JP4884995B2 - Positive electrode active material, positive electrode and secondary battery - Google Patents

Positive electrode active material, positive electrode and secondary battery Download PDF

Info

Publication number
JP4884995B2
JP4884995B2 JP2007027471A JP2007027471A JP4884995B2 JP 4884995 B2 JP4884995 B2 JP 4884995B2 JP 2007027471 A JP2007027471 A JP 2007027471A JP 2007027471 A JP2007027471 A JP 2007027471A JP 4884995 B2 JP4884995 B2 JP 4884995B2
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
active material
electrode active
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007027471A
Other languages
Japanese (ja)
Other versions
JP2007149702A (en
Inventor
賢治 志塚
博 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2007027471A priority Critical patent/JP4884995B2/en
Publication of JP2007149702A publication Critical patent/JP2007149702A/en
Application granted granted Critical
Publication of JP4884995B2 publication Critical patent/JP4884995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は二次電池の正極に用いられるスピネル系リチウムマンガン酸化物からなる改良された正極活物質、該正極活物質を含む正極、及び二次電池に係わる。詳しくは、二次電池の正極にこの改良された正極活物資を用いることにより、二次電池の特性の改良、特に電池の高い充放電容量を維持しつつ、充放電サイクルに伴う容量劣化が格段に改善されるのである。   The present invention relates to an improved positive electrode active material made of spinel lithium manganese oxide used for a positive electrode of a secondary battery, a positive electrode containing the positive electrode active material, and a secondary battery. Specifically, by using this improved positive electrode active material for the positive electrode of the secondary battery, the capacity deterioration accompanying the charge / discharge cycle is remarkably improved while maintaining the high charge / discharge capacity of the battery, in particular, by improving the characteristics of the secondary battery. It will be improved.

リチウム二次電池の正極活物質として、マンガンとリチウムの複合酸化物であるLiMn24が提案され、研究が盛んに行われている。高電圧・高エネルギー密度という特徴を有しているものの、充放電サイクル寿命が短いといった課題を有しており、実用電池としての利用には至っていない。これまで、特開平7−282798号公報等に開示されているようにリチウムを過剰にしてLi1+X Mn2-X4としたり、特開平3−108261、特開平3−219571号各公報等に開示されているようにマンガンの一部をCo、Cr等の他の金属で置換してLiMn2-XCoX4、LiMn2-X CrX4としたりして、リチウムマンガン酸化物の改質を図り、サイクル特性を改良することが提案されている。この方法は、Mnサイトの一部をリチウムやコバルト、クロムなどの金属で置換することで結晶構造を緻密化し、充放電機能の低下を改善することが可能である。
特開平7−282798号公報 特開平3−108261号公報 特開平3−219571号公報
LiMn 2 O 4, which is a complex oxide of manganese and lithium, has been proposed as a positive electrode active material for lithium secondary batteries, and has been actively researched. Although it has the characteristics of high voltage and high energy density, it has a problem that the charge / discharge cycle life is short, and has not been used as a practical battery. Until now, as disclosed in JP-A-7-282798 and the like, excess lithium is used to make Li 1 + X Mn 2-X O 4 , or JP-A-3-108261 and JP-A-3-219571. a part of manganese as disclosed in equal Co, and replaced with other metals such as Cr or a LiMn 2-X Co X O 4 , LiMn 2-X Cr X O 4, lithium manganese oxide It has been proposed to improve the properties and improve cycle characteristics. In this method, a part of the Mn site is replaced with a metal such as lithium, cobalt, or chromium, so that the crystal structure is densified and the deterioration of the charge / discharge function can be improved.
JP-A-7-282798 JP-A-3-108261 JP-A-3-219571

しかしながらこれらの改質方法では充放電容量の低下を招くため、充放電容量を低下させることなくサイクル特性が改善されたリチウムマンガン酸化物が望まれていた。そこで本発明者らはスピネル系リチウムマンガン酸化物の組成及び結晶性に着目した検討を鋭意行った結果、従来の合成法によるものは以下の(A)〜(C)であることを実験的につきとめ本発明に到達した。
(A)酸素欠損を生じ、格子定数の伸びた酸化物が生成していること。
(B)充電端(n>0.8)の格子定数が縮みすぎている。
(C)(A)及び(B)が原因となり、リチウムの挿入・放出に伴う結晶の膨張・収縮率が大きく、結晶崩壊を招きやすい。
これら(A)〜(C)の知見に対する従来の技術としては、(A)に関しては、式
However, since these reforming methods cause a decrease in charge / discharge capacity, a lithium manganese oxide having improved cycle characteristics without reducing the charge / discharge capacity has been desired. Thus, as a result of intensive investigations focusing on the composition and crystallinity of the spinel lithium manganese oxide, the present inventors have experimentally determined that the conventional synthesis methods are the following (A) to (C). We have reached the present invention.
(A) Oxygen vacancies are generated and an oxide having an extended lattice constant is generated.
(B) The lattice constant of the charging end (n> 0.8) is too contracted.
(C) Due to (A) and (B), the expansion / contraction rate of the crystal accompanying the insertion / release of lithium is large, and the crystal is easily collapsed.
As a conventional technique for the knowledge of these (A) to (C), with respect to (A), the formula

Figure 0004884995
の酸素欠損δの熱処理条件による変化及び酸素欠損のあるマンガン酸リチウムの電気化学的キャラクタリゼーションはJ.Electrochem.Soc.,Vol.142,No.7,July,1995.で報告されている。しかし、酸素欠損に伴うサイクル特性の低下については何ら明確な記載がなされていないし、またその電気化学的な測定のされたマンガン酸リチウムは本願発明の範囲には含まれない。
Figure 0004884995
The changes in oxygen deficiency δ in the heat treatment conditions and the electrochemical characterization of lithium manganate with oxygen deficiency are described in Electrochem. Soc. , Vol. 142, no. 7, July, 1995. It is reported in. However, there is no clear description about the deterioration of cycle characteristics due to oxygen deficiency, and lithium manganate whose electrochemical measurement has been performed is not included in the scope of the present invention.

