JPH11162973A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH11162973A
JPH11162973A JP9327608A JP32760897A JPH11162973A JP H11162973 A JPH11162973 A JP H11162973A JP 9327608 A JP9327608 A JP 9327608A JP 32760897 A JP32760897 A JP 32760897A JP H11162973 A JPH11162973 A JP H11162973A
Authority
JP
Japan
Prior art keywords
ion implantation
ions
implanted
implantation step
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9327608A
Other languages
Japanese (ja)
Inventor
Minoru Higuchi
実 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9327608A priority Critical patent/JPH11162973A/en
Priority to KR1019980051392A priority patent/KR19990045667A/en
Publication of JPH11162973A publication Critical patent/JPH11162973A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823462MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66015Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene
    • H01L29/66037Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66045Field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method or securing reliability without delaying driving speed of a MOS-type semiconductor integrated circuit device, and forming a plurality of gate oxide films of film thickness on the same substrate. SOLUTION: A pattern is formed on a silicon substrate 10 with photoresist 12, and ions for improving thermal oxidization speed are selectively implanted. Photoresist 12 is removed and thermal oxidization is executed. Then, polycrystalline silicon film 18 is grown on an SiO2 film 16 and the pattern is formed. Thus, the gate oxide films of MOSFET with the different SiO2 film thicknesses are simultaneously formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、本発明は同一基板
上に複数の膜厚のゲート酸化膜を有するMOS型半導体
装置の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a MOS type semiconductor device having a plurality of gate oxide films on the same substrate.

【0002】[0002]

【従来の技術】MOS型半導体集積回路装置の駆動速度
を高速化するために、電源電圧を低くし、MOSFET
のゲート酸化膜を薄膜化することが進められている。し
かし、一つの装置内で多種の電源電圧をもつ半導体集積
回路装置を混用せざるをえないために、MOS型半導体
集積回路装置への外部からの入力信号の電圧が、電源電
圧よりも高い場合があり、信頼性の面から、入力信号を
受けるMOSFETのゲート酸化膜は薄膜化することは
できない。したがって、同一基板上に複数の膜厚のゲー
ト酸化膜を形成する必要がある。
2. Description of the Related Art In order to increase the driving speed of a MOS type semiconductor integrated circuit device, a power supply voltage is reduced and MOSFETs are reduced.
The thickness of the gate oxide film has been reduced. However, in order to inevitably mix semiconductor integrated circuit devices having various power supply voltages in one device, when a voltage of an external input signal to the MOS type semiconductor integrated circuit device is higher than the power supply voltage. Therefore, from the viewpoint of reliability, the gate oxide film of the MOSFET receiving the input signal cannot be reduced in thickness. Therefore, it is necessary to form a plurality of gate oxide films on the same substrate.

【0003】従来、このような同一基板上に複数の膜厚
のゲート酸化膿を形成する方法として、特開昭58−5
4638号公報等に記載されている方法が知られてい
る。即ち、この方法では、半導体基板上に選択的に窒素
又は窒素を含むイオン注入を行い、イオン注入を行った
領域の熱酸化速度を遅くすることで同一基板上に複数の
膜厚のゲート酸化膜を形成している。
Conventionally, a method for forming a plurality of gate oxide punishes on the same substrate has been disclosed in Japanese Patent Application Laid-Open No. 58-5 / 1983.
A method described in Japanese Patent No. 4638 is known. That is, in this method, nitrogen or ion containing nitrogen is selectively implanted on a semiconductor substrate, and a thermal oxidation rate in a region where the ion implantation is performed is reduced, so that a gate oxide film having a plurality of film thicknesses is formed on the same substrate. Is formed.

