JP2001319648A - Spinel manganese oxide for lithium secondary battery and lithium ion battery using the same - Google Patents

Spinel manganese oxide for lithium secondary battery and lithium ion battery using the same

Info

Publication number
JP2001319648A
JP2001319648A JP2000134627A JP2000134627A JP2001319648A JP 2001319648 A JP2001319648 A JP 2001319648A JP 2000134627 A JP2000134627 A JP 2000134627A JP 2000134627 A JP2000134627 A JP 2000134627A JP 2001319648 A JP2001319648 A JP 2001319648A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
spinel
lithium secondary
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000134627A
Other languages
Japanese (ja)
Other versions
JP4830136B2 (en
JP2001319648A5 (en
Inventor
Masayuki Yoshio
真幸 芳尾
Hideyuki Noguchi
英行 野口
Shunji Taniguchi
俊司 谷口
Kazuyuki Adachi
和之 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Saga University NUC
Original Assignee
Kyushu Electric Power Co Inc
Saga University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Saga University NUC filed Critical Kyushu Electric Power Co Inc
Priority to JP2000134627A priority Critical patent/JP4830136B2/en
Publication of JP2001319648A publication Critical patent/JP2001319648A/en
Publication of JP2001319648A5 publication Critical patent/JP2001319648A5/ja
Application granted granted Critical
Publication of JP4830136B2 publication Critical patent/JP4830136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nickel doped lithium rich spinel compound [Li]8a[LixMn2-x-y-zNiy(square)z]16dO4 (0.01<x<0.15, 0.01<y<0.2, z<0.02) used as a positive electrode material for a lithium secondary battery of high energy density type. SOLUTION: In a spinel manganese oxide for the lithium secondary battery, lithium hydroxide and chemically synthesized manganese dioxide and a nickel nitrate are burned at the temperature between 400 deg.C and 570 deg.C. After an additional thermal processing, a specific surface area of the resulting spinel compound (its structural formula is represented by [Li]8a[LixMn2-x-y-zNiy(square)z]16dO4 (0.01<x<0.15, 0.01<y<0.2, z<0.02)) is 1.2 m2/g or less, and its line width at the 3/4 of the peak height of the peek (400) in the X-ray diffraction diagram that has been measured by using FeKα is within 0.16 deg..

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属リチウムある
いはリチウムカーボン(リチウム−グラファイト)等の
インターカレーション化合物を負極活物質とするリチウ
ム二次電池において、正極活物質として使用するスピネ
ル構造の[L1]8a[LixMn2-x-y-zNiyz16d
4に関する。
[0001] The present invention relates to a lithium secondary battery using an intercalation compound such as metallic lithium or lithium carbon (lithium-graphite) as a negative electrode active material. ] 8a [Li x Mn 2-xyz Ni yz ] 16d
O 4 on.

【0002】[0002]

【従来の技術】4ボルト系高エネルギー密度型のリチウ
ム二次電池用正極活物質としてはLiNiO2の他、L
iCoO2、LiMn4が使用可能である。LiCo
2を正極活物質とする電池は既に市販されている。し
かしコバルトは資源量が少なく且つ高価であるため、電
池の普及に伴う大量生産には向かない。資源量や価格の
面から考えるとマンガン化合物が有望な正極材料であ
る。原料として使用可能な二酸化マンガンは現在乾電池
材料として大量に生産されている。
2. Description of the Related Art In addition to LiNiO 2 , as a positive electrode active material for a 4 volt high energy density type lithium secondary battery, L
iCoO 2 and LiMn 2 O 4 can be used. LiCo
Batteries using O 2 as a positive electrode active material are already commercially available. However, cobalt has a small amount of resources and is expensive, so it is not suitable for mass production accompanying the spread of batteries. Manganese compounds are promising cathode materials in terms of resources and prices. Manganese dioxide, which can be used as a raw material, is currently being produced in large quantities as dry cell material.

【0003】スピネル構造のLiMn24はサイクルを
重ねると容量が低下する欠点があり、この欠点を改善す
るためにMgやZn等の添加(Thackerayら,
Solid State Ionics,69,59
(1994))やCo,Ni,Cr等の添加(岡田ら、
電池技術,Vol.5,(1993))が行われ、その
有効性が既に明らかにされている。しかしながら50℃
以上の高温作動時には電解液へのMn溶解が顕著となる
ため、サイクルに伴う容量低下が大きく単純に上述の金
属をドープしただけでは正極の十分なサイクル寿命を保
持することは困難である。
[0003] LiMn 2 O 4 having a spinel structure has a disadvantage that its capacity decreases with repeated cycles, and in order to improve this disadvantage, the addition of Mg, Zn, or the like (see Thackeray et al.,
Solid State Ionics, 69, 59
(1994)) and addition of Co, Ni, Cr, etc. (Okada et al.
Battery Technology, Vol. 5, (1993)), and its effectiveness has already been demonstrated. However, 50 ° C
At the time of the above-mentioned high-temperature operation, Mn dissolution in the electrolytic solution becomes remarkable, so that the capacity is greatly reduced due to the cycle, and it is difficult to maintain a sufficient cycle life of the positive electrode simply by doping the above metal.

