JPH11170167A - Polishing method and polishing device of optical element - Google Patents

Polishing method and polishing device of optical element

Info

Publication number
JPH11170167A
JPH11170167A JP34560997A JP34560997A JPH11170167A JP H11170167 A JPH11170167 A JP H11170167A JP 34560997 A JP34560997 A JP 34560997A JP 34560997 A JP34560997 A JP 34560997A JP H11170167 A JPH11170167 A JP H11170167A
Authority
JP
Japan
Prior art keywords
polishing
polisher
workpiece
rotation
polished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34560997A
Other languages
Japanese (ja)
Inventor
Mitsuo Tsushima
光雄 対馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP34560997A priority Critical patent/JPH11170167A/en
Publication of JPH11170167A publication Critical patent/JPH11170167A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a highly precise surface form free from twisted surface form in a short time by alternately repeating normal rotation and reverse rotation of a polisher in polishing work. SOLUTION: A workpiece 3 is rotated C following the rotation of a polisher 2 together with an abrasive ring 6 supported by a roller 8. At this time, since a slight clearance is provided between the outer diameter of an abrasive frame 4 and the inner diameter of the abrasive ring 6, the workpiece 3 and the abrasive frame 4 can be following rotated C by properly regulating the rotating period of the abrasive ring 6. The oscillation B of the workpiece 3 is performed so that the workpiece 3 is never protruded from the polisher 2. After a prescribed time, the rotating direction of the polisher 2 is reversed from A to A' Accordingly, the following rotating direction of the workpiece 3 is also reversed from C to C'. The reversion of rotating direction of the polisher is repeated to provide a highly precise polished surface of a prescribed surface form free from twisting.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【本発明の属する技術分野】本発明は高精度な面形状が
要求される棒形の大型光学素子の研磨方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for polishing a large rod-shaped optical element which requires a highly accurate surface shape.

【0002】[0002]

【従来の技術】棒形の光学素子としては、半導体露光装
置のレチクル・ウェハステージの位置制御に必要なレー
ザー測長干渉計用ミラー、光学素子の面形状や波面収差
測定用干渉計の基準原器、或いは軟X線光学系に用いら
れるミラー等が挙げられる。ミラー部材としては光学ガ
ラス、セラミックス等が知られている。これら棒形光学
素子の代表的な研磨方法としては、ポリシャ(被加工面
に圧接する弾性部材)上に配した被加工物を研磨枠等の
治工具で保持し、研磨液をポリシャと被加工物間に介在
させ、ポリシャと被加工物に相対移動を与えながらポリ
シャ面形状を被加工物面に写し込む、面転写加工方式が
一般的である。また加工装置として、ピッチからなるポ
リシャを用いた研磨盤、或いは研磨布、合成樹脂等から
成るポリシャを用いたラップ盤等が通常使用される。以
下に図4を用いて、従来の研磨法について説明する。図
4は被加工物3をポリシャ2と研磨液(砥粒を純水中に
分散されたもので、研磨液ノズル9より供給される)と
により研磨する状態を示した側面図である。装置の主要
構成要素としては、ポリシャ2が上面に施されている円
板状の回転テーブル1、被加工物3を保持する研磨枠
4、被加工物3及び研磨枠4を保持する研磨リング6、
研磨リング6を支えるステーション7及び、ローラー
8、さらに研磨液を噴射する研磨液ノズル9、被加工物
に揺動を与えるクランク10及び揺動アーム11であ
る。被加工物3の研磨加工手順としては、ステーション
7内に研磨リング6、研磨枠4、被加工物3、荷重5を
配置してポリシャ上に乗せる。そして被加工物3、研磨
枠4、研磨リング6とポリシャ2との間に、研磨液ノズ
ル9から研磨液を噴射し、ポリシャ2を回転Aさせ、被
加工物に揺動Bを与える事である。この過程で被加工物
3は研磨リング6と共にローラー8で支持されながらポ
リシャ2の回転に連れ回りCをし、加工が進行する。
2. Description of the Related Art As a rod-shaped optical element, a mirror for a laser length measuring interferometer required for controlling the position of a reticle / wafer stage of a semiconductor exposure apparatus, a reference element of an interferometer for measuring the surface shape of an optical element and a wavefront aberration. Or a mirror used in a soft X-ray optical system. Optical glass, ceramics, and the like are known as mirror members. As a typical polishing method for these rod-shaped optical elements, a workpiece disposed on a polisher (an elastic member pressed against a surface to be processed) is held by a jig such as a polishing frame, and a polishing liquid is processed with the polisher. A surface transfer processing method is generally used in which the polisher and the workpiece are interposed between the workpieces and the shape of the polisher surface is transferred to the workpiece surface while giving relative movement between the polisher and the workpiece. As a processing device, a polishing machine using a polisher made of a pitch, a lapping machine using a polisher made of a polishing cloth, a synthetic resin or the like is usually used. Hereinafter, a conventional polishing method will be described with reference to FIG. FIG. 4 is a side view showing a state in which the workpiece 3 is polished by the polisher 2 and a polishing liquid (abrasive grains are dispersed in pure water and supplied from a polishing liquid nozzle 9). The main components of the apparatus include a disk-shaped rotary table 1 having a polisher 2 on its upper surface, a polishing frame 4 for holding the workpiece 3, a polishing ring 6 for holding the workpiece 3 and the polishing frame 4. ,
A station 7 for supporting the polishing ring 6, a roller 8, a polishing liquid nozzle 9 for spraying a polishing liquid, a crank 10 for rocking a workpiece, and a rocking arm 11. As a polishing procedure of the workpiece 3, the polishing ring 6, the polishing frame 4, the workpiece 3, and the load 5 are arranged in the station 7 and placed on a polisher. Then, a polishing liquid is sprayed from the polishing liquid nozzle 9 between the workpiece 3, the polishing frame 4, the polishing ring 6 and the polisher 2, and the polisher 2 is rotated A to give a swing B to the workpiece. is there. In this process, the workpiece 3 rotates C with the rotation of the polisher 2 while being supported by the rollers 8 together with the polishing ring 6, and the processing proceeds.

【0003】[0003]

【発明が解決しようとする課題】上記被加工物が大型の
棒形光学素子(研磨面が細長い長方形)の場合、この様
な研磨方法においては、回転テーブルの回転により被加
工物が連れ回りすると、ポリシャとの摩擦に起因する力
のモ−メントが被加工物に作用し、これが加工形状に対
して悪影響をもたらすという問題がある。即ち、連れ回
りする被加工物にはポリシャとの摩擦により常に回転方
向に力のモーメントが作用し、被加工物の側面は研磨枠
の対角側面の端部に強く接触する形となり、接触する被
加工物はその所でせり上がりを生ずる。このため研磨中
にポリシャ面上で被加工物面は均一な押圧力分布を得る
ことができず、絶えず対角線方向での磨耗が強まる形で
加工が進むため、被加工面はネジレ面形状を生ずる場合
が多くなる。被加工面のネジレ面形状の程度は被加工物
の剛性の大きさによっても左右され、被加工物の材質の
種類、形状(長さ対する断面積きさ)により、その発生
の度合いが異なる。この様な研磨におけるネジレ面形状
の防止処置として、研磨枠内に被加工物を配置する際に
被加工物と研磨枠との間隔を少なくして被加工物の枠内
可動範囲、いわゆる遊びを小さくしたり、被加工物の側
面と研磨枠内面との接触部を出来るだけ被加工面側に低
くし、研磨時の被加工物の姿勢を安定性させる事が行わ
れている。また、研磨中の外力を吸収させるため接触部
には緩衝材を接着し研磨時の影響を小さくする等の工夫
をしている。さらに、ポリシャ回転数を1rpm、被加
工物揺動数を1500mm/min以下の低速度に設定
した研磨が従来から行われてきた。即ち、被加工物にネ
ジレ面が生じさせないで、目的の面精度を仕上げるため
に、ポリシャ、被加工物の相対移動速度を低速度に設定
した加工がされてきた。そのため、加工開始前のセッテ
ィングに時間を要し、研磨自体にも長時間を要している
のが現状である。しかも、前記対策を施してもネジレの
程度は軽減されるものの、所定の値以下にする事は困難
であるという問題点が有った。本発明は、従来技術の問
題点に鑑みてなされたもので、大型の棒形光学部品の加
工装置、及び加工方法において、ネジレの無い、高精度
な面を短時間に仕上げる加工装置、加工方法を提供する
ことを目的とする。
In the case where the workpiece is a large bar-shaped optical element (having an elongated rectangular polishing surface), in such a polishing method, when the workpiece rotates along with the rotation of the rotary table, the rotation of the rotary table causes the workpiece to rotate. However, there is a problem that the moment of the force resulting from friction with the polisher acts on the workpiece, which adversely affects the processed shape. That is, a moment of force always acts in the rotational direction on the co-rotating workpiece due to friction with the polisher, and the side face of the workpiece comes into strong contact with the end of the diagonal side face of the polishing frame, and makes contact. The workpiece rises there. For this reason, the surface of the workpiece cannot obtain a uniform pressing force distribution on the polisher surface during polishing, and the processing proceeds in a form in which the wear in the diagonal direction is constantly increased, so that the processed surface has a twisted surface shape. More cases. The degree of the torsion surface shape of the work surface is also affected by the rigidity of the work object, and the degree of occurrence varies depending on the type and shape of the work material (cross-sectional area with respect to length). As a measure for preventing the twisted surface shape in such polishing, when the workpiece is placed in the polishing frame, the distance between the workpiece and the polishing frame is reduced to reduce the movable range in the frame of the workpiece, so-called play. Attempts have been made to reduce the size of the workpiece or to lower the contact portion between the side surface of the workpiece and the inner surface of the polishing frame as much as possible toward the workpiece surface, thereby stabilizing the posture of the workpiece during polishing. In order to absorb the external force during polishing, a cushioning material is adhered to the contact portion to reduce the influence during polishing. Further, polishing with a polisher rotation speed of 1 rpm and a swinging speed of a workpiece set at a low speed of 1500 mm / min or less has been conventionally performed. That is, in order to finish the target surface accuracy without causing a twisted surface on the workpiece, processing has been performed in which the relative movement speed of the polisher and the workpiece is set to a low speed. Therefore, at present, it takes a long time for setting before the start of processing and a long time for polishing itself. In addition, even if the above measures are taken, the degree of twisting is reduced, but there is a problem that it is difficult to reduce the value to a predetermined value or less. The present invention has been made in view of the problems of the prior art, and in a processing apparatus and a processing method for a large rod-shaped optical component, a processing apparatus and a processing method for finishing a highly accurate surface without twisting in a short time. The purpose is to provide.

【0004】[0004]

【課題を解決するための手段】本発明においては、第1
の手段として、ポリシャを回転させる回転テーブル、該
ポリシャ上に被加工物を回転自在に圧接保持する保持部
材、該保持部材に揺動運動を与える揺動部材、研磨液供
給部材を有する研磨装置において、該ポリシャの回転が
研磨加工時に正転、逆転を交互に繰り返す装置を用い
た。第2の手段として、第1の装置において、特に、ポ
リシャの回転数が3〜5rpm、被加工物の揺動数が2
500mm/min〜3500mm/minであり、2
〜8時間おきに回転テ−ブルが正回転、逆回転を繰り返
し行う装置とした。第3の手段として、回転テーブル上
にポリシャを配し、該ポリシャに研磨液を介して被研磨
物を回転自在に圧接し、該回転ポリシャを回転させ、被
研磨物を揺動運動させて該被研磨物を研磨する研磨方法
において、さらに該ポリシャの回転方向を研磨加工時に
正転、逆転と交互に繰り返すこととした。第4の手段と
して、第3の手段において特に有効に作用するように、
ポリシャの回転数が3〜5rpm、被加工物の揺動数が
2500mm/min〜3500mm/minであり、
2〜8時間おきに回転テ−ブルが正回転、逆回転を繰り
返し行うこととした。
According to the present invention, there is provided the following:
A rotating table for rotating a polisher, a holding member for rotatably pressing and holding a workpiece on the polisher, a swinging member for giving a swinging motion to the holding member, and a polishing apparatus having a polishing liquid supply member. An apparatus in which the rotation of the polisher alternately repeats normal rotation and reverse rotation during polishing is used. As a second means, in the first apparatus, in particular, the rotation speed of the polisher is 3 to 5 rpm, and the oscillation speed of the workpiece is 2
500 mm / min to 3500 mm / min, and 2
An apparatus in which the rotating table repeatedly rotates forward and backward every 8 hours. As a third means, a polisher is arranged on a rotary table, the object to be polished is rotatably pressed to the polisher via a polishing liquid, the rotary polisher is rotated, and the object to be polished is oscillated. In the polishing method for polishing an object to be polished, the direction of rotation of the polisher is alternately repeated between normal rotation and reverse rotation during polishing. As a fourth means, to work particularly effectively in the third means,
The number of rotations of the polisher is 3 to 5 rpm, and the number of swings of the workpiece is 2500 mm / min to 3500 mm / min,
The rotation table is repeatedly rotated forward and backward every 2 to 8 hours.

【0005】[0005]

【発明の実施の形態】本発明は基本的には、単に被加工
物の保持方法の改善を行っただけでは被加工物とポリシ
ャの圧接の一様性は得られず、従ってどうしてもネジレ
面が発生してしまうこと、しかし、ポリシャの回転を逆
転させる事により完全にネジレが補正され、高精度な面
を高能率的に加工出来る事を見いだした事に基づいてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention basically does not provide uniformity of pressure contact between a workpiece and a polisher simply by improving the method of holding the workpiece, and therefore, the twisted surface is inevitably formed. It is based on the fact that twisting is completely corrected by reversing the rotation of the polisher, and that highly accurate surfaces can be machined efficiently.

【0006】[0006]

【実施例】以下、本発明による研磨法の実施例について
説明する。図1、及び図2は加工状態を示した平面図並
びに側面図である。窒化珪素セラミックスを素材とする
被加工物3を硬質ポリシャ2と砥粒を純水中に分散させ
た研磨液を用いて、オスカー式研磨装置により研磨す
る。オスカー式研磨装置はポリシャ2が上面に施されて
いる円板状の回転テーブル1、被加工物3を保持する研
磨枠4、被加工物3及び研磨枠4を保持する研磨リング
6、研磨リング6を支えるステーション7及び、ローラ
ー8、さらに研磨液を噴射する研磨液ノズル9、被加工
物に揺動を与えるクランク10及び揺動アーム11を有
している。なお被加工物3の上には加工速度を速めるた
めに荷重5を載せてある。研磨枠4並びに研磨リング6
はそれぞれ、ポリシャ2の加工面上に被加工物3と同様
に、直接接触させる形式を採っている。研磨液は粒径
0.3μmの酸化鉄(Fe23)を純水中に分散させた
もので、濃度は5wt%である。またポリシャには図2
に示すように、表面に溝深さHが2mm、溝ピッチPが
2.5mmのV型円周溝加工が施されている。ポリシャ
材質として硬質なエポキシ樹脂を用いている。被加工物
3の研磨加工手順を以下に示す。まず加工前に硬質樹脂
ポリシャ2の上面の研磨に作用する面の面形状を別工具
により所望の面形状になるように加工する。次にステー
ション7内に研磨リング6、研磨枠4、被加工物3、荷
重5を配置する。そして被加工物3、研磨枠4、研磨リ
ング6とポリシャ2との間に、研磨液ノズル9から研磨
液を噴射し、ポリシャ2を回転Aさせ、同時にクランク
10、クランクアーム11によりステーション7内に配
置された被加工物に揺動Bを与える。この過程で、ロー
ラー8により支持されている研磨リング6と共に被加工
物3はポリシャ2の回転に連れ回りCをする。この際、
研磨枠4の外径と研磨リング6の内径とはわずかな隙間
が設けられているため、被加工物3と研磨枠4は研磨リ
ング6の回転周期が程良く調整されて連れ回りCができ
る。また被加工物3の揺動Bは被加工物3がポリシャ2
からはみ出さないように行う。所定時間後、ポリシャの
回転方向を逆転して図中のAからA’とする。これによ
り被加工物の連れ回りの回転方向も逆転し、CからC’
となる。このポリシャの回転方向の逆転を繰り返して所
定の面形状でネジレのない高精度な研磨面を得る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the polishing method according to the present invention will be described below. 1 and 2 are a plan view and a side view showing a processing state. A workpiece 3 made of silicon nitride ceramic is polished by an Oscar type polishing apparatus using a hard polisher 2 and a polishing liquid in which abrasive grains are dispersed in pure water. The Oscar-type polishing apparatus includes a disk-shaped rotary table 1 on which a polisher 2 is provided on an upper surface, a polishing frame 4 for holding a workpiece 3, a polishing ring 6 for holding the workpiece 3 and the polishing frame 4, and a polishing ring. The apparatus has a station 7 supporting the roller 6, a roller 8, a polishing liquid nozzle 9 for jetting a polishing liquid, a crank 10 for rocking a workpiece, and a rocking arm 11. A load 5 is placed on the workpiece 3 to increase the processing speed. Polishing frame 4 and polishing ring 6
Are in direct contact with the work surface of the polisher 2 in the same manner as the work piece 3. The polishing liquid is obtained by dispersing iron oxide (Fe 2 O 3 ) having a particle diameter of 0.3 μm in pure water, and has a concentration of 5 wt%. Fig. 2
As shown in FIG. 5, a V-shaped circumferential groove having a groove depth H of 2 mm and a groove pitch P of 2.5 mm is formed on the surface. Hard epoxy resin is used as the polisher material. The polishing procedure of the workpiece 3 will be described below. First, before processing, the surface shape of the surface of the hard resin polisher 2 that acts on the upper surface of the hard resin polisher 2 is processed by another tool so as to have a desired surface shape. Next, the polishing ring 6, the polishing frame 4, the workpiece 3, and the load 5 are arranged in the station 7. Then, a polishing liquid is sprayed from the polishing liquid nozzle 9 between the workpiece 3, the polishing frame 4, the polishing ring 6 and the polisher 2, and the polisher 2 is rotated A. At the same time, the crank 10 and the crank arm 11 move the station 7 into the station 7. Swing B is applied to the workpiece placed at the center. In this process, the workpiece 3 together with the polishing ring 6 supported by the roller 8 rotates C with the rotation of the polisher 2. On this occasion,
Since a small gap is provided between the outer diameter of the polishing frame 4 and the inner diameter of the polishing ring 6, the workpiece 3 and the polishing frame 4 can rotate and rotate C with the rotation cycle of the polishing ring 6 adjusted appropriately. . The swing B of the workpiece 3 is such that the workpiece 3 is
Do so that it does not protrude. After a predetermined time, the direction of rotation of the polisher is reversed to change from A to A 'in the figure. As a result, the rotational direction of the co-rotation of the workpiece is also reversed, and C to C ′
Becomes By repeating the reversal of the rotation direction of the polisher, a highly accurate polished surface having a predetermined surface shape and having no twist is obtained.

【0007】発明の実施においては、ポリシャ2の回転
方向、回転数、被加工物3の揺動数を設定し、設定した
加工条件下で所定時間研磨を行い、その結果被加工物3
に生じるネジレ面形状のデータを事前に把握しておく。
図3の(a)、(b)にポリシャ正回転A並びに逆回転
A’で研磨した場合の被加工物3に生じるネジレ面形状
を示した。ポリシャ正回転Aの研磨では被加工物3はC
方向に連れ回り、図3(a)に示す様に、被加工面は−
の対角線上に磨耗が大きく、またポリシャ逆回転A’の
研磨においては被加工物3はC’方向に連れ回るため
に、図3(b)に示す様に、被加工面は−の対角線上に
磨耗が大きくなり、それぞれ磨耗差hが生ずる。これら
研磨結果で得られた磨耗差のデータをオスカー研磨装置
の図示しない制御装置に付加してプログラムし、所定の
研磨時間おきに、回転テーブルに正回転A、逆回転A’
の駆動を繰り返し与えながら研磨する。また、研磨工程
の途中で被研磨物の面形状を計測し、測定された値に基
づいて研磨条件を制御する事も出来る。更に、この研磨
工程に先立つ前加工で既に被加工面にネジレがある場合
には、ネジレ方向に見合ったテーブル回転方向を選択
し、ネジレ修正をした後、上記方法で仕上げ研磨をする
ことが可能である。以上、この方法によって被加工面に
ネジレのない高精度面を短時間で仕上げることもでき
る。なおこの実施例ではオスカー式研磨装置を用いた
が、被加工物3とポリシャ2とを相対的に移動させるこ
とができるものであれば、他の装置を用いてもよい。ま
た、この実施例では、被加工物3が窒化珪素セラミック
スであるが、研磨砥粒或いはポリシャ材質を替えること
で他のセラミックス、ガラスで形成された被加工物に対
しても、以上の研磨方法を採用することができる。
In the embodiment of the invention, the direction of rotation of the polisher 2, the number of rotations, and the number of swings of the workpiece 3 are set, and polishing is performed for a predetermined time under the set processing conditions.
The data of the torsion surface shape that occurs in advance is grasped in advance.
FIGS. 3A and 3B show the torsion surface shape generated on the workpiece 3 when the workpiece 3 is polished by the polisher normal rotation A and the reverse rotation A ′. In the polishing with the polisher forward rotation A, the workpiece 3 is C
3a, the surface to be processed is-
In the polishing with the polisher reverse rotation A ', the workpiece 3 rotates in the direction C', so that the surface to be processed has a diagonal of-as shown in FIG. Wear increases, and a wear difference h occurs. The data of the difference in wear obtained as a result of the polishing is added to a control device (not shown) of the Oscar polishing apparatus, and programmed, and the rotation table A and the reverse rotation A ′ are added to the rotation table at predetermined polishing times.
Polishing while repeatedly giving the drive of. In addition, it is also possible to measure the surface shape of the object to be polished in the course of the polishing process and control the polishing conditions based on the measured values. Furthermore, if the surface to be machined is already twisted in the pre-processing prior to this polishing step, it is possible to select the table rotation direction that matches the twisting direction, correct twisting, and then finish polishing by the above method It is. As described above, by this method, a high-precision surface having no twist on the surface to be processed can be finished in a short time. In this embodiment, the Oscar type polishing apparatus is used, but another apparatus may be used as long as the workpiece 3 and the polisher 2 can be relatively moved. In this embodiment, the workpiece 3 is a silicon nitride ceramic. However, the above polishing method can be applied to a workpiece formed of another ceramic or glass by changing the abrasive grain or polisher material. Can be adopted.

【0008】尚、このオスカー式研磨装置を用いて長さ
540mm、幅30mm、高さ30mmの棒型形状の被
加工物を加工する場合、加工条件として、回転テーブル
1の正回転A及び逆回転A’の回転数を共に3〜5rp
m、被加工物の揺動速度Bを2500mm/mim〜3
500mm/min、硬質ポリシャ2に対する被加工物
の押圧力Pを20gf/cm2とし、研磨テーブルに正回
転A及び逆回転A’を2〜8時間おきに繰り返し与えて
加工物を研磨したところ、加工時間16時間で面精度
0.15μm以下でネジレのない高精度面を仕上げるこ
とができた。これに対して従来法では調整を繰り返しな
がら30時間程度研磨加工を行っても満足のいく面精度
は得られなかった。
When processing a rod-shaped workpiece having a length of 540 mm, a width of 30 mm, and a height of 30 mm using this Oscar-type polishing apparatus, the rotation conditions of the rotary table 1 include the forward rotation A and the reverse rotation. The rotation speed of A 'is 3 to 5 rpm
m, the swing speed B of the workpiece is 2500 mm / mim to 3
500 mm / min, the pressing force P of the workpiece against the hard polisher 2 was set to 20 gf / cm 2, and the workpiece was polished by repeatedly applying forward rotation A and reverse rotation A ′ to the polishing table every 2 to 8 hours. With a processing time of 16 hours, a high-precision surface with a surface accuracy of 0.15 μm or less and no twist was able to be finished. On the other hand, in the conventional method, satisfactory surface accuracy could not be obtained even if polishing was performed for about 30 hours while repeating the adjustment.

【0009】[0009]

【発明の効果】以上要するに、本発明による棒形の大型
光学素子の研磨方法として、ポリシャが正回転及び、逆
回転駆動可能な機能を備えた研磨装置を用いて加工する
ことにより、ネジレ面形状のない高精度面形状を短時間
に製作することができる。
In summary, the method for polishing a rod-shaped large-sized optical element according to the present invention is such that the polisher is processed by using a polishing apparatus having a function capable of driving in normal rotation and reverse rotation, thereby obtaining a twisted surface shape. It is possible to produce a high-precision surface shape without any material in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる実施例としての研磨装置の平面
FIG. 1 is a plan view of a polishing apparatus as an embodiment according to the present invention.

【図2】被加工物と保持具の配置を示した側面図FIG. 2 is a side view showing an arrangement of a workpiece and a holder.

【図3】(a) ポリシャ正回転における被加工物面に生
じるネジレ形状を示した図 (b) ポリシャ逆回転における被加工物面に生じるネジ
レ形状を示した図
3A is a diagram showing a torsion shape generated on the workpiece surface in the normal rotation of the polisher; FIG. 3B is a diagram showing a torsion shape generated on the workpiece surface in the reverse rotation of the polisher;

【図4】従来の研磨法を説明する図FIG. 4 is a diagram illustrating a conventional polishing method.

【符号の説明】[Explanation of symbols]

1:回転テーブル 2:樹脂製硬質ポリシャ 3:披加工物 4:研磨枠 5:荷重 6:研磨リング 7:ステーション 8:ローラー 9:研磨液ノズル 10:クランク 11:揺動アーム 1: Rotary table 2: Resin hard polisher 3: Workpiece 4: Polishing frame 5: Load 6: Polishing ring 7: Station 8: Roller 9: Polishing liquid nozzle 10: Crank 11: Swing arm

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ポリシャを回転させる回転テーブル、該ポ
リシャ上に被加工物を回転自在に圧接保持する保持部
材、該保持部材に揺動運動を与える揺動部材、研磨液供
給部材を有する研磨装置であって、該ポリシャの回転が
研磨加工時に正転、逆転を交互に繰り返す事を特徴とす
る研磨装置。
1. A polishing apparatus having a rotary table for rotating a polisher, a holding member for rotatably pressing and holding a workpiece on the polisher, a swinging member for giving a swinging motion to the holding member, and a polishing liquid supply member. A polishing apparatus characterized in that the rotation of the polisher alternately repeats normal rotation and reverse rotation during polishing.
【請求項2】請求項1記載の研磨装置であって、ポリシ
ャの回転数が3〜5rpm、被加工物の揺動数が250
0mm/min〜3500mm/minであり、2〜8
時間おきに回転テ−ブルが正回転、逆回転を繰り返し行
うことを特徴とする研磨装置。
2. The polishing apparatus according to claim 1, wherein the rotation speed of the polisher is 3 to 5 rpm, and the oscillation speed of the workpiece is 250.
0 mm / min to 3500 mm / min, 2 to 8
A polishing apparatus characterized in that a rotating table repeatedly rotates forward and backward at intervals of time.
【請求項3】回転テーブル上にポリシャを配し、該ポリ
シャに研磨液を介して被研磨物を回転自在に圧接し、該
回転ポリシャを回転させ、被研磨物を揺動運動させて該
被研磨物を研磨する研磨方法であって、該ポリシャの回
転方向を研磨加工時に正転、逆転と交互に繰り返す事を
特徴とする研磨方法。
3. A polisher is arranged on a rotary table, and an object to be polished is rotatably pressed against the polisher via a polishing liquid, and the rotary polisher is rotated to oscillate the object to be polished so that the object is polished. A polishing method for polishing an object to be polished, characterized in that the direction of rotation of the polisher is alternately repeated in forward and reverse rotation during polishing.
【請求項4】請求項3記載の研磨方法であって、ポリシ
ャの回転数が3〜5rpm、被加工物の揺動数が250
0mm/min〜3500mm/minであり、2〜8
時間おきに回転テ−ブルが正回転、逆回転を繰り返し行
うことを特徴とする研磨方法。
4. The polishing method according to claim 3, wherein the number of rotations of the polisher is 3 to 5 rpm, and the number of swings of the workpiece is 250.
0 mm / min to 3500 mm / min, 2 to 8
A polishing method characterized in that a rotating table repeatedly rotates forward and backward at intervals of time.
JP34560997A 1997-12-15 1997-12-15 Polishing method and polishing device of optical element Pending JPH11170167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34560997A JPH11170167A (en) 1997-12-15 1997-12-15 Polishing method and polishing device of optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34560997A JPH11170167A (en) 1997-12-15 1997-12-15 Polishing method and polishing device of optical element

Publications (1)

Publication Number Publication Date
JPH11170167A true JPH11170167A (en) 1999-06-29

Family

ID=18377760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34560997A Pending JPH11170167A (en) 1997-12-15 1997-12-15 Polishing method and polishing device of optical element

Country Status (1)

Country Link
JP (1) JPH11170167A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003039313A (en) * 2001-08-02 2003-02-13 Speedfam Co Ltd Center drive unit for one-side polishing device
WO2010140595A1 (en) * 2009-06-04 2010-12-09 旭硝子株式会社 Method for grinding plate-like body
US9960048B2 (en) 2013-02-13 2018-05-01 Showa Denko K.K. Surface machining method for single crystal SiC substrate, manufacturing method thereof, and grinding plate for surface machining single crystal SiC substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003039313A (en) * 2001-08-02 2003-02-13 Speedfam Co Ltd Center drive unit for one-side polishing device
WO2010140595A1 (en) * 2009-06-04 2010-12-09 旭硝子株式会社 Method for grinding plate-like body
US9960048B2 (en) 2013-02-13 2018-05-01 Showa Denko K.K. Surface machining method for single crystal SiC substrate, manufacturing method thereof, and grinding plate for surface machining single crystal SiC substrate
US10453693B2 (en) 2013-02-13 2019-10-22 Showa Denko K.K. Surface machining method for single crystal SiC substrate, manufacturing method thereof, and grinding plate for surface machining single crystal SiC substrate

Similar Documents

Publication Publication Date Title
US6184139B1 (en) Oscillating orbital polisher and method
US6220928B1 (en) Surface grinding method and apparatus for thin plate work
JP2019093517A (en) Method for processing work-piece and grinding/polishing device
JP2000094303A (en) Grinding method and grinding device
JPH11170167A (en) Polishing method and polishing device of optical element
JP6369649B1 (en) Film wrap processing equipment
JPH11254277A (en) Internal grinding machine
JP2000158306A (en) Both-surface grinding device
JPS6052246A (en) Polishing machine
JPH08107093A (en) Working method for semiconductor substrate
JPS63232957A (en) Profile polisher
JP3452619B2 (en) Spherical surface grinding method
JP3651923B2 (en) Polishing apparatus and method
JPS63232932A (en) Polishing method and device therefor
JP2002254298A (en) Polishing method and polishing device
JPH04331058A (en) Concave lens finishing method and device
JP2005305609A (en) Lapping machine
JPS63260754A (en) Chamfering device
JPH11170168A (en) Highly precise smooth surface working method
JP2001121391A (en) Polishing plate combining method
JPH0966445A (en) Polishing device and polishing method
JP2003109923A (en) Device for polishing semiconductor wafer
JPH04201178A (en) Polishing device and polishing method
JPH1177520A (en) Polishing method and polishing device
JP2002172551A (en) Curved face grinding device and method