【0004】この従来の半導体装置の製造方法の一実施
例を図を用いて説明する。同一基板上に複数の膜厚のゲ
ート酸化膜を形成する従来の半導体装置の製造方法の工
程を図2(a)〜(d)に示す。図2(a)に示すよう
にシリコン基板20上にホトレジスト22でパターンを
形成し、窒素又は窒素を含むイオンを選択的にイオン注
入する。次いでホトレジスト22を除去した後、熱酸化
を行う。この際に注入された窒素がシリコン表面に偏析
し、酸化を抑止する。このために窒素又は窒素を含むイ
オンの注入領域24と未注入領域とでシリコンの酸化速
度に差ができ、図2(b)のようにSiO2 膜26の厚
みの異なる領域を同時に形成することができる。次いで
図2(c)のようにSiO2 膜26上に多結晶シリコン
膜28を成長し、パターンを形成後、これをマスクとし
てSiO2 膜26をエッチングすることによって図2
(d)に示すような異なるSiO2 膜厚のMOSFET
のゲート酸化膜を同時に形成する。
An embodiment of this conventional method for manufacturing a semiconductor device will be described with reference to the drawings. 2A to 2D show steps of a conventional method for manufacturing a semiconductor device in which a gate oxide film having a plurality of film thicknesses is formed on the same substrate. As shown in FIG. 2A, a pattern is formed on a silicon substrate 20 with a photoresist 22, and nitrogen or ions containing nitrogen are selectively implanted. Next, after removing the photoresist 22, thermal oxidation is performed. At this time, the implanted nitrogen segregates on the silicon surface and suppresses oxidation. For this reason, there is a difference in the oxidation rate of silicon between the implanted region 24 and the non-implanted region of nitrogen or ions containing nitrogen, and regions having different thicknesses of the SiO 2 film 26 as shown in FIG. Can be. Next, as shown in FIG. 2C, a polycrystalline silicon film 28 is grown on the SiO 2 film 26, a pattern is formed, and the SiO 2 film 26 is etched using the pattern as a mask.
MOSFETs with different SiO 2 film thickness as shown in (d)
Are simultaneously formed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
方法では注入された窒素がシリコン表面に偏析する、す
なわち、薄いゲート酸化膜厚のMOSFETのゲートの
シリコン基板と酸化膜の界面に窒素が偏析するために、
MOSFETのチャネルの移動度が減少し、オン状態で
の電流が流れにくくなり、MOS型半導体集積回路装置
の駆動速度を遅くするという問題が生じる。ゲート酸化
膜の薄膜化は、MOSFETのオン状態での電流を大き
くするために行っているのであるから、ゲートのシリコ
ン基板と酸化膜の界面に窒素が偏析することで薄いゲー
ト酸化膜厚のMOSFETのチャネルの移動度が減少
し、オン状態での電流が流れにくくなることは致命的な
問題である。
However, in the conventional method, the implanted nitrogen segregates on the silicon surface, that is, nitrogen segregates at the interface between the silicon substrate and the oxide film of the MOSFET gate having a thin gate oxide film. for,
There is a problem that the mobility of the channel of the MOSFET decreases, the current in the ON state becomes difficult to flow, and the driving speed of the MOS semiconductor integrated circuit device is reduced. Since the thinning of the gate oxide film is performed in order to increase the current in the ON state of the MOSFET, a MOSFET having a thin gate oxide film is formed by segregation of nitrogen at the interface between the gate silicon substrate and the oxide film. It is a fatal problem that the mobility of the channel decreases and the current does not easily flow in the ON state.

【0006】さらに、半導体素子の微細化がすすむにつ
れて、ゲート酸化膜厚がますます薄膜化するが従来の方
法では、基板上で最も薄いゲート酸化膜厚のMOSFE
Tのゲートのシリコン基板と酸化膜の界面に窒素が偏析
することとなり、強固なゲート酸化膜を形成することが
難しく、信頼性の面からも問題である。前記の問題は、
窒素でない別の元素をシリコン表面に偏析させ熱酸化速
度を遅くすることで同一基板上に複数の膜厚のゲート酸
化膜を形成する場合にも問題となる。
[0006] Further, as the size of the semiconductor device is further reduced, the thickness of the gate oxide film is becoming thinner and thinner.
Nitrogen segregates at the interface between the silicon substrate and the oxide film of the T gate, and it is difficult to form a strong gate oxide film, which is a problem in terms of reliability. The above problem is
Another problem arises when a gate oxide film having a plurality of film thicknesses is formed on the same substrate by segregating another element other than nitrogen on the silicon surface to reduce the thermal oxidation rate.

【0007】本発明は、複数の膜厚のゲート酸化膜のM
OSFETを有する半導体装置において、MOS型半導
体集積回路装置の駆動速度を遅くすることなく、信頼性
を確保し、同一基板上に複数の膜厚のゲート酸化膜を形
成する方法を提供することを目的とする。
According to the present invention, a plurality of gate oxide films having different thicknesses are formed.
An object of the present invention is to provide a method for forming a gate oxide film having a plurality of film thicknesses on the same substrate while ensuring reliability without reducing the driving speed of a MOS semiconductor integrated circuit device in a semiconductor device having an OSFET. And

【0008】[0008]

【課題を解決するための手段】本発明によれば、シリコ
ン基板上に選択的に、熱酸化速度を速くするためのイオ
ン注入を行い同一基板上に複数の膜厚の酸化膜を形成す
ることを特徴とする半導体装置の製造方法が得られる。
According to the present invention, a plurality of oxide films are formed on the same substrate by selectively performing ion implantation on the silicon substrate to increase the thermal oxidation rate. Thus, a method for manufacturing a semiconductor device characterized by the following is obtained.

【0009】さらに、本発明によれば、前記イオン注入
工程において、注入されるイオンが酸素又は酸素を含ん
だものであることを特徴とする半導体装置の製造方法が
得られる。
Further, according to the present invention, there is provided a method of manufacturing a semiconductor device, characterized in that the ions to be implanted in the ion implantation step include oxygen or oxygen.

【0010】さらに、本発明によれば、前記イオン注入
工程において、注入されるイオンがシリコン又はシリコ
ンを含んだものであることを特徴とする半導体装置の製
造方法が得られる。
Further, according to the present invention, there is provided a method of manufacturing a semiconductor device, characterized in that the ions to be implanted in the ion implantation step are silicon or silicon-containing ions.

【0011】さらに、本発明によれば、前記イオン注入
工程において、注入されるイオンが希ガス又は希ガスを
含んだものであることを特徴とする半導体装置の製造方
法が得られる。
Further, according to the present invention, there is provided a method of manufacturing a semiconductor device, characterized in that the ions to be implanted in the ion implantation step are a rare gas or a gas containing a rare gas.

【0012】さらに、本発明によれば、前記イオン注入
工程において、注入されるイオンがアルゴン又はアルゴ
ンを含んだものであることを特徴とする半導体装置の製
造方法が得られる。
Further, according to the present invention, there is provided a method of manufacturing a semiconductor device, characterized in that the ions to be implanted in the ion implantation step include argon or argon.

【0013】さらに、本発明によれば、前記イオン注入
工程において、注入されるイオンがクリプトン又はクリ
プトンを含んだものであることを特徴とする半導体装置
の製造方法が得られる。
Further, according to the present invention, there is provided a method of manufacturing a semiconductor device, characterized in that the ions to be implanted in the ion implantation step include krypton or krypton.

【0014】さらに、本発明によれば、前記イオン注入
工程において、注入されるイオンがキセノン又はキセノ
ンを含んだものであることを特徴とする半導体装置の製
造方法が得られる。
Further, according to the present invention, there is provided a method of manufacturing a semiconductor device, wherein in the ion implantation step, ions to be implanted include xenon or xenon.

【0015】さらに、本発明によれば、前記イオン注入
工程において、注入されるイオンがハロゲン又はハロゲ
ンを含んだものであることを特徴とする半導体装置の製
造方法が得られる。
Further, according to the present invention, there is provided a method of manufacturing a semiconductor device, characterized in that the ions to be implanted in the ion implantation step are halogen or halogen-containing ions.

【0016】さらに、本発明によれば、前記イオン注入
工程において、注入されるイオンがフッ素又はフッ素を
含んだものであることを特徴とする半導体装置の製造方
法が得られる。
Further, according to the present invention, there is provided a method of manufacturing a semiconductor device, wherein in the ion implantation step, ions to be implanted are fluorine or fluorine-containing ions.

【0017】さらに、本発明によれば、前記イオン注入
工程において、注入されるイオンが塩素又は塩素を含ん
だものであることを特徴とする半導体装置の製造方法が
得られる。
Further, according to the present invention, there is provided a method of manufacturing a semiconductor device, wherein in the ion implantation step, ions to be implanted are chlorine or chlorine-containing ions.

【0018】さらに、本発明によれば、前記イオン注入
工程において、イオン注入のドーズ量が1×1016〜1
×1017であることを特徴とする半導体装置の製造方法
が得られる。
Further, according to the present invention, in the ion implantation step, the ion implantation dose is 1 × 10 16 to 1 × 10 16.
× 10 17 is obtained.

【0019】さらに、本発明によれば、前記イオン注入
工程において、イオン注入のドーズ量が1×1015〜1
×1016であることを特徴とする半導体装置の製造方法
が得られる。
Further, according to the present invention, in the ion implantation step, the ion implantation dose is 1 × 10 15 to 1 × 10 15.
A method for manufacturing a semiconductor device characterized by × 10 16 is obtained.

【0020】さらに、本発明によれば、前記イオン注入
工程において、イオン注入のドーズ量が1×1015〜1
×1016であることを特徴とする半導体装置の製造方法
が得られる。
Further, according to the present invention, in the ion implantation step, the ion implantation dose is 1 × 10 15 to 1 × 10 15.
A method for manufacturing a semiconductor device characterized by × 10 16 is obtained.

【0021】さらに、本発明によれば、前記イオン注入
工程において、イオン注入のドーズ量が1×1014〜1
×1015であることを特徴とする半導体装置の製造方法
が得られる。
Further, according to the present invention, in the ion implantation step, the ion implantation dose is 1 × 10 14 -1.
× 10 15 is obtained.

【0022】[0022]

【作用】本発明では、シリコン基板上に選択的に、熱酸
化速度を速くするためのイオン注入を行い同一基板上に
複数の膜厚の酸化膜を形成する。この注入されたイオン
は、酸素、シリコンイオンの場合はいうまでもないが、
希ガス、ハロゲンイオンの場合も熱酸化中に拡散してし
まい、シリコン基板と酸化膜の界面に残らないために、
厚いゲート酸化膜厚のMOSFETに悪影響をもたらさ
ない。
According to the present invention, a plurality of oxide films are formed on the same substrate by selectively performing ion implantation on the silicon substrate to increase the thermal oxidation rate. The implanted ions are, of course, oxygen and silicon ions,
Rare gas and halogen ions also diffuse during thermal oxidation and do not remain at the interface between the silicon substrate and the oxide film.
It does not adversely affect MOSFETs with a large gate oxide thickness.

【0023】薄いゲート酸化膜厚のMOSFETは、こ
のイオン注入が行われていない領域であるから、もちろ
ん、チャネルの移動度の減少はなく、オン状態で電流が
流れにくくなることもないため、MOS型半導体集積回
路装置の駆動速度を遅くする問題もなく、また、ゲート
のシリコン基板と酸化膜の界面に窒素が偏析することも
ないので、強固なゲート酸化膜が形成できる。すなわ
ち、本発明では、MOS型半導体集積回路装置の駆動速
度を遅くすることも信頼性劣化の問題もなく、複数の膜
厚のゲート酸化膜のMOSFETを有する半導体装置を
形成することができる。
Since the MOSFET having a small gate oxide film thickness is a region where the ion implantation is not performed, the mobility of the channel does not decrease and the current does not easily flow in the ON state. There is no problem of lowering the driving speed of the semiconductor integrated circuit device, and no nitrogen segregates at the interface between the gate silicon substrate and the oxide film, so that a strong gate oxide film can be formed. That is, according to the present invention, it is possible to form a semiconductor device having a MOSFET having a gate oxide film with a plurality of film thicknesses without slowing down the driving speed of the MOS type semiconductor integrated circuit device and without deteriorating reliability.

【0024】[0024]

【発明の実施の形態】以下、本発明に係る半導体装置の
製造方法の実施の形態について図1を参照して説明す
る。シリコン基板10上にホトレジスト12でパターン
を形成し、熱酸化速度を速くするためのイオンを選択的
に注入する。次いでホトレジスト12を除去した後、熱
酸化を行う。この際にイオンが注入されたシリコン表面
は、熱酸化速度が速く、イオン注入領域14と未注入領
域とでシリコンの酸化速度に差ができ、SiO2 膜16
の厚みの異なる領域を同時に形成することができる。次
いで、SiO2 膜16上に多結晶シリコン膜18を成長
し、パターンを形成することによって異なるSiO2
厚のMOSFETのゲート酸化膜を同時に形成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for manufacturing a semiconductor device according to the present invention will be described below with reference to FIG. A pattern is formed on the silicon substrate 10 with a photoresist 12, and ions for increasing the thermal oxidation rate are selectively implanted. Next, after removing the photoresist 12, thermal oxidation is performed. In this case silicon surface ions are implanted into the fast thermal oxidation rate can difference in oxidation rate of the silicon in the non-implanted region and the ion-implanted region 14, SiO 2 film 16
Regions having different thicknesses can be formed simultaneously. Next, a polycrystalline silicon film 18 is grown on the SiO 2 film 16 and a pattern is formed to simultaneously form gate oxide films of MOSFETs having different SiO 2 film thicknesses.

【0025】[0025]

【実施例】以下、本発明の第1の実施例について説明す
る。図1(a)に示すようにシリコン基板10上にホト
レジスト12でパターンを形成し、酸素イオンを選択的
に、例えばドーズ量1×1016〜1×1017cm-2イオ
ン注入する。次いでホトレジスト12を除去した後、熱
酸化を行う。この際に酸素が注入されたシリコン表面
は、熱酸化速度が速く、イオン注入領域14と未注入領
域とでシリコンの酸化速度に差ができ、図1(b)のよ
うにSiO2 膜16の厚みの異なる領域を同時に形成す
ることができる。次いで図1(c)のようにSiO2
16上に多結晶シリコン膜18を成長し、パターンを形
成することによって図1(d)に示すような異なるSi
2 膜厚のMOSFETのゲート酸化膜を同時に形成す
る。
The first embodiment of the present invention will be described below. As shown in FIG. 1A, a pattern is formed on a silicon substrate 10 with a photoresist 12, and oxygen ions are selectively implanted, for example, at a dose of 1 × 10 16 to 1 × 10 17 cm −2 . Next, after removing the photoresist 12, thermal oxidation is performed. At this time the silicon surface oxygen is injected, the fast thermal oxidation rate can difference in oxidation rate of the silicon in the non-implanted region and the ion implanted region 14, FIG. 1 of the SiO 2 film 16 as shown in (b) Regions having different thicknesses can be formed simultaneously. Next, as shown in FIG. 1C, a polycrystalline silicon film 18 is grown on the SiO 2 film 16 and a pattern is formed to form a different Si film as shown in FIG.
A gate oxide film of a MOSFET having an O 2 film thickness is simultaneously formed.

【0026】次に、本発明の第2の実施例について説明
する。図1(a)に示すようにシリコン基板10上にホ
トレジスト12でパターンを形成し、シリコンイオンを
選択的に、例えばドーズ量1×1015〜1×1016cm
-2イオン注入する。その後、第1の製造方法と同様にし
て、図1(d)に示すような異なるSiO2 膜厚のMO
SFETのゲート酸化膜を同時に形成する。
Next, a second embodiment of the present invention will be described. As shown in FIG. 1A, a pattern is formed on a silicon substrate 10 with a photoresist 12, and silicon ions are selectively applied, for example, at a dose of 1 × 10 15 to 1 × 10 16 cm.
-2 ion implantation. Thereafter, in the same manner as in the first manufacturing method, MOs having different SiO 2 film thicknesses as shown in FIG.
A gate oxide film of the SFET is formed at the same time.

【0027】次に、本発明の第3の実施例について説明
する。図1(a)に示すようにシリコン基板10上にホ
トレジスト12でパターンを形成し、希ガスイオンを選
択的に、例えばドーズ量1×1015〜1×1016cm-2
イオン注入する。その後、第1の製造方法と同様にし
て、図1(d)に示すような異なるSiO2 膜厚のMO
SFETのゲート酸化膜を同時に形成する。
Next, a third embodiment of the present invention will be described. As shown in FIG. 1A, a pattern is formed on a silicon substrate 10 with a photoresist 12, and rare gas ions are selectively applied, for example, at a dose of 1 × 10 15 to 1 × 10 16 cm −2.
Ions are implanted. Thereafter, in the same manner as in the first manufacturing method, MOs having different SiO 2 film thicknesses as shown in FIG.
A gate oxide film of the SFET is formed at the same time.

【0028】次に、本発明の第4の実施例について説明
する。図1(a)に示すようにシリコン基板10上にホ
トレジスト12でパターンを形成し、ハロゲンイオンを
選択的に、例えばドーズ量1×1014〜1×1015cm
-2イオン注入する。その後、第1の製造方法と同様にし
て、図1(d)に示すような異なるSiO2 膜厚のMO
SFETのゲート酸化膜を同時に形成する。
Next, a fourth embodiment of the present invention will be described. As shown in FIG. 1A, a pattern is formed on a silicon substrate 10 with a photoresist 12, and halogen ions are selectively formed, for example, at a dose of 1 × 10 14 to 1 × 10 15 cm.
-2 ion implantation. Thereafter, in the same manner as in the first manufacturing method, MOs having different SiO 2 film thicknesses as shown in FIG.
A gate oxide film of the SFET is simultaneously formed.

【0029】イオン注入工程において、前記イオンのイ
オン種は上記以外に、アルゴン又はアルゴンを含んだも
の、クリプトン又はクリプトンを含んだもの、キセノン
又はキセノンを含んだもの、フッ素又はフッ素を含んだ
もの、塩素又は塩素を含んだものであってもよい。
In the ion implantation step, the ionic species of the ions other than those described above are argon or argon-containing, krypton or krypton-containing, xenon or xenon-containing, fluorine or fluorine-containing, It may contain chlorine or chlorine.

【0030】[0030]

【発明の効果】本発明によれば、シリコン基板上に選択
的に、熱酸化速度を速くするためのイオン注入を行い、
同一基板上に複数の膜厚の酸化膜を形成するが、この注
入されたイオンは、酸素、シリコンイオンの場合はいう
までもないが、希ガス、ハロゲンイオンの場合も熱酸化
中に拡散してしまい、シリコン基板と酸化膜の界面に残
らないために、厚いゲート酸化膜厚のMOSFETに悪
影響をもたらさない。
According to the present invention, ion implantation for selectively increasing the thermal oxidation rate is performed on a silicon substrate,
An oxide film having a plurality of film thicknesses is formed on the same substrate. The implanted ions, not to mention oxygen and silicon ions, but also rare gas and halogen ions diffuse during thermal oxidation. Since it does not remain at the interface between the silicon substrate and the oxide film, it does not adversely affect the MOSFET having a large gate oxide film thickness.

【0031】薄いゲート酸化膜厚のMOSFETは、こ
のイオン注入が行なわれていない領域であるから、もち
ろん、チャネルの移動度の減少はなく、オン状態で電流
が流れにくくなることもないため、MOS型半導体集積
回路装置の駆動速度を遅くする問題もなく、また、ゲー
トのシリコン基板と酸化膜の界面に窒素が偏析すること
もないので、強固なゲート酸化膜が形成できる。すなわ
ち、本発明では、MOS型半導体集積回路装置の駆動速
度を遅くすることも信頼性劣化の問題もなく、複数の膜
厚のゲート酸化膜のMOSFETを有する半導体装置を
形成することができる。
Since the MOSFET having a small gate oxide film thickness is a region where the ion implantation is not performed, the mobility of the channel does not decrease and the current does not easily flow in the ON state. There is no problem of lowering the driving speed of the semiconductor integrated circuit device, and no nitrogen segregates at the interface between the gate silicon substrate and the oxide film, so that a strong gate oxide film can be formed. That is, according to the present invention, it is possible to form a semiconductor device having a MOSFET having a gate oxide film with a plurality of film thicknesses without slowing down the driving speed of the MOS type semiconductor integrated circuit device and without deteriorating reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る半導体装置の製造方法の工程を示
した図である。
FIG. 1 is a view showing steps of a method for manufacturing a semiconductor device according to the present invention.

【図2】従来の半導体装置の製造方法の工程を示した図
である。
FIG. 2 is a diagram showing steps of a conventional method for manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

10 シリコン基板 12 ホトレジスト 14 イオン注入領域 16 SiO2 膜 18 多結晶シリコン膜10 a silicon substrate 12 photoresist 14 ion-implanted region 16 SiO 2 film 18 a polycrystalline silicon film

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板上に選択的に、熱酸化速度
を速くするためのイオン注入を行い同一基板上に複数の
膜厚の酸化膜を形成することを特徴とする半導体装置の
製造方法。
1. A method for manufacturing a semiconductor device, comprising: ion-implanting a silicon substrate to selectively increase a thermal oxidation rate; and forming oxide films having a plurality of film thicknesses on the same substrate.
【請求項2】 前記イオン注入工程において、注入され
るイオンが酸素又は酸素を含んだものであることを特徴
とする請求項1記載の半導体装置の製造方法。
2. The method according to claim 1, wherein the ions to be implanted in the ion implantation step include oxygen or oxygen.
【請求項3】 前記イオン注入工程において、注入され
るイオンがシリコン又はシリコンを含んだものであるこ
とを特徴とする請求項1記載の半導体装置の製造方法。
3. The method according to claim 1, wherein the ions to be implanted in the ion implantation step include silicon or silicon.
【請求項4】 前記イオン注入工程において、注入され
るイオンが希ガス又は希ガスを含んだものであることを
特徴とする請求項1記載の半導体装置の製造方法。
4. The method of manufacturing a semiconductor device according to claim 1, wherein in the ion implantation step, ions to be implanted include a rare gas or a rare gas.
【請求項5】 前記イオン注入工程において、注入され
るイオンがアルゴン又はアルゴンを含んだものであるこ
とを特徴とする請求項1記載の半導体装置の製造方法。
5. The method according to claim 1, wherein in the ion implantation step, the ions to be implanted include argon or argon.
【請求項6】 前記イオン注入工程において、注入され
るイオンがクリプトン又はクリプトンを含んだものであ
ることを特徴とする請求項1記載の半導体装置の製造方
法。
6. The method according to claim 1, wherein the ions to be implanted in the ion implantation step include krypton or krypton.
【請求項7】 前記イオン注入工程において、注入され
るイオンがキセノン又はキセノンを含んだものであるこ
とを特徴とする請求項1記載の半導体装置の製造方法。
7. The method of manufacturing a semiconductor device according to claim 1, wherein the ions to be implanted in the ion implantation step include xenon or xenon.
【請求項8】 前記イオン注入工程において、注入され
るイオンがハロゲン又はハロゲンを含んだものであるこ
とを特徴とする請求項1記載の半導体装置の製造方法。
8. The method according to claim 1, wherein the ions to be implanted in the ion implantation step include halogen or halogen.
【請求項9】 前記イオン注入工程において、注入され
るイオンがフッ素又はフッ素を含んだものであることを
特徴とする請求項1記載の半導体装置の製造方法。
9. The method of manufacturing a semiconductor device according to claim 1, wherein the ions to be implanted in the ion implantation step include fluorine or fluorine.
【請求項10】 前記イオン注入工程において、注入さ
れるイオンが塩素又は塩素を含んだものであることを特
徴とする請求項1記載の半導体装置の製造方法。
10. The method according to claim 1, wherein the ions to be implanted in the ion implantation step include chlorine or chlorine.
【請求項11】 前記イオン注入工程において、イオン
注入のドーズ量が1×1016〜1×1017であることを
特徴とする請求項2記載の半導体装置の製造方法。
11. The method according to claim 2, wherein in the ion implantation step, a dose of the ion implantation is 1 × 10 16 to 1 × 10 17 .
【請求項12】 前記イオン注入工程において、イオン
注入のドーズ量が1×1015〜1×1016であることを
特徴とする請求項3記載の半導体装置の製造方法
12. The method according to claim 3, wherein in the ion implantation step, a dose of the ion implantation is 1 × 10 15 to 1 × 10 16.
【請求項13】 前記イオン注入工程において、イオン
注入のドーズ量が1×1015〜1×1016であることを
特徴とする請求項4記載の半導体装置の製造方法。
13. The method of manufacturing a semiconductor device according to claim 4, wherein in the ion implantation step, a dose of the ion implantation is 1 × 10 15 to 1 × 10 16 .
【請求項14】 前記イオン注入工程において、イオン
注入のドーズ量が1×1014〜1×1015であることを
特徴とする請求項8記載の半導体装置の製造方法。
14. The method according to claim 8, wherein in the ion implantation step, a dose amount of the ion implantation is 1 × 10 14 to 1 × 10 15 .
JP9327608A 1997-11-28 1997-11-28 Manufacture of semiconductor device Pending JPH11162973A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9327608A JPH11162973A (en) 1997-11-28 1997-11-28 Manufacture of semiconductor device
KR1019980051392A KR19990045667A (en) 1997-11-28 1998-11-27 Manufacturing Method of Semiconductor Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9327608A JPH11162973A (en) 1997-11-28 1997-11-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH11162973A true JPH11162973A (en) 1999-06-18

Family

ID=18200966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9327608A Pending JPH11162973A (en) 1997-11-28 1997-11-28 Manufacture of semiconductor device

Country Status (2)

Country Link
JP (1) JPH11162973A (en)
KR (1) KR19990045667A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244345A (en) * 2000-02-29 2001-09-07 Fujitsu Ltd Method for fabricating semiconductor device
JP2001351989A (en) * 2000-06-05 2001-12-21 Nec Corp Manufacturing method of semiconductor device
WO2002005335A1 (en) * 2000-07-10 2002-01-17 Shin-Etsu Handotai Co.,Ltd. Single crystal wafer and solar battery cell
KR20020014055A (en) * 2000-08-16 2002-02-25 박종섭 Method for formining gate oxide layers in semiconductor device
US6388504B1 (en) 1999-09-17 2002-05-14 Nec Corporation Integrated circuit device with switching between active mode and standby mode controlled by digital circuit
JP2006222151A (en) * 2005-02-08 2006-08-24 Oki Electric Ind Co Ltd Method for manufacturing semiconductor device
JP2009218267A (en) * 2008-03-07 2009-09-24 Fuji Electric Device Technology Co Ltd Method of manufacturing semiconductor device
JP2012089802A (en) * 2010-10-22 2012-05-10 Toyota Motor Corp Manufacturing method of semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4105353B2 (en) * 1999-07-26 2008-06-25 財団法人国際科学振興財団 Semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388504B1 (en) 1999-09-17 2002-05-14 Nec Corporation Integrated circuit device with switching between active mode and standby mode controlled by digital circuit
US6664148B2 (en) 1999-09-17 2003-12-16 Nec Corporation Integrated circuit device with switching between active mode and standby mode controlled by digital circuit
JP2001244345A (en) * 2000-02-29 2001-09-07 Fujitsu Ltd Method for fabricating semiconductor device
JP2001351989A (en) * 2000-06-05 2001-12-21 Nec Corp Manufacturing method of semiconductor device
US6853037B2 (en) 2000-06-05 2005-02-08 Nec Electronics Corporation Fabrication of low power CMOS device with high reliability
WO2002005335A1 (en) * 2000-07-10 2002-01-17 Shin-Etsu Handotai Co.,Ltd. Single crystal wafer and solar battery cell
KR100804247B1 (en) 2000-07-10 2008-02-20 신에쯔 한도타이 가부시키가이샤 Single crystal wafer and solar battery cell
US7459720B2 (en) * 2000-07-10 2008-12-02 Shin-Etsu Handotai Co., Ltd. Single crystal wafer and solar battery cell
KR20020014055A (en) * 2000-08-16 2002-02-25 박종섭 Method for formining gate oxide layers in semiconductor device
JP2006222151A (en) * 2005-02-08 2006-08-24 Oki Electric Ind Co Ltd Method for manufacturing semiconductor device
JP2009218267A (en) * 2008-03-07 2009-09-24 Fuji Electric Device Technology Co Ltd Method of manufacturing semiconductor device
JP2012089802A (en) * 2010-10-22 2012-05-10 Toyota Motor Corp Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
KR19990045667A (en) 1999-06-25

Similar Documents

Publication Publication Date Title
JPH11162973A (en) Manufacture of semiconductor device
JPH07326752A (en) Mosfet and its preparation
JPH0823031A (en) Semiconductor device and manufacture thereof
JPH11274494A (en) Manufacture of semiconductor device
JPS5917865B2 (en) hand tai souchi no seizou houhou
JPH0521800A (en) Soimosfet
JPH0945790A (en) Manufacture of cmos semiconductor device
JPH04137730A (en) Manufacture of semiconductor device
KR100304975B1 (en) Semiconductor device and method for fabricating the same
JP2001148481A (en) Semiconductor device and its manufacturing method
JPH06151451A (en) Manufacture of semiconductor device
JPS6072274A (en) Manufacture of semiconductor device
KR20020054644A (en) Manufacturing method for semiconductor device
JPH08153876A (en) High breakdown voltage transistor and fabrication thereof
KR100588781B1 (en) Semiconductor Device And Method For Manufacturing The Same
JPH0567634A (en) Manufacture of mis type semiconductor device
KR100225383B1 (en) Method of manufacturing semiconductor device
JP3260311B2 (en) Method for manufacturing semiconductor device
JPH01297837A (en) Manufacture of semiconductor device
JPH0964343A (en) Manufacture of semiconductor device
JPH0645360A (en) Manufacture of semiconductor device
JPH02309653A (en) Manufacture of semiconductor integrated circuit
JPH05259446A (en) Manufacture of semiconductor device
JPH0349238A (en) Manufacture of vertical double diffusion mos transistor
JPH06188259A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010314