また、Journal of Alloys and Compounds 235(1996)163−169では、スピネル

Figure 0004884995
の酸素ノンストイキオメトリーが報告されているが、電気化学的測定及び考察は何ら為されていない。 In the Journal of Alloys and Compounds 235 (1996) 163-169, spinel
Figure 0004884995
Oxygen non-stoichiometry has been reported, but no electrochemical measurements or considerations have been made.

(C)に関しては、Mater.Res.Bull.,18(1983)1375.、Mater.Res.Bull.,19(1984)179.、Mater.Res.Bull.,18(1984)461.、J.Electrochem.Soc.,Vol.137,No.3,March(1990)769.等の文献により、n=0.5以上、すなわちリチウムが半分以上放出された領域では、二つの立方晶が存在する二相領域の反応が生じることが報告されている。 Regarding (C), Mater. Res. Bull. , 18 (1983) 1375. Mater. Res. Bull. , 19 (1984) 179. Mater. Res. Bull. , 18 (1984) 461. , J .; Electrochem. Soc. , Vol. 137, no. 3, March (1990) 769. It is reported by the literature such as that in the region where n = 0.5 or more, that is, the region where lithium is released more than half, a reaction in a two-phase region where two cubic crystals exist occurs.

本発明の目的は、二次電池用の正極活物質材料として、充放電容量を高い値に維持しつつも、充放電サイクルに伴う容量劣化の少ない、スピネル系リチウムマンガン酸化物からなる正極活物質、該正極活物質を含む二次電池用正極及びこの正極を含む二次電池を提供することであり、本発明の要旨は、下記1〜7に記載の正極活物質、正極及び二次電池に存する。   An object of the present invention is to provide a positive electrode active material made of a spinel-type lithium manganese oxide that maintains a high charge / discharge capacity as a positive electrode active material for a secondary battery and has little capacity deterioration associated with a charge / discharge cycle. The present invention provides a positive electrode for a secondary battery including the positive electrode active material and a secondary battery including the positive electrode. The gist of the present invention is the positive electrode active material, the positive electrode, and the secondary battery described in 1 to 7 below. Exist.

1.リチウムを挿入・放出することができるリチウム含有金属酸化物からなる二次電池の正極活物質であって、リチウム含有金属酸化物が一般式LiMnで示され、かつリチウム脱ドープ前の格子定数aが8.220Å≦a≦8.235Åの範囲にあり、下式(1)
[化4]
LiMn24⇔Li1-nMn24 +nLi+ +ne- …(1)
に示される可逆反応で、0≦n≦1の範囲で充放電させる際のリチウムの挿入・放出に伴う格子定数の変化率が1mAh/g当たり1.3×10-3Å以下であり、充電端(電位4.35V対極Li)における格子定数の値が8.07Å以上、放電端(電位3.2V対極Li)における格子定数の値が8.235Å以下であることよりなる正極活物質。
1. A positive electrode active material for a secondary battery comprising a lithium-containing metal oxide capable of inserting and releasing lithium, wherein the lithium-containing metal oxide is represented by the general formula LiMn 2 O 4 and is a lattice before lithium dedoping The constant a is in the range of 8.220Å ≦ a ≦ 8.235Å, and the following formula (1)
[Chemical formula 4]
LiMn 2 O 4 ⇔Li 1-n Mn 2 O 4 + nLi + + ne− (1)
In the reversible reaction shown in FIG. 1, the rate of change of the lattice constant accompanying lithium insertion / release during charging / discharging in the range of 0 ≦ n ≦ 1 is 1.3 × 10 −3 Å or less per 1 mAh / g, A positive electrode active material having a lattice constant value of 8.07 (or more at the end (potential 4.35V counter electrode Li) and a lattice constant value of 8.235Å or less at the discharge end (potential 3.2V counter electrode Li).

2.負極活物質としてリチウム、リチウムイオンを挿入・放出することができる化合物またはリチウム合金を用い、電解質にはLiClO 4 、LiAsF 6 、LiPF 6 、LiBF 4 、LiB(C 6 5 ) 4 、LiCl、LiBr、CH 3 SO 3 Li、CF 3 SO 3 Liからなる群から選ばれる少なくとも1種の化合物を有機溶媒に溶解した電解液を含む二次電池の正極活物質として用いられることよりなる上記1項記載の正極活物質。
3.リチウム含有金属酸化物の初期放電容量(Li対極時)が100mAh/g以上であることよりなる上記1項または2項に記載の正極活物質。
2. Lithium, a compound capable of inserting and releasing lithium ions or a lithium alloy is used as the negative electrode active material, and the electrolyte is LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr. The above 1 item, which is used as a positive electrode active material of a secondary battery including an electrolytic solution in which at least one compound selected from the group consisting of CH 3 SO 3 Li and CF 3 SO 3 Li is dissolved in an organic solvent. Positive electrode active material.
3. 3. The positive electrode active material according to item 1 or 2, wherein the lithium-containing metal oxide has an initial discharge capacity (at the time of Li counter electrode) of 100 mAh / g or more.

4.リチウム含有金属酸化物が、リチウム化合物と、MnCO 3 又はMnO 2 を熱処理して作製したMn 2 3 を出発原料として製造されることよりなる上記1項〜3項のいずれかに記載の正極活物質。
5.リチウム含有金属酸化物が、リチウム化合物と、MnCO 3 又はMnO 2 を熱処理して作製したMn 2 3 とを混合し、大気中で焼成し、その後徐冷することにより製造されることよりなる上記1項から4項のいずれかに記載の正極活物質。
6.上記1項〜5項のいずれかに記載の正極活物質をふくむ二次電池用正極。
7.上記6項に記載の二次電池用正極を含む二次電池。

4). 4. The positive electrode active material according to any one of 1 to 3 above, wherein the lithium-containing metal oxide is produced using a lithium compound and Mn 2 O 3 produced by heat treatment of MnCO 3 or MnO 2 as a starting material. material.
5. The lithium-containing metal oxide is manufactured by mixing a lithium compound and Mn 2 O 3 prepared by heat-treating MnCO 3 or MnO 2 , firing in the air, and then gradually cooling. 5. The positive electrode active material according to any one of items 1 to 4.
6). A positive electrode for a secondary battery including the positive electrode active material according to any one of items 1 to 5.
7). A secondary battery comprising the positive electrode for a secondary battery as described in 6 above.

本発明のリチウムマンガン酸化物からなる正極活物質を用いることにより、充放電容量が大きく、かつサイクル特性の改善された電池を得ることができる。その結果、安価な材料のリチウムマンガン酸化物が正極材料として使用可能であることにより、高性能で安全で安価なリチウム二次電池が広い用途に供給できるようになりその工業的価値は大である。   By using the positive electrode active material comprising the lithium manganese oxide of the present invention, a battery having a large charge / discharge capacity and improved cycle characteristics can be obtained. As a result, since lithium manganese oxide, which is an inexpensive material, can be used as a positive electrode material, a high-performance, safe and inexpensive lithium secondary battery can be supplied to a wide range of applications, and its industrial value is great. .

以下本発明をより詳細に説明する。
本発明の最大の特徴は、二次電池の正極活物質であるリチウム含有金属酸化物が、一般式LiMnで示される立方晶スピネル結晶のリチウム脱ドープ前の格子定数aが8.220Å≦a≦8.235Åの範囲にあり、
下式(1)
[化5]
LiMn24 ⇔Li1-nMn24+nLi+ +ne- …(1)
に示される可逆反応で、0≦n≦1の範囲で充放電させる際のリチウムの挿入・放出に伴う格子定数の変化率が1mAh/g当たり1.3×10-3Å以下であり、充電端(電位4.35V対極Li)における格子定数の値が8.07Å以上で、且つ放電端(電位3.2V対極Li)における格子定数の値が8.235Å以下であるリチウムマンガン酸化物であることである。ここで、一般式LiMn24とは、後述の記載から明らかなように、必ずしもリチウムとマンガンと酸素の比が厳密に1:2:4であることを意味しているわけではなく、多少のズレがあってもよい。このようなリチウム/マンガンの不定比化合物や酸素ノンストイキオメトリはよく知られている。立方晶スピネル結晶、具体的には下記空間群
Hereinafter, the present invention will be described in more detail.
The greatest feature of the present invention is that the lithium-containing metal oxide, which is the positive electrode active material of the secondary battery, has a lattice constant a before the lithium dedoping of the cubic spinel crystal represented by the general formula LiMn 2 O 4 is 8.2204. ≦ a ≦ 8.235mm,
The following formula (1)
[Chemical formula 5]
LiMn 2 O 4 ⇔Li 1-n Mn 2 O 4 + nLi + + ne− (1)
In the reversible reaction shown in FIG. 1, the rate of change of the lattice constant accompanying lithium insertion / release during charging / discharging in the range of 0 ≦ n ≦ 1 is 1.3 × 10 −3 Å or less per 1 mAh / g, This is a lithium manganese oxide having a lattice constant value of 8.07 に お け る or more at the end (potential 4.35V counter electrode Li) and a lattice constant value of 8.235Å or less at the discharge end (potential 3.2V counter electrode Li). That is. Here, the general formula LiMn 2 O 4 does not necessarily mean that the ratio of lithium, manganese, and oxygen is strictly 1: 2: 4, as will be apparent from the following description. There may be a gap. Such lithium / manganese nonstoichiometric compounds and oxygen non-stoichiometry are well known. Cubic spinel crystals, specifically the following space groups

Figure 0004884995
の構造を有するスピネル型のマンガン酸リチウムは、本発明で規定する一般式LiMn24の概念に含まれる。
Figure 0004884995
The spinel-type lithium manganate having the structure: is included in the concept of the general formula LiMn 2 O 4 defined in the present invention.

最初に格子定数に関する要件について説明する。酸素欠損性は、Mn3+のヤーン・テラーイオンを増大させるため初期容量の増加をもたらすものの結晶構造が歪んで格子定数が伸びる。その結果、充放電サイクル特性の低下を引き起こし、マンガンの平均価数が3.5以下(Mn3+の割合が半分以上)になると欠損量の増加に伴い定量的に低下していくことが判った。さらにマンガンの平均価数がほぼ同じもので比較した場合、酸素欠損に伴うサイクル特性の低下は格子定数が8.235Åを超えて伸びた酸化物では顕著であり、8.235Å以下に抑えられた酸化物ではわずかであった。従って、放電端(3.2V対極Li)における格子定数の値は8.235Å以下とした。より好ましいこの値としては、8.233Å以下、最も好ましくは8.231Å以下である。 First, the requirements regarding the lattice constant will be described. Oxygen deficiency increases the initial capacity by increasing the number of Mn 3+ yarn teller ions, but the crystal structure is distorted and the lattice constant is increased. As a result, the charge / discharge cycle characteristics are degraded, and when the average valence of manganese is 3.5 or less (the ratio of Mn 3+ is more than half), it is quantitatively reduced as the amount of defects increases. It was. Furthermore, when the average valences of manganese are almost the same, the deterioration of the cycle characteristics due to oxygen deficiency is remarkable in the oxide having a lattice constant exceeding 8.235%, and is suppressed to 8.235% or less. It was slight in the oxide. Therefore, the value of the lattice constant at the discharge end (3.2 V counter electrode Li) was set to 8.235 Å or less. More preferable value is 8.233 mm or less, and most preferable is 8.231 mm or less.

上記のように酸素欠損を少なくすることで、後述の比較例1と比較例2に示されるように、サイクル特性をかなり改善できるが、本発明はそれだけに満足することなく、さらに前述の知見(B)に基づき、充電端の格子定数をも限定している。すなわち構造変化は、スピネルLiMn24の大きな充電容量や安定した充放電の可逆性を実現する上で非常に重要な意味を持っていると考え実験してみると、サイクル特性の悪いものは充電端(電位4.35V対極リチウム)における格子定数の縮みが大きく、逆に良いものは格子定数の縮みが抑制されていることを見出した。こうした結果を踏まえ、充電端における格子定数の値は8.07Å以上とする。そしてより好ましくは8.075Å以上、最も好ましくは8.080Å以上である。 By reducing oxygen vacancies as described above, the cycle characteristics can be considerably improved as shown in Comparative Examples 1 and 2 to be described later. However, the present invention is not satisfied with this, and the aforementioned findings (B ) To limit the lattice constant of the charging end. In other words, structural changes have a very important meaning in realizing the large charge capacity of spinel LiMn 2 O 4 and the reversibility of stable charge / discharge. It was found that the shrinkage of the lattice constant was large at the charging end (potential 4.35V counter lithium), and conversely, the good one suppressed the shrinkage of the lattice constant. Based on these results, the value of the lattice constant at the charging end is set to 8.07 mm or more. More preferably, it is 8.075 mm or more, and most preferably 8.080 mm or more.

これにより電池の可逆反応の式におけるn=0.5以上の領域における不安定な構造変化を抑え、これに起因する充電端での過度な格子定数の縮みを減らすことができ、前述の放電端での規定と合わせ0≦n≦1の範囲におけるリチウムの挿入・放出に伴う結晶の膨張・収縮率が小さくなるので結晶崩壊が起こりにくくなる。こうした結果を踏まえると、リチウムの挿入・放出に伴う格子定数の変化率が1mAh/g当たり1.3×10-3Å以下であることが必要であり、より好ましくは1mAh/g当たり1.25×10-3Å以下、最も好ましくは1mAh/g当たり1.20×10-3Å以下である。 This suppresses an unstable structural change in the region of n = 0.5 or more in the reversible reaction formula of the battery, and can reduce excessive shrinkage of the lattice constant at the charging end resulting from this. The crystal expansion / contraction rate associated with the insertion / release of lithium in the range of 0 ≦ n ≦ 1 in combination with the definition in FIG. Based on these results, it is necessary that the rate of change of the lattice constant accompanying the insertion / release of lithium is 1.3 × 10 −3 Å or less per 1 mAh / g, more preferably 1.25 per 1 mAh / g. × 10 −3 Å or less, most preferably 1.20 × 10 −3当 た り or less per 1 mAh / g.

なお、本発明では正極活物質であるLiMn24のリチウム脱ドープ前の格子定数を、8.220Å≦a≦8.235Åと規定しているがこの範囲は電池系において正極活物質からリチウムが脱ドープされる前の初期の状態を示している。この範囲を逸脱すると所望の電池特性を得ることができない。ここで格子定数のさらに好ましい下限は8.225Å、上限は8.234Å、最も好ましい下限は8.228Å、上限は8.233Åである。
このような格子定数を有する一般式LiMn24で表されるリチウム含有金属酸化物(以下本発明のリチウムマンガン酸化物という)は、通常放電容量として、リチウムを対極として使用した場合、100mAh/g以上を得ることが出き、さらに好ましい値は110mAh/g以上、最も好ましい値は120mAh/g以上である。
In the present invention, the lattice constant of LiMn 2 O 4 which is a positive electrode active material before lithium dedoping is defined as 8.220Å ≦ a ≦ 8.235Å, but this range is from the positive electrode active material to the lithium in the battery system. Shows the initial state before undoping. If it deviates from this range, desired battery characteristics cannot be obtained. Here, the more preferable lower limit of the lattice constant is 8.225Å, the upper limit is 8.234Å, the most preferable lower limit is 8.228Å, and the upper limit is 8.233Å.
When a lithium-containing metal oxide represented by the general formula LiMn 2 O 4 having such a lattice constant (hereinafter referred to as lithium manganese oxide of the present invention) is used as a counter electrode, the discharge capacity is usually 100 mAh / g or more can be obtained, a more preferable value is 110 mAh / g or more, and a most preferable value is 120 mAh / g or more.

本発明のリチウムマンガン酸化物の製造方法を以下に説明する。出発原料に用いられるリチウム化合物としては、Li2CO3 、LiNO3、LiOH、LiOH・H2O、LiCl、CH3COOLi、Li2O、ジカルボン酸リチウム等が挙げられ、中でもLiOH・H2O、LiOHあるいはジカルボン酸リチウムを用いることが好ましい。
また、やはり出発原料として用いられるマンガン化合物としては、Mn23、MnO2等のマンガン酸化物、MnCO3、Mn(NO3)2、ジカルボン酸マンガン等のマンガン塩等が挙げられるが、中でもMn23、ジカルボン酸マンガンを用いることが好ましく、この場合のMn23 はMnCO3 やMnO2などの化合物を熱処理して作製したものを用いても構わない。
The manufacturing method of the lithium manganese oxide of this invention is demonstrated below. Examples of the lithium compound used as a starting material include Li 2 CO 3 , LiNO 3 , LiOH, LiOH · H 2 O, LiCl, CH 3 COOLi, Li 2 O, lithium dicarboxylate, and the like, among which LiOH · H 2 O LiOH or lithium dicarboxylate is preferably used.
In addition, examples of manganese compounds used as starting materials include manganese oxides such as Mn 2 O 3 and MnO 2 , manganese salts such as MnCO 3 , Mn (NO 3 ) 2 , and manganese dicarboxylate. Mn 2 O 3, it is preferable to use the dicarboxylic acid manganese, Mn 2 O 3 in this case may be used those prepared by heat-treating compound such as MnCO 3 and MnO 2.

次いで、本発明では前述のマンガン化合物とリチウム化合物を混合する。混合は通常の方法でよく、例えば両原料を乾式混合する方法、湿式混合する方法、リチウム塩水溶液中にマンガン化合物を懸濁させた後、該懸濁液を乾燥する方法、共沈させる方法、または、ボールミルで粉砕混合する方法など均一に混合できる方法であればよい。   Next, in the present invention, the aforementioned manganese compound and lithium compound are mixed. Mixing may be a normal method, for example, a method of dry mixing both raw materials, a method of wet mixing, a method of suspending a manganese compound in an aqueous lithium salt solution, and then a method of drying the suspension, a method of coprecipitation, Alternatively, any method capable of uniformly mixing such as a method of pulverizing and mixing with a ball mill may be used.

本発明のリチウムマンガン酸化物の具体的な製造方法の一例としては、γ−MnO2を750℃で24時間、大気中で加熱して得たMn23とLiOH・H2Oをリチウムとマンガンのモル比で1:2になるように混合した混合物を仮焼後、750℃、大気中で本焼し、450℃まで0.2℃/min.の速度で徐冷する方法や、リチウム塩とマンガン塩の非水溶液をジカルボン酸塩共沈法により共沈させた粉末を焼成する方法などを挙げることができる。この時のサンプルの冷却方法としては急冷すると酸素欠損が生じやすくなるので好ましくない。 As an example of a specific production method of the lithium manganese oxide of the present invention, γ-MnO 2 was heated at 750 ° C. for 24 hours in the air, and Mn 2 O 3 and LiOH · H 2 O were mixed with lithium. The mixture mixed at a molar ratio of manganese of 1: 2 was calcined and then calcined at 750 ° C. in the air, and the temperature was increased to 450 ° C. at 0.2 ° C./min. And a method in which a non-aqueous solution of a lithium salt and a manganese salt is coprecipitated by a dicarboxylate coprecipitation method, and a method of firing the powder. As a method for cooling the sample at this time, rapid quenching is not preferable because oxygen deficiency tends to occur.

二次電池において、以上のような本発明の一般式LiMn24で示され、リチウムの挿入・放出に伴う格子定数の変化率及び充電端と放電端の格子定数の範囲を規定したスピネル系リチウムマンガン酸化物よりなる正極活物質を含む正極と組み合わせて用いられる負極活物質としては、通常、この種の二次電池に用いられる材料がいずれも使用可能である。例えば、リチウムやリチウム合金も挙げられるが、より安全性の高いリチウムを挿入・放出できる炭素材料が好ましい。この炭素材料は特に限定されないが、黒鉛、及び石炭系コークス、石油系コークス、石炭系ピッチの炭化物、石油系ピッチの炭化物、ニードルコークス、ピッチコークス、フェノール樹脂、結晶セルロース等の炭化物等及びこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等が挙げられる。 In the secondary battery, the spinel system represented by the general formula LiMn 2 O 4 of the present invention as described above, which defines the rate of change of the lattice constant accompanying the insertion and release of lithium and the range of the lattice constant between the charge end and the discharge end As a negative electrode active material used in combination with a positive electrode including a positive electrode active material made of lithium manganese oxide, any material that is normally used for this type of secondary battery can be used. Examples include lithium and lithium alloys, but a carbon material capable of inserting and releasing lithium with higher safety is preferable. The carbon material is not particularly limited, but graphite, coal-based coke, petroleum-based coke, coal-based pitch carbide, petroleum-based pitch carbide, needle coke, pitch coke, phenolic resin, crystalline cellulose, etc. Examples thereof include partially graphitized carbon materials, furnace black, acetylene black, and pitch-based carbon fibers.

負極は、負極活物質と結着剤(バインダー)とを溶媒でスラリー化したものを塗布し乾燥したものを用いることができる。同様に正極は、正極活物質と結着剤(バインダー)と導電剤とを溶媒でスラリー化したものを塗布し乾燥したものを用いることができる。負極、正極活物質の結着剤(バインダー)としては、例えばポリフッ化ビニリデン、ポリテトラフルオロエチレン、EPDM(エチレン−プロピレン−ジエン三元共重合体)、SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム等が挙げられるが、これらに限定されない。   As the negative electrode, a negative electrode active material and a binder (binder) slurryed with a solvent can be applied and dried. Similarly, the positive electrode can be obtained by applying a slurry of a positive electrode active material, a binder (binder), and a conductive agent with a solvent and drying it. Examples of the binder (binder) for the negative electrode and the positive electrode active material include polyvinylidene fluoride, polytetrafluoroethylene, EPDM (ethylene-propylene-diene terpolymer), SBR (styrene-butadiene rubber), and NBR (acrylonitrile). -Butadiene rubber), fluorine rubber and the like, but are not limited thereto.

正極の導電剤としては、黒鉛の微粒子、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素の微粒子等が好ましく使用されるが、これらに限定されない。セパレーターとしては、微多孔性の高分子フィルムが用いられ、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリブテン等のポリオレフィン高分子よりなるものが用いられる。セパレーターの化学的及び電気化学的安定性は重要な因子である。この点からポリオレフィン系高分子が好ましく、電池セパレーターの目的の一つである自己閉塞温度の点からポリエチレン製であることが望ましい。   As the conductive agent for the positive electrode, graphite fine particles, carbon black such as acetylene black, and amorphous carbon fine particles such as needle coke are preferably used, but are not limited thereto. As the separator, a microporous polymer film is used, and one made of a polyolefin polymer such as nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, polypropylene, polyethylene, polybutene, or the like is used. The chemical and electrochemical stability of the separator is an important factor. In this respect, a polyolefin-based polymer is preferable, and it is desirable that the polymer is made of polyethylene in view of the self-occluding temperature which is one of the purposes of the battery separator.

ポリエチレンセパレーターの場合、高温形状維持性の点から超高分子量ポリエチレンであることが好ましく、その分子量の下限は好ましくは50万、さらに好ましくは100万、最も好ましくは150万である。他方分子量の上限は、好ましくは500万、更に好ましくは400万、最も好ましくは300万である。分子量が大きすぎると、流動性が低すぎて加熱された時セパレーターの孔が閉塞しない場合があるからである。   In the case of a polyethylene separator, ultrahigh molecular weight polyethylene is preferable from the viewpoint of high temperature shape maintenance, and the lower limit of the molecular weight is preferably 500,000, more preferably 1,000,000, and most preferably 1.5 million. On the other hand, the upper limit of the molecular weight is preferably 5 million, more preferably 4 million, and most preferably 3 million. This is because if the molecular weight is too large, the pores of the separator may not close when heated because the fluidity is too low.

また、電解質としては、リチウムを含むものが用いられ、例えばLiClO4、LiAsF6、LiPF6、LiBF4、LiB(C65)4 、LiCl、LiBr、CH3SO3Li、CF3SO3Li等を有機溶媒に溶解した電解液が用いられる。有機溶媒としては、特に限定されるものではないが、例えばカーボネート類、エーテル類、ケトン類、スルホラン系化合物、ラクトン類、ニトリル類、塩素化炭化水素類、エーテル類、アミン類、エステル類、アミド類、リン酸エステル化合物等を使用することができる。これらの代表的なものを列挙すると、プロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、4−メチル−2−ペンタノン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、ベンゾニトリル、ブチルニトリル、バレロニトリル、1,2−ジクロロエタン、ジメチルホルムアミド、ジメチルスルホキシド、リン酸トリメチル、リン酸トリエチル等の単独もしくは二種類以上の混合溶媒が使用できる。
また、このような非水電解液に限らず、固体電解質を用いるようにしてもよい。
As the electrolyte, an electrolyte containing lithium is used. For example, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 An electrolytic solution in which Li or the like is dissolved in an organic solvent is used. The organic solvent is not particularly limited. For example, carbonates, ethers, ketones, sulfolane compounds, lactones, nitriles, chlorinated hydrocarbons, ethers, amines, esters, amides. And phosphoric acid ester compounds can be used. Typical examples of these are listed: propylene carbonate, ethylene carbonate, vinylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 4-methyl-2-pentanone, 1,2-dimethoxyethane, 1,2 -Diethoxyethane, γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile, benzonitrile, butylnitrile, valeronitrile, 1, Single or two or more kinds of mixed solvents such as 2-dichloroethane, dimethylformamide, dimethyl sulfoxide, trimethyl phosphate and triethyl phosphate can be used.
Moreover, you may make it use not only such a non-aqueous electrolyte but a solid electrolyte.

以下実施例によって本発明の方法をさらに具体的に説明するが、本発明はこれらにより何ら制限されるものではない。
なお、本実施例において、初期放電容量並びに容量維持率を評価するに当たり、負極として金属リチウムを用いており、初期放電容量は正極活物質1g当たりに換算している。
The method of the present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples.
In this example, when evaluating the initial discharge capacity and the capacity retention rate, metallic lithium is used as the negative electrode, and the initial discharge capacity is converted per 1 g of the positive electrode active material.

(実施例1)
γ−MnO2を750℃で24時間、大気中で加熱して得たMn23とLiOH・H2Oとを出発原料とし、リチウムとマンガンの原子比が1:2となるように配合した。この配合物にエタノールを加え、乳鉢中でよくすりつぶし、均一な混合物とした。得られた混合物を大気中で500℃、24時間仮焼した。次に大気中で750℃、24時間本焼した後、450℃まで0.2℃/min.の速度で徐冷し、LiMn24を得た。
Example 1
gamma-MnO 24 hours 2 at 750 ° C., and Mn 2 O 3 and LiOH · H 2 O was obtained by heating in air was used as a starting material, the atomic ratio of lithium and manganese 1: blended so 2 did. Ethanol was added to this blend and ground well in a mortar to make a uniform mixture. The obtained mixture was calcined in the atmosphere at 500 ° C. for 24 hours. Next, after baking at 750 ° C. for 24 hours in the air, 0.2 ° C./min. Was slowly cooled to obtain LiMn 2 O 4 .

(比較例1)
LiOH・H2Oとγ−MnO2をLi/Mn=1/2の割合で自動乳鉢により8時間混合した後、混合物を酸素中で750℃、24時間加熱した後、450℃まで0.5℃/min.の速度で徐冷しLiMn24を得た。
(比較例2)
比較例1で得たサンプルを再び窒素中で550℃、24時間加熱した後、炉内より試料を引き出すことにより急冷し、酸素欠損大としたLiMn24を得た。
(Comparative Example 1)
After mixing LiOH.H 2 O and γ-MnO 2 at a ratio of Li / Mn = 1/2 by an automatic mortar for 8 hours, the mixture was heated in oxygen at 750 ° C. for 24 hours, and then 0.5 to 450 ° C. ° C / min. Was slowly cooled to obtain LiMn 2 O 4 .
(Comparative Example 2)
The sample obtained in Comparative Example 1 was again heated in nitrogen at 550 ° C. for 24 hours, and then rapidly cooled by withdrawing the sample from the furnace to obtain LiMn 2 O 4 having a large oxygen deficiency.

(比較例3)
Li2CO3とMn23をLi/Mn=1/2の割合で乳鉢を用いて湿式混合した後、混合物を大気中で650℃、24時間仮焼した。次に大気中で750℃、24時間本焼した後、加熱炉の電源を切り、炉冷しLiMn24を得た。その際の450℃までの冷却速度は10℃/min.であった。
(Comparative Example 3)
Li 2 CO 3 and Mn 2 O 3 were wet mixed using a mortar at a ratio of Li / Mn = 1/2, and the mixture was calcined at 650 ° C. for 24 hours in the air. Next, after baking at 750 ° C. for 24 hours in the air, the heating furnace was turned off and cooled in the furnace to obtain LiMn 2 O 4 . In this case, the cooling rate to 450 ° C. is 10 ° C./min. Met.

以上の実施例及び比較例で合成したサンプルは粉末X線回折の精密測定により全て立方晶の単一相であることを確認した後、結晶(立方晶系)の格子定数aを次式
[化6]
a=d・(h2+k2+l21/2
(h、k、lは面指数、dは面指数(hkl)の面間隔)
を用いて、(hkl)=(311)、(222)、(400)、(331)、(511)、(440)、(531)の7個の面指数について算出し、これらの平均値をもって格子定数aとした。
After confirming that the samples synthesized in the above examples and comparative examples were all cubic single-phase by precise measurement of powder X-ray diffraction, the lattice constant a of the crystal (cubic system) was expressed by the following formula: 6]
a = d · (h 2 + k 2 + l 2 ) 1/2
(H, k, l are face indices, d is the face spacing of face indices (hkl))
Is used to calculate the seven face indices of (hkl) = (311), (222), (400), (331), (511), (440), (531), The lattice constant is a.

続いて電池の製造法及び充放電条件について図2により以下に説明する。
実施例1及び比較例1〜3で合成した各正極活物質と導電剤としてのアセチレンブラック及び結着剤としてのポリ四フッ化エチレン樹脂を重量比で75:20:5の割合で混合して正極合剤とした。また、正極合剤0.1gを直径16mmに1ton/cm2でプレス成型して正極1とした。正極1の上にセパレーター3として多孔性ポリプロピレンフィルムを置いた。負極4として直径16mm、厚さ0.4mmのリチウム板を、ポロプロピレン製ガスケット5を付けた封口管6に圧着した。非水電解液として1モル/1の過塩素酸リチウムを溶解したエチレンカーボネートと1,2−ジメトキシエタンとの溶液(50vol%:50vol%)を用い、これをセパレーター3上及び負極4上に加えた。その後、電池を封口した。
Next, a battery manufacturing method and charge / discharge conditions will be described with reference to FIG.
Each positive electrode active material synthesized in Example 1 and Comparative Examples 1 to 3, acetylene black as a conductive agent, and polytetrafluoroethylene resin as a binder were mixed in a weight ratio of 75: 20: 5. A positive electrode mixture was obtained. Further, 0.1 g of the positive electrode mixture was press-molded at a diameter of 16 mm at 1 ton / cm 2 to obtain a positive electrode 1. A porous polypropylene film was placed on the positive electrode 1 as the separator 3. A lithium plate having a diameter of 16 mm and a thickness of 0.4 mm as the negative electrode 4 was pressure-bonded to a sealing tube 6 provided with a polypropylene 5 gasket. A solution (50 vol%: 50 vol%) of ethylene carbonate and 1,2-dimethoxyethane in which 1 mol / 1 lithium perchlorate is dissolved is used as a non-aqueous electrolyte, and this is added to the separator 3 and the negative electrode 4. It was. Thereafter, the battery was sealed.

上記の如く製造したこれら各電池の充放電サイクル特性の比較を行った。なお、本実施例及び比較例における充放電サイクル試験は、充放電電流2mA、電圧範囲が4.35Vから3.2Vの間で定電流充放電することで行った。充電端と放電端の格子定数(1サイクル目)を求めるため、充電時は上限電位4.35V到達後、放電時は下限電位3.2V到達後に1時間休止状態とし、短絡せぬよう注意深くコインセルを解体した後、正極ペレットを取り出し、X線回折測定を行った。この結果を表1に示す。   The charge / discharge cycle characteristics of these batteries manufactured as described above were compared. In addition, the charging / discharging cycle test in a present Example and a comparative example was done by charging / discharging with constant current between 235 mA of charging / discharging electric current and a voltage range between 4.35V and 3.2V. To determine the lattice constant (first cycle) at the charge and discharge ends, after charging the upper limit potential of 4.35V during charging, and during discharging, after resting for 1 hour after reaching the lower limit potential of 3.2V, pay careful attention to avoid short circuits. After disassembling, the positive electrode pellet was taken out and X-ray diffraction measurement was performed. The results are shown in Table 1.

本発明にかなう実施例では、初期放電容量が大きく(初期放電容量≧100mAh/g)、加えてサイクル特性に優れている(100cycle後の容量維持率≧95%、500cycle後の容量維持率≧80%)ことが判る。実施例1及び比較例1〜3における格子定数変化率(Å/mAh・g-1)とサイクル特性(100サイクル後の容量維持率%)との関係を図1に示す。
本実施例では電池の負極材料として金属リチウムを用いているが、リチウム合金またはリチウムを挿入・放出することができる化合物を用いた場合にも同様の結果を得ることができる。
In the embodiment according to the present invention, the initial discharge capacity is large (initial discharge capacity ≧ 100 mAh / g), and in addition, the cycle characteristics are excellent (capacity maintenance ratio after 100 cycles ≧ 95%, capacity maintenance ratio after 500 cycles ≧ 80). %). FIG. 1 shows the relationship between the lattice constant change rate (h / mAh · g −1 ) and cycle characteristics (capacity retention rate after 100 cycles%) in Example 1 and Comparative Examples 1 to 3.
In this embodiment, metallic lithium is used as the negative electrode material of the battery, but the same result can be obtained when a lithium alloy or a compound capable of inserting and releasing lithium is used.

Figure 0004884995
Figure 0004884995

図1は、LiMnのリチウム挿入・放出に伴う格子定数変化率とサイクル特性の相関図である。FIG. 1 is a correlation diagram between the lattice constant change rate and the cycle characteristics associated with lithium insertion / release of LiMn 2 O 4 . 図2は、本発明の実施例の二次電池用正極活物質の試験に用いたコイン型電池の縦断面の説明図である。FIG. 2 is an explanatory view of a longitudinal section of a coin-type battery used for testing a positive electrode active material for a secondary battery according to an example of the present invention.

符号の説明Explanation of symbols

1 正極
2 ケース
3 セパレーター
4 負極
5 ガスケット
6 封口缶
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Case 3 Separator 4 Negative electrode 5 Gasket 6 Sealing can

Claims (7)

リチウムを挿入・放出することができるリチウム含有金属酸化物からなる二次電池の正極活物質であって、リチウム含有金属酸化物が一般式LiMn24で示され、かつリチウム脱ドープ前の格子定数aが8.220Å≦a≦8.235Åの範囲にあり、下式(1)
[化1]
LiMn24⇔Li1-nMn24 +nLi+ +ne- …(1)
に示される可逆反応で、0≦n≦1の範囲で充放電させる際のリチウムの挿入・放出に伴う格子定数の変化率が1mAh/g当たり1.3×10-3Å以下であり、充電端(電位4.35V対極Li)における格子定数の値が8.07Å以上、放電端(電位3.2V対極Li)における格子定数の値が8.235Å以下であることを特徴とする正極活物質。
A positive electrode active material for a secondary battery comprising a lithium-containing metal oxide capable of inserting and releasing lithium, wherein the lithium-containing metal oxide is represented by the general formula LiMn 2 O 4 and is a lattice before lithium dedoping The constant a is in the range of 8.220Å ≦ a ≦ 8.235Å, and the following formula (1)
[Chemical 1]
LiMn 2 O 4 ⇔Li 1-n Mn 2 O 4 + nLi + + ne− (1)
In the reversible reaction shown in FIG. 1, the rate of change of the lattice constant accompanying lithium insertion / release during charging / discharging in the range of 0 ≦ n ≦ 1 is 1.3 × 10 −3 Å or less per 1 mAh / g, A positive electrode active material characterized in that the value of the lattice constant at the end (potential 4.35V counter electrode Li) is 8.07Å or more and the value of the lattice constant at the discharge end (potential 3.2V counter electrode Li) is 8.235Å or less. .
負極活物質としてリチウム、リチウムイオンを挿入・放出することができる化合物またはリチウム合金を用い、電解質にはLiClO 4 、LiAsF 6 、LiPF 6 、LiBF 4 、LiB(C 6 5 ) 4 、LiCl、LiBr、CH 3 SO 3 Li、CF 3 SO 3 Liからなる群から選ばれる少なくとも1種の化合物を有機溶媒に溶解した電解液を含む二次電池の正極活物質として用いられることを特徴とする請求項1記載の正極活物質。 Lithium, a compound capable of inserting and releasing lithium ions or a lithium alloy is used as the negative electrode active material, and the electrolyte is LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr. And a positive electrode active material of a secondary battery including an electrolytic solution in which at least one compound selected from the group consisting of CH 3 SO 3 Li and CF 3 SO 3 Li is dissolved in an organic solvent. The positive electrode active material according to 1. リチウム含有金属酸化物の初期放電容量(Li対極時)が100mAh/g以上であることを特徴とする請求項1または2に記載の正極活物質。   The positive electrode active material according to claim 1 or 2, wherein an initial discharge capacity (at the time of Li counter electrode) of the lithium-containing metal oxide is 100 mAh / g or more. リチウム含有金属酸化物が、リチウム化合物と、MnCO 3 又はMnO 2 を熱処理して作製したMn 2 3 を出発原料として製造されることを特徴とする請求項1から3のいずれかに記載の正極活物質。 The positive electrode according to any one of claims 1 to 3, wherein the lithium-containing metal oxide is produced using Mn 2 O 3 produced by heat treatment of a lithium compound and MnCO 3 or MnO 2 as a starting material. Active material. リチウム含有金属酸化物が、リチウム化合物と、MnCO 3 又はMnO 2 を熱処理して作製したMn 2 3 とを混合し、大気中で焼成し、その後徐冷することにより製造されることを特徴とする請求項1から4のいずれかに記載の正極活物質 The lithium-containing metal oxide is produced by mixing a lithium compound and Mn 2 O 3 prepared by heat-treating MnCO 3 or MnO 2 , firing in the air, and then gradually cooling. The positive electrode active material according to any one of claims 1 to 4 請求項1から5のいずれかに記載の正極活物質をふくむ二次電池用正極。   A positive electrode for a secondary battery including the positive electrode active material according to claim 1. 請求項6記載の正極を含む二次電池。   A secondary battery comprising the positive electrode according to claim 6.
JP2007027471A 1997-05-26 2007-02-07 Positive electrode active material, positive electrode and secondary battery Expired - Fee Related JP4884995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007027471A JP4884995B2 (en) 1997-05-26 2007-02-07 Positive electrode active material, positive electrode and secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1997134751 1997-05-26
JP13475197 1997-05-26
JP2007027471A JP4884995B2 (en) 1997-05-26 2007-02-07 Positive electrode active material, positive electrode and secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10142531A Division JPH1145714A (en) 1997-05-26 1998-05-25 Secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011152857A Division JP2011204695A (en) 1997-05-26 2011-07-11 Positive electrode active material, positive electrode, and secondary battery

Publications (2)

Publication Number Publication Date
JP2007149702A JP2007149702A (en) 2007-06-14
JP4884995B2 true JP4884995B2 (en) 2012-02-29

Family

ID=38210796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007027471A Expired - Fee Related JP4884995B2 (en) 1997-05-26 2007-02-07 Positive electrode active material, positive electrode and secondary battery

Country Status (1)

Country Link
JP (1) JP4884995B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111785958A (en) * 2010-06-29 2020-10-16 尤米科尔公司 High density and high voltage stable cathode material for secondary battery
CN111769265B (en) * 2020-06-23 2022-07-05 合肥国轩高科动力能源有限公司 Preparation method of modified high-nickel ternary cathode material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145714A (en) * 1997-05-26 1999-02-16 Mitsubishi Chem Corp Secondary battery

Also Published As

Publication number Publication date
JP2007149702A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
KR101858763B1 (en) Positive electrode material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery
US7608365B1 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
KR100916088B1 (en) Nonaqueous Electrolytic Secondary Battery and Method of Manufacturing the Same
JP2002100363A (en) Battery and lithium secondary battery
JP4834901B2 (en) Positive electrode material for lithium secondary battery
JP2003017060A (en) Positive electrode active material and non-aqueous electrolyte battery
JPH08315817A (en) Manufacture of carbon negative electrode material and nonaqueous electrolyte secondary battery
JP2011204695A (en) Positive electrode active material, positive electrode, and secondary battery
JPH11233140A (en) Nonaqueous electrolyte secondary battery
JP4682388B2 (en) Positive electrode material for lithium secondary battery, and positive electrode and lithium secondary battery using the same
JP2001243954A (en) Positive electrode material for lithium secondary battery
JP3887983B2 (en) Positive electrode material for lithium secondary battery and lithium secondary battery
JPH0935712A (en) Positive electrode active material, its manufacture and nonaqueous electrolyte secondary battery using it
JP4884995B2 (en) Positive electrode active material, positive electrode and secondary battery
JP2001283845A (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
KR101065377B1 (en) Negative active material for lithium ion battery and lithium ion battery comprising the same
JP3578902B2 (en) Lithium secondary battery
KR100312689B1 (en) Positive active material composition for lithium secondary battery and lithium secondary battery comprising the same
JPH1145714A (en) Secondary battery
JP3736169B2 (en) Positive electrode material for lithium secondary battery and lithium secondary battery
JP2002348121A (en) Method for manufacturing lithium nickel compound oxide
KR102623096B1 (en) Lithium secondary battery
JP4882154B2 (en) Method for producing lithium transition metal composite oxide
JP3495639B2 (en) Lithium-manganese composite oxide, method for producing the same, and lithium secondary battery using the composite oxide
JP4882135B2 (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees