JPH06275276A - Manufacture of spinel limn2o4 with high surface area and its application to nonaqueous battery - Google Patents

Manufacture of spinel limn2o4 with high surface area and its application to nonaqueous battery

Info

Publication number
JPH06275276A
JPH06275276A JP5100025A JP10002593A JPH06275276A JP H06275276 A JPH06275276 A JP H06275276A JP 5100025 A JP5100025 A JP 5100025A JP 10002593 A JP10002593 A JP 10002593A JP H06275276 A JPH06275276 A JP H06275276A
Authority
JP
Japan
Prior art keywords
surface area
limn
specific surface
lithium
limn2o4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5100025A
Other languages
Japanese (ja)
Other versions
JP3021229B2 (en
Inventor
Masayuki Yoshio
真幸 芳尾
Akihisa Ozawa
昭弥 小沢
Manefu Bui
マネフ ブイ
Hideyuki Noguchi
英行 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5100025A priority Critical patent/JP3021229B2/en
Publication of JPH06275276A publication Critical patent/JPH06275276A/en
Application granted granted Critical
Publication of JP3021229B2 publication Critical patent/JP3021229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To manufacture LiMn2O4 having a high specific surface area of 2m<2>/g or above and used as a positive electrode material for a high energy density type lithium secondary battery. CONSTITUTION:Lithium nitrate or lithium hydride and electrolytically or chemically synthesized manganese dioxide having the specific surface area of 80m<2>/g or above are baked at 450 deg.C or below. After LiMn2O4 having the amorphous distortion spinel structure is synthesized, it is again heat-treated at 600-750 deg.C. The crystalline LiMn2O4 having the specific surface area of 2m<2>/g or above is manufactured in two-stage heat treatment.

Description

【発明の詳細な説明】 【産業上の利用分野】本発明は、金属リチウムあるいは
リチウムカーボン(リチウム−グラファイト)インター
カレーション化合物を負極活物質とするリチウム二次電
池において、正極活物質として使用するスピネル構造の
LiMnに関する。 【0003】 【従来の技術および問題点】4ボルト系高エネルギー密
度型のリチウム二次電池用正極活物質としてはLiNi
の他、LiCoO、LiMnが使用可能で
ある。LiCoOを正極活物質とする電池は既に市販
されている。しかしコバルトは資源量が少なく且つ高価
であるため、電池の普及に伴う大量生産には向かない。
資源量や価格の面から考えるとマンガン化合物が有望な
正極材料である。原料として使用可能な二酸化マンガン
は現在乾電池材料として大量に生産されている。従来、
結晶性のスピネル型LiMnは炭酸リチウムとM
(Hunter;J.Solid State
Chem.,39142(1981))の反応や炭酸
リチウムと炭酸マンガンを加熱(Thackeray
ら,Mat.Res.Bull.,19,179(19
84)など)して合成されていた。炭酸リチウムとMn
を900℃、24時間焼成して得られるスピネル
LiMnの比表面積は0.1m/g以下である
(参考例1)。この試料は図1に示すように0.01C
の放電速度でも80mAH/gの容量しかない。またサ
イクルとともに容量が低下する欠点がある。放電速度を
0.3Cとすると容量は30mAH/gまで低下する。
この試料を粉砕し比表面積を0.4m/gあるいは
1.3m/gとした試料を0.01Cで充電し、種々
の放電速度で放電した場合の放電容量を表1に示す。 この結果より高い電流密度での放電では比表面積が放電
容量を決定する重要な因子であることを示している。し
かし、低温焼成で生成する比表面積の大きい非晶質歪ス
ピネル構造のLiMnは4V級電池としては放電
容量が小さく、且つサイクル特性も悪い。この為4V級
電池の正極活物質には結晶性のスピネル構造のLiMn
を用いる必要がある。大電流を取り出せるリチウ
ム二次電池用LiMnの具現すべき性質は結晶性
のスピネル構造で、かつ比表面積が大きいことである。
前述したようにLiMnの比表面積は機械的な粉
砕により粒子を微細化することによっても可能であるが
製造プロセスが増えコストが高くなることおよび電極作
製にあたって多量の導電剤および結着剤が必要となり体
積当たりの放電容量が低下するため機械的粉砕は解決手
段とはならない。前述した700−900℃の一段階の
熱処理でLiMnを製造する従来のプロセスでは
Mnを用いるかあるいは炭酸マンガン用いた場合
は中間生成物としてMnを生成する。2つの方法
ともMnと炭酸リチウムが反応してスピネル構造
のLiMnが生成する。図2に示すようにMn
は650℃の低温での熱処理でも焼結反応が進行
し、24時間の熱処理で比表面積は原料Mnの1
/10以下に低下する。従って従来の方法では反応中間
体のMnとLiCOが反応しLiMn
を生成する前にMnの焼結が進行し、比表面積が
低下する。比表面積が小さくなると高電流密度での放電
容量が低下するのみならずサイクル特性も劣化する欠点
がある。 【0004】 【発明が解決しようとする課題】本発明は、かかる従来
技術の課題に鑑みなされたもので、リチウム二次電池正
極活物質に比表面積の大きな結晶性スピネル構造のLi
Mnを用いることにより高い放電速度での放電容
量を向上させることとサイクル特性を向上させることを
を目的とする。 【0005】 【問題点を解決するための手段】前述したようにMn
を経由してLiMnを製造する方法では、L
iMnが生成する前に反応中間体であるMn
の焼結が進行し、比表面積の小さいLiMn
生成する。二酸化マンガンを550℃以上に加熱すると
Mnが生成するので550℃未満で二酸化マンガ
ンとリチウム塩を反応させ非晶質歪スピネル構造のLi
Mnを製造する。650−750℃での再度の加
熱処理により非晶質歪スピネル構造のLiMn
ら結晶性のスピネル構造のLiMnに変化する。
この構造変化は比表面積の低下を伴うが、結晶性スピネ
ル構造のLiMnが一旦生成すると図2に示した
ように750℃以下ではこの物質の焼結反応は遅い。そ
れ故700℃での熱処理により比表面積の低下を抑制す
ることができる。リチウム塩には固液反応で反応が進行
する硝酸リチウムが適切である。分解温度が高い炭酸リ
チウムでは非晶質スピネルの生成速度が遅く不適切であ
る。 【0006】 【発明の効果】本法で製造したLiMnは図面4
に示すように1Cの放電速度で130mAH/g以上の
放電容量を有し、表2に示すようにサイクル特性もすぐ
れ、大電流を必要とする機器に使用するリチウム二次電
池用正極活物質として有用である。 【0007】 【実施例】 【実施例1】化学合成二酸化マンガン(Sedema社
Faradizer M,国際共通サンプルNo.1
2)8.69gと硝酸リチウム3.438gを粉砕混合
し、アルミナルツボに入れる。400℃48時間空気雰
囲気下で予備焼成し、非晶質の歪スピネル構造のLiM
を得る。これを再び700℃で120時間焼成
し、結晶性のスピネル構造のLiMnとする。こ
の両者のX線回折図(CuKα線使用)では両者とも2
θ=18.6−18.8、36.1−36.5、44.
0−44.4度にスピネルのLiMnに特徴的な
ピークを有する。400℃焼成段階では結晶化が十分進
行せず、ピーク強度が弱く線幅も広く結晶化が進んでい
ないことを示している。700℃、120時間焼成して
得たスピネルLiMn(3.2m/g)と導電
性バインダー(20Wt%)から成る合剤を正極とし、
金属リチウムを負極として0.2Cの速度(5時間)で
充電した後、種々の速度(0.2−5C)で放電した場
合の放電曲線を示した。電解液にはLiAsFを溶解
したエチレンカーボネート−プロピレンカーボネートの
混合液を用いた。充放電電圧範囲は4.5−3.0Vと
した。図4に示すように1Cの高い放電速度でも容量は
130mAH/g以上あり、分極も100mV以下と非
水電池としては小さい。 【0008】 【実施例2】電解合成二酸化マンガン(Hoeches
t社 Knapsack) 8.69gと硝酸リチウム
3.438gを粉砕混合し、アルミナルツボに入れる。
400℃、48時間空気雰囲気下で焼成した後、再び7
00℃で120時間焼成し、LiMnを得た。こ
の試料のBET表面積は1.2m/gであり、化学合
成二酸化マンガンを原料とした場合の40%以下であ
る。比表面積の大きな化学合成二酸化マンガンを原料と
する方が比表面積の小さな電解合成二酸化マンガンを原
料とするよりも大きな比表面積を有するLiMn
が得られる。電解二酸化マンガンでも比表面積の大きい
ものを用いると得られるLiMnの比表面積は大
きくなり、比表面積の大きい化学合成二酸化マンガンを
用いた場合と同様優れた充放電性能を示す。 【実施例3】化学合成二酸化マンガン(Sedema社
Faradizer M,国際共通サンプルNo.1
2)8.69gと水酸化リチウム(LiOH・HO)
2.098gを粉砕混合し、アルミナルツボに入れる。
400℃、48時間空気雰囲気下で焼成した後、再び7
00℃で120時間焼成する。得られたLiMn
の比表面積は2.2m/gであった。0.3Cでの充
放電テストの結果(表2)、容量はLiNOより合成
したものより3%程度劣るもののサイクル特性では顕著
な違いは見られない。 【0009】 【参考例1】Mn7.89gと炭酸リチウム(L
CO)1.848gを粉砕混合し、アルミナルツ
ボに入れる。これを空気中900℃で24時間焼成す
る。得られたLiMnは比表面積0.1m/g
以下であった。これをボールミルで24時間粉砕し
(0.4m/g)、さらに24時間粉砕する(1.3
/g)。これらの試料の電池テストでは活物質の2
倍の重量の導電性バインダーを用いて正極合剤を調製し
た。 【0010】
Description: FIELD OF THE INVENTION The present invention is used as a positive electrode active material in a lithium secondary battery using a metallic lithium or lithium carbon (lithium-graphite) intercalation compound as a negative electrode active material. It relates to LiMn 2 O 4 having a spinel structure. 2. Description of the Related Art LiNi is used as a positive electrode active material for a 4-volt high energy density type lithium secondary battery.
Other than O 2 , LiCoO 2 and LiMn 2 O 4 can be used. Batteries using LiCoO 2 as the positive electrode active material are already on the market. However, since cobalt has a small amount of resources and is expensive, it is not suitable for mass production with the spread of batteries.
Manganese compounds are promising cathode materials in terms of resource amount and price. Manganese dioxide, which can be used as a raw material, is currently produced in large quantities as a dry battery material. Conventionally,
Crystalline spinel type LiMn 2 O 4 contains lithium carbonate and M
n 2 O 3 (Hunter; J. Solid State
Chem. , 39 142 (1981)) or heating lithium carbonate and manganese carbonate (Tackeray
Et al., Mat. Res. Bull. , 19 , 179 (19
84) and the like) were synthesized. Lithium carbonate and Mn
The specific surface area of spinel LiMn 2 O 4 obtained by firing 2 O 3 at 900 ° C. for 24 hours is 0.1 m 2 / g or less (Reference Example 1). This sample is 0.01C as shown in FIG.
The discharge rate is 80 mAH / g. Further, there is a drawback that the capacity decreases with the cycle. When the discharge rate is 0.3 C, the capacity drops to 30 mAH / g.
Table 1 shows the discharge capacities when the sample was crushed to have a specific surface area of 0.4 m 2 / g or 1.3 m 2 / g and charged at 0.01 C and discharged at various discharge rates. This result shows that the specific surface area is an important factor for determining the discharge capacity in the discharge at a higher current density. However, LiMn 2 O 4 having an amorphous strain spinel structure, which has a large specific surface area and is generated by low temperature firing, has a small discharge capacity as a 4V class battery and also has poor cycle characteristics. Therefore, LiMn having a crystalline spinel structure is used as the positive electrode active material of the 4V class battery.
It is necessary to use 2 O 4 . LiMn 2 O 4 for a lithium secondary battery capable of extracting a large current has a property to be embodied that it has a crystalline spinel structure and a large specific surface area.
As described above, the specific surface area of LiMn 2 O 4 can also be obtained by refining the particles by mechanical pulverization, but the manufacturing process increases and the cost increases, and a large amount of the conductive agent and the binder are used for manufacturing the electrode. Therefore, mechanical pulverization is not a solution because the discharge capacity per unit volume is reduced. In the conventional process for producing LiMn 2 O 4 by the one-step heat treatment at 700 to 900 ° C. described above, Mn 2 O 3 is used, or when manganese carbonate is used, Mn 2 O 3 is produced as an intermediate product. In both methods, Mn 2 O 3 and lithium carbonate react to generate LiMn 2 O 4 having a spinel structure. As shown in FIG. 2 Mn 2
O 3 undergoes a sintering reaction even when heat-treated at a low temperature of 650 ° C., and the specific surface area is 1% of that of the raw material Mn 2 O 3 after heat-treatment for 24 hours.
/ 10 or less. Therefore, in the conventional method, the reaction intermediate Mn 2 O 3 and Li 2 CO 3 are reacted to form LiMn 2 O 4
Before the formation of Mn 2 O 3 , the specific surface area decreases. When the specific surface area is small, there is a drawback that not only the discharge capacity at high current density is lowered but also the cycle characteristics are deteriorated. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems of the prior art. Lithium having a crystalline spinel structure having a large specific surface area is used as a positive electrode active material for a lithium secondary battery.
The use of Mn 2 O 4 aims to improve the discharge capacity at a high discharge rate and to improve the cycle characteristics. Means for Solving the Problems As described above, Mn 2
In the method of producing LiMn 2 O 4 via O 3 , L
Before the formation of iMn 2 O 4 , the reaction intermediate Mn 2 O
3 progresses, and LiMn 2 O 4 having a small specific surface area is generated. When manganese dioxide is heated to 550 ° C. or higher, Mn 2 O 3 is produced. Therefore, manganese dioxide and a lithium salt are reacted at a temperature lower than 550 ° C.
Manufacture Mn 2 O 4 . By heat treatment again at 650 to 750 ° C., LiMn 2 O 4 having an amorphous strain spinel structure is changed to LiMn 2 O 4 having a crystalline spinel structure.
This structural change is accompanied by a decrease in specific surface area, but once LiMn 2 O 4 having a crystalline spinel structure is formed, the sintering reaction of this substance is slow at 750 ° C. or lower as shown in FIG. Therefore, the heat treatment at 700 ° C. can suppress the decrease in the specific surface area. Lithium nitrate is suitable for the lithium salt, as the reaction proceeds in a solid-liquid reaction. Lithium carbonate, which has a high decomposition temperature, is unsuitable because of the low rate of amorphous spinel formation. The LiMn 2 O 4 produced by this method is shown in FIG.
As shown in Table 2, it has a discharge capacity of 130 mAH / g or more at a discharge rate of 1 C, has excellent cycle characteristics as shown in Table 2, and is used as a positive electrode active material for a lithium secondary battery used in equipment requiring a large current. It is useful. EXAMPLES Example 1 Chemically Synthesized Manganese Dioxide (Faradizer M, Sedema, International Common Sample No. 1)
2) 8.69 g and 3.438 g of lithium nitrate are pulverized and mixed, and put into an alumina crucible. Preliminary firing at 400 ° C for 48 hours in air atmosphere, amorphous LiM with strain spinel structure
obtain n 2 O 4. This is fired again at 700 ° C. for 120 hours to obtain crystalline LiMn 2 O 4 having a spinel structure. In the X-ray diffraction diagram (using CuKα ray) of both, both are 2
θ = 18.6-18.8, 36.1-36.5, 44.
It has a characteristic peak of LiMn 2 O 4 of spinel at 0-44.4 degrees. It shows that the crystallization did not proceed sufficiently at the 400 ° C. firing stage, the peak intensity was weak, the line width was wide, and the crystallization did not proceed. A mixture of spinel LiMn 2 O 4 (3.2 m 2 / g) obtained by firing at 700 ° C. for 120 hours and a conductive binder (20 Wt%) was used as a positive electrode,
The discharge curves are shown when the lithium negative electrode was charged at a rate of 0.2 C (5 hours) and then discharged at various rates (0.2-5 C). As the electrolytic solution, a mixed solution of ethylene carbonate-propylene carbonate in which LiAsF 6 was dissolved was used. The charge / discharge voltage range was 4.5-3.0V. As shown in FIG. 4, the capacity is 130 mAH / g or more even at a high discharge rate of 1 C, and the polarization is 100 mV or less, which is small for a non-aqueous battery. Example 2 Electrosynthesis Manganese Dioxide (Hoeches)
Knapsack (t. company) 8.69 g and lithium nitrate 3.438 g are pulverized and mixed, and put into an alumina crucible.
After firing at 400 ° C for 48 hours in an air atmosphere, 7
It was baked at 00 ° C. for 120 hours to obtain LiMn 2 O 4 . The BET surface area of this sample is 1.2 m 2 / g, which is 40% or less of the case where chemically synthesized manganese dioxide is used as a raw material. LiMn 2 O 4 having a larger specific surface area when chemically synthesized manganese dioxide having a large specific surface area is used as a raw material than when electrolytically synthesized manganese dioxide having a small specific surface area is used as a raw material.
Is obtained. Even when electrolytic manganese dioxide having a large specific surface area is used, the obtained LiMn 2 O 4 has a large specific surface area, and exhibits excellent charge / discharge performance as in the case of using chemically synthesized manganese dioxide having a large specific surface area. Example 3 Chemically Synthesized Manganese Dioxide (Faradizer M, Sedema, International Common Sample No. 1)
2) 8.69 g and lithium hydroxide (LiOH.H 2 O)
2.098 g is pulverized and mixed, and put in an alumina crucible.
After firing at 400 ° C for 48 hours in an air atmosphere, 7
Baking for 120 hours at 00 ° C. Obtained LiMn 2 O 4
Had a specific surface area of 2.2 m 2 / g. As a result of the charge / discharge test at 0.3 C (Table 2), the capacity is inferior by about 3% to the one synthesized from LiNO 3, but no significant difference is seen in the cycle characteristics. Reference Example 1 7.89 g of Mn 2 O 3 and lithium carbonate (L
1.848 g of i 2 CO 3 ) is pulverized and mixed, and put into an alumina crucible. This is baked in air at 900 ° C. for 24 hours. The obtained LiMn 2 O 4 has a specific surface area of 0.1 m 2 / g
It was below. This was crushed with a ball mill for 24 hours (0.4 m 2 / g) and further crushed for 24 hours (1.3
m 2 / g). In the battery test of these samples, 2 of the active materials
A positive electrode mixture was prepared using a double weight of the conductive binder. [0010]

【図面の簡単な説明】 【図1】 放電速度と放電容量の関係 【図2】 MnとLiMnの焼結温度と比
表面積の関係 【図3】 非晶質の歪スピネルLiMnと結晶性
のスピネルLiMnのXRD図 【図4】 本法により合成したLiMnの種々の
放電速度での放電曲線 【符号の説明】 1 LiMn:650℃熱処理 2 LiMn:750℃熱処理 3 Mn :650℃熱処理 4 Mn :750℃熱処理 5 結晶性スピネルLiMn 6 非晶質歪スピネルLiMn 7 放電速度:1C 8 放電速度:2C 9 放電速度:5C
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 Relationship between discharge rate and discharge capacity FIG. 2 Relationship between sintering temperature and specific surface area of Mn 2 O 3 and LiMn 2 O 4 FIG. 3 Amorphous strain spinel XRD diagrams of LiMn 2 O 4 and crystalline spinel LiMn 2 O 4 [FIG. 4] Discharge curves of LiMn 2 O 4 synthesized by this method at various discharge rates [Description of symbols] 1 LiMn 2 O 4 : 650 ℃ heat treatment 2 LiMn 2 O 4 : 750 ℃ heat treatment 3 Mn 2 O 3 : 650 ℃ heat treatment 4 Mn 2 O 3 : 750 ℃ heat treatment 5 crystalline spinel LiMn 2 O 4 6 amorphous strain spinel LiMn 2 O 4 7 discharge rate 1C 8 Discharge rate: 2C 9 Discharge rate: 5C

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ブイ マネフ ブルガリア国、ソフィア市、ジ ボンチェ フ ボル ヴァード10 (72)発明者 野口 英行 佐賀県佐賀郡諸富町大字徳富1684   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Bumanef             Gibonche, Sofia city, Bulgaria             Hubbard 10 (72) Inventor Hideyuki Noguchi             1684 Tokutomi, Morotomi-cho, Saga-gun, Saga

Claims (1)

【0001】 【特許請求の範囲】 1.硝酸リチウムと比表面積80m/g以上を有する
電解あるいは化学合成二酸化マンガンを450℃以下で
焼成し、非晶質歪スピネル構造のLiMnを合成
後、再度熱処理(600−750℃)する二段階熱処理
を特徴とする2m/g以上の比表面積を有する結晶性
LiMnの製造方法。硝酸リチウムの代わりに水
酸化リチウムを用いてもよい。 2.前述のLiMnを正極活物質とするリチウム
二次電池用正極。 【0002】
[Claims] 1. Lithium nitrate and electrolytically or chemically synthesized manganese dioxide having a specific surface area of 80 m 2 / g or more are fired at 450 ° C. or less to synthesize LiMn 2 O 4 having an amorphous strain spinel structure, and then heat treated again (600 to 750 ° C.). A method for producing crystalline LiMn 2 O 4 having a specific surface area of 2 m 2 / g or more, characterized by a two-step heat treatment. Lithium hydroxide may be used instead of lithium nitrate. 2. A positive electrode for a lithium secondary battery, which uses the aforementioned LiMn 2 O 4 as a positive electrode active material. [0002]
JP5100025A 1993-03-18 1993-03-18 Method for producing LiMn2O4 having crystalline spinel structure and positive electrode for secondary battery using the same as active material Expired - Fee Related JP3021229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5100025A JP3021229B2 (en) 1993-03-18 1993-03-18 Method for producing LiMn2O4 having crystalline spinel structure and positive electrode for secondary battery using the same as active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5100025A JP3021229B2 (en) 1993-03-18 1993-03-18 Method for producing LiMn2O4 having crystalline spinel structure and positive electrode for secondary battery using the same as active material

Publications (2)

Publication Number Publication Date
JPH06275276A true JPH06275276A (en) 1994-09-30
JP3021229B2 JP3021229B2 (en) 2000-03-15

Family

ID=14263003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5100025A Expired - Fee Related JP3021229B2 (en) 1993-03-18 1993-03-18 Method for producing LiMn2O4 having crystalline spinel structure and positive electrode for secondary battery using the same as active material

Country Status (1)

Country Link
JP (1) JP3021229B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0744381A1 (en) * 1995-05-24 1996-11-27 BASF Magnetics GmbH Lithium and manganese (III/IV) containing spinels
US5807532A (en) * 1995-01-26 1998-09-15 Japan Metals And Chemicals Co., Ltd. Method of producing spinel type limn204
WO2001036334A1 (en) * 1999-11-15 2001-05-25 Mitsubishi Chemical Corporation Lithium-manganese composite oxide, positive electrode material for lithium secondary cell, positive electrode and lithium secondary cell, and method for preparing lithium-manganese composite oxide
KR20010056566A (en) * 1999-12-15 2001-07-04 성재갑 Method for preparing lithium manganese oxide for lithium cell and battery
JP2002226214A (en) * 2001-01-26 2002-08-14 Tosoh Corp New lithium manganese complex oxide and its production method and application thereof
US6506493B1 (en) 1998-11-09 2003-01-14 Nanogram Corporation Metal oxide particles
JP2012036085A (en) * 2011-09-20 2012-02-23 Tosoh Corp Novel lithium manganese composite oxide, and production method thereof and use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102219499B1 (en) * 2019-06-13 2021-02-25 (주)한솔일렉트로닉스 Pellet feeding apparatus and pellet stove having the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807532A (en) * 1995-01-26 1998-09-15 Japan Metals And Chemicals Co., Ltd. Method of producing spinel type limn204
EP0744381A1 (en) * 1995-05-24 1996-11-27 BASF Magnetics GmbH Lithium and manganese (III/IV) containing spinels
US6506493B1 (en) 1998-11-09 2003-01-14 Nanogram Corporation Metal oxide particles
US6680041B1 (en) 1998-11-09 2004-01-20 Nanogram Corporation Reaction methods for producing metal oxide particles
WO2001036334A1 (en) * 1999-11-15 2001-05-25 Mitsubishi Chemical Corporation Lithium-manganese composite oxide, positive electrode material for lithium secondary cell, positive electrode and lithium secondary cell, and method for preparing lithium-manganese composite oxide
US6692665B2 (en) 1999-11-15 2004-02-17 Mitsubishi Chemical Corporation Lithium managanese oxide, cathode material for lithium secondary battery, cathode, lithium secondary battery and process for manufacturing lithium manganese oxide
KR20010056566A (en) * 1999-12-15 2001-07-04 성재갑 Method for preparing lithium manganese oxide for lithium cell and battery
JP2002226214A (en) * 2001-01-26 2002-08-14 Tosoh Corp New lithium manganese complex oxide and its production method and application thereof
JP2012036085A (en) * 2011-09-20 2012-02-23 Tosoh Corp Novel lithium manganese composite oxide, and production method thereof and use thereof

Also Published As

Publication number Publication date
JP3021229B2 (en) 2000-03-15

Similar Documents

Publication Publication Date Title
US5700598A (en) Method for preparing mixed amorphous vanadium oxides and their use as electrodes in reachargeable lithium cells
JP4431064B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP4702510B2 (en) Lithium-containing silicon oxide powder and method for producing the same
KR101787141B1 (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
US7270797B2 (en) Process for producing positive electrode active material for lithium secondary battery
JP3362564B2 (en) Non-aqueous electrolyte secondary battery, and its positive electrode active material and method for producing positive electrode plate
KR20110094023A (en) Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
JP6986879B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
CN111697203A (en) Lithium manganese iron phosphate composite material and preparation method and application thereof
KR20010056565A (en) Method for preparing lithium manganese spinel oxide having improved electrochemical performance
KR100639060B1 (en) Method for preparing lithium manganate having spinel structure
JP3929548B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
JP3021229B2 (en) Method for producing LiMn2O4 having crystalline spinel structure and positive electrode for secondary battery using the same as active material
JPH07245106A (en) Manufacture of lixmn2o4 for lithium secondary battery and application thereof to nonaqueous battery
CN108400295B (en) Silver-coated spinel-type LiMn2O4Material and method for the production thereof
US7829223B1 (en) Process for preparing lithium ion cathode material
JP7308586B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
WO2003086975A1 (en) Process for preparing cathode material for lithium batteries
JP2001126730A (en) Nonaqueous electrolytic secondary cell and method for preparing the same
KR0158281B1 (en) Proecss for preparing li-co oxide powder
KR100229956B1 (en) Method of manufacturing lithium cobalt oxide fine powder and lithium secondary cell using it
JPH10321231A (en) Negative electrode material, manufacture of negative electrode material, and nonaqueous electrolyte secondary battery
JPH10265224A (en) Production of lithium manganate and non-aqueous solvent secondary battery
JP2001048544A (en) Production of lithium-manganese multiple oxide for non- aqueous lithium secondary battery and use of the multiple oxide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees