JP2001048544A - Production of lithium-manganese multiple oxide for non- aqueous lithium secondary battery and use of the multiple oxide - Google Patents

Production of lithium-manganese multiple oxide for non- aqueous lithium secondary battery and use of the multiple oxide

Info

Publication number
JP2001048544A
JP2001048544A JP11221633A JP22163399A JP2001048544A JP 2001048544 A JP2001048544 A JP 2001048544A JP 11221633 A JP11221633 A JP 11221633A JP 22163399 A JP22163399 A JP 22163399A JP 2001048544 A JP2001048544 A JP 2001048544A
Authority
JP
Japan
Prior art keywords
lithium
manganese
multiple oxide
carbonate
lithium carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11221633A
Other languages
Japanese (ja)
Inventor
Masumi Terauchi
真澄 寺内
Teruyuki Takahashi
輝行 高橋
Yutaka Umetsu
豊 梅津
Toshihiko Shiotani
俊彦 塩谷
Masanao Terasaki
正直 寺崎
Atsuo Kondo
篤郎 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Japan Storage Battery Co Ltd
Original Assignee
Dai Nippon Toryo KK
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK, Japan Storage Battery Co Ltd filed Critical Dai Nippon Toryo KK
Priority to JP11221633A priority Critical patent/JP2001048544A/en
Publication of JP2001048544A publication Critical patent/JP2001048544A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject multiple oxide excellent in charge/discharge cycle characteristics both at room temperature and higher temperatures by subjecting a mixture of lithium carbonate and a manganese compound to primary burning at a specific temperature followed by cooling and grinding the product and then by subjecting the product to secondary burning followed by addition of lithium carbonate and then further burning the resultant homogeneous mixture at a specified temperature. SOLUTION: This multiple oxide is obtained by the following steps: lithium carbonate is mixed with manganese dioxide or manganese carbonate so as to be about (0.8-1.2):2 in the molar ratio Li/Mn, the mixture is subjected to primary burning at 400-700 deg.C and then cooled to <=100 deg.C to penetrate lithium ions into the pores of the manganese compound, and the product is ground at <=100 deg.C so as to be about 1-100 μm in average particle size; the ground product is then subjected to secondary burning at 700-950 deg.C followed by adding such an amount of lithium carbonate to the ground product thus burned as to be about (0.01-0.30) :2 in the molar ratio Li/Mn followed by homogeneous mixing; subsequently, the resultant mixture is further burned at 500-950 deg.C, thus obtaining the objective lithium-manganese multiple oxide having two-layer structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、室温及び高温にお
ける充放電サイクル特性に優れた非水リチウム二次電池
用リチウムマンガン複合酸化物の製造方法及びその用途
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a lithium manganese composite oxide for a non-aqueous lithium secondary battery having excellent charge / discharge cycle characteristics at room temperature and high temperature, and a use thereof.

【0002】[0002]

【従来の技術】非水リチウム二次電池の正極材料として
は、これまでにチタンやモリブデンの硫化物や酸化物、
並びにバナジウムやリンの酸化物等が提案されている
が、これらは保存性が悪く、高価なため、未だ実用化さ
れるまでには至っていない。一方、非水一次電極の正極
活物質としては、二酸化マンガンが代表的に用いられ、
既に実用化されている。二酸化マンガンは、資源的にも
豊富で安価であり、更に化学的に安定であるため、電池
としての保存性に優れている。
2. Description of the Related Art As a positive electrode material of a nonaqueous lithium secondary battery, sulfides and oxides of titanium and molybdenum,
In addition, oxides of vanadium and phosphorus have been proposed, but these have not yet been put to practical use because of their poor preservability and high cost. On the other hand, manganese dioxide is typically used as the positive electrode active material of the non-aqueous primary electrode,
It has already been put to practical use. Manganese dioxide is abundant and inexpensive in terms of resources, and is chemically stable, and thus has excellent storage stability as a battery.

【0003】しかしながら、二酸化マンガンは、可逆性
に難があるため、非水系二次電池の正極活物質としては
不適当であり、そのため改質されたマンガン酸化物が種
々提案されている。例えば、特開昭63−114064
号や、特開昭63−187569号、特開平1−235
158号の各公報に開示されているように、二酸化マン
ガンと、リチウム塩との混合物を熱処理して、その結晶
構造中にリチウムを含有したマンガン酸化物が提案され
ている。
[0003] However, manganese dioxide is not suitable as a positive electrode active material for non-aqueous secondary batteries because of its poor reversibility, and various modified manganese oxides have been proposed. For example, JP-A-63-114064
JP-A-63-187569, JP-A-1-235
As disclosed in JP-A-158-158, a manganese oxide containing lithium in a crystal structure of a mixture of manganese dioxide and a lithium salt is heat-treated.

【0004】これらのマンガン酸化物は、熱処理温度に
よって、生成するリチウム含有マンガン酸化物の構造が
異なり、例えば、熱処理温度が250〜300℃では、
X線回折図において、2θ=22°、31.7°、37
°、42°、55°付近にピークを有する結晶構造のマ
ンガン酸化物となり、300〜430℃では、Li2
nO3を含有したマンガン酸化物となり、そして800
〜900℃では、スピネル型構造を有するマンガン酸化
物となる。また、これらの改良法では、二酸化マンガン
とリチウム塩とを固相同志で反応させるため、二酸化マ
ンガン粒子の内部まで改質が及ばず、高電流密度での充
放電サイクルでは劣化が早いという欠点があった。
In these manganese oxides, the structure of the lithium-containing manganese oxide to be formed differs depending on the heat treatment temperature. For example, when the heat treatment temperature is 250 to 300 ° C.,
In the X-ray diffraction diagram, 2θ = 22 °, 31.7 °, 37
Manganese oxide having a crystal structure having peaks near °, 42 °, and 55 °, and at 300 to 430 ° C, Li 2 M
It becomes a manganese oxide containing nO 3 and 800
At 900900 ° C., a manganese oxide having a spinel structure is obtained. In addition, in these improved methods, since manganese dioxide and lithium salt are reacted in a solid phase, the inside of the manganese dioxide particles is not reformed, and the deterioration is rapid in a charge / discharge cycle at a high current density. there were.

【0005】そこで、例えば特開平2−183963号
公報に開示されているように、リチウム塩を溶解した水
溶液中に二酸化マンガンを浸漬し、水分を蒸発乾固した
後に熱処理し、二酸化マンガン粒子の細孔内部にまで改
質反応を進める方法が提案されている。しかしながら、
これまでに提案されているリチウム含有二酸化マンガン
では、電気化学活性が不十分であり、正極に用いた場
合、優れた初期容量及び容量保持率を有し、優れたサイ
クル特性を有する非水リチウム二次電池を製造すること
は困難であった。
Therefore, as disclosed in, for example, JP-A-2-183963, manganese dioxide is immersed in an aqueous solution in which a lithium salt is dissolved, moisture is evaporated to dryness, and then heat treatment is performed to form fine manganese dioxide particles. A method has been proposed in which the reforming reaction proceeds to the inside of the hole. However,
The lithium-containing manganese dioxides proposed so far have insufficient electrochemical activity, and when used as a positive electrode, have excellent initial capacity and capacity retention, and have excellent cycle characteristics. It was difficult to manufacture secondary batteries.

【0006】なお、特開平6−203834号や、特開
平7−245106号、特開平7−307155号の各
公報には、二酸化マンガン又はマンガン塩と、リチウム
塩との混合物を熱処理して、リチウムイオン電池用のリ
チウムとマンガンとの複合酸化物が提案されている。し
かしながら、何れの技術でも、高い初期容量及び長期の
容量保持率を提供するリチウムマンガン複合酸化物は得
られていない。
[0006] JP-A-6-203834, JP-A-7-245106 and JP-A-7-307155 disclose that a manganese dioxide or a mixture of a manganese salt and a lithium salt is subjected to a heat treatment to obtain lithium. Composite oxides of lithium and manganese for ion batteries have been proposed. However, none of the techniques has provided a lithium-manganese composite oxide that provides high initial capacity and long-term capacity retention.

【0007】[0007]

【発明が解決しようとする課題】従って、本発明は、優
れた初期容量及び容量保持率を有し、サイクル特性に優
れた非水リチウム二次電池を提供することを目的とす
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a non-aqueous lithium secondary battery having excellent initial capacity and capacity retention and excellent cycle characteristics.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討を行った結果、炭酸リチウム
と、二酸化マンガン及び炭酸マンガンから選ばれるマン
ガン化合物とを混合し、400〜700℃で一次焼成
し、100℃以下に冷却し、解砕した後、700〜90
0℃で二次焼成した後、更に炭酸リチウムを加えて、均
一に混合し、500〜900℃で焼成することにより、
サイクル特性に優れた非水リチウム二次電池を製造する
ことのできるリチウムマンガン複合酸化物が得られるこ
とを見出し、本発明に到達したものである。
Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, mixed lithium carbonate with a manganese compound selected from manganese dioxide and manganese carbonate, Primary firing at 700 ° C, cooling to 100 ° C or lower, crushing, 700-90
After secondary firing at 0 ° C., lithium carbonate is further added, uniformly mixed, and fired at 500 to 900 ° C.,
The inventors have found that a lithium manganese composite oxide capable of producing a nonaqueous lithium secondary battery having excellent cycle characteristics can be obtained, and have reached the present invention.

【0009】[0009]

【発明の実施の形態】以下、本発明について更に詳細に
説明する。本発明で使用する炭酸リチウムは、Li2
3で示される化合物であり、市場において入手可能で
ある。炭酸リチウムとしては、粒状のものを使用するこ
とが適当である。粒状物の平均粒径は、通常0.1〜5
0μm、好ましくは1〜5μmであることが適当であ
る。本発明で使用されるマンガン化合物としては、二酸
化マンガン又は炭酸マンガンが使用される。マンガン化
合物としては、粒状のものを使用することが適当であ
る。粒状物の平均粒径は、通常1〜100μm、好まし
くは3〜20μmであることが適当である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. Lithium carbonate used in the present invention is Li 2 C
It is a compound represented by O 3 and is commercially available. It is appropriate to use granular lithium carbonate. The average particle size of the granular material is usually 0.1 to 5
It is suitably 0 μm, preferably 1 to 5 μm. Manganese dioxide or manganese carbonate is used as the manganese compound used in the present invention. It is appropriate to use granular manganese compounds. It is appropriate that the average particle size of the granular material is usually 1 to 100 μm, preferably 3 to 20 μm.

【0010】二酸化マンガン又は炭酸マンガンとして
は、各種の材料を使用することができる。例えば、二酸
化マンガンとして、マンガン鉱石を400℃以上の温度
で焼成して得られるMn23又はMn34等の低級マン
ガン酸化物を硫酸や硝酸、又はこれらの混合物等の鉱酸
により不均化反応させることによって得られる化学合成
二酸化マンガンを使用することができる。また、電解に
よって得られる電解二酸化マンガンを使用することがで
きる。炭酸リチウムと、マンガン化合物とは湿式又は乾
式で混合することができる。湿式混合では、炭酸リチウ
ムは、ほとんど水に溶けず、スラリー状となっている
が、乾燥時にマンガン表面にLiが析出しないので均一
に混合されるので好ましい。
As manganese dioxide or manganese carbonate, various materials can be used. For example, as manganese dioxide, a lower manganese oxide such as Mn 2 O 3 or Mn 3 O 4 obtained by calcining a manganese ore at a temperature of 400 ° C. or more cannot be treated with a mineral acid such as sulfuric acid, nitric acid, or a mixture thereof. A chemically synthesized manganese dioxide obtained by a leveling reaction can be used. Further, electrolytic manganese dioxide obtained by electrolysis can be used. Lithium carbonate and the manganese compound can be mixed by a wet method or a dry method. In wet mixing, lithium carbonate hardly dissolves in water and is in the form of a slurry. However, since lithium does not precipitate on the surface of manganese during drying, lithium carbonate is preferably mixed uniformly.

【0011】炭酸リチウムと、マンガン化合物との混合
は、例えば、炭酸リチウムと、マンガン化合物とを、通
常、LiとMnとのモル比で0.8〜1.2:2、好ま
しくは、0.9〜1.1:2となるように配合し、これ
をポットミルを用いて水を加えて湿式又は水を加えない
で乾式で混合することによって行うことができる。この
ようにして得られた混合物は、水を加えたものは水を蒸
発させた後、400〜700℃、好ましくは450〜6
50℃の温度において焼成(一時焼成)する。炭酸リチ
ウムの融点は、618℃であるので、好ましくは、65
0℃以下の温度で焼成することにより、リチウムイオン
がマンガン化合物の細孔内部に、浸透し、均一なマンガ
ン酸リチウムが得られる。
The mixing of the lithium carbonate and the manganese compound is performed, for example, by mixing the lithium carbonate and the manganese compound in a molar ratio of Li to Mn of 0.8 to 1.2: 2, preferably 0.1 to 0.2: 2. 9 to 1.1: 2, and this can be performed by adding water using a pot mill and mixing in a wet system or in a dry system without adding water. The mixture thus obtained is obtained by adding water, evaporating the water, and then 400-700 ° C., preferably 450-6
It is fired (temporary firing) at a temperature of 50 ° C. Since the melting point of lithium carbonate is 618 ° C., it is preferably 65 ° C.
By firing at a temperature of 0 ° C. or lower, lithium ions penetrate into the pores of the manganese compound, and uniform lithium manganate can be obtained.

【0012】このようにして得られた焼成物は、一旦、
100℃以下、好ましくは45℃以下、更に好ましくは
20℃以下に冷却した後、解砕する。冷却温度の下限と
しては、実際の操作上として、0℃以上が適当である。
この冷却操作によって、更に均一なリチウムマンガン複
合酸化物を得ることが出来る。解砕物の平均粒径は、通
常1〜100μm、好ましくは10〜30μmであるこ
とが好ましい。100μmを超えると、解砕及び均一混
合が十分ではない傾向にある。1μm未満では、解砕過
剰で、化合物の構造を破壊する懸念があり、好ましくな
い。更に、作業者への微粉吸入を増大させ易い。このよ
うにして得られた解砕物は、再度焼成(二次焼成)され
る。
The fired product thus obtained is once
After cooling to 100 ° C. or lower, preferably 45 ° C. or lower, more preferably 20 ° C. or lower, pulverization is performed. As a lower limit of the cooling temperature, 0 ° C. or more is appropriate for practical operation.
By this cooling operation, a more uniform lithium manganese composite oxide can be obtained. The average particle size of the crushed product is usually 1 to 100 μm, preferably 10 to 30 μm. If it exceeds 100 μm, crushing and uniform mixing tend to be insufficient. If it is less than 1 μm, there is a concern that excessive disintegration may destroy the structure of the compound, which is not preferable. Further, it is easy to increase the fine powder suction to the operator. The crushed material thus obtained is fired again (secondary firing).

【0013】二次焼成は、700〜950℃、好ましく
は750〜900℃で行うことが適当である。このよう
にして得られた二次焼成物には、再度、炭酸リチウムを
配合し、均一に混合する。炭酸リチウムの添加量は、改
質分として、マンガンに対してモル比で、0.01〜
0.30:2モル、好ましくは、0.02〜0.20:
2モルとなる量であることが適当である。均一な混合
は、例えば、ポットミルを用いて乾式で混合することに
よって達成することができる。このようにして得られた
混合物は、次いで、500〜950℃、好ましくは55
0〜900℃で焼成(三次焼成)することにより、均一
構造の芯部とLi改質を進めた表層部との2層構造を持
ったリチウムマンガン複合酸化物が得られる。三次焼成
は、解砕処理を間に挟んで、2回以上行っても良い。
[0013] The secondary firing is suitably performed at 700 to 950 ° C, preferably 750 to 900 ° C. The secondary fired product thus obtained is mixed with lithium carbonate again and uniformly mixed. The addition amount of lithium carbonate is 0.01 to
0.30: 2 mol, preferably 0.02 to 0.20:
Suitably, the amount is 2 mol. Uniform mixing can be achieved, for example, by dry mixing using a pot mill. The mixture thus obtained is then heated at 500-950 ° C., preferably at 55 ° C.
By firing (tertiary firing) at 0 to 900 ° C., a lithium manganese composite oxide having a two-layer structure of a core portion having a uniform structure and a surface layer portion subjected to Li modification is obtained. The tertiary firing may be performed twice or more with a crushing process interposed therebetween.

【0014】このようにして得られたリチウムマンガン
複合酸化物は、2層構造を持つことで、高い初期容量及
び高い容量保持率を有するものと考えられる。特に、リ
チウム改質を進めた表層部は、充放電でLiの出し入れ
に伴う内部結晶構造の壊れを少なくしていると考えられ
る。これに対して、二次焼成までの工程のみで、これら
の化合物を乾式混合すると、混合が不十分となるため、
得られるリチウムマンガン複合酸化物におけるマンガン
酸リチウムの組成が全体的に不均一となり、放電容量及
び容量保持率の高いリチウムマンガン複合酸化物を得る
ことが出来ない。
The lithium manganese composite oxide thus obtained is considered to have a high initial capacity and a high capacity retention rate by having a two-layer structure. In particular, it is considered that the surface layer portion that has undergone lithium reforming has reduced the breakage of the internal crystal structure accompanying the inflow and outflow of Li during charging and discharging. On the other hand, if these compounds are dry-mixed only in the process up to the secondary firing, the mixing becomes insufficient,
The composition of lithium manganate in the obtained lithium manganese composite oxide becomes entirely nonuniform, and a lithium manganese composite oxide having high discharge capacity and high capacity retention cannot be obtained.

【0015】得られたリチウムマンガン複合酸化物は、
非水リチウム二次電池の正極材料として使用することが
できる。正極材料としての使用方法等は、従来の正極材
料の使用方法等の場合と同様である。この場合、非水リ
チウム二次電池における負極としては、従来より使用さ
れている金属リチウムや、リチウム合金及びリチウムが
ドープ、脱ドープできる炭素質素材や、酸化物等を使用
することができる。
The obtained lithium manganese composite oxide is
It can be used as a positive electrode material for non-aqueous lithium secondary batteries. The method of using the positive electrode material is the same as the method of using the conventional positive electrode material. In this case, as the negative electrode in the nonaqueous lithium secondary battery, conventionally used metallic lithium, a lithium alloy or a carbonaceous material which can be doped or dedoped with lithium, an oxide, or the like can be used.

【0016】[0016]

【実施例】以下、実施例により、本発明について更に詳
細に説明する。実施例1 炭酸リチウム(Li2CO3)(平均粒径2μm)と、電
解二酸化マンガン(平均粒径10μm)とを、LiとM
nとのモル比が1:2となるように、配合し、配合物の
合計の20重量%の脱イオン水を加えて、スラリーを形
成した。このスラリーをポットミル中で混合した後、1
50℃で乾燥し、大気雰囲気下で650℃、12時間一
次焼成した。次いで、焼成物を室温(20℃)まで下げ
た後、平均粒径が50μmとなるように解砕し、大気雰
囲気下で880℃、12時間二次焼成した。得られた二
次焼成物に更に、炭酸リチウム(Li2CO3)をLiと
マンガンとのモル比が0.05:2モルとなるように加
えてポットミル中で均一に混合した後、大気雰囲気下で
700℃、12時間焼成した。
The present invention will be described in more detail with reference to the following examples. Example 1 Li and M were mixed with lithium carbonate (Li 2 CO 3 ) (average particle size 2 μm) and electrolytic manganese dioxide (average particle size 10 μm).
The mixture was blended so that the molar ratio with n was 1: 2, and 20% by weight of the total amount of the blended deionized water was added to form a slurry. After mixing this slurry in a pot mill,
After drying at 50 ° C., primary firing was performed at 650 ° C. for 12 hours in an air atmosphere. Next, the fired product was cooled to room temperature (20 ° C.), crushed so as to have an average particle size of 50 μm, and subjected to secondary firing at 880 ° C. for 12 hours in an air atmosphere. Lithium carbonate (Li 2 CO 3 ) was further added to the obtained secondary fired product such that the molar ratio of Li to manganese was 0.05: 2 mol, and the mixture was uniformly mixed in a pot mill. It was baked at 700 ° C. for 12 hours.

【0017】得られた焼成物のX繰回折及び化学分析の
結果から、リチウムマンガン複合酸化物の組成は、Li
Mn24であるマンガン酸リチウムであることが確認で
きた。この焼成物を正極活物質として、82重量部を使
用し、更に、アセチレンブラック10重量部、バインダ
ーとしてポリ弗化ビニリデン8重量部を予めN−メチル
−2−ピロリドン58重量部に溶解したものを加えて十
分に混合し、ペーストを得た。このペーストをアルミニ
ウム綱に塗布し、圧着、乾燥させることによって正極板
を作成した。対極には、正極と同じ大きさの金属リチウ
ム板を使用し、正極電位測定には金属リチウム基準電極
を用いた。電解液として、1モル/dm3のLiPF6
溶解したエチレンカーボネート及びジエチルカーボネー
ト1:1の混合溶媒を用いることによって試験電池を作
成した。
From the results of X-ray diffraction and chemical analysis of the obtained fired product, the composition of the lithium manganese composite oxide was Li
It was confirmed Mn 2 0 is a lithium manganese acid, which is a 4. Using 82 parts by weight of the fired product as a positive electrode active material, 10 parts by weight of acetylene black, and 8 parts by weight of polyvinylidene fluoride as a binder previously dissolved in 58 parts by weight of N-methyl-2-pyrrolidone In addition, the mixture was sufficiently mixed to obtain a paste. This paste was applied to an aluminum rope, pressed and dried to prepare a positive electrode plate. As a counter electrode, a metal lithium plate having the same size as the positive electrode was used, and a metal lithium reference electrode was used for positive electrode potential measurement. A test battery was prepared by using a 1: 1 mixed solvent of ethylene carbonate and diethyl carbonate in which 1 mol / dm 3 of LiPF 6 was dissolved as an electrolytic solution.

【0018】比較例1 水酸化リチウム(LiOH・H20)(平均粒径15μ
m)と、電解二酸化マンガン(平均粒径50μm)とを、
LiとMnとのモル比が1.05:2となるように配合
し、配合物合計の20重量%の脱イオン水を加えて、ス
ラリーを調製した。このスラリーをポットミル中で湿式
混合を行い、150℃で乾燥した後、大気雰囲気下で7
00℃、12時間一次焼成した。この焼成物を正極活物
質として用いた以外は、実施例1と同様にして試験電池
を作成した。
Comparative Example 1 Lithium hydroxide (LiOH.H 2 O) (average particle size: 15 μm)
m) and electrolytic manganese dioxide (average particle size 50 μm)
A slurry was prepared by blending so that the molar ratio of Li and Mn was 1.05: 2, and adding 20% by weight of deionized water based on the total amount of the blend. This slurry was wet-mixed in a pot mill, dried at 150 ° C., and then dried under air atmosphere.
Primary baking was performed at 00 ° C. for 12 hours. A test battery was prepared in the same manner as in Example 1, except that this fired product was used as a positive electrode active material.

【0019】比較例2 炭酸リチウム(Li2CO3)(平均粒径10μm)と、
電解二酸化マンガン(平均粒径50μm)とを、Liと
Mnとのモル比が1.05:2となるように配合し、配
合物合計の20重量%の脱イオン水を加えて、スラリー
を調製し、これをポットミル中で湿式混合を行った。こ
のスラリーを、150℃で乾燥した後、大気雰囲気下で
470℃、12時間一次焼成し、続けて更に750℃、
12時間二次焼成した。この焼成物を正極活物質として
用いた以外は、実施例1と同様にして試験電池を作成し
た。
Comparative Example 2 Lithium carbonate (Li 2 CO 3 ) (average particle size: 10 μm)
Electrolytic manganese dioxide (average particle size: 50 μm) was blended so that the molar ratio of Li to Mn was 1.05: 2, and 20% by weight of the total amount of deionized water was added to prepare a slurry. This was wet-mixed in a pot mill. After drying this slurry at 150 ° C., it was first fired at 470 ° C. for 12 hours in the air atmosphere, and then further 750 ° C.
The secondary firing was performed for 12 hours. A test battery was prepared in the same manner as in Example 1, except that this fired product was used as a positive electrode active material.

【0020】比較例3 炭酸リチウムを水酸化リチウムに変えた以外は実施例1
と同様にして試験電池を作成した。特性試験 以上のようにして作成した試験電池を60℃雰囲気下
で、電流密度1mA/cm2の定電流で4.3Vまで充
電した後、電流密度2mA/cm2の定電流で3.0V
まで放電する充放電サイクルを繰り返すことによって放
電特性を評価した。その際、1サイクル目の放電容量に
対する10サイクル目の放電容量を容量保持率(%)と
した。結果を表1に示す。
Comparative Example 3 Example 1 except that lithium carbonate was changed to lithium hydroxide.
A test battery was prepared in the same manner as described above. Characteristic Test The test battery prepared as described above was charged to 4.3 V at a constant current of 1 mA / cm 2 in a 60 ° C. atmosphere, and then charged to 3.0 V at a constant current of 2 mA / cm 2.
The discharge characteristics were evaluated by repeating a charge / discharge cycle in which the discharge was performed until the discharge was completed. At that time, the discharge capacity at the tenth cycle relative to the discharge capacity at the first cycle was defined as the capacity retention (%). Table 1 shows the results.

【0021】[0021]

【表1】 表1 実施例 比較例 1 1 2 3 容量保持率(%) 93 73 66 87 Table 1 Table 1 Example Comparative Example 1 1 2 3 Capacity retention (%) 93 73 66 87

【0022】表1に示すように、本発明の実施例1の電
池は、所定の充放電条件下で、高い初期容量及び容量保
持率が得られた。これに対して、正極活物質を生成する
に際して、700℃における一次焼成のみの比較例1、
一次焼成後、室温まで冷却することなしに二次焼成を行
なった比較例2、更に、炭酸リチウムの代わりに水酸化
リチウムを使用した比較例3では、60℃雰囲気下での
容量保持率は低く、サイクル特性が悪かった。
As shown in Table 1, in the battery of Example 1 of the present invention, a high initial capacity and a high capacity retention were obtained under predetermined charge and discharge conditions. On the other hand, when producing a positive electrode active material, Comparative Example 1 in which only primary firing at 700 ° C. was performed,
In Comparative Example 2 in which the secondary firing was performed without cooling to room temperature after the primary firing, and in Comparative Example 3 in which lithium hydroxide was used instead of lithium carbonate, the capacity retention under a 60 ° C. atmosphere was low. , Cycle characteristics were poor.

【0023】[0023]

【発明の効果】本発明の方法によって製造したリチウム
マンガン複合酸化物は、非水リチウム二次電池の正極と
して使用する場合に、サイクル特性に優れた非水リチウ
ム二次電池を提供する。
The lithium manganese composite oxide produced by the method of the present invention provides a non-aqueous lithium secondary battery having excellent cycle characteristics when used as a positive electrode of a non-aqueous lithium secondary battery.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 輝行 兵庫県芦屋市若葉町2−2−1024 (72)発明者 梅津 豊 京都府長岡京市今里2丁目18−14 (72)発明者 塩谷 俊彦 栃木県那須郡西那須野町一区町281−525 (72)発明者 寺崎 正直 京都府京都市南区吉祥院西ノ庄猪之馬場町 1番地 日本電池株式会社内 (72)発明者 近藤 篤郎 京都府京都市南区吉祥院西ノ庄猪之馬場町 1番地 日本電池株式会社内 Fターム(参考) 4G048 AA04 AB06 AC06 AE05 5H003 AA02 AA03 AA04 BA01 BA03 BB05 BC01 BD01 5H014 AA02 BB01 BB06 EE10 HH08 5H029 AJ03 AJ04 AJ05 AK03 AL01 AL12 AM03 AM05 AM07 CJ02 CJ08 HJ14  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Teruyuki Takahashi 2-2,1024, Wakaba-cho, Ashiya-shi, Hyogo (72) Inventor Yutaka Umezu 2-18-14 Imazato, Nagaokakyo-shi, Kyoto (72) Inventor Toshihiko Shiotani Tochigi (72) Inventor Masanao Terasaki 1 Kichijoin Nishinosho Inomabacho, Minami-ku, Kyoto-shi, Kyoto, Japan Inside Nippon Battery Co., Ltd. (72) Inventor Atsuro Kondo Kyoto, Kyoto 1F, Nippon Battery Co., Ltd. F term (reference) 4K048 AA04 AB06 AC06 AE05 5H003 AA02 AA03 AA04 BA01 BA03 BB05 BC01 BD01 5H014 AA02 BB01 BB06 EE10 HH08 5H029 AJ03 AJ03 AJ01 AL01 AM03 AM05 AM07 CJ02 CJ08 HJ14

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炭酸リチウムと、二酸化マンガン及び炭酸
マンガンから選ばれるマンガン化合物とを混合し、40
0〜700℃で一次焼成し、100℃以下に冷却し、解
砕した後、700〜950℃で二次焼成した後、更に炭
酸リチウムを加えて、均一混合し、500〜950℃で
焼成することを特徴とする非水リチウム二次電池用のリ
チウムマンガン複合酸化物の製造方法。
(1) mixing lithium carbonate and a manganese compound selected from manganese dioxide and manganese carbonate,
Primary firing at 0 to 700 ° C, cooling to 100 ° C or less, crushing, secondary firing at 700 to 950 ° C, further adding lithium carbonate, mixing uniformly, and firing at 500 to 950 ° C A method for producing a lithium manganese composite oxide for a non-aqueous lithium secondary battery, comprising:
【請求項2】負極に金属リチウム若しくはその合金、又
はリチウム化合物を用いる非水リチウム二次電池であっ
て、請求項1に記載のリチウムマンガン複合酸化物を正
極として用いることを特徴とする非水リチウム二次電
池。
2. A non-aqueous lithium secondary battery using metal lithium or an alloy thereof or a lithium compound for a negative electrode, wherein the lithium manganese composite oxide according to claim 1 is used as a positive electrode. Lithium secondary battery.
JP11221633A 1999-08-04 1999-08-04 Production of lithium-manganese multiple oxide for non- aqueous lithium secondary battery and use of the multiple oxide Withdrawn JP2001048544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11221633A JP2001048544A (en) 1999-08-04 1999-08-04 Production of lithium-manganese multiple oxide for non- aqueous lithium secondary battery and use of the multiple oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11221633A JP2001048544A (en) 1999-08-04 1999-08-04 Production of lithium-manganese multiple oxide for non- aqueous lithium secondary battery and use of the multiple oxide

Publications (1)

Publication Number Publication Date
JP2001048544A true JP2001048544A (en) 2001-02-20

Family

ID=16769838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11221633A Withdrawn JP2001048544A (en) 1999-08-04 1999-08-04 Production of lithium-manganese multiple oxide for non- aqueous lithium secondary battery and use of the multiple oxide

Country Status (1)

Country Link
JP (1) JP2001048544A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101523080B1 (en) * 2012-12-21 2015-05-27 주식회사 포스코 Method for producing anode active material for lithium battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101523080B1 (en) * 2012-12-21 2015-05-27 주식회사 포스코 Method for producing anode active material for lithium battery

Similar Documents

Publication Publication Date Title
JP2000306584A (en) Positive electrode active material for lithium secondary battery and its manufacture
JP2010135285A (en) Positive electrode active material for lithium secondary battery and method for manufacturing the same
KR100417251B1 (en) Method for preparing lithium manganese spinel oxide having improved electrochemical performance
JPH04270125A (en) Manganese oxide compound
KR100639060B1 (en) Method for preparing lithium manganate having spinel structure
JP3695366B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP2001146426A (en) Method for producing lithium manganese compound oxide and lithium ion secondary battery using the same
JP2001508391A (en) Preparation method of lithium manganese oxide
JP2004155631A (en) Lithium-manganese-based double oxide particle for non-aqueous lithium secondary battery, method for producing the same and non-aqueous lithium secondary battery
JP4234334B2 (en) Lithium manganese composite oxide for secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP4676691B2 (en) Positive electrode material for Li-ion secondary battery
JPH06275276A (en) Manufacture of spinel limn2o4 with high surface area and its application to nonaqueous battery
JP2001328814A (en) Lithium-manganese composite oxide, method for producing the same and secondary battery
JP3818753B2 (en) Method for producing lithium manganese composite oxide for non-aqueous lithium secondary battery
JP2003146662A (en) Lithium-nickel-manganese complex oxide, method for manufacturing the same and use of the same
US7829223B1 (en) Process for preparing lithium ion cathode material
JP2000128540A (en) Manganese oxide, its production, lithium manganese multiple oxide produced with the same and production of the same multiple oxide
JP3590496B2 (en) Method for producing lithium manganese composite oxide for non-aqueous lithium secondary battery and use thereof
JP2001048544A (en) Production of lithium-manganese multiple oxide for non- aqueous lithium secondary battery and use of the multiple oxide
JPH1173960A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaquoues electrolyte secondary battery
JP2002343356A (en) Lithium manganese double oxide particle, its manufacturing method and secondary battery
JP3774303B2 (en) Method for producing lithium manganese composite oxide for non-aqueous lithium secondary battery and use thereof
JP3590503B2 (en) Method for producing lithium manganese composite oxide for non-aqueous lithium secondary battery and use thereof
JPWO2018043302A1 (en) Lithium-nickel based composite oxide and method for producing the same
JP7133215B2 (en) Nickel-manganese composite oxide and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107