, the addition amount can be sufficiently reduced. Even if the addition amount is increased more than necessary, the effect on the thermal stability of the battery hardly changes as the initial capacity per mass is reduced by that amount.
[0026]
As a result of extensive research by the present inventors, it has been found that oxygen absorbing compounds are undesirable because the initial capacity per mass increases greatly when the molar ratio with respect to the total of nickel and element M exceeds 2%. .
[0027]
That is, in the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention, it is preferable that the molar ratio of the oxygen absorbing compound to the total of nickel and the element M is 2% or less.
[0028]
Furthermore, in the positive electrode active material for non-aqueous electrolyte secondary battery of the present invention, the oxygen absorbing compound, oxide of I n, any one or more of Ta and Li, more specifically, L Iino 2 It is preferable that Note that the time of compounding, the positive electrode active material, may differ existence form of Lee indium compound and a tantalum compound.
[0029]
The positive electrode active material according to the present invention is effective even when LiNiO 2 having poor thermal stability is used. However, in order to improve cycle characteristics, a part of Ni is replaced with another element such as Co. It is also possible to substitute a part of Ni with another element such as Mg in order to improve conductivity. Further, by replacing a part of Ni with another element such as Mn, Ti, Al, and Ga, the positive electrode active material itself has a thermal stability effect, and a positive electrode active material having further excellent thermal stability is obtained. be able to. In these cases, the substitution rate is less than 0.2 in molar ratio.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
The positive electrode active material of the present invention is a lithium nickel composite oxide containing a compound having an ability to absorb oxygen (oxygen absorbing compound), and is used as a positive electrode active material of a lithium ion secondary battery. Thereby, thermal stability can be improved, without almost reducing the initial capacity of a battery.
[0031]
Hereinafter, an embodiment of the present invention will be described in detail with reference to the preferred drawings.
[0032]
【Example】
(Example 1 )
A commercially available lithium hydroxide monohydrate and a composite hydroxide in which the molar ratio of nickel, cobalt and aluminum is 83: 14: 3, and the molar ratio of lithium to nickel + cobalt + aluminum is 1. 03: Each was weighed to 1.00 and mixed thoroughly. This mixed powder was calcined at 350 ° C. for 2 hours in an air flow with an oxygen flow rate of 3000 cm 3 / min, then calcined at 750 ° C. for 20 hours, and cooled to room temperature to obtain LiNi 0.83 Co 0.14 Al 0.03 O 2 . It was.
[0033]
An indium compound was used as the oxygen absorbing compound. That is, commercially available lithium hydroxide monohydrate was dissolved in pure water, and diindium trioxide was added and stirred so that the molar ratio of lithium to indium was 1: 1. Into this aqueous solution , the obtained LiNi 0.83 Co 0.14 Al 0.03 O 2 was added so that the molar ratio of indium to nickel + cobalt + aluminum was 0.010: 1.00, and heated and stirred. Dried. The obtained dried product was baked at 750 ° C. for 20 hours in an air flow with an oxygen flow rate of 3000 cm 3 / min, and cooled to room temperature to obtain a positive electrode active material composed of an indium-containing lithium-nickel composite oxide.
[0034]
When the obtained positive electrode active material was analyzed by powder X-ray diffraction (manufactured by Rigaku Corporation, model RAD-γVB) using Cu Kα rays, in addition to the lithium nickel composite oxide belonging to hexagonal crystals, A peak of LiInO 2 as an oxygen absorber was confirmed. The lattice constant of the lithium-nickel composite oxide calculated from the X-ray diffraction pattern is almost the same as the lattice constant of the lithium-nickel composite oxide before adding indium, and indium is dissolved in the lithium-nickel composite oxide. Estimated not. When the composition of the positive electrode active material was analyzed, the molar ratio of indium to nickel + cobalt + aluminum was 0.01: 1.00, and considering that indium was not dissolved, lithium nickel composite It can be said that the molar ratio of LiInO 2 as an oxygen absorber to the oxide was 1%.
[0035]
Using the obtained positive electrode active material, a battery was prepared as follows, and the charge / discharge capacity was measured.
[0036]
To 87% by mass of the positive electrode active material powder, 5% by mass of acetylene black and 8% by mass of PVDF (polyvinylidene fluoride) were mixed, and NMP (n-methylpyrrolidone) was added to form a paste. This was applied to a 20 μm-thick aluminum foil so that the mass of the active material after drying was 0.025 g / cm 2 , vacuum-dried at 120 ° C., and punched into a 1 cmφ disc shape to obtain a positive electrode. Lithium metal was used as the negative electrode, and an equivalent mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) using 1M LiClO 4 as a supporting salt was used as the electrolyte. A 2032 type coin battery as shown in FIG. 1 was produced in a glove box in an Ar atmosphere in which an electrolytic solution was impregnated into a polyethylene separator and the dew point was controlled at −80 ° C. The produced battery was left for about 24 hours, and after OCV was stabilized, the current density with respect to the positive electrode was set to 0.5 mA / cm 2 and a charge / discharge test was performed at a cutoff voltage of 4.3 to 3.0 V. Table 1 shows the discharge capacity (initial capacity) per mass of the obtained first cycle.
[0037]
In addition, another battery was prepared in the same manner, and charged to 196 mAh / g, assuming that the current density per mass with respect to the positive electrode was 6 mA / g. After charging, the battery was disassembled, and 2.4 mg of the taken-out positive electrode material was mixed in an equal volume of ethylene carbonate (EC) and diethyl carbonate (DEC) using 1M LiClO 4 as an electrolyte as a supporting salt. 2.0 mg was added and sealed in an aluminum sealed container, and differential scanning calorimetry was performed. Moreover, TG-MS measurement (manufactured by Mac Science, model IG-DTA 2020s) of the extracted positive electrode material was performed, and the generated gas accompanying heating was examined.
[0038]
The measurement results are shown in Table 1, FIGS.
[0039]
(Example 2 )
Commercially available lithium hydroxide monohydrate was dissolved in pure water, and diindium trioxide was added and stirred so that the molar ratio of lithium to indium was 1: 1. LiNi 0.83 Co 0.14 Al 0.03 O 2 obtained in the same manner as in Example 1 was added to this aqueous solution so that the molar ratio of indium to nickel + cobalt + aluminum was 0.020: 1.00. The mixture was heated and stirred and dried. The obtained dried product was baked at 750 ° C. for 20 hours in an air flow with an oxygen flow rate of 3000 cm 3 / min, and cooled to room temperature to obtain a positive electrode active material composed of an indium-containing lithium-nickel composite oxide.
[0040]
When the obtained positive electrode active material was analyzed by powder X-ray diffraction using Cu Kα rays, in addition to the lithium nickel composite oxide attributed to hexagonal crystals, a peak of LiInO 2 as an oxygen absorber was confirmed. did it. The lattice constant of the lithium-nickel composite oxide calculated from the X-ray diffraction pattern is almost the same as the lattice constant of the lithium-nickel composite oxide before adding indium, and indium is dissolved in the lithium-nickel composite oxide. Estimated not. When the composition of the positive electrode active material was analyzed, the molar ratio of indium to nickel + cobalt + aluminum was 0.02: 1.00, and considering that indium was not dissolved, lithium nickel composite It can be said that the molar ratio of LiInO 2 as an oxygen absorber to the oxide was 2%.
[0041]
Measurement of initial capacity, differential scanning calorimetry, and TG-MS measurement were performed in the same manner as in Example 1. The measurement results are shown in Table 1, 2 and 4.
[0042]
(Comparative Example 1)
A commercially available lithium hydroxide monohydrate and a composite hydroxide in which the molar ratio of nickel, cobalt and aluminum is 83: 14: 3, and the molar ratio of lithium to nickel + cobalt + aluminum is 1. 0.03: 1.00 and weighed each well and mixed well. This mixed powder was calcined at 350 ° C. for 2 hours in an airflow with an oxygen flow rate of 3000 cm 3 / min, then calcined at 750 ° C. for 20 hours, cooled to room temperature, and positive electrode active material comprising a lithium nickel composite oxide Got.
[0043]
When the obtained positive electrode active material was analyzed by powder X-ray diffraction using Cu Kα rays, only lithium nickel composite oxides belonging to hexagonal crystals could be confirmed.
[0044]
When the composition of the positive electrode active material was analyzed, the molar ratio of lithium to nickel + cobalt + aluminum was 1.03: 1.00.
[0045]
Measurement of initial capacity, differential scanning calorimetry, and TG-MS measurement were performed in the same manner as in Example 1. The measurement results are shown in Table 1, 2 and 5.
[0046]
[Table 1]
Figure 0003876673
[0047]
From Table 1, the initial capacity of the battery of Example 1-2, as compared with the initial capacity of the battery of Comparative Example 1, although slight initial capacity in accordance with the amount of oxygen absorbing compound is reduced, 2at When the oxygen-absorbing compound is added in an amount of not more than%, the decrease in the initial capacity is suppressed to a level that causes no problem in practical use.
[0048]
In addition, by the differential scanning calorimetry shown in FIG. 2, the positive electrode materials of Examples 1 and 2 have a relatively mild reaction because the rapid heat generation as seen in the positive electrode material of Comparative Example 1 is reduced. It can be seen that both have a great effect on improving the thermal stability.
[0049]
Looking at the results of TG-MS measurement in FIGS. 3 to 5, the oxygen released when the cathode material is decomposed is not usually seen because this oxygen reacts with the electrolyte (burns) and changes to carbon dioxide. This is because. Looking at the behavior of carbon dioxide at 250 ° C. or higher corresponding to the decomposition of the positive electrode active material, the positive electrode material of Comparative Example 1 shown in FIG. 5 shows the release of carbon dioxide due to the reaction of the electrolytic solution. In the positive electrode materials of Examples 1 and 2 shown in 3 to 4 , no carbon dioxide is released. This is because oxygen released from the positive electrode active material is absorbed by the oxygen absorbing compound, and the reaction with the electrolytic solution is suppressed, and as a result, the generation of carbon dioxide is suppressed. Thus, it can be seen that by allowing the positive electrode material to coexist with a compound that absorbs oxygen, the combustion reaction of the electrolytic solution is mitigated, which is effective in improving the thermal stability.
[0050]
【The invention's effect】
The battery using the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention has improved thermal stability with almost no loss of high initial capacity.
[Brief description of the drawings]
FIG. 1 is a partially broken perspective view showing a 2032 type coin battery.
2 is a graph showing measurement results of differential scanning calorimetry in Examples 1 and 2 and Comparative Example 1. FIG.
3 is a graph showing measurement results of TG-MS measurement in Example 1. FIG.
4 is a graph showing measurement results of TG-MS measurement in Example 2. FIG.
5 is a graph showing measurement results of TG-MS measurement in Comparative Example 1. FIG.
[Explanation of symbols]
1 Lithium metal anode 2 Separator (electrolyte impregnation)
3 Positive electrode (Evaluation electrode)
4 Gasket 5 Negative electrode can 6 Positive electrode can

Claims (4)

主成分がLiNi1-xx2(但し、Co、Mn、Fe、Cu、Zn、Mg、Ti、AlおよびGaからなる群より選ばれた少なくとも1種以上の金属で、0.2>x≧0)で表されるリチウムニッケル複合酸化物であって、さらに、インジウム化合物およびタンタル化合物から選ばれた1種以上の酸素吸収化合物を含有しており、該非水系電解質二次電池用正極活物質を用いて電池を作製し、充電終了後取り出した該非水系電解質二次電池用正極活物質のTG−MS測定において、250℃以上の温度で二酸化炭素の放出を示すピークが存在しないことを特徴とする非水系電解質二次電池用正極活物質。The main component is LiNi 1-x M x O 2 (provided that at least one metal selected from the group consisting of Co, Mn, Fe, Cu, Zn, Mg, Ti, Al and Ga, 0.2> a lithium nickel composite oxide represented by x ≧ 0), further, Lee indium compound and is containing one or more oxygen absorbing compound selected from tantalum compounds, nonaqueous electrolyte secondary battery positive electrode In the TG-MS measurement of the positive electrode active material for a non-aqueous electrolyte secondary battery that was produced using an active material and was taken out after the end of charging, there was no peak indicating carbon dioxide emission at a temperature of 250 ° C. or higher. A positive electrode active material for a non-aqueous electrolyte secondary battery. ニッケルと元素Mの合計に対する前記酸素吸収化合物のモル比が2%以下であることを特徴とする請求項1に記載の非水系電解質二次電池用正極活物質。  2. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the molar ratio of the oxygen absorbing compound to the total of nickel and the element M is 2% or less. CuのKα線を用いた粉末X線回折による分析で、リチウムニッケル複合酸化物の他に、前記酸素吸収化合物として、In、Taのいずれか1種以上とLiとの酸化物が検出される請求項1〜2のいずれか記載の非水系電解質二次電池用正極活物質。Analysis by powder X-ray diffraction using the Kα line of Cu, in addition to the lithium nickel composite oxide, as the oxygen absorbing compound, oxide of I n, any one or more of Ta and Li is detected The positive electrode active material for non-aqueous electrolyte secondary batteries according to claim 1. 前記酸素吸収化合物が、LiInO2であることを特徴とする請求項1〜3の何れかに記載の非水系電解質二次電池用正極活物質。The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the oxygen absorbing compound is LiInO 2 .
JP2001310165A 2001-10-05 2001-10-05 Cathode active material for non-aqueous electrolyte secondary battery Expired - Fee Related JP3876673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001310165A JP3876673B2 (en) 2001-10-05 2001-10-05 Cathode active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001310165A JP3876673B2 (en) 2001-10-05 2001-10-05 Cathode active material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003123749A JP2003123749A (en) 2003-04-25
JP3876673B2 true JP3876673B2 (en) 2007-02-07

Family

ID=19129188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001310165A Expired - Fee Related JP3876673B2 (en) 2001-10-05 2001-10-05 Cathode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3876673B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114256A (en) * 2004-10-12 2006-04-27 Toyota Motor Corp Positive electrode for secondary battery and utilization thereof
JP5101068B2 (en) * 2006-09-19 2012-12-19 三星エスディアイ株式会社 Negative electrode material for non-aqueous secondary battery and non-aqueous secondary battery using the same
US8187750B2 (en) 2006-09-19 2012-05-29 Samsung Sdi Co., Ltd. Negative active material including lithium vanadium oxide for non-aqueous rechargeable battery, and non-aqueous rechargeable battery including same
US10193142B2 (en) 2008-02-25 2019-01-29 Cf Traverse Llc Lithium-ion battery anode including preloaded lithium
US11233234B2 (en) 2008-02-25 2022-01-25 Cf Traverse Llc Energy storage devices
US9917300B2 (en) 2009-02-25 2018-03-13 Cf Traverse Llc Hybrid energy storage devices including surface effect dominant sites
US9705136B2 (en) * 2008-02-25 2017-07-11 Traverse Technologies Corp. High capacity energy storage
US9979017B2 (en) 2009-02-25 2018-05-22 Cf Traverse Llc Energy storage devices
US9412998B2 (en) 2009-02-25 2016-08-09 Ronald A. Rojeski Energy storage devices
US10205166B2 (en) 2008-02-25 2019-02-12 Cf Traverse Llc Energy storage devices including stabilized silicon
US10727481B2 (en) 2009-02-25 2020-07-28 Cf Traverse Llc Energy storage devices
US9966197B2 (en) 2009-02-25 2018-05-08 Cf Traverse Llc Energy storage devices including support filaments
US9941709B2 (en) 2009-02-25 2018-04-10 Cf Traverse Llc Hybrid energy storage device charging
US10056602B2 (en) 2009-02-25 2018-08-21 Cf Traverse Llc Hybrid energy storage device production
JP2010027482A (en) * 2008-07-23 2010-02-04 Sony Corp Method for manufacturing positive electrode active material and positive electrode active material
CN103746143A (en) * 2013-12-10 2014-04-23 宁波维科电池股份有限公司 High energy density lithium ion power battery

Also Published As

Publication number Publication date
JP2003123749A (en) 2003-04-25

Similar Documents

Publication Publication Date Title
US7655358B2 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
JP5618116B2 (en) Non-aqueous electrolyte secondary battery using lithium nickel composite oxide and lithium nickel composite oxide as positive electrode active material
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
JP3876673B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP2010064944A5 (en)
JP2007200865A (en) Nonaqueous electrolyte secondary battery
JP2005129489A (en) Nonaqueous electrolyte secondary battery and manufacturing method of the same
US9337479B2 (en) Nonaqueous electrolyte secondary battery
JP6035669B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2001273899A (en) Positive electrode material for lithium secondary battery
JP2007242420A (en) Nonaqueous electrolyte secondary battery, and method of manufacturing anode active material for nonaqueous electrolyte secondary battery
JP5241766B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP2001160395A (en) Material for positive electrode of lithium secondary battery
JP2009266791A (en) Nonaqueous electrolyte secondary battery
JP3835180B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP6406049B2 (en) Positive electrode material, positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3835235B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2002226214A (en) New lithium manganese complex oxide and its production method and application thereof
JP2002170566A (en) Lithium secondary cell
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
JP2008021538A (en) Nonaqueous electrolyte secondary battery
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP4479874B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4530844B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP3776230B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060831

LAPS Cancellation because of no payment of annual fees