KR0158281B1 - Proecss for preparing li-co oxide powder - Google Patents

Proecss for preparing li-co oxide powder

Info

Publication number
KR0158281B1
KR0158281B1 KR1019950053465A KR19950053465A KR0158281B1 KR 0158281 B1 KR0158281 B1 KR 0158281B1 KR 1019950053465 A KR1019950053465 A KR 1019950053465A KR 19950053465 A KR19950053465 A KR 19950053465A KR 0158281 B1 KR0158281 B1 KR 0158281B1
Authority
KR
South Korea
Prior art keywords
lithium cobalt
cobalt oxide
oxide powder
lithium
electrode
Prior art date
Application number
KR1019950053465A
Other languages
Korean (ko)
Other versions
KR970042276A (en
Inventor
심윤보
이학주
정의덕
Original Assignee
김성두
세방전지주식회사
심윤보
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김성두, 세방전지주식회사, 심윤보 filed Critical 김성두
Priority to KR1019950053465A priority Critical patent/KR0158281B1/en
Publication of KR970042276A publication Critical patent/KR970042276A/en
Priority to KR1019980025914A priority patent/KR100190988B1/en
Priority to KR1019980025913A priority patent/KR100190987B1/en
Application granted granted Critical
Publication of KR0158281B1 publication Critical patent/KR0158281B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬코발트 산화물 분말의 제조방법과, 이를 사용하여 제조된 전극 및 리튬 2차 전지에 관한 것으로서, 음극활성물질로 사용되는 리튬코발트 산화물 분말의 제조시 열처리 온도를 낮출 수 있고, 화학량론적으로 균일한 분말을 제조할 수 있으며, 또한 입자가 작은 분말을 제조할 수 있으므로 충방전 효율이 높고, 전지수명이 길며, 또 단위 중량당 에너지 밀도가 높은 우수한 전지를 제공한다.The present invention relates to a method for producing lithium cobalt oxide powder, and to an electrode and a lithium secondary battery manufactured using the same, which can lower the heat treatment temperature during the preparation of lithium cobalt oxide powder used as a negative electrode active material, and stoichiometrically It is possible to produce a uniform powder, and also to produce a powder with small particles, thereby providing an excellent battery having high charge and discharge efficiency, long battery life, and high energy density per unit weight.

Description

리튬코발트산화물(LiCoO2) 분말의 제조방법, 이를 사용하여 제조된 전극 및 리튬2차전지Method for producing lithium cobalt oxide (LiCoO2) powder, electrode and lithium secondary battery manufactured using the same

제1도는 본 발명에 의한 리튬코발트산화물 분말의 제조방법과 이를 사용한 전극 제조의 개략적인 흐름도.1 is a schematic flowchart of a method of manufacturing lithium cobalt oxide powder and an electrode using the same according to the present invention.

제2도는 본 발명의 리튬코발트산화물 분말을 제조하기 위해 합성된 분말의 열무게분석(TG)/시차열법분석(DTA) 곡선을 나태내는 도면.2 is a diagram showing a thermogravimetric analysis (TG) / differential thermal analysis (DTA) curve of a powder synthesized to prepare a lithium cobalt oxide powder of the present invention.

제3는 본 발명의 리튬코발트산화물 분말 제조예 1(OA-7 LiCoO2) 및 2(OA-9 LiCoO2)의 X선회절 무늬(XRD pattern)를 나타내는 도면.3 is a view showing an X-ray diffraction pattern (XRD pattern) of the lithium cobalt oxide powder Preparation Example 1 (OA-7 LiCoO 2 ) and 2 (OA-9 LiCoO 2 ) of the present invention.

제4a도 및 제4b도는 본 발명의 리튬코발트산화물 분말 제조예 1(OA-7 LiCoO2)로 제조된 리튬코발트산화물분말 표면의 전자현미경(SEM) 사진을 각각 1,000배 및 2,000배 확대한 도면.4a and 4b is a magnification of the electron microscope (SEM) photograph of the surface of the lithium cobalt oxide powder prepared in Example 1 (OA-7 LiCoO 2 ) of lithium cobalt oxide powder of the present invention magnified 1,000 times and 2,000 times.

제5a도 및 제5b도는 본 발명의 리튬코발트산화물 분말 제조예 2(OA-9 LiCoO2)로 제조된 리튬코발트산화물 분말 표면의 전자현미경 사진을 각각 1,000배 및 2,000배 확대한 도면.5a and 5b is a magnification of 1,000 times and 2,000 times the electron micrograph of the surface of the lithium cobalt oxide powder prepared in Example 2 (OA-9 LiCoO 2 ) of the lithium cobalt oxide powder of the present invention.

제6a도 및 제6b도는 본 발명의 전극제조예 1로 제조된 전극 표면의 전자현미경 사진을 각각 1,000배 및 2,000배 확대한 도면.6a and 6b are enlarged 1,000 times and 2,000 times, respectively, of electron micrographs of the electrode surface of the electrode manufacturing example 1 of the present invention.

제7a도 및 제7b도는 본 발명의 전극제조예 2로제조된 전극표면의 전자현미경 사진을 각각 1,000배 및 2,000배 확대한 도면.7A and 7B are enlarged 1,000 times and 2,000 times, respectively, of electron micrographs of the electrode surface manufactured by the electrode preparation example 2 of the present invention.

제8도는 주사속도가 0.01㎷/sec일 때, 리튬코발트산화물 분말 제조예 1의 분말로 제조된 전극의 순환전압전류곡선을 나타내는 도면.8 is a diagram showing a cyclic voltage current curve of an electrode made of the powder of lithium cobalt oxide powder Preparation Example 1 when the scanning speed is 0.01 mA / sec.

제9도는 주사속도가 2㎷/sec일 때, 리튬코발트산화물 분말 제조예 1의 분말로 제조된 전극의 순환전압전류곡선을 나타내는 도면.9 is a diagram showing a cyclic voltage current curve of an electrode made of the powder of lithium cobalt oxide powder Preparation Example 1 when the scanning speed is 2 mA / sec.

제10도는 주사속도가 2㎷/sec일 때, 리튬코발트산화물 분말 제조예 2의 분말로 제조된 전극의 순환전압전류곡선을 나타내는 도면.10 is a diagram showing a cyclic voltage current curve of an electrode made of the powder of lithium cobalt oxide powder Preparation Example 2 when the scanning speed is 2 mA / sec.

제11도는 리튬 함량에 따른 리튬코발트산화물 분말 제조예 1의 분말로 제조된 전극으로 시험전지를 구성한 경우의 제1차 정전류충전방전 특성 곡선을 나타내는 도면.FIG. 11 is a view showing a first constant current charge / discharge characteristic curve when a test battery is configured with an electrode made of the powder of lithium cobalt oxide powder Preparation Example 1 according to lithium content. FIG.

제12도는 리튬 함량에 따른 리튬코발트산화물 분말 제조예 2의 분말로 제조된 전극으로 시험전지를 구성한 경우의 제1차 정전류충방전 특성 곡선을 나타내는 도면.12 is a diagram showing a first constant current charge / discharge characteristic curve when a test battery is configured with an electrode made of the powder of lithium cobalt oxide powder Preparation Example 2 according to lithium content.

제13도는 정전류 충방전 동안의 리튬코발트산화물 분말 제조예 1 전극의 충방전 곡선을 나타내는 도면.FIG. 13 is a graph showing charge and discharge curves of a lithium cobalt oxide powder preparation example 1 electrode during constant current charge and discharge. FIG.

제14도는 정전류 충방전 동안의 리튬코발트산화물 분말 제조예 2 전극의 충방전 곡선을 나타내는 도면.14 is a view showing a charge and discharge curve of a lithium cobalt oxide powder Preparation Example 2 electrode during constant current charge and discharge.

제15도는 정전류 충방전한 LiCoO2/Li 2차전지의 충방전 용량 변화를 나타내는 도면이다.FIG. 15 is a diagram showing the charge / discharge capacity change of the constant current charge / discharge LiCoO 2 / Li secondary battery.

본 발명은 리튬코발트산화물(LiCoO2) 분말의 제조방법과, 이를 사용하여 제조된 전극(음극) 및 리튬 2차전지에 관한 것으로, 특히 리튬2차전지의 음극 활성물질로 사용되는 리튬코발트산화물 분말의 제조방법과, 이 제조방법으로 제조된 리튬코발트산화물 분말에 도전재 및 결합제를 혼합하여 제조한 전극 및 이 전극을 음극으로 사용하는 리튬2차전지에 관한 것이다.The present invention relates to a method for producing lithium cobalt oxide (LiCoO 2 ) powder, and to an electrode (cathode) and a lithium secondary battery prepared using the same, in particular lithium cobalt oxide powder used as a negative electrode active material of a lithium secondary battery The present invention relates to an electrode prepared by mixing a conductive material and a binder with a lithium cobalt oxide powder prepared by the method, and a lithium secondary battery using the electrode as a negative electrode.

일반적으로, 리튬2차전지의 음극 활성물질로 사용되기 위해서는 다음과 같은 특성을 가지고 있어야 한다. 첫째, 리튬과 반응시 가역적인 반응을 하여야만 한다. 즉, 충방전 효율이 거의 100%를 나타내야 한다. 둘째, Li+이온의 삽입/탈삽입(intercalation/deintercalation)시 음극 활성물질의 구조가 파괴되지 않아야 된다. 이러한 특성을 가지는 리튬2차전지용 음극 활성물질로서 티타늄계(TiS2), 바나듐계(VOX), 몰리브덴늄계(MoSX) 외에 각종 전이금속산화물계(LiCoO2, LiNiO2, LiCoXNi1-xO2및 LiMn2O4)등을 사용한 연구가 많이 진행중에 있다. 이중 리튬코발트산화물(LiCoO2)은 층진 암염(layered rock salt) 구조를 갖는 계열 화합물중의 하나로서, 이러한 구조는 산소의 최밀충진망(close packed network)을 기본 골격으로 형성되며, 입방암염(cubic rock salt)구조의 (111)위에 존재하는 Li+와 Co3+이온이 각 층마다 번갈아 가면 배열(ordering)되어 있는 형태이다. 이때, (111)면에 존재하는 Li+와 Co3+이온에 의해 격자(lattice)가 변형(distortion)된 육방정계 대칭(hexagonal symmetry)을 갖게 된다. 따라서, α-NaFeO2구조를 가지며 공간군(space group)3m(3회 회반축 3개)의 결정 구조를 나타낸다.In general, in order to be used as an anode active material of a lithium secondary battery, it must have the following characteristics. First, the reaction must be reversible when reacting with lithium. That is, the charging and discharging efficiency should be nearly 100%. Second, the intercalation / deintercalation of Li + ions should not destroy the structure of the negative electrode active material. As a negative electrode active material for a lithium secondary battery having such characteristics, various transition metal oxides (LiCoO 2 , LiNiO 2 , LiCo X Ni 1 -other than titanium (TiS 2 ), vanadium (VO X ), molybdenum (MoS X ), etc. XO 2 and LiMn 2 O 4 ) and the like are a lot of research is in progress. Lithium cobalt oxide (LiCoO 2 ) is one of a series of compounds having a layered rock salt structure, which forms a basic skeleton of a close packed network of oxygen, and cubic Li + and Co 3+ ions present on (111) of the rock salt structure are alternately arranged in each layer. At this time, the lattice is deformed by Li + and Co 3+ ions present on the (111) plane to have hexagonal symmetry. Therefore, it has an α-NaFeO 2 structure and is a space group The crystal structure of 3 m (three triple axis) is shown.

그리고, 리튬코발트산화물(LiCoO2)을 음극 활성물질로 사용하기 위해서는 다음 식(1)과 같이 진행되는 전지 반응에서 충방전이 진행됨에 따라 구조의 변화가 없어야 한다.In addition, in order to use lithium cobalt oxide (LiCoO 2 ) as a negative electrode active material, there should be no change in structure as charging and discharging proceeds in a battery reaction proceeding as in the following Formula (1).

상기(1)식의 충전 과정에서 탈삽입(deintercalation)된 리튬 이온은 양극 활성물질로 이동하고, 방전 과정이 진행되면 리튬코발트산화물내로 삽입(intercalation)된다.The lithium ions deintercalated in the charging process of Equation (1) move to the positive electrode active material, and are intercalated into lithium cobalt oxide when the discharge process proceeds.

리튬코발트산화물은 방전전압이 높고, 이론에너지 밀도가 높다라는 장점을 가지고 있지만, 합성시 출발물질의 종류, 분위기, 열처리 시간, 온도 설정 조건등에 따라 전기화학적으로 다른 특징으로 나타내고 있다.Lithium cobalt oxide has the advantages of high discharge voltage and high theoretical energy density. However, lithium cobalt oxide has electrochemically different characteristics depending on the type of starting material, atmosphere, heat treatment time, and temperature setting conditions.

현재 개발된 리튬코발트산화물 분말과 이를 사용하여 제조된 리튬2차전지의 전극은 예를들면, M.M.Thackeray 그룹이 출원한 미국특허 제5,160,716호(1992. 11. 3)에는 합성시 출발물질로서 무수탄산리튬(anhydrous Li2CO3)과 무수탄산코발트(anyhydrous CoCO3)를 고체상태로 혼합한 후, 열처리 온도 200∼600℃, 열처리시간 12-168시간, 분위기는 산소, 공기 혹은 혼합상태에서 열처리하여 리튬코발트산화물 분말을 제조하고 있다. 전극은 결합제로 폴리테트라플루오르에틸렌(Polytetrafluoroethy lene), 도전재로 아세틸렌블랙(Acetylene black)을 사용하여 제조하고 있다. 그러나, 이 발명은 저온에서 합성된다는 장점은 있지만, 열처리 온도에 기인되는 것으로 판단되는 구조적 안정성 문제점으로 인해 순환전위전류(cyclic voltammetry)의 측정결과 산화환원을 계속하면 산화환원파가 급격히 줄어들어 2차전지용 활성물질로 부적합하다는 문제점이 있다.Lithium cobalt oxide powder currently developed and the electrode of a lithium secondary battery manufactured using the same are described, for example, in US Patent No. 5,160,716 filed by MMThackeray Group (November 3, 1992). (anhydrous Li 2 CO 3 ) and anhydrous cobalt carbonate (anyhydrous CoCO 3 ) are mixed in a solid state, heat treatment temperature 200 ~ 600 ℃, heat treatment time 12-168 hours, atmosphere is oxygen, air or mixed heat treatment in a mixed state lithium Cobalt oxide powder is manufactured. The electrode is manufactured using polytetrafluoroethy lene as a binder and acetylene black as a conductive material. However, the present invention has the advantage of being synthesized at low temperatures, but due to the structural stability problem that is believed to be due to the heat treatment temperature, if the redox continues as a result of the measurement of cyclic voltammetry, the redox wave is rapidly reduced and thus for secondary batteries. There is a problem that it is not suitable as an active substance.

또, Miyal, Seiihi가 출원한 유럽특허 제462,575호(1991. 6. 18)에는 합성시 출발물질로 무수탄산리튬(Li2CO3)과 무수탄산코발트(CoCO3)를 고체상태로 혼합하여 리튬코발트산화물 분말을 제조하고 있다. 이 틴산리튬(Li2CO3)은 리튬코발트산화물 분말내에 남아 있지 않도록 하였다.In addition, European Patent No. 462,575 (June 18, 1991), filed by Miyal and Seiihi, contains lithium anhydrous lithium carbonate (Li 2 CO 3 ) and cobalt carbonate (CoCO 3 ) as a starting material for synthesis. Cobalt oxide powder is manufactured. This lithium tinate (Li 2 CO 3 ) was not left in the lithium cobalt oxide powder.

전극은 결합제로 N-메틸-20-피롤리돈(N-methyl-2-pyrrolidone) 용매에 녹인 폴리비닐리덴플루오라이드(Polyvinilydenefluoride)를 사용하여 혼합하고, 이 반죽을 알루미늄박(Al foil)위에 도포하여, 60℃에서 건조하여 제조하고 있다. 그러나, 이 발명은 자기방전이 낮다는 장점은 있지만, 방전용량이 105mAh/g로 작다는 단점이 있다.The electrode is mixed using polyvinylidene fluoride dissolved in N-methyl-2-pyrrolidone solvent as a binder and the dough is applied on an aluminum foil. And dried at 60 deg. However, this invention has the advantage of low self-discharge, but has a disadvantage that the discharge capacity is as small as 105mAh / g.

또한, Nagaura가 출원한 유럽특허 제243,926호(1987. 4. 28)에는 합성시 출발물질로 탄산리튬(Li2CO3)과 탄산코발트(CoCO3)를 각각 1:1 원자비(atomic ratio)로 고체 상태에서 혼합하고, 공기중에서 열처리 온도를 900℃, 5시간동안 열처리하여 리튬코발트산화물을 제조하고 있다. 전극은 결합제로 테프론 분말(Teflon powder, 3중량% 또는 2중량%), 도전재로 흑연(graphite, 27중량% 또는 9.3중량%)을 혼합하여 펠렛(pellet)으로 제조하고 있다. 그러나, 이 발명은 결합제로 테프론 분말(Teflon powder)을 사용하기 때문에, 실제 원통형 전지 제조시 전극 두께를 얇게할 수 없으므로 분말(powder)밀도가 낮아 전지당 에너지밀도가 높이는데 한계가 있다. 또, 방전시 전압 평탄성이 좋지 못한 단점이 있다.In addition, European Patent No. 243,926 (April 28, 1987), filed by Nagaura, has a 1: 1 atomic ratio of lithium carbonate (Li 2 CO 3 ) and cobalt carbonate (CoCO 3 ) as starting materials for synthesis. In a solid state, and heat treated at 900 ° C. for 5 hours in air to produce lithium cobalt oxide. The electrode is made of pellets by mixing Teflon powder (3% by weight or 2% by weight) as a binder and graphite (graphite, 27% by weight or 9.3% by weight) as a conductive material. However, since the present invention uses Teflon powder as a binder, since the electrode thickness cannot be made thin in actual cylindrical battery manufacturing, the powder density is low and the energy density per cell is limited. In addition, there is a disadvantage that the voltage flatness during discharge is not good.

또, 일본 공개특허공보 평1-304664호에는 합성시 출발물질로 탄산리튬(Li2CO3) 1몰과 탄산코발트(CoCO3) 1몰을 고체상태로 혼합하여 공기중에서 900℃, 5시간동안 열처리하여 리튬코발트산화물 분말 제조하고 있다. 입자크기에 따른 결과를 보면 10-150㎛ 크기의 입자사이에서 용량이 약 100mAh/g으로 거의 비슷한 값을 나타내고 있지만 용량이 높지 않다.In Japanese Unexamined Patent Application Publication No. Hei 1-304664, 1 mol of lithium carbonate (Li 2 CO 3 ) and 1 mol of cobalt carbonate (CoCO 3 ) are mixed in solid state as a starting material for synthesis, and then 900 ° C. in air for 5 hours. Heat treatment to produce lithium cobalt oxide powder. According to the result of the particle size, the capacity is about 100mAh / g among the particles of 10-150㎛ size, which shows almost similar value but the capacity is not high.

따라서, 본 발명은 상기한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 리튬2차전지용 음극 활성물질로 사용되는 리튬코발트산화물 분말을 액상 반응(공침법)을 이용하여 제조하는 리튬코발트산화물 분말의 제조방법을 제공하는데 있다.Accordingly, the present invention is to solve the above problems, an object of the present invention is to prepare a lithium cobalt oxide powder used as a negative electrode active material for lithium secondary batteries using a liquid phase reaction (coprecipitation method) of the lithium cobalt oxide powder It is to provide a manufacturing method.

본 발명의 다른 목적은, 리튬코발트산화물 분말에 도전재 및 결합제를 혼합하여 제조한 리튬2차전지용 전극(음극)을 제공하는데 있다.Another object of the present invention is to provide a lithium secondary battery electrode (cathode) prepared by mixing a conductive material and a binder with lithium cobalt oxide powder.

본 발명의 또 다른 목적은 리튬코발트산화물 분말을 사용하여 제조된 전극을 음극으로 사용하는 리튬2차 전지를 제공하는데 있다.Still another object of the present invention is to provide a lithium secondary battery using an electrode prepared using lithium cobalt oxide powder as a negative electrode.

본 발명의 특징에 의하면, 액상반응(공침법)을 이용하여 액체상태의 착물을 합성한 후, 적절한 열처리를 시행하여 저온에서 합성하고, 입자크기가 작으며, 결정이 잘 성장한 리튬코발트산화물 분말을 제조한다. 또, 안정한 결정구조 및 미반응물을 줄이기 위해 한번 더 열처리를 한다.According to a feature of the present invention, a liquid complex (coprecipitation method) is used to synthesize a complex in a liquid state, and then subjected to appropriate heat treatment to synthesize at a low temperature, and to obtain a lithium cobalt oxide powder having a small particle size and well grown crystals. Manufacture. In addition, heat treatment is performed once more to reduce the stable crystal structure and unreacted material.

본 발명의 다른 특징에 의하면, 리튬의 삽입/탈삽입(intercalation/deintercalation) 반응이 계속되어도 구조가 안정한 리튬코발트산화물 분말을 제조하고, 또 이 리튬코발트산화물 분말에 도전재 및 결합제를 혼합하여 리튬2차전지용 전극(음극)을 제조한다.According to another feature of the present invention, a lithium cobalt oxide powder having a stable structure is prepared even when the intercalation / deintercalation reaction of lithium is continued, and a lithium 2 powder is mixed by mixing a conductive material and a binder with the lithium cobalt oxide powder. The battery electrode (cathode) is manufactured.

본 발명의 또 다른 특징에 의하면, 리튬코발트산화물 분말을 이용하여 제조된 음극, 양극 및 전해질로 리튬 2차 전지를 제조한다.According to another feature of the present invention, a lithium secondary battery is manufactured from a negative electrode, a positive electrode, and an electrolyte prepared using lithium cobalt oxide powder.

이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.

제1도를 참조하여 리튬코발트산화물 분말의 제조방법을 상세히 설명한다.Referring to Figure 1 will be described in detail a method for producing lithium cobalt oxide powder.

먼저, 다염기 유기산(Humic acid)을 물에 용해시킨다. 이 유기산 용액에 수산화리튬(LiOH·H2O) 수용액을 서서히 떨어뜨려 저어주면서 가열하여 겔(Gel) 상태의 유기산 착화물(금속착물)을 형성한다(액상반응공정). 이 겔상태의 유기산 착화물을 핫플레이트에서 건조, 연소시켜 리튬코발트 산화물의 전구물질(precursor)을 합성한다(합성공정). 이 합성된 전구물질을 알루미나 도가니에 넣어 공기 분위기, 350℃에서 6시간, 450℃에서 12시간동안 하소시켜 1차 리튬코발트산화물 분말을 만든다(1차 열처리공정). 이 1차 리튬코발트산화물 분말을 분쇄하고, 다시 700℃ 혹은 900℃에서 24시간동안 열처리한 후, 실온에서 서서히 냉각시켜 2차 리튬코발트산화물 분말을 소결한다(2차 열처리공정). 이 2차 리튬코발트 분말을 미세하게 분쇄한 후, 체(sieve)를 사용하여 45㎛ 이하 크기의 리튬코발트산화물 분말을 얻는다(필터링공정). 이 리튬코발트산화물은 합성이 완료된 후에도 공기중에서 안정하다.First, polybasic organic acid (Humic acid) is dissolved in water. Lithium hydroxide (LiOH.H 2 O) aqueous solution is slowly added to the organic acid solution and stirred while heating to form an organic acid complex (metal complex) in a gel state (liquid reaction step). The gelled organic acid complex is dried on a hot plate and combusted to synthesize a precursor of lithium cobalt oxide (synthesis step). The synthesized precursor was placed in an alumina crucible and calcined for 12 hours at 450 ° C. for 6 hours at 350 ° C. to form primary lithium cobalt oxide powder (first heat treatment step). The primary lithium cobalt oxide powder is pulverized, heat treated again at 700 ° C. or 900 ° C. for 24 hours, and then gradually cooled at room temperature to sinter the secondary lithium cobalt oxide powder (second heat treatment step). After finely pulverizing this secondary lithium cobalt powder, a lithium cobalt oxide powder having a size of 45 μm or less is obtained using a sieve (filtering step). This lithium cobalt oxide is stable in air even after the synthesis is completed.

제2도에 액상반응(공침법)으로 합성된 리튬코발트산화물 분말의 열처리 온도를 결정하기 위한 리튬코발트산화물 분말의 열무게 분석(TG)/시차열법 분석(DTA) 곡선을 나타내었다. 600℃ 이후에는 중량 감소가 거의 없고 반응이 완료되는 현상을 볼 수 있다.FIG. 2 shows a thermogravimetric analysis (TG) / differential thermal analysis (DTA) curve of the lithium cobalt oxide powder to determine the heat treatment temperature of the lithium cobalt oxide powder synthesized by the liquid phase reaction (coprecipitation method). After 600 ° C., there is almost no weight loss and the reaction is completed.

다음에 리튬코발트산화물 분말을 사용한 전극의 제조예 대해서 설명한다.Next, the manufacturing example of the electrode using lithium cobalt oxide powder is demonstrated.

상기 제조된 리튬코발트산화물 분말 85중량%의 음극 활성물질과, 아세틸렌블랙 10중량%의 도전재 및 N-메틸피롤리돈(N-methyl-pyrrolidone)(NMP) 용매에 폴리비닐리덴플루오라이드(Polyvinilidenefluoride)(PVDF)를 녹인 5중량%의 결합제를 균일하게 혼합한 후, 1㎝ × 1㎝ (단면기준, 면적 1㎠)의 SUS 316 exmet(혹은 Al foil) 집전극 양면에 균일하게 도포하여 150℃에서 24시간동안 진공건조하여 전극(음극)을 제조한다. 전극(음극) 제조시 음극활성 물질은 90중량%까지 사용 가능하며 도전재의 비율은 12∼5중량%이다.85% by weight of the lithium cobalt oxide powder prepared as the negative electrode active material, 10% by weight of acetylene black conductive material and N-methyl-pyrrolidone (NMP) solvent polyvinylidene fluoride (Polyvinilidenefluoride 5% by weight of binder (PVDF) was uniformly mixed, and then uniformly coated on both sides of SUS 316 exmet (or Al foil) collector electrode of 1 cm × 1 cm (area 1 cm 2). Vacuum drying for 24 hours at to prepare an electrode (cathode). In preparing the electrode (cathode), the negative electrode active material can be used up to 90% by weight, and the conductive material is 12 to 5% by weight.

다음, 상기 리튬코발트산화물 분말을 사용하여 제조된 전극을 사용하여 구성된 리튬 2차전지에 대해서 설명한다.Next, a lithium secondary battery constructed using an electrode manufactured using the lithium cobalt oxide powder will be described.

상기 합성된 리튬코발트산화물 분말과 도전재 및 결합제를 사용하여 제조된 전극을 음극으로, 리튬, 리튬알루미늄합금, 탄소 혹은 흑연계통의 재료를 사용하여 제조된 전극을 양극으로, 리튬코발트산화물(LiClO4)을 프로필렌카보네이트(propylene carbonate)에 녹이 전해질을 사용하여 리튬 2차전지를 구성한다. 전해질은 LiAsF6, LiPF6, LiBF4, LiClO4도 사용 가능하며, 용매는 프로필렌카보네이트(propylene carbonate), 에틸렌카보네이트(ethylene carbonate),디에틸카보네이트(diethyl carbonate), 1,2-디메톡시에탄(1,2-dimethoxyethane), 디메틸카보네이트(dimethyl carbonate)등의 혼합 용매도 사용 가능하다.An electrode manufactured by using the synthesized lithium cobalt oxide powder, a conductive material, and a binder as a cathode, an electrode manufactured by using lithium, lithium aluminum alloy, carbon, or graphite-based material as a cathode, and lithium cobalt oxide (LiClO 4 ) Is dissolved in propylene carbonate to form a lithium secondary battery using an electrolyte. The electrolyte may be LiAsF 6 , LiPF 6 , LiBF 4 , LiClO 4 , and the solvent may be propylene carbonate, ethylene carbonate, diethyl carbonate, 1,2-dimethoxyethane ( Mixed solvents such as 1,2-dimethoxyethane) and dimethyl carbonate may also be used.

본 발명에 의해 제조된 리튬코발트산화물 분말은 수분 함량이 적어야 되며, 입자의 크기가 45㎛ 이하일 때 가장 우수한 충방전 특성을 유지한다.The lithium cobalt oxide powder prepared by the present invention should have a low moisture content and maintain the best charge and discharge characteristics when the particle size is 45 μm or less.

[리튬코발트산화물 분말 제조예 1]Lithium Cobalt Oxide Powder Preparation Example 1

유기산(Humic acid)을 물에 용해시킨다. 이 유기산 용액에 수산화리튬(LiOH. H2O) 수용액을 서서히 떨어뜨려 저어주고, 또 질산코발트(Co(NO3)2. 6H2O) 수용액을 떨어뜨려 저어주면서 금속 착물을 형성시킨 후, 핫 플레이트로 건조 및 연소시켜 전구물질(precusor)을 합성한다. 이 전구물질을 공기 분위기, 350℃에서 6시간, 450℃에서 12시간동안 하소를 시키고, 700℃에서 24시간동안 열처리하여 분쇄한 다음, 700℃에서 24시간동안 한번 더 열처리하여 리튬코발트산화물 분말을 제조한다.Humic acid is dissolved in water. Lithium hydroxide (LiOH.H 2 O) aqueous solution was slowly added to the organic acid solution and stirred, and a cobalt nitrate (Co (NO 3 ) 2 .6H 2 O) aqueous solution was stirred to form a metal complex. The precursors are synthesized by drying and burning on a plate. The precursor was calcined for 6 hours at 350 ° C. and 12 hours at 450 ° C., heat-treated at 700 ° C. for 24 hours, and then pulverized once more at 700 ° C. for 24 hours to form lithium cobalt oxide powder. Manufacture.

제3도의 (a)는 제조된 리튬코발트산화물분말(OA-7 LiCoO2)의 X-선 회절무늬(XRD pattern)를 나타내었다. 사용된 X선은 니켈필터(Ni filter)로 단색화시킨 CuKα1선이었고, 전압은 30㎸를 사용하였다. 육방정계로 하여 무늬 색인(peak indexing)을 하면 왼쪽으로 부터 각 무늬(peak)는 (003),(101),(006),(102),(104),(105),(107) ,(108),(110),(113) 결정면에 해당한다. 18° 부근의 (003)면의 피이크가 매우 커 결정이 잘 발달된 산화물이 합성되었음을 볼 수 있다.(A) of FIG. 3 shows an X-ray diffraction pattern (XRD pattern) of the prepared lithium cobalt oxide powder (OA-7 LiCoO 2 ). The X-rays used were CuK α1 lines monochromated with a nickel filter, and a voltage of 30 mA was used. When the pattern index (peak indexing) with hexagonal system, each pattern (peak) from the left is (003), (101), (006), (102), (104), (105), (107), ( Corresponds to the crystal planes 108, 110, and 113. It can be seen that the peak of the (003) plane near 18 ° was so large that a well-developed oxide was synthesized.

격자상수를 구하면 a축과 c축은 각각 2.089Å, 13.972Å였다. 1(003)/1(104)는 6.70이고 c/a는 4.98이었다.The lattice constants were 2.089 a and 13.972Å for the a and c axes, respectively. 1 (003) / 1 (104) was 6.70 and c / a was 4.98.

제4a도 및 제4b도에는 리튬코발트산화물 분말 제조예 1(OA-7 LiCoO2)의 표면 형상을 관찰한 전자현미경(SEM) 사진을 나타내었다. 10㎛ 이하의 입자들이 뭉쳐져 있으며 입자 표면이 매끈하고 결정의 성장이 잘 되어 있음을 볼 수 있다.4A and 4B show electron microscope (SEM) photographs of the surface shape of the lithium cobalt oxide powder Preparation Example 1 (OA-7 LiCoO 2 ). It can be seen that particles smaller than 10 μm are agglomerated, the surface of the particles is smooth and crystal growth is good.

[리튬코발트산화물 분말 제조예 2]Lithium Cobalt Oxide Powder Preparation Example 2

리튬코발트산화물 분말 제조예1과 동일한 방법으로 전구물질을 합성하고, 최종 열처리 온도를 900℃에서 24시간동안 열처리하고 분쇄한 다음, 900℃에서 24시간 동안 한번 더 열처리하여 리튬코발트산화물을 제조한다.Precursors were synthesized in the same manner as in Preparation Example 1 of lithium cobalt oxide powder, and the final heat treatment temperature was heat-treated and pulverized at 900 ° C. for 24 hours, and then heat treated once more at 900 ° C. for 24 hours to prepare lithium cobalt oxide.

제3도(b)는 제조된 리튬코발트산화물 분말(OA-9 LiCoO2)의 X-선 회절무늬를 나타내었다. 분말 제조의 예1과 마찬가지로 (003)면의 피이크가 크고 결정이 잘 발달되었음을 볼 수 있다. 격자 상수를 구하면 a와 c는 각각 2.818Å, 14.075Å였다. 1(003)/1(104)는 8.09였고, c/a는 4.99였다.FIG. 3 (b) shows the X-ray diffraction pattern of the prepared lithium cobalt oxide powder (OA-9 LiCoO 2 ). As in Example 1 of powder preparation, it can be seen that the peak of the (003) plane is large and crystals are well developed. When the lattice constants were obtained, a and c were 2.818 ms and 14.075 ms, respectively. 1 (003) / 1 (104) was 8.09 and c / a was 4.99.

제5a도 및 제5b도에는 리튬코발트산화물 분말 제조예 2(OA-9 LiCoO2)의 표면 형상을 관찰한 전자현미경 사진을 나타내었다. 약 30㎛ 크기의 입자와 작은 입자들이 섞여 있음을 볼 수 있다.5A and 5B show electron micrographs of the surface shape of lithium cobalt oxide powder Preparation Example 2 (OA-9 LiCoO 2 ). It can be seen that small particles are mixed with particles of about 30 μm in size.

[전극 제조예 1]Electrode Preparation Example 1

전극(음극)은 리튬코발트산화물 분말 85중량%의 음극활성물질과, 아세틸렌 블랙 10중량%의 도전재 및 N-메틸피롤리돈(NMP) 용매에 폴리비닐덴플루오라이드(PVDF)를 녹인 5중량%의 결합제를 균일하게 혼합한 다음, 1㎝ × 1㎝ (단면기준, 면적 1㎠)의 SUS 316exmet(혹은 Al foil) 집전극 양면에 균일하게 도포한 후, 150℃에서 24시간 동안 진공 건조하여 전극(음극)을 제조한다. 이렇게 제조된 전극의 전자현미경 사진을 제6a도 및 제6b도에 나타내었다. 도전재인 작은 입자의 아세틸렌 블랙과 음극 활성물질인 리튬코발트산화물이 잘 혼합되어 있음을 볼 수 있다.The electrode (negative electrode) is a 5% weight of polyvinylidene fluoride (PVDF) dissolved in 85% by weight of lithium cobalt oxide powder negative electrode active material, 10% by weight of acetylene black conductive material and N-methylpyrrolidone (NMP) solvent. % Binder was uniformly mixed, and then uniformly applied to both sides of the SUS 316exmet (or Al foil) collector electrode of 1 cm × 1 cm (cross section, area 1 cm 2), followed by vacuum drying at 150 ° C. for 24 hours. An electrode (cathode) is produced. Electron micrographs of the electrode thus prepared are shown in FIGS. 6a and 6b. Small particles of acetylene black as a conductive material and lithium cobalt oxide as a negative electrode active material are well mixed.

[전극 제조예 2]Electrode Preparation Example 2

전극(음극)은 리튬코발트산화물 분말 88중량%의 음극활성물질과, 아세틸렌 블랙 9중량%의 도전재 및 N-메틸피롤리돈(NMP) 용매에 폴리비닐덴플루오라이드(PVDF)를 녹인 3중량%의 결합제를 균일하게 혼합한 후, 1㎝ × 1㎝ (단면기준, 면적 1㎠)의 SUS 316exmet(혹은 Al foil) 집전극 양면에 균일하게 도포한 후, 150℃에서 24시간동안 진공 건조하여 제조한다. 이렇게 제조된 전극의 전자현미경 사진을 제7a도 및 제7b도에 나타내었다. 제6도에 나타낸 바와 같이 아세틸렌 블랙과 리튬코발트 산화물이 잘 섞여 있음을 볼 수 있다.The electrode (cathode) is a negative electrode active material of 88% by weight of lithium cobalt oxide powder, 3% of polyvinyl fluoride (PVDF) dissolved in 9% by weight of acetylene black conductive material and N-methylpyrrolidone (NMP) solvent. % Binder was uniformly mixed and then uniformly applied to both sides of SUS 316exmet (or Al foil) collector electrode of 1 cm × 1 cm (cross section, area 1 cm 2), followed by vacuum drying at 150 ° C. for 24 hours. Manufacture. Electron micrographs of the electrode thus prepared are shown in FIGS. 7a and 7b. As shown in FIG. 6, it can be seen that acetylene black and lithium cobalt oxide are well mixed.

[전지 구성예][Battery Configuration Example]

음극활성물질인 리튬코발트산화물 분말과, 도전재인 아세틸렌 블랙 및 결합제인 폴리비닐덴플루오라이드를 혼합하여 제조된 음극과, 리튬박으로 제조된 양극 및 1M 리튬산화물/프로필렌카보네이트(LiClO4/propylene carbonate)의 전해액을 사용하여 시험 전지(Test cell)를 구성한다. 전극면적은 1㎝ × 1㎝ (단면기준, 1㎠), 전기화학적 측정에는 사용되는 기준전극(reference electrode) 및 참조전극(counter electrode)은 순수한 리튬 금속 박(foil)을 사용하였다.A cathode prepared by mixing lithium cobalt oxide powder as a negative electrode active material, acetylene black as a conductive material and polyvinyl fluoride as a binder, a cathode made of lithium foil, and 1M lithium oxide / propylene carbonate (LiClO 4 / propylene carbonate) A test cell is constructed using the electrolyte solution of. The electrode area was 1 cm × 1 cm (cross section basis, 1 cm 2), and the reference electrode and the counter electrode used for electrochemical measurement were pure lithium metal foil.

또한, 리튬코발트산화물 분말 제조예 1을 사용하여 제조된 전극으로 구성된 전지(cell)를 이용하여 전기화학적 특성을 실험하였다. 주사속도 0.01mV/sec 에서의 순환전압전류 곡선을 제8도에 나타내었다. 4.0V와 3.85V에서 산화 환원파가 나타났다. 주사속도 2mV/sec, 전위영역을 4.3V∼3.0V로 85회 순환시켰을 때의 순환전압전류곡선을 제9도에 나타내었다.In addition, the electrochemical characteristics were tested using a cell composed of electrodes prepared using the lithium cobalt oxide powder Preparation Example 1. A cyclic voltammogram at a scanning speed of 0.01 mV / sec is shown in FIG. Redox waves appeared at 4.0V and 3.85V. Fig. 9 shows a cyclic voltage current curve when the scanning speed is 2 mV / sec and the potential region is cycled 85 times at 4.3V to 3.0V.

리튬코발트산화물(LiCoO2)/리튬 전지는 개로전압(open circuit voltage)이 3.05V∼3.15V이다. 제8도에 나타낸 바와 같이, 3.85V에서부터 산화(전지 반응시 충전, 탈삽입)가 시작되고, 환원(전지 반응시 방전, 삽입)은 4.15V에서 환원이 시작된다. 리튬코발트산화물 분말제조예1로 만든 전극의 경우 85회 정도 순한시켜도 산화/환원 용량이 거의 일정함을 볼 수 있다. 또한, 제10도에는 리튬코발트산화물 분말 제조예 2로 만든 전극을 사용하여 주사속도 2mV/sec, 전위영역을 4.3V∼3.0V로 80회 순환시켰을 때의 도면으로, 리튬코발트산화물 분말제조예 1로 만든 전극과는 다르게 17회까지 서서히 줄어들고 이후는 산화 환원 용량이 거의 일정한 현상을 나타내었다.Lithium cobalt oxide (LiCoO 2 ) / lithium batteries have an open circuit voltage of 3.05V to 3.15V. As shown in FIG. 8, oxidation (charging and de-insertion in battery reaction) starts from 3.85V, and reduction (discharging and insertion in battery reaction) starts at 4.15V. In the case of the electrode made of lithium cobalt oxide powder preparation example 1, the oxidation / reduction capacity is almost constant even if it is about 85 times gentle. In addition, FIG. 10 is a diagram illustrating a case where a scanning speed of 2 mV / sec and a potential region were circulated 80 times at 4.3 V to 3.0 V using an electrode made of lithium cobalt oxide powder Preparation Example 2, and lithium cobalt oxide powder Preparation Example 1 Unlike the electrode made of a gradual decrease until 17 times, after which the redox capacity was almost constant.

제11도는 리튬코발트산화물 분말 제조예 1의 분말을 사용하고, 전극제조예 1로 만든 전극으로 시험 전지를 구성한 경우의 제1차 정전류 충방전특성 곡선을 나타내며, 전류밀도 0.2mA/㎠(34시간율), 충전 상한전압 4.35V, Li/Li+기준전극에 대해 충전시켰을 때의 제1차 충방전곡선을 Li1-xCoO2의 x에 따른 전압의 변화로 나타내었다. 제11도에 도시된 바와 같이, 방전시 3.7V까지는 전압이 서서히 줄어 전압 평탄성이 우수하였으며, 3.7V 이후에는 전압이 급격히 줄어드는 경향을 보였다. 충전용량은 152.7mAh/g, 방전용량은 142.6mAh/g, 충방전 효율은 93.4% 이다.FIG. 11 shows the first constant current charge / discharge characteristic curve when the test battery is composed of the electrode made of the electrode preparation example 1 using the powder of lithium cobalt oxide powder preparation example 1, and has a current density of 0.2 mA / cm 2 (34 hours). Rate), the charge upper limit voltage 4.35V, and the first charge / discharge curve when the Li / Li + reference electrode was charged are expressed as a change in voltage according to x of Li 1 -xCoO 2 . As shown in FIG. 11, the voltage gradually decreased to 3.7V during discharge, and thus the voltage flatness was excellent. After 3.7V, the voltage rapidly decreased. The charging capacity is 152.7mAh / g, the discharge capacity is 142.6mAh / g, and the charging and discharging efficiency is 93.4%.

제12도는 리튬코발트산화물 분말 제조예 2의 분말을 사용하고, 전극제조예 2로 제조된 전극으로 시험전지를 구성한 경우의 제1차 정전류 충방전특성 곡선을 나타내며, 충전용량은 155.5mAh/g, 방전용량은 141.9mAh/g, 충방전 효율은 90.7%이다.FIG. 12 shows the first constant current charge / discharge characteristic curve when the test battery is composed of the electrode prepared in Electrode Preparation Example 2 using the powder of Lithium Cobalt Oxide Powder Preparation Example 2, and the charge capacity is 155.5 mAh / g, The discharge capacity is 141.9 mAh / g, and the charge and discharge efficiency is 90.7%.

제13도에는 저극 제조예 1로 구성한 시험전지의 충방전 상하한 전압을 Li/Li+기준전극에 대해 각각 4.2V, 3.6V로 하고, 전류밀도를 1mA/㎠로, 4회 충방전시켰을 때의 충방전 곡선을 나타내었다. 그 결과, 충전용량은 제1차 충전에서 112.5mAh/g이고, 4회 충방전 이후에는 92.3mAh/g∼91.6mAh/g으로 거의 일정하였으며, 방전용량은 첫 방전에서 99.5mAh/g이었고, 4회 방전 이후에는 92.3mAh/g으로 일정하였다. 충방전 효율은 초기 88.5%였으나 4번째 충방전 이후에는 약 100%로 아주 우수한 특성을 계속 유지하였다.FIG. 13 shows the charge and discharge upper and lower voltages of the test battery of the low electrode manufacturing example 1 at 4.2 V and 3.6 V for the Li / Li + reference electrode, respectively, and the current density is 1 mA / cm 2 at four charge and discharge times. The charge and discharge curves are shown. As a result, the charging capacity was 112.5 mAh / g in the first charge, and almost constant from 92.3 mAh / g to 91.6 mAh / g after the fourth charge and discharge, and the discharge capacity was 99.5 mAh / g at the first discharge. After the discharge, it was constant at 92.3 mAh / g. The charging and discharging efficiency was initially 88.5%, but after the fourth charging and discharging, the excellent characteristic was maintained at about 100%.

한편, 제14도에는 전극 제조예 2로 구성한 시험전지의 충방전 상하한 전압을 Li/Li+기준전극에 대해 각각 4.2V, 3.6V로 하고 6회 충방전시켰을 때의 충방전 곡선을 나타내었다. 그 결과, 충전용량은 제1차 충전의 100.7mAh/g에서 제5차 충전 이후에는 급격히 감소하여 60.1mAh/g였으며, 방전용량은 제1차 방전에서는 72.9mAh/g이었고 제5차 방전 이후에는 58.6mAh/g으로 감소하였다. 충방전 효율은 초기 72.4%였으나 제2차 충방전 이후에는 약 95%였다.On the other hand, Figure 14 shows the charge and discharge curves when the charge and discharge upper and lower voltages of the test battery of the electrode preparation example 2 were 4.2V and 3.6V for the Li / Li + reference electrodes, respectively, and were charged and discharged six times. . As a result, the charging capacity was sharply decreased from 100.7 mAh / g of the first charge after the fifth charge to 60.1 mAh / g, and the discharge capacity was 72.9 mAh / g at the first discharge and after the fifth discharge. Reduced to 58.6 mAh / g. The charging and discharging efficiency was initially 72.4%, but after the second charge and discharge, it was about 95%.

제15도에는 전극제조예 1의 충방전용량(a, b), 전극제조예 2의 충방전용량(c, d) 및 CFM 리튬코발트산화물 분말로 제조된 전극의 충방전 용량(e, f)의 변화를 나타내었다.15 shows charge and discharge capacities (a, b) of electrode preparation example 1, charge and discharge capacities (c, d) of electrode preparation example 2, and charge and discharge capacities (e, f) of electrodes made of CFM lithium cobalt oxide powder. The change was shown.

본 발명에서 합성한 리튬코발트산화물(LiCoO2)(0≤X≤1.1)은, 첫째, 액상반응(공침법)을 이용하여 제조하므로 열처리 온도를 낮출 수 있고, 둘째, 화학량론적으로 균일한 분말의 제조가 가능하고, 셋째, 입자가 작은 분말의 제조가 가능하다. 또, 본 발명의 리튬코발트산화물 분말을 리튬2차전지(이온전지)의 음극 활성물질로 사용할 경우 전압 평탄성이 우수할 뿐만 아니라 충방전 효율이 높고, 전지 수명이 길며, 단위 중량당 에너지밀도가 높은 우수한 전지를 제조할 수 있다. 또한, 소형 고성능 전자기기의 전원으로 사용이 가능하고, 대용량 전지의 음극 활성물질로도 사용 가능하다.Lithium cobalt oxide (LiCoO 2 ) (0≤X≤1.1) synthesized in the present invention may be prepared by firstly using a liquid phase reaction (coprecipitation method) to lower the heat treatment temperature, and secondly, to obtain a stoichiometrically uniform powder. Production is possible, and third, the production of powder with small particles is possible. In addition, when the lithium cobalt oxide powder of the present invention is used as a negative electrode active material of a lithium secondary battery (ion battery), it not only has excellent voltage flatness, but also has high charge and discharge efficiency, long battery life, and high energy density per unit weight. Excellent batteries can be produced. In addition, it can be used as a power source for small high-performance electronic devices, and can also be used as a negative electrode active material of a large capacity battery.

Claims (1)

다염기 유기산(Humic acid)을 물에 용해시킨후, 수산화리튬(LiOH. H2O)수용액을 서서히 떨어뜨리고, 또 질산코발트(Co(NO3)2. 6H2O) 수용액을 떨어뜨려 충분히 반응하도록 저어주면서 가열하여 겔(Gel) 상태의 유기산 착화물(금속착물)을 형성하는 액상반응 공정과, 상기 액상반응공정에서 형성된 유기산 착화물을 핫플레이트에서 건조, 연소시켜 리튬코발트 산화물의 전구물질(precursor)을 합성하는 합성공정과, 상기 합성공정에서 합성된 전구물질을 알루미나 도가니에 넣어 공기 분위기, 350℃에서 6시간, 450℃에서 12시간동안 하소시켜 1차 리튬코발트산화물 분말을 만드는 1차 열처리 공정과, 상기 1차 열처리공정에서 얻어진 1차 리튬코발트산화물 분말을 분쇄하여, 다시 700℃ 혹은 900℃에서 24시간동안 열처리한 후, 실온까지 서서히 냉각시켜 2차 리튬코발트산화물 분말을 소결하는 2차열처리 공정 및 , 상기 2차 열처리공정에서 얻어진 2차 리튬코발트 분말을 미세하게 분쇄한 후, 체(sieve)를 사용하여 직경이 45㎛보다 작은 분말을 얻는 필터링 공정을 구비하는 리튬코발트산화물 분말의 제조방법.Polybasic organic acid (Humic acid) was dissolved in water, lithium hydroxide (LiOH. H 2 O) dropping gradually dropped an aqueous solution, and cobalt nitrate (Co (NO 3) 2. 6H 2 O) by dropping an aqueous solution sufficient reaction Stirring and heating to form an organic acid complex (metal complex) in a gel state, and drying and burning the organic acid complex formed in the liquid phase reaction on a hot plate to burn the precursor of lithium cobalt oxide. primary heat treatment to prepare primary lithium cobalt oxide powder by calcining the precursor prepared in the synthesis process and the precursor synthesized in the synthesis process in an alumina crucible for 6 hours at 350 ° C. and 12 hours at 450 ° C. The primary lithium cobalt oxide powder obtained in the step and the primary heat treatment step is pulverized, heat treated at 700 ° C. or 900 ° C. for 24 hours, and then gradually cooled to room temperature to obtain secondary lithium cobalt. Secondary heat treatment step of sintering the oxide powder, and finely pulverized secondary lithium cobalt powder obtained in the second heat treatment step, and then using a sieve (sieve) to obtain a powder having a diameter smaller than 45㎛ Method for producing lithium cobalt oxide powder.
KR1019950053465A 1995-12-21 1995-12-21 Proecss for preparing li-co oxide powder KR0158281B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019950053465A KR0158281B1 (en) 1995-12-21 1995-12-21 Proecss for preparing li-co oxide powder
KR1019980025914A KR100190988B1 (en) 1995-12-21 1998-06-30 Lithium secondary battery made from lithium cobalt oxide powder
KR1019980025913A KR100190987B1 (en) 1995-12-21 1998-06-30 Electrode made from lithium cobalt oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950053465A KR0158281B1 (en) 1995-12-21 1995-12-21 Proecss for preparing li-co oxide powder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1019980025914A Division KR100190988B1 (en) 1995-12-21 1998-06-30 Lithium secondary battery made from lithium cobalt oxide powder

Publications (2)

Publication Number Publication Date
KR970042276A KR970042276A (en) 1997-07-24
KR0158281B1 true KR0158281B1 (en) 1998-11-16

Family

ID=19442393

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1019950053465A KR0158281B1 (en) 1995-12-21 1995-12-21 Proecss for preparing li-co oxide powder
KR1019980025914A KR100190988B1 (en) 1995-12-21 1998-06-30 Lithium secondary battery made from lithium cobalt oxide powder
KR1019980025913A KR100190987B1 (en) 1995-12-21 1998-06-30 Electrode made from lithium cobalt oxide powder

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1019980025914A KR100190988B1 (en) 1995-12-21 1998-06-30 Lithium secondary battery made from lithium cobalt oxide powder
KR1019980025913A KR100190987B1 (en) 1995-12-21 1998-06-30 Electrode made from lithium cobalt oxide powder

Country Status (1)

Country Link
KR (3) KR0158281B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485335B1 (en) * 2002-10-29 2005-04-27 한국과학기술연구원 Fabrication of lithium-cobalt oxide nano powder by surface modification of precursor

Also Published As

Publication number Publication date
KR100190988B1 (en) 1999-06-15
KR970042276A (en) 1997-07-24
KR100190987B1 (en) 1999-06-15

Similar Documents

Publication Publication Date Title
CA2796903C (en) Positive electrode active material and non-aqueous electrolyte cell
KR102402147B1 (en) Manganese spinel doped with magnesium, cathode material comprising said manganese spinel, method for preparing the same, and lithium ion battery comprising said spinel
CN100433422C (en) Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery comprising same
KR100326455B1 (en) Positive active material for lithium secondary battery and method of preparing the same
US7258821B2 (en) Nickel-rich quaternary metal oxide materials as cathodes for lithium-ion and lithium-ion polymer batteries
CN108923044B (en) Compositions containing doped nickelate compounds
US8865349B2 (en) Method of producing positive electrode active material and nonaqueous electrolyte battery using the same
CA2565810C (en) Lithium metal oxide materials and methods of synthesis and use
Fey et al. Synthesis, characterization and cell performance of inverse spinel electrode materials for lithium secondary batteries
US7608365B1 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
KR20100060362A (en) Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
EP3611133A1 (en) Nickel-based active material precursor for lithium secondary battery, preparation method thereof, nickel-based active material for lithium secondary battery formed therefrom, and lithium secondary battery including cathode including the nickel-based active material
JP2000058059A (en) Positive-electrode active material for lithium secondary battery and its manufacture
JP7468590B2 (en) Lithium Compound Powder
JP2001167761A (en) Lithium-transition metal composite oxide for positive electrode active substance of lithium secondary battery, and method of preparing the same
KR20200022359A (en) Positive active material, method of manufacturing the same, and positive electrode and rechargeable lithium battery including the same
KR20190076774A (en) Positive electrode active material precursor for rechargable lithium battery and manufacturing method of the same, positive electrode active material for rechargable lithium battery and manufacturing method of the same, rechargable lithium battery
KR100557240B1 (en) Cathode active material for lithium secondary btteries prepared by coprecipitation method, method for preparing the same, and lithium secondary batteries using the same
KR20010063879A (en) Mn-based positive active material for Li-ion battery and method of preparing the same
AU2460501A (en) Nickel-rich and manganese-rich quaternary metal oxide materials as cathodes for lithium-ion and lithium-ion polymer batteries
KR0158281B1 (en) Proecss for preparing li-co oxide powder
KR19990079408A (en) Cathode active material for lithium secondary battery and manufacturing method thereof
JP2000128540A (en) Manganese oxide, its production, lithium manganese multiple oxide produced with the same and production of the same multiple oxide
JP3746099B2 (en) Cathode active material for lithium battery and method for producing the same
Ma et al. A Comparative Study of Synthesis Processes for LiNi0. 5Mn1. 5O4 Cathode Material

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120106

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20130118

Year of fee payment: 16

LAPS Lapse due to unpaid annual fee