【0004】[0004]

【発明が解決しようとする課題】本発明は、かかる従来
技術の課題に鑑みなされたもので、サイクル特性の優れ
た16dサイトにLiが存在するリチウムリッチスピネ
ルの特徴とドープによる容量低下がリチウムよりも少な
く且つサイクル特性の優れた金属を16dサイトにドー
プし、高温でのサイクル特性の改善をはかるものであ
る。16dサイトへの金属ドープにより派生する容量低
下を抑制するため空格子(□)の量は0.02以下と小
さくする。更に高温でのサイクル特性を支配するMnの
溶解にも考慮を払い、高結晶化により比表面積を小さく
し、マンガンの電解液への溶出速度を低下させ、高温で
のサイクル寿命の向上を目指すものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has a feature of a lithium-rich spinel in which Li is present at a 16d site having excellent cycle characteristics and a capacity decrease due to doping is higher than that of lithium. A metal having a small amount and excellent cycle characteristics is doped into the 16d site to improve the cycle characteristics at a high temperature. The amount of vacancies (□) is made as small as 0.02 or less in order to suppress the capacity reduction caused by metal doping to the 16d site. Furthermore, consideration is given to the dissolution of Mn, which controls the cycle characteristics at high temperatures, with the aim of improving the cycle life at high temperatures by reducing the specific surface area by high crystallization, reducing the rate of elution of manganese into the electrolytic solution. It is.

【0005】[0005]

【課題を解決するための手段】化学量論LiMn24
充放電を繰り返すにつれ容量の低いリチウムリッチスピ
ネル化合物となり、次第に安定した容量を示すことが確
認され、リチウムリッチのスピネルを用いればサイクル
特性が良好となることは当然であり、実験的にも確認さ
れている(芳尾ら:J.Electrochem.So
c.,143,625(1996))。しかしながらL
i/Mn比が高くなるほど容量が低下し、正極材料とし
て使用することは不可能となる。前述したように異種金
属のドープもサイクル特性の改善に有効であり、本発明
は16dサイトの構成をLi,Mn,Niとすることに
よりサイクル特性の改善を図るものである。
The stoichiometric LiMn 2 O 4 becomes a lithium-rich spinel compound having a low capacity as charging and discharging are repeated, and it is confirmed that the lithium-rich spinel gradually shows a stable capacity. It is natural that the characteristics are good, and it has been confirmed experimentally (Yoshio et al .: J. Electrochem. So
c. 143, 625 (1996)). However, L
The higher the i / Mn ratio, the lower the capacity, making it impossible to use as a positive electrode material. As described above, the doping of a different metal is also effective for improving the cycle characteristics, and the present invention aims to improve the cycle characteristics by changing the configuration of the 16d site to Li, Mn, and Ni.

【0006】スピネルマンガン系正極材料の容量は16
dサイトのMn(III)の量で決まり、ドープ金属の酸
化数が1、2、3価と増加すると容量の減少が少なくな
る。またスピネル構造中の空格子点が減少してもこの容
量減少は少なくなる(芳尾ら、電気化学,66,335
(1998))。2価の金属であるNiを16dサイト
へドープし、且つ比較的大きな容量を引き出し、高容量
を確保するには空格子点の割合を小さくする必要があ
る。この目的を達成するため750℃という比較的高温
での焼成を行った。付随的な結果として、結晶性の向
上、比表面積の低下が生じる。
The capacity of the spinel manganese-based cathode material is 16
Determined by the amount of Mn (III) at the d-site, the decrease in capacity decreases as the oxidation number of the doped metal increases to 1, 2, or 3 valences. Further, even if the number of vacancies in the spinel structure is reduced, this capacity decrease is small (Yoshio et al., Electrochemistry, 66, 335).
(1998)). In order to dope a 16d site with Ni, which is a divalent metal, to draw out a relatively large capacity and secure a high capacity, it is necessary to reduce the proportion of vacancies. In order to achieve this object, firing was performed at a relatively high temperature of 750 ° C. As an incidental result, an improvement in crystallinity and a decrease in specific surface area occur.

【0007】マンガン溶解速度は比表面積が小さくなる
ほど減少する。上述したような構造自体の安定化に加え
て、比表面積が小さくなることはマンガン溶解に伴う容
量低下の抑制にも寄与する。
The manganese dissolution rate decreases as the specific surface area decreases. In addition to stabilization of the structure itself as described above, the reduction in specific surface area also contributes to suppression of a capacity decrease due to dissolution of manganese.

【0008】[0008]

【発明の実施の形態】Niドープスピネル化合物の空格
子点量は化学分析により求める。化学分析結果より空格
子点を計算するにはNiの酸化数を明らかにする必要が
ある。スピネル化合物中でのNiの酸化数はNiの置換
率と充電容量の関係から2価で存在することが芳尾ら
(電気化学,66,335(1998))で明らかにな
っている。空格子点量zの値は次のようにして求める。
BEST MODE FOR CARRYING OUT THE INVENTION The vacancy amount of a Ni-doped spinel compound is determined by chemical analysis. To calculate vacancies from the results of chemical analysis, it is necessary to clarify the oxidation number of Ni. Yoshio et al. (Electrochemistry, 66, 335 (1998)) revealed that the oxidation number of Ni in the spinel compound exists divalently from the relationship between the substitution rate of Ni and the charge capacity. The value of the vacancy amount z is obtained as follows.

【0009】キレート滴定により求めたMnとNiの合
量をVmmol/gとし、原子吸光法で求めたLi含
量およびジメチルグリオキシム重量分析法で求めたNi
含量を各々VおよびVmmolとする。Mnの含量
はV−Vとなる。この値と酸化還元滴定によりマン
ガンの平均酸化数mを求める。
The total amount of Mn and Ni determined by chelate titration is defined as V 1 mmol / g, and the Li content determined by atomic absorption spectrometry and the Ni content determined by dimethylglyoxime gravimetric analysis.
The contents are respectively V 2 and V 3 mmol. The content of Mn is V 1 -V 3 . The average oxidation number m of manganese is determined from this value and redox titration.

【0010】上記分析結果より全酸素量V0が次式で計
算できる。 V0=V/2+V3+m(V1−V3)/2 ・・・・(1)
From the above analysis results, the total oxygen amount V 0 can be calculated by the following equation. V 0 = V 2/2 + V 3 + m (V 1 -V 3) / 2 ···· (1)

【0011】スピネル構造の酸化物はAB24の一般式
で表され、陽イオンの占有可能な全サイトの数は酸素の
3/4となる。空格子点の量をVmmol/gとする
とこの値は(2)式より計算できる。 V4=3V0/4−V1−V2 ・・・・(2)
An oxide having a spinel structure is represented by the general formula of AB 2 O 4 , and the number of all cation occupied sites is / of that of oxygen. If the amount of vacancies is V 4 mmol / g, this value can be calculated from equation (2). V 4 = 3V 0 / 4−V 1 −V 2 (2)

【0012】スピネル構造式[Li]8a[LixMn
2-x-y-zNiyz16d4中の酸素と空格子点量は1:
4のモル比になるので z:4=V4:V0 即ち z=4×V4/V0 ・・・・(3) で計算できる。
Spinel structural formula [Li] 8a [Li x Mn
2-xyz Ni yz ] The oxygen and vacancy amount in 16d O 4 are 1:
Since the molar ratio is 4, z: 4 = V 4 : V 0, that is, z = 4 × V 4 / V 0 (3)

【0013】(1),(2)式を(3)式に代入すると
最終的に(4)式が得られ、この式を用いて空格子点量
zを求める。 z=(6V3+3m(V1−V3)−8V1−5V2)/(V2+2V3+m(V1−V3))・・・・(4)
By substituting the expressions (1) and (2) into the expression (3), the expression (4) is finally obtained, and the vacancy amount z is obtained by using this expression. z = (6V 3 + 3m ( V 1 -V 3) -8V 1 -5V 2) / (V 2 + 2V 3 + m (V 1 -V 3)) ···· (4)

【0014】実施例1および比較例1で製造したNiド
ープのリチウムリッチスピネル化合物を正極活物質と
し、50℃でリチウム二次電池特性を調べた。電解液は
1MLiBF4−EC・DMC(体積比1:2)であ
る。実施例1で得られるスピネル構造式[Li]8a[L
0.017Mn1.916Ni0.0490.00816d4で表せる化
合物の第1回目の放電容量は120.2mAh/gであ
り、50サイクル目の容量は115.6mAh/gとな
った。50サイクル目の容量保持率(50サイクル目の
容量/1サイクル目の容量)を計算すると96.2%と
なる。
Using the Ni-doped lithium-rich spinel compound produced in Example 1 and Comparative Example 1 as a positive electrode active material, the characteristics of a lithium secondary battery were examined at 50 ° C. The electrolyte is 1M LiBF 4 -EC · DMC (volume ratio 1: 2). Spinel structural formula [Li] 8a [L obtained in Example 1
i 0.017 Mn 1.916 Ni 0.0490.008 ] 16d O 4 The first discharge capacity of the compound represented by 16dO 4 was 120.2 mAh / g, and the capacity at the 50th cycle was 115.6 mAh / g. When the capacity retention rate at the 50th cycle (capacity at the 50th cycle / capacity at the 1st cycle) is calculated, it is 96.2%.

【0015】一方、比較例に示す650℃で合成した試
料のスピネル構造式は[Li]8a[Li0.010Mn1.912
Ni0.0490.02916d4で表示され、第1回目の放電
容量は109.8mAh/gと実施例1の放電容量より
も10%近く低い。50サイクル目の容量は104.1
mAh/gと比較的高いものの容量保持率は、94.8
%と実施例1と比較すると1.4%程低くなる。即ち、
750℃で焼成した試料の方が容量、サイクル特性とも
勝ることが確認できた。実施例1の試料の比表面積は
0.8m2/gと比較例1の試料の1.8m2/gの半分
以下であった。X線回折図形にも両者に大きな違いが認
められる。
On the other hand, the spinel structural formula of the sample synthesized at 650 ° C. shown in the comparative example is [Li] 8a [Li 0.010 Mn 1.912 ]
Ni 0.0490.029 ] 16d O 4 , and the first discharge capacity is 109.8 mAh / g, which is about 10% lower than the discharge capacity of the first embodiment. The capacity at the 50th cycle is 104.1
Although relatively high at mAh / g, the capacity retention was 94.8.
% Is lower than that of Example 1 by about 1.4%. That is,
It was confirmed that the sample fired at 750 ° C. was superior in both capacity and cycle characteristics. The specific surface area of the sample of Example 1 was less than half of 1.8 m 2 / g of the sample of Comparative Example 1 and 0.8 m 2 / g. The X-ray diffraction pattern also shows a great difference between the two.

【0016】図1にFeKαを用いて測定した実施例1
の試料のXRD図を示す。実施例1の試料の特徴は2θ
>60°のピークが2本のピークに分裂している。これ
は結晶性の向上に伴いピーク幅が減少し、そのため波長
の僅かに異なるKα1とKα2による回折ピークが分離
したためである。通常ピークの半値幅から結晶子の大き
さを計算し、結晶性を論じるがこのスピネル化合物の場
合信頼性の高い高強度のピークが2θ<50°以下の低
角にしか存在せず、この場合Kα1とKα2による回折
ピークがオーバーラップし、ピークの半値幅を正確に測
定するのが難しい。このため、比較的強度の高いピーク
の内、最も高角側に位置する(400)ピークを選び、
3/4の強度における線幅から結晶性を評価した。この
値は実施例1の試料では0.15°であり、比較例1の
試料では0.22°であった。
FIG. 1 shows a first embodiment measured using FeKα.
The XRD figure of the sample of FIG. The characteristic of the sample of Example 1 is 2θ
The peak at> 60 ° splits into two peaks. This is because the peak width was reduced as the crystallinity was improved, and the diffraction peaks due to Kα1 and Kα2 having slightly different wavelengths were separated. Usually, the crystallite size is calculated from the half width of the peak, and the crystallinity is discussed. In the case of this spinel compound, a highly reliable high intensity peak exists only at a low angle of 2θ <50 ° or less. Diffraction peaks due to Kα1 and Kα2 overlap, making it difficult to accurately measure the half width of the peak. Therefore, the peak (400) located at the highest angle side is selected from the peaks having relatively high intensities,
Crystallinity was evaluated from the line width at an intensity of 3/4. This value was 0.15 ° for the sample of Example 1 and 0.22 ° for the sample of Comparative Example 1.

【0017】以上述べたように16dサイトの構成をL
i,Mn,Niとし、空格子量をおさえ、比表面積を小
さくし、且つ結晶性を高めることにより高温で高容量、
高サイクル特性を有する正極活物質が製造できることが
明らかとなった。
As described above, the configuration of the 16d site is L
i, Mn, and Ni, the vacancy amount is suppressed, the specific surface area is reduced, and the crystallinity is increased.
It has been clarified that a positive electrode active material having high cycle characteristics can be produced.

【0018】[0018]

【実施例】<実施例1>水酸化リチウム、化学合成二酸
化マンガン、硝酸ニッケルを1.03:1.95:0.
05のモル比で混合粉砕する。470℃で5時間加熱
後、更に530℃で5時間加熱した。冷却後、粉砕し更
に750℃で40時間焼成後、3時間で室温まで冷却し
た。
<Example 1> Lithium hydroxide, chemically synthesized manganese dioxide, and nickel nitrate were added in an amount of 1.03: 1.95: 0.
The mixture is pulverized at a molar ratio of 05. After heating at 470 ° C. for 5 hours, it was further heated at 530 ° C. for 5 hours. After cooling, the mixture was pulverized, baked at 750 ° C. for 40 hours, and cooled to room temperature in 3 hours.

【0019】この試料は化学分析により[Li]8a[L
0.017Mn1.926Ni0.0490.00816d4のスピネル
構造式表せる化合物であることが確認できた。また、比
表面積は0.8m2/gであり、図1に示すようにXR
D図中の高角側のピークは2本に分裂していることが確
認できた。
This sample was analyzed by chemical analysis to obtain [Li] 8a [L
i 0.017 Mn 1.926 Ni 0.049 □ 0.008 ] it was confirmed that the spinel structure expressed compound of 16d O 4. The specific surface area is 0.8 m 2 / g, and as shown in FIG.
It was confirmed that the peak on the high angle side in FIG. D was split into two peaks.

【0020】上記試料25mgと導電性バインダー10
mgを用いてフィルム状合剤を作成し、ステンレスメッ
シュに圧着して正極とした。正極は200℃で乾燥して
使用した。負極には金属リチウムを、電解液にはLiB
4−EC・DMC(体積比1:2)を用いた。充放電
電流は0.25mA(0.1mA/cm2)とし、充放
電電圧範囲は4.5〜3.5Vとした。充放電テストは
50℃で行った。以下の実施例、比較例での評価は全て
上記の条件で行った。
The above sample 25 mg and the conductive binder 10
A film-shaped mixture was prepared using the mg, and pressed against a stainless steel mesh to obtain a positive electrode. The positive electrode was dried at 200 ° C. and used. Lithium metal for the negative electrode and LiB for the electrolyte
F 4 -EC · DMC (volume ratio 1: 2) was used. The charge / discharge current was 0.25 mA (0.1 mA / cm 2 ), and the charge / discharge voltage range was 4.5 to 3.5 V. The charge / discharge test was performed at 50 ° C. The evaluations in the following Examples and Comparative Examples were all performed under the above conditions.

【0021】<実施例2>水酸化リチウム、化学合成二
酸化マンガン、硝酸ニッケルを1.10:1.90:
0.10のモル比で混合粉砕する。470℃で5時間加
熱後、更に530℃で5時間加熱した。冷却後、粉砕し
更に750℃で40時間焼成後、3時間で室温まで冷却
した。この試料のXRD図でも高角側のピークは2本に
分裂していることが確認できた。1回目の放電容量は1
06.2mAh/gと容量は減少したものの50サイク
ルでの容量保持率は96%以上であった。
Example 2 Lithium hydroxide, chemically synthesized manganese dioxide, and nickel nitrate were prepared as 1.10: 1.90:
The mixture is pulverized at a molar ratio of 0.10. After heating at 470 ° C. for 5 hours, it was further heated at 530 ° C. for 5 hours. After cooling, the mixture was pulverized, baked at 750 ° C. for 40 hours, and cooled to room temperature in 3 hours. Also in the XRD diagram of this sample, it was confirmed that the peak on the high angle side was split into two peaks. The first discharge capacity is 1
Although the capacity was reduced to 06.2 mAh / g, the capacity retention at 50 cycles was 96% or more.

【0022】<実施例3>水酸化リチウム、化学合成二
酸化マンガン、硝酸ニッケル、硝酸アルミニウムを1.
03:1.95:0.025:0.025のモル比で混
合粉砕する。470℃で5時間加熱後、更に530℃で
5時間加熱した。冷却後、粉砕し更に750℃で40時
間焼成後、3時間で室温まで冷却した。この試料のXR
D図でも高角側のピークは2本に分裂していることが確
認できた。1回目の放電容量は123.5mAh/gと
実施例1よりも高く、50サイクルでの容量保持率は9
6%以上であった。
Example 3 Lithium hydroxide, chemically synthesized manganese dioxide, nickel nitrate and aluminum nitrate
The mixture is pulverized at a molar ratio of 03: 1.95: 0.025: 0.025. After heating at 470 ° C. for 5 hours, it was further heated at 530 ° C. for 5 hours. After cooling, the mixture was pulverized, baked at 750 ° C. for 40 hours, and cooled to room temperature in 3 hours. XR of this sample
In FIG. D, it was confirmed that the peak on the high angle side was split into two peaks. The first discharge capacity was 123.5 mAh / g, which was higher than that of Example 1, and the capacity retention rate at 50 cycles was 9
6% or more.

【0023】<実施例4>水酸化リチウム、化学合成二
酸化マンガン、硝酸ニッケル、硝酸亜鉛を1.030:
1.95:0.025:0.025のモル比で混合粉砕
する。470℃で5時間加熱後、更に530℃で5時間
加熱した。冷却後、粉砕し更に750℃で40時間焼成
後、3時間で室温まで冷却した。この試料の初期放電容
量は117mAh/g以上であり、50サイクルでの容
量保持率も96%以上であった。
Example 4 Lithium hydroxide, chemically synthesized manganese dioxide, nickel nitrate, and zinc nitrate were added in the form of 1.030:
The mixture is pulverized at a molar ratio of 1.95: 0.025: 0.025. After heating at 470 ° C. for 5 hours, it was further heated at 530 ° C. for 5 hours. After cooling, the mixture was pulverized, baked at 750 ° C. for 40 hours, and cooled to room temperature in 3 hours. The initial discharge capacity of this sample was 117 mAh / g or more, and the capacity retention at 50 cycles was 96% or more.

【0024】<実施例5>水酸化リチウム、化学合成二
酸化マンガン、硝酸ニッケル、硝酸マグネシウムを1.
03:1.95:0.025:0.025のモル比で混
合粉砕する。470℃で5時間加熱後、更に530℃で
5時間加熱した。冷却後、粉砕し更に750℃で40時
間焼成後、3時間で室温まで冷却した。この試料の初期
放電容量は115mAh/g以上であり、50サイクル
での容量保持率も96%以上であった。
Example 5 Lithium hydroxide, chemically synthesized manganese dioxide, nickel nitrate, and magnesium nitrate were used in the following manner.
The mixture is pulverized at a molar ratio of 03: 1.95: 0.025: 0.025. After heating at 470 ° C. for 5 hours, it was further heated at 530 ° C. for 5 hours. After cooling, the mixture was pulverized, baked at 750 ° C. for 40 hours, and cooled to room temperature in 3 hours. The initial discharge capacity of this sample was 115 mAh / g or more, and the capacity retention at 50 cycles was 96% or more.

【0025】<実施例6>水酸化リチウム、化学合成二
酸化マンガン、硝酸ニッケル、酸化鉄を1.03:1.
95:0.025:0.025のモル比で混合粉砕す
る。470℃で5時間加熱後、更に530℃で10時間
加熱した。冷却後、粉砕し更に750℃で40時間焼成
後、3時間で室温まで冷却した。この試料の初期放電容
量は122mAh/gと実施例1よりも容量は増加し、
50サイクルでの容量保持率は96%以上を示した。
EXAMPLE 6 Lithium hydroxide, chemically synthesized manganese dioxide, nickel nitrate and iron oxide were added in an amount of 1.03: 1.
The mixture is pulverized at a molar ratio of 95: 0.025: 0.025. After heating at 470 ° C. for 5 hours, it was further heated at 530 ° C. for 10 hours. After cooling, the mixture was pulverized, baked at 750 ° C. for 40 hours, and cooled to room temperature in 3 hours. The initial discharge capacity of this sample was 122 mAh / g, which was larger than that of Example 1, and
The capacity retention rate after 50 cycles was 96% or more.

【0026】<比較例1>水酸化リチウム、化学合成二
酸化マンガン、硝酸ニッケルを1.03:1.95:
0.05のモル比で混合粉砕する。470℃で5時間加
熱後、更に530℃で5時間加熱した。冷却後、粉砕し
更に650℃で20時間焼成後、3時間で室温まで冷却
した。この試料のXRDプロフィールはスピネル構造で
あることを示し、不純物を含まないことが確認できた。
高角側の回折線は実施例1−6とは異なりピークの分裂
は認められなかった。この試料は化学分析により[L
i]8a[Li0.010Mn1.912Ni0.0490.02916d4
で表示できることが確認できた。
<Comparative Example 1> Lithium hydroxide, chemically synthesized manganese dioxide, and nickel nitrate were used in an amount of 1.03: 1.95:
The mixture is pulverized at a molar ratio of 0.05. After heating at 470 ° C. for 5 hours, it was further heated at 530 ° C. for 5 hours. After cooling, it was pulverized, baked at 650 ° C. for 20 hours, and cooled to room temperature in 3 hours. The XRD profile of this sample showed a spinel structure, and it was confirmed that the sample did not contain any impurities.
The diffraction line on the high angle side was different from that in Example 1-6, and no peak splitting was observed. This sample was analyzed by chemical analysis [L
i] 8a [Li 0.010 Mn 1.912 Ni 0.0490.029 ] 16d O 4
It was confirmed that can be displayed with.

【0027】[0027]

【発明の効果】上述したように、本発明によれば、高結
晶性の異種金属置換のリチウムリッチスピネルマンガン
酸化物はリチウム二次電池正極としての機能を有し、高
温でのサイクル特性が優れるため、高温環境で使用され
るリチウムイオン電池あるいはリチウム二次電池の正極
活物質として有用である。
As described above, according to the present invention, the highly crystalline lithium-rich spinel manganese oxide substituted with a different metal has a function as a positive electrode of a lithium secondary battery and has excellent cycle characteristics at high temperatures. Therefore, it is useful as a positive electrode active material of a lithium ion battery or a lithium secondary battery used in a high temperature environment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 [Li]8a[Li0.017Mn1.926Ni0.049
0.00816d4でのXRD図である。
FIG. 1 [Li] 8a [Li 0.017 Mn 1.926 Ni 0.049
0.008 ] XRD diagram at 16d O 4 .

フロントページの続き (72)発明者 谷口 俊司 福岡県福岡市中央区渡辺通二丁目1番82号 九州電力株式会社内 (72)発明者 足立 和之 福岡県福岡市中央区渡辺通二丁目1番82号 九州電力株式会社内 Fターム(参考) 4G048 AA04 AA05 AB01 AC06 AD03 AD06 AE05 AE07 5H029 AJ05 AK03 AL12 AM03 AM05 AM07 DJ16 DJ17 HJ02 HJ07 HJ13 5H050 AA05 AA07 BA17 CA09 CB12 FA17 FA19 HA02 HA07 HA13Continued on the front page (72) Inventor Shunji Taniguchi 2-1-2 Watanabe-dori, Chuo-ku, Fukuoka City Inside Kyushu Electric Power Company (72) Inventor Kazuyuki 2-1-1 Watanabe-dori, Chuo-ku, Fukuoka City, Fukuoka Prefecture No. 82 F-term in Kyushu Electric Power Co., Inc. (reference)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 スピネル構造式[Li]8a[LixMn
2-x-y-zNiyz16 d4(但し、□は空格子)で表せ
るxの値が0.01〜0.15、yの値が0.01〜
0.20、zの値が0.02以下の化合物であり、比表
面積1.2m2/g以下でかつFeKαを用いて測定し
たX線回折図において(400)ピークの3/4のピー
クの高さでの線幅が0.16°以内のリチウム二次電池
用スピネル系マンガン酸化物。
1. A spinel structural formula [Li] 8a [Li x Mn
2-xyz Ni yz ] 16 dO 4 (where □ is an empty lattice) The value of x is 0.01 to 0.15 and the value of y is 0.01 to 0.1
A compound having a value of 0.20 and z of 0.02 or less, a specific surface area of 1.2 m 2 / g or less, and a 3/4 peak of a (400) peak in an X-ray diffraction diagram measured using FeKα. A spinel-based manganese oxide for a lithium secondary battery having a line width in height of 0.16 ° or less.
【請求項2】 16dサイトにドープする金属はNiの
みまたはNi−Fe,Ni−Zn,Ni−Al,Ni−
Mgの2種の合金である請求項1記載のリチウム二次電
池用スピネル系マンガン酸化物。
2. The metal doped at the 16d site is only Ni or Ni-Fe, Ni-Zn, Ni-Al, Ni-
The spinel-based manganese oxide for a lithium secondary battery according to claim 1, which is two kinds of alloys of Mg.
【請求項3】 前述の[Li]8a[LixMn2-x-y-z
yz16d4を正極活物質とするリチウム二次電池お
よびカーボンなどインターカレーション化合物を負極と
するリチウムイオン電池。
3. The aforementioned [Li] 8a [Li x Mn 2-xyz N]
i yz ] A lithium secondary battery using 16dO 4 as a positive electrode active material and a lithium ion battery using an intercalation compound such as carbon as a negative electrode.
JP2000134627A 2000-05-08 2000-05-08 Spinel manganese oxide for lithium secondary battery and lithium secondary battery using the same Expired - Fee Related JP4830136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000134627A JP4830136B2 (en) 2000-05-08 2000-05-08 Spinel manganese oxide for lithium secondary battery and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000134627A JP4830136B2 (en) 2000-05-08 2000-05-08 Spinel manganese oxide for lithium secondary battery and lithium secondary battery using the same

Publications (3)

Publication Number Publication Date
JP2001319648A true JP2001319648A (en) 2001-11-16
JP2001319648A5 JP2001319648A5 (en) 2005-11-17
JP4830136B2 JP4830136B2 (en) 2011-12-07

Family

ID=18642874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000134627A Expired - Fee Related JP4830136B2 (en) 2000-05-08 2000-05-08 Spinel manganese oxide for lithium secondary battery and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4830136B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226214A (en) * 2001-01-26 2002-08-14 Tosoh Corp New lithium manganese complex oxide and its production method and application thereof
JP2004095534A (en) * 2003-06-27 2004-03-25 Tanaka Chemical Corp Lithium manganese nickel compound oxide
JP2012036085A (en) * 2011-09-20 2012-02-23 Tosoh Corp Novel lithium manganese composite oxide, and production method thereof and use thereof
US9059465B2 (en) 2008-04-17 2015-06-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for secondary battery, and lithium ion battery
CN107863502A (en) * 2017-10-11 2018-03-30 苏州宇量电池有限公司 A kind of fast synthesis method of the lithium-rich manganese-based anode material of uniform nanoparticles
CN107910545A (en) * 2017-11-06 2018-04-13 西安电子科技大学 A kind of preparation method of height ratio capacity richness lithium manganese anode material
CN114388775A (en) * 2020-10-16 2022-04-22 泰星能源解决方案有限公司 Positive electrode active material and secondary battery provided with same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333120A (en) * 1995-05-24 1996-12-17 Basf Magnetics Gmbh Spinel structure containing lithium and manganese (iii/iv)
JPH1171115A (en) * 1997-06-19 1999-03-16 Tosoh Corp Lithium manganese-based oxide, having spinel structure and containing another kind of element, its production and use thereof
JP2000058057A (en) * 1998-08-03 2000-02-25 Masayuki Yoshio Spinel manganese oxide for lithium secondary battery
JP2000067864A (en) * 1998-08-14 2000-03-03 Masayuki Yoshio Spinel-based manganese oxide for lithium secondary battery
JP2000156228A (en) * 1998-11-20 2000-06-06 Tosoh Corp Spinel structure lithium manganese oxide system lithium secondary battery
JP2000306577A (en) * 1999-02-15 2000-11-02 Denso Corp Positive electrode active material for nonaqueous electrolyte secondary battery, manufacture of the positive electrode active material and secondary battery using the positive electrode active material
JP2001202959A (en) * 2000-01-18 2001-07-27 Sumitomo Metal Mining Co Ltd Active material for positive electrode of nonaqueous electrolyte secondary battery and its producing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333120A (en) * 1995-05-24 1996-12-17 Basf Magnetics Gmbh Spinel structure containing lithium and manganese (iii/iv)
JPH1171115A (en) * 1997-06-19 1999-03-16 Tosoh Corp Lithium manganese-based oxide, having spinel structure and containing another kind of element, its production and use thereof
JP2000058057A (en) * 1998-08-03 2000-02-25 Masayuki Yoshio Spinel manganese oxide for lithium secondary battery
JP2000067864A (en) * 1998-08-14 2000-03-03 Masayuki Yoshio Spinel-based manganese oxide for lithium secondary battery
JP2000156228A (en) * 1998-11-20 2000-06-06 Tosoh Corp Spinel structure lithium manganese oxide system lithium secondary battery
JP2000306577A (en) * 1999-02-15 2000-11-02 Denso Corp Positive electrode active material for nonaqueous electrolyte secondary battery, manufacture of the positive electrode active material and secondary battery using the positive electrode active material
JP2001202959A (en) * 2000-01-18 2001-07-27 Sumitomo Metal Mining Co Ltd Active material for positive electrode of nonaqueous electrolyte secondary battery and its producing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226214A (en) * 2001-01-26 2002-08-14 Tosoh Corp New lithium manganese complex oxide and its production method and application thereof
JP2004095534A (en) * 2003-06-27 2004-03-25 Tanaka Chemical Corp Lithium manganese nickel compound oxide
JP4707939B2 (en) * 2003-06-27 2011-06-22 株式会社田中化学研究所 Lithium manganese nickel composite oxide
US9059465B2 (en) 2008-04-17 2015-06-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for secondary battery, and lithium ion battery
JP2012036085A (en) * 2011-09-20 2012-02-23 Tosoh Corp Novel lithium manganese composite oxide, and production method thereof and use thereof
CN107863502A (en) * 2017-10-11 2018-03-30 苏州宇量电池有限公司 A kind of fast synthesis method of the lithium-rich manganese-based anode material of uniform nanoparticles
CN107910545A (en) * 2017-11-06 2018-04-13 西安电子科技大学 A kind of preparation method of height ratio capacity richness lithium manganese anode material
CN107910545B (en) * 2017-11-06 2020-10-16 西安电子科技大学 Preparation method of high-specific-capacity lithium-manganese-rich cathode material
CN114388775A (en) * 2020-10-16 2022-04-22 泰星能源解决方案有限公司 Positive electrode active material and secondary battery provided with same
CN114388775B (en) * 2020-10-16 2024-03-01 泰星能源解决方案有限公司 Positive electrode active material and secondary battery provided with same
US11962005B2 (en) 2020-10-16 2024-04-16 Prime Planet Energy & Solutions, Inc. Positive electrode active material and secondary battery provided with positive electrode active material

Also Published As

Publication number Publication date
JP4830136B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
US7358009B2 (en) Layered electrodes for lithium cells and batteries
Park et al. Structural and electrochemical characterization of lithium excess and Al-doped nickel oxides synthesized by the sol–gel method
JP3064655B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
Kim et al. Electrochemical properties of LiMxCo1− xO2 [M= Mg, Zr] prepared by sol–gel process
Ein‐Eli et al. LiCu x II Cu y III Mn [2−(x+ y)] III, IV O 4: 5 V Cathode Materials
JP3008793B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
Lee et al. Characterization of LiNi0. 85Co0. 10M0. 05O2 (M= Al, Fe) as a cathode material for lithium secondary batteries
Kim et al. Electrochemical performance of Li [LixNi (1− 3x)/2Mn (1+ x)/2] O2 cathode materials synthesized by a sol–gel method
Johnson et al. Structural and electrochemical analysis of layered compounds from Li2MnO3
Quine et al. Layered LixMn1− yNiyO2 intercalation electrodes
JP3606290B2 (en) Method for producing cobalt-containing lithium nickelate for positive electrode active material of non-aqueous battery
Macklin et al. Performance of lithium manganese oxide spinel electrodes in a lithium polymer electrolyte cell
Kang et al. Structural and electrochemical study of Li–Al–Mn–O–F spinel material for lithium secondary batteries
Sun et al. The preparation and electrochemical performance of solid solutions LiCoO2–Li2MnO3 as cathode materials for lithium ion batteries
JP2004253169A (en) Lithium secondary battery and manufacturing method of positive electrode active material used therefor
Luo et al. Synthesis of highly crystalline spinel LiMn2O4 by a soft chemical route and its electrochemical performance
JP3232943B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
Robertson et al. Nonstoichiometric layered Li x Mn y O 2 intercalation electrodes—a multiple dopant strategy
JP3653210B2 (en) Method for producing spinel manganese oxide for lithium secondary battery
Lee et al. A novel layered Li [Li0. 12NizMg0. 32− zMn0. 56] O2 cathode material for lithium-ion batteries
Park et al. Synthesis and electrochemical properties of sulfur doped-LixMnO2− ySy materials for lithium secondary batteries
Park et al. The effects of Ni and Li doping on the performance of lithium manganese oxide material for lithium secondary batteries
JP2012209242A (en) Lithium manganese titanium nickel composite oxide and production method therefor, and lithium secondary battery using the same as member
JP2000323122A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and manufacture thereof
JP2001319648A (en) Spinel manganese oxide for lithium secondary battery and lithium ion battery using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051028

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051028

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees