JPH11147753A - Plastic clay formulation for low-temperature baked pottery - Google Patents

Plastic clay formulation for low-temperature baked pottery

Info

Publication number
JPH11147753A
JPH11147753A JP34846397A JP34846397A JPH11147753A JP H11147753 A JPH11147753 A JP H11147753A JP 34846397 A JP34846397 A JP 34846397A JP 34846397 A JP34846397 A JP 34846397A JP H11147753 A JPH11147753 A JP H11147753A
Authority
JP
Japan
Prior art keywords
average particle
less
particle size
firing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34846397A
Other languages
Japanese (ja)
Inventor
Etsuro Kato
悦朗 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP34846397A priority Critical patent/JPH11147753A/en
Publication of JPH11147753A publication Critical patent/JPH11147753A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject formulation with extremely wide baking temperature range usable for hobby ceramic art, and sufficiently firmly sinterable by its baking at <=1,000 deg.C with the shape of the molded product retained. SOLUTION: This new type plastic clay formulation for low-temperature baked pottery comprises a three-component mixture which contains kaolin or clay <=3.0 μm in average particle size and calcium carbonate fine particles <=2.0 μm in average particle size in the weight ratio of (45:55) to (75:25) and incorporated with 20-40 wt.% of relatively rough silica rock powder 3-50 μm in average particle size. This formulation in the form of molded product is readily firmly sinterable as it is, or even if mixed with other additive(s), at relatively low temperatures of <=1,000 deg.C while retaining its shape into a crystalline pottery product consisting mainly of anorthite and quartz, and also is resistant to softening and deformation even at >=1,000 deg.C, thus being extremely wide in baking temperature range.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、1000℃以下の比較
的低温度で、大きな焼成収縮を伴わずに十分強固に焼結
し、非常に広い焼成温度範囲にわたって軟化変形し難
く、可塑性、成形性に優れた水系の坏土で、趣味の陶芸
用、または一般陶磁器製造用として有用な低温焼成陶磁
器用可塑性粘土配合物に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method of sintering at a relatively low temperature of 1000 DEG C. or less, without sintering large sintering, and sufficiently hardening. The present invention relates to a plastic clay compound for low-temperature firing ceramics, which is a water-based clay having excellent properties and is useful for hobby ceramics or for general ceramics production.

【0002】[0002]

【従来の技術】従来、趣味の陶芸などに用いる可塑性粘
土配合物は十分な強度を有する陶磁器体とするためには
1200℃以上の温度での焼成が必要で、一般に900
℃程度の低温では殆ど全く焼結せず吸水性の極めて大き
い低強度の土器質のものしか製造できなかった。工業的
に最も低い温度で生産されている陶磁器としては、大形
や胡椒振りなどノベルティー用に従来白雲陶器と呼ばれ
る素地が実用されてきたが、これも焼成温度は1050
℃以上が必要であり、多くは1100℃付近で焼成さ
れ、一般に多孔質で吸水性が大きく、強度も極めて低
く、平均曲げ強度が60MPaを越えるものは全く存在
しなかった。
2. Description of the Related Art Conventionally, plastic clay compounds used for hobby pottery and the like require firing at a temperature of 1200 ° C. or higher in order to obtain a ceramic body having sufficient strength.
At a low temperature of about ℃, almost no sintering was performed, and only a low-strength earthenware having extremely large water absorption could be produced. As ceramics produced industrially at the lowest temperature, base materials conventionally called white cloud ceramics have been used for novelties such as large-sized and pepper shakers.
C. or higher was required, and most of them were fired at around 1100.degree. C. In general, there were none of those which were porous, had high water absorption, had extremely low strength, and had an average bending strength exceeding 60 MPa.

【0003】また低温焼成で十分な強度を持つ強固な陶
磁器体を得るために、低融フリットなど多量のガラス質
粉末と共に混練、成形する方法も従来一部で行われてい
たが、焼結が低温溶融ガラスの融着によるので、十分な
強度が得られないばかりか、ガラス量が多くなるために
焼成時に成形物が軟化変形して形状を保ちがたく、従っ
て焼成温度幅が極めて狭く、焼成温度が少し高くなる
と、軟化変形流動して精密な形状の製品が得られない重
大な欠点があった。また一般に焼成収縮が大きくなり、
大型の製品の製造が困難であり、また電気炉などでの焼
成では熱の伝達が輻射によるので製品の均一な加熱が難
しく、特に小型のニクロム線電気炉を用いる陶芸用など
では片焼けなど焼成収縮の不均一による変形や亀裂の発
生が避け難く、1000℃以下の低温度で、しかも比較
的短時間の焼成により、叩いて高い清音を発する程度に
強固に焼け締まった安定な陶磁器体を製造することは従
来全く不可能なことであった。
In order to obtain a strong ceramic body having sufficient strength by firing at low temperature, a method of kneading and molding with a large amount of vitreous powder such as a low-melting frit has been conventionally performed in a part of the method. Due to the fusion of the low-temperature molten glass, not only is it not possible to obtain sufficient strength, but also because the amount of glass is large, the molded product is softened and deformed during firing, making it difficult to maintain its shape. When the temperature is slightly increased, there is a serious drawback that a product having a precise shape cannot be obtained due to softening deformation flow. In general, firing shrinkage increases,
It is difficult to manufacture large products, and it is difficult to uniformly heat the products in a furnace such as an electric furnace because heat is transferred by radiation, especially for ceramics using a small nichrome electric furnace. It is difficult to avoid deformation and cracking due to uneven shrinkage, and at a low temperature of 1000 ° C or less, and by firing for a relatively short time, it produces a stable ceramic body that is firmly burnt tight enough to hit and produce a high clear sound. Doing so far has never been possible.

【0004】[0004]

【発明が解決しようとする課題】そこで本発明は、最も
一般的に陶磁器原料として用いられているカオリナイト
またはハロイサイトを主成分とするカオリンまたは粘土
と炭酸カルシウム及び珪石粉末など工業的に安価な原料
を主成分とし、その成形物が1000℃以下の比較的低
温度、すなわち簡易なニクロム線電気炉の温度で容易に
強固に焼結して平均曲げ強度が十分に高くなり、しかも
焼成収縮が比較的小さいことによって、陶芸用など比較
的急速な昇温、あるいは建築用など比較的大型の製品に
対しても変形や亀裂を生じ難くし、また焼成温度範囲が
極めて広く、1000℃以上に温度が高くなっても軟化
変形し難く、焼成方法が殆ど問題にならない、素人の陶
芸や教材に極めて適した、従来考えられなかった、全く
新しい特徴的な低温焼成陶磁器可塑性配合物を提供しよ
うとするものである。
Accordingly, the present invention relates to an industrially inexpensive raw material such as kaolin or clay mainly containing kaolinite or halloysite and calcium carbonate and silica powder, which are most commonly used as ceramic materials. The main component is that the molded product is easily and firmly sintered at a relatively low temperature of 1000 ° C or less, that is, the temperature of a simple nichrome wire electric furnace, and the average bending strength is sufficiently high. The relatively small temperature makes it difficult to generate deformation and cracks even for relatively rapid temperature rise for ceramics or for relatively large products such as for construction. Also, the firing temperature range is extremely wide, and the temperature is over 1000 ° C. It is hard to be softened and deformed even when it becomes high, the firing method is almost no problem, it is extremely suitable for amateur pottery and teaching materials, a completely new characteristic low It is intended to provide a sintered ceramic thermoplastic formulations.

【0005】[0005]

【課題を解決するための手段】このため本発明では、カ
オリナイトもしくはハロイサイトの微粒子と平均粒径が
2.0μm以下の炭酸カルシウム微粒子を、重量比で4
5:55から75:25までの割合で含有し、これに対
し平均粒径が3〜50μmの珪石粉末を20〜40wt
%を加えた3成分混合物を基本成分として90%以上含
有し、その成形体が1000℃以下の比較的低温度で焼
結して、焼成収縮率が15%以下でしかも平均曲げ強度
が60MPa以上の強固な、アノーサイト及び石英を主
成分とする結晶質の陶磁器体となり、且つ1000℃以
上でも軟化変形し難く焼成温度範囲が極めて広いことを
特徴とする。
Therefore, in the present invention, kaolinite or halloysite fine particles and calcium carbonate fine particles having an average particle diameter of 2.0 μm or less are mixed in a weight ratio of 4%.
5:55 to 75:25, and 20 to 40 wt. Of silica powder having an average particle size of 3 to 50 μm.
% Of the three-component mixture added as a basic component, and the molded body is sintered at a relatively low temperature of 1000 ° C. or less, and has a firing shrinkage of 15% or less and an average bending strength of 60 MPa or more. , A crystalline ceramic body mainly composed of anorthite and quartz, and is hardly softened and deformed even at 1000 ° C. or more, and has a very wide firing temperature range.

【0006】またカオリナイトもしくはハロイサイトの
微粒子と平均粒径が2.0μm以下の炭酸カルシウム微
粒子を、重量比で45:55から75:25までの割合
で含有し、これに対し平均粒径が3〜50μmの珪石粉
末を20〜40wt%を加えた3成分混合物を基本成分
として90%以上含有する混合物に、更に外割りで40
wt%以下の平均粒径50〜200μmの無機質結晶ま
たはガラスの粗大粉末を加えた混合物で、その成形体が
1000℃以下の比較的低温度で焼結して、焼成収縮率
が10%以下でしかも十分強固なアノーサイト及び石英
を主成分とする結晶質の陶磁器体となり、1000℃以
上でも軟化変形し難く焼成温度範囲が極めて広いことを
特徴とする。
Further, kaolinite or halloysite fine particles and calcium carbonate fine particles having an average particle size of 2.0 μm or less are contained in a weight ratio of 45:55 to 75:25, and the average particle size is 3%. A mixture containing 90% or more of a three-component mixture containing 20 to 40% by weight of silica powder of about 50 μm as a basic component is further divided into 40 parts.
It is a mixture to which a coarse powder of inorganic crystal or glass having an average particle diameter of 50 to 200 μm of not more than wt% is added, and the formed body is sintered at a relatively low temperature of not more than 1000 ° C. Moreover, it is a crystalline ceramic body mainly composed of sufficiently strong anorthite and quartz, and is hardly softened and deformed even at 1000 ° C. or more, and has a very wide firing temperature range.

【0007】[0007]

【作用】本発明者らは、十分に水簸精選したカオリナイ
トもしくはハロイサイトを主成分とする微粒カオリンま
たは粘土と炭酸カルシウム微粉末を、その化学組成が、
焼成後CaOとして15〜42%になるような配合物で
は、炭酸カルシウムの平均粒径が2.0μm以下の十分
微細の場合には、焼成過程でカオリンと炭酸カルシウム
の熱分解生成物相互間の固溶体化が進行し、800〜9
00℃の極めて狭い温度範囲で、珪酸塩の結晶析出前に
固溶体化はほぼ完了することを見出し、また、この段階
の生成物はCaOを適当量含有する非晶質微粒子の集合
状態のものであり、極めて高粘性で成形形状を維持する
と共に、顕著な低温焼結性を持ち、875℃〜950℃
で緻密化することを発見した。
The present inventors have prepared a finely divided elutriated kaolinite or halloysite-based fine kaolin or clay and calcium carbonate fine powder having the following chemical compositions:
In a composition in which the CaO content after firing is 15 to 42%, if the average particle size of calcium carbonate is sufficiently small to be 2.0 μm or less, the thermal decomposition products of kaolin and calcium carbonate may be generated during the firing process. Solid solution progresses, 800-9
In a very narrow temperature range of 00 ° C., solid solution formation was found to be almost completed before silicate crystal precipitation, and the product at this stage was an aggregate of amorphous fine particles containing an appropriate amount of CaO. Yes, with extremely high viscosity, maintaining the molded shape, with remarkable low-temperature sintering, 875 ° C to 950 ° C
I discovered that it became more compact.

【0008】図1はこの基礎実験の結果を示すもので、
ニュージーランドカオリンを粒径1.0以下に水簸精製
した高純度のハロイサイトと、高純度の石灰石を予め十
分にボールミル粉砕して平均粒径1.5μmに調整した
微粉末を種々な配合割合でスラリー状にして混合し、脱
水乾燥して組成の異なる多数の粉末状の可塑性粘土配合
物とし、乾式プレスにより1ton/cmの成形圧で
それぞれ直径約16mmのペレットを成形し、電気炉
中、900℃で1時間焼成した結果を示す。焼成後の化
学組成がCaOとして15〜42wt%となる範囲では
極めて焼結活性を示すことが分かる。比較のため、粒径
約2μmの珪石粉末をそれぞれ20%添加混合した場合
も示したが、珪石粉末の添加に対してもほぼ類似の易焼
結性が維持され、特にCaOの含有量が多い場合に広範
囲に有効となる。これらの割合は、焼成前、即ち熱分解
前の原料の配合比で表せば、微粒カオリン対炭酸カルシ
ウムの重量比が45:55から75:25までの範囲に
該当し、これが本発明の基礎的条件である。
FIG. 1 shows the result of this basic experiment.
A slurry of high-purity halloysite obtained by elutriation-purifying New Zealand kaolin to a particle size of 1.0 or less and fine powder obtained by preliminarily ball milling high-purity limestone to an average particle size of 1.5 μm in various mixing ratios And then dehydrated and dried to obtain a number of powdered plastic clay compounds having different compositions. Pellets having a diameter of about 16 mm were formed by a dry press at a molding pressure of 1 ton / cm 2 , and the pellets were placed in an electric furnace at 900.degree. The result of baking at ℃ for 1 hour is shown. It can be seen that the sintering activity is extremely high when the chemical composition after calcination is 15 to 42 wt% as CaO. For comparison, a case where 20% of silica powder having a particle size of about 2 μm was added and mixed was also shown. However, the similar sinterability was almost similar to the addition of silica powder, and the content of CaO was particularly large. It is effective in a wide range of cases. These proportions correspond to the weight ratio of fine kaolin to calcium carbonate in the range of 45:55 to 75:25 when represented by the mixing ratio of the raw materials before calcination, that is, before pyrolysis, which is the basis of the present invention. Condition.

【0009】本発明者らはさらに、上記の配合割合の組
成物は、他の無機材料の粒子と混合してもなおその焼結
促進効果を発揮して低温で強固な焼結体となり、特に珪
石の場合に優れた特徴を発揮することを見いだした。即
ち平均粒径が3〜50μmの珪石粒子は成形性、造形性
に有利となり、比較的大量に添加することにより焼成収
縮を抑制してもなお1000℃以下の温度での焼成物は
叩いて高い清音を発する程度に強固に焼け締まった安定
な陶磁器体を与えることが分かった。また珪石添加によ
り、素地の結晶化も促進され形状安定性は一層高くな
り、急速な炉温の上昇で温度分布の偏りや炉温の上り過
ぎなどに対し変形や亀裂が生じにくい、優れた造形用の
可塑性粘土となることも分かった。
The present inventors have further found that the composition having the above-mentioned compounding ratio exhibits a sintering promoting effect even when mixed with other inorganic material particles, and becomes a strong sintered body at a low temperature. It has been found that silica exhibits excellent characteristics. That is, the silica particles having an average particle diameter of 3 to 50 μm are advantageous in moldability and formability, and even when the calcination shrinkage is suppressed by adding a relatively large amount, the calcination product at a temperature of 1000 ° C. or less is still high. It turned out to give a stable ceramic body firmly baked to the extent that it produces a clear sound. In addition, the addition of silica promotes the crystallization of the base material and further enhances the shape stability, and it does not easily deform or crack due to uneven temperature distribution or excessive rise in furnace temperature due to rapid rise in furnace temperature. It also turned out to be a plastic clay for use.

【0010】焼成過程の反応は主としてカオリン分解物
と炭酸カルシウム分解物相互間に起こり、粗大な珪石粒
子は粒子表面のみが僅かに反応するに過ぎないので、易
焼結性成分としての精製カオリンと炭酸カルシウムの上
記の配合割合は、最終的な析出結晶の種類と割合を決定
するものである。珪石の存在下でも、珪石は殆ど残留
し、約900℃以上の温度で、アノーサイト、ゲーレナ
イト、オラストナイトなどの結晶が析出し、この結晶粒
子が成形物の軟化変形を防ぎ、焼成温度幅を極めて広く
するのである。一般に炭酸カルシウムの配合量が多い方
が低温焼結性が優れるが、カオリンに対し炭酸カルシウ
ムの重量割合が45:55以上に多くなると、焼結緻密
化の前にゲーレナイトの結晶が析出し易くなり焼結性が
悪くなると共に、製品の耐水性が悪くなり、実用に適さ
なくなる。またこの重量割合が75:25より少ない炭
酸カルシウムでは、非晶質中に固溶体化したCaOの量
が不足して1000℃以下での易焼結性が不十分とな
り、十分な強度を得ることが困難となる。
[0010] The reaction in the calcination process mainly occurs between the kaolin decomposed product and the calcium carbonate decomposed product, and coarse silica particles react only slightly on the particle surface. The above mixing ratio of calcium carbonate determines the type and ratio of the final precipitated crystals. Even in the presence of silica, most of the silica remains, and at a temperature of about 900 ° C. or more, crystals such as anorthite, gehlenite, and orastonite precipitate, and these crystal particles prevent the softening deformation of the molded product, and the firing temperature range Is extremely wide. In general, the larger the amount of calcium carbonate is, the better the low-temperature sinterability is. However, if the weight ratio of calcium carbonate to kaolin is more than 45:55, crystals of gehlenite tend to precipitate before densification. The sinterability deteriorates, and the water resistance of the product deteriorates, which makes the product unsuitable for practical use. Further, with calcium carbonate having a weight ratio of less than 75:25, the amount of CaO solid-solutioned in the amorphous phase is insufficient, so that the sinterability at 1000 ° C. or less is insufficient, and sufficient strength may be obtained. It will be difficult.

【0011】原料の粒径範囲は本発明の極めて重要な要
素で、カオリンまたは粘土は少なくとも平均粒径が3.
0μm以下にまで水簸精製する必要があり、特に炭酸カ
ルシウムは極度に微細であることが最も重要である。配
合物中の炭酸カルシウムの平均粒径は1.5μmの場合
には上記の配合割合の範囲では熱分解が終るころの低温
領域で総てカオリン炭酸カルシウム熱分解物相互間に十
分な反応が起こり、固溶体化が進行し、そのため易焼結
性が完全に発揮される。しかし通常陶磁器原料として使
用されるような炭酸カルシウムの平均粒径が2.5μm
以上の場合ではこの固溶体化反応は不十分で、そのため
強固な焼結体とならず、強度の低いものしか得られなか
った。すなわち炭酸カルシウムの平均粒径は2μm以下
であることが最も重要な必要条件である。
The particle size range of the raw material is a very important factor of the present invention, and kaolin or clay has at least an average particle size of 3.
It is necessary to perform elutriation purification to 0 μm or less, and it is most important that calcium carbonate is extremely fine. In the case where the average particle size of calcium carbonate in the composition is 1.5 μm, a sufficient reaction takes place between the kaolin calcium carbonate pyrolysates in the low temperature region at the time when the pyrolysis is completed within the above range of the mixing ratio. As a result, the formation of a solid solution proceeds, so that the sinterability is fully exhibited. However, the average particle size of calcium carbonate, which is usually used as a ceramic material, is 2.5 μm.
In the above case, the solid solution forming reaction was insufficient, so that a strong sintered body was not obtained, and only a material having low strength was obtained. That is, the most important requirement is that the average particle size of calcium carbonate is 2 μm or less.

【0012】一方、3〜50μmの珪石の粉末粒子は、
高強度を維持したまま焼成収縮を小さくする目的で添加
するもので、易焼結性成分の作用を大きく阻害しない必
要がある。多くの鉱物粉末を比較した結果では、珪石
(石英、SiO)が最も効果的で、最も大量に添加し
ても強度が保たれものであった。CaOが塩基性酸化物
であるので、珪石(SiO)などの酸性酸化物は比較
的多量に添加しても粒子表面の一部がCaOと反応し、
強度維持に最も好適であると考えられる。
On the other hand, 3 to 50 μm silica powder particles are
It is added for the purpose of reducing firing shrinkage while maintaining high strength, and it is necessary that the action of the easily sinterable component is not significantly impaired. As a result of comparing many mineral powders, silica stone (quartz, SiO 2 ) was the most effective, and the strength was maintained even when added in the largest amount. Since CaO is a basic oxide, a part of the particle surface reacts with CaO even if a relatively large amount of acidic oxide such as silica (SiO 2 ) is added,
It is considered to be most suitable for maintaining strength.

【0013】ここで珪石は焼成収縮率を低減できる他、
坏土の操作性が上がり、また焼成変形も小さくなり、さ
らに極めて廉価であるので原料コストを低下させる利点
がある。しかし一般に利用されるような通常のボールミ
ル粉砕による平均粒径3μm程度以下の粒子では大量の
添加によって可塑性が低下し、焼成収縮も増大する結果
となり、本発明の目的である易成形性、及び低焼成収縮
性が損なわれる。また50μm以上の粗大な珪石粉末は
素地の均質性を損ない、焼成後の陶磁器体の強度を低下
させて、強度が必要とされる場合に適さなくなる。従っ
て本発明の20〜40wt%の中粒成分としての珪石粉
末は平均粒径が3〜50μmの範囲であることが必要条
件で、5〜20μmの珪石粉末が素地の均質性、低温焼
結性及び強度を保ちながらその添加量を増大させるため
に最も適している。
Here, silica can reduce the firing shrinkage,
There is an advantage that the operability of the kneaded material is improved, the firing deformation is reduced, and the raw material cost is reduced because the clay is extremely inexpensive. However, in the case of particles having an average particle diameter of about 3 μm or less obtained by ordinary ball mill pulverization as generally used, the addition of a large amount results in a decrease in plasticity, resulting in an increase in firing shrinkage. The firing shrinkage is impaired. Also, coarse silica powder having a size of 50 μm or more impairs the homogeneity of the base material, lowers the strength of the fired ceramic body, and is not suitable when strength is required. Therefore, the silica powder as a medium-grain component of 20 to 40 wt% of the present invention is required to have an average particle size in the range of 3 to 50 μm. It is most suitable for increasing the amount of addition while maintaining strength.

【0014】カオリンまたは粘土、炭酸カルシウム及び
珪石粉末の粒度を限定した3成分混合物は、本発明の基
本成分で、これに素地を着色するための陶磁器顔料や軽
量化のためのバルーンの添加など、通常の陶磁器技法で
用いられる各種添加剤などを添加混合することは勿論可
能であるが、60MPa以上の曲げ強度を有する陶磁器
体を得るためには、この基本成分が少なくとも全体の9
0%以上を占めることが必要である。
The three-component mixture in which the particle size of kaolin or clay, calcium carbonate and quartzite powder is limited is a basic component of the present invention, and includes the addition of a ceramic pigment for coloring the substrate and a balloon for reducing the weight. Of course, it is possible to add and mix various additives used in ordinary ceramic techniques, but in order to obtain a ceramic body having a bending strength of 60 MPa or more, at least 9 of the basic components are required.
It is necessary to account for 0% or more.

【0015】しかしながら、本発明の可塑性粘土配合物
は2μm以下の炭酸カルシウムを比較的大量に含有する
ことを特徴とするので、手作業的な陶芸用には可塑性、
成形性に幾らか不十分の点がある。本発明の3成分混合
物からの成形物は平均曲げ強度が60MPa以上で、通
常の吸水性のある陶器に比べて極めて高強度であるの
で、実用上は強度を幾らか犠牲にしても、他の性質を改
善することが容易である。特に素人の陶芸用では、一層
焼成収縮率を小さくして形状安定性を重視する場合や、
ろくろ成形などの作業性が重要となる場合があり、その
ような場合には、上記の配合物に対し、更に50〜20
0μmの粗大粒子を外割で40wt%まで添加混合する
ことができる。即ちカオリンまたは粘土、炭酸カルシウ
ム及び珪石粉末の粒度を限定した3成分混合物は、適当
な粗大粒子に対して結合材としても十分な効果を発揮す
るのである。
However, the plastic clay composition of the present invention is characterized by containing a relatively large amount of calcium carbonate having a particle size of 2 μm or less, so that the plastic clay is not suitable for manual pottery.
There are some deficiencies in moldability. The molded product from the three-component mixture of the present invention has an average bending strength of 60 MPa or more, which is extremely high as compared with ordinary water-absorbing porcelain. It is easy to improve the properties. Especially for amateur pottery, if the firing shrinkage ratio is further reduced and emphasis is placed on shape stability,
Workability such as potter's wheel molding may be important, and in such a case, 50 to 20 more
Coarse particles of 0 μm can be added and mixed up to 40% by weight. That is, the three-component mixture in which the particle size of kaolin or clay, calcium carbonate, and silica stone powder is limited, exerts a sufficient effect as a binder on appropriate coarse particles.

【0016】この粗大粒子としては、本発明の中粒以下
の3成分混合物から成るマトリックス中に介在して、強
度を著しく下げないものが適しており、実験の結果では
珪石粉末、ガラスビーズ、アノーサイト系セルベンなど
の粗粒子が経済的、実用的に使用できる。これらは何れ
もマトリックスと親和性が高く、粒界の接合強度を維持
して十分実用に耐える強度を持つ陶磁器体と成り、ろく
ろ成形が可能で、しかも焼成収縮を10%以内に小さく
抑えることができるようになる。従って比較的急速な昇
温、比較的温度分布の悪い電気炉中でも、成形物の変形
や亀裂発生が全く起こらず、大型の成形物も比較的容易
に低温度で焼成することが可能となるのである。
As the coarse particles, those which intervene in the matrix of the present invention comprising a mixture of three or less medium particles and which do not significantly reduce the strength are suitable. Coarse particles such as site-based selven can be used economically and practically. All of these have a high affinity with the matrix, maintain a bonding strength at the grain boundary, and become a ceramic body having sufficient strength for practical use, can be potter's wheel formed, and can suppress firing shrinkage to within 10%. become able to. Therefore, even in an electric furnace having a relatively rapid temperature rise and a relatively poor temperature distribution, no deformation or cracking of the molded product occurs at all, and a large molded product can be relatively easily fired at a low temperature. is there.

【0017】従来最も一般的な陶磁器は長石質であり、
焼結は長石の低温度溶融性に依存するが、1000℃以
下では全く焼結効果を発揮することができない。また低
温度で溶融するガラス粉末は一般に陶磁器体の低温焼結
に極めて顕著な効果があるが、前述したように、原理的
には液相の形成によって焼結緻密化を促進するものであ
るため、緻密化過程でその液相によって成形体が軟化変
形し、形状の維持が極めて困難となる重大な欠点があ
る。これらに対し、本発明における低温焼結は、磁器
化、即ちビトリフィケーションなどとは異なる機構によ
るので、焼成後陶磁器体は殆ど結晶質のみとなることが
特徴である。即ち低温焼結のための微粒成分の焼結緻密
化は液相の形成を必要としない。従って、珪石粉末の添
加の他に更に少量のガラス粉末を軟化変形しない程度の
量を添加することは、焼成時の形状安定性を大きく損な
うことなく焼成温度を下げる効果がある。なお、従来の
陶磁器素地にガラスや珪石の粗大な粉末粒子を混用する
と、前述したようにガラスにより軟化変形する欠点の上
に、石英粒子の表面に三日月形の微小亀裂が発生して強
度を著しく低下させる欠点もあったが、本発明では微粒
成分の焼結が焼結強化機構となるので、電子顕微鏡観察
によってもこのような亀裂は観察されなかった。、
Conventionally, the most common ceramic is feldspar-like,
Sintering depends on the low-temperature fusibility of feldspar, but no sintering effect can be exhibited at 1000 ° C or lower. In addition, glass powder that melts at a low temperature generally has a remarkable effect on low-temperature sintering of ceramic bodies, but as described above, in principle, it promotes sintering and densification by forming a liquid phase. In addition, there is a serious drawback in that the compact is softened and deformed by the liquid phase during the densification process, and it is extremely difficult to maintain the shape. On the other hand, the low-temperature sintering in the present invention is based on a mechanism different from porcelain formation, that is, vitrification, and therefore, it is characterized in that the ceramic body after firing is almost crystalline only. That is, sintering and densification of the fine-grained component for low-temperature sintering does not require the formation of a liquid phase. Therefore, in addition to the addition of the silica powder, the addition of a small amount of glass powder to such an extent that the glass powder does not undergo softening deformation has the effect of lowering the firing temperature without significantly impairing the shape stability during firing. In addition, when coarse powder particles of glass or silica are mixed with the conventional ceramic body, the crescent-shaped micro-cracks are generated on the surface of the quartz particles due to the softening deformation caused by glass as described above, and the strength is significantly increased. Although there was a disadvantage of lowering, the sintering of the fine-grained component became a sintering strengthening mechanism in the present invention, and thus such cracks were not observed by electron microscope observation. ,

【0018】以下、実験室的な実施例に従って、本発明
の製造方法をさらに詳細に説明するが、本発明はこれに
限定されるものではない。
Hereinafter, the production method of the present invention will be described in more detail with reference to laboratory examples, but the present invention is not limited thereto.

【0019】[0019]

【実施例1】原料カオリンとしてニュージーランドカオ
リンを使用した。これはハロイサイトを主成分とする比
較的高純度のカオリンで、その化学組成は重量%で、S
iO:49.78、Al:35.72、Fe
:0.26、TiO:0.12、CaO:tr、
MgO:tr、KO:tr、NaO:0.06、灼
熱減量:14.05であり、理想的なカオリナイト組成
よりいくらかSiOが多いものである。このカオリン
に対し平均粒径が1.5μmとなるように予め微粉砕し
た石灰石(化学組成はほぼ100wt%CaCO)、
及び平均粒径が約10μmの珪石(石英)粉末を使用
し、図2に示すようなカオリン、炭酸カルシウム及び珪
石の三角座標の各点に相当する配合比で配合し、それぞ
れ脱水混練し、練り土状の可塑性粘土配合物を得た。こ
れらの粘土配合物を用い、押し出し成型機により直径
2.0mmの細棒状試料を成形し、ニクロム線電気炉を
用い、空気中950℃で1時間焼成した。得られた焼結
体について、その平均曲げ強度が60MPa以上ではあ
るが焼成収縮率が15%以上となるものを○印で、また
焼成収縮率が15%以下であるが平均曲げ強度が60M
Pa以下となってしまった試料を△印で示し、焼成収縮
率が15%以下で且つ平均まげ強度が60MPa以上に
なった試料は●印で示した。図2で斜線を施した部分が
本発明の組成領域である。
Example 1 New Zealand kaolin was used as a raw material kaolin. This is a relatively high-purity kaolin containing halloysite as a main component, its chemical composition is% by weight,
iO 2 : 49.78, Al 2 O 3 : 35.72, Fe 2
O 3 : 0.26, TiO 2 : 0.12, CaO: tr,
MgO: tr, K 2 O: tr, Na 2 O: 0.06, loss on ignition: 14.05, which is somewhat higher in SiO 2 than the ideal kaolinite composition. Limestone (chemical composition is almost 100 wt% CaCO 3 ) finely pulverized in advance so that the average particle size of the kaolin is 1.5 μm,
Using silica (quartz) powder having an average particle size of about 10 μm, the components are blended in a mixing ratio corresponding to each point of triangular coordinates of kaolin, calcium carbonate, and silica as shown in FIG. An earthy plastic clay formulation was obtained. Using these clay compounds, a thin rod-shaped sample having a diameter of 2.0 mm was formed by an extruder and fired at 950 ° C. for 1 hour in air using a nichrome wire electric furnace. Regarding the obtained sintered body, those whose average bending strength is 60 MPa or more but firing shrinkage is 15% or more are marked with a circle, and firing shrinkage is 15% or less but the average bending strength is 60M.
Samples having a Pa or less were indicated by a mark, and samples having a firing shrinkage of 15% or less and an average brilliance of 60 MPa or more were indicated by a mark. The shaded portion in FIG. 2 is the composition region of the present invention.

【0020】[0020]

【実施例2】実施例1と同様のニュージーランドカオリ
ン及び炭酸カルシウムを使用し、カオリンと炭酸カルシ
ウムの配合割合を60:40(無水カオリンとCaOの
重量割合で70:30に相当する)とになるように配合
し、さらにこれに対し平均粒径約10μmの珪石粉末
を、それぞれ5〜50wt%を配合し、それぞれスラリ
ー状とした後十分超音波混合を行い、脱水混練し、乾燥
して組成の異なる多数の粉末状の可塑性粘土配合物を得
た。これらの粘土配合物を用い、乾式プレスにより1t
on/kmの成形圧でそれぞれ直径約16mmのペレ
ットを成形し、電気炉中、1000℃で1時間焼成し
た。
Example 2 Using the same New Zealand kaolin and calcium carbonate as in Example 1, the mixing ratio of kaolin and calcium carbonate is 60:40 (corresponding to 70:30 by weight ratio of anhydrous kaolin and CaO). Then, 5 to 50 wt% of silica powder having an average particle size of about 10 μm is added to each of them, and each is made into a slurry, and then sufficiently ultrasonic-mixed, dewatered and kneaded, and dried to obtain a composition. A number of different powdered plastic clay formulations were obtained. Using these clay compounds, dry press to 1t
Pellets each having a diameter of about 16 mm were formed at a forming pressure of on / km 2 and fired at 1000 ° C. for 1 hour in an electric furnace.

【0021】得られた焼結体の焼成収縮は、図3に示す
ように、珪石を添加しないものは20%以上も収縮し、
寸法形状などの制御が困難となって製造工程上問題とな
るほど収縮率が大きいが、珪石配合量の増加とともに顕
著に減少し、20wt%の添加で一般的な磁器製品と殆
ど同程度になり、それ以上の添加では収縮率が15%以
下となって形状安定性が増大することが分かる。
The firing shrinkage of the obtained sintered body, as shown in FIG.
Although the shrinkage rate is so large that it becomes difficult to control the dimensions and shape, which is a problem in the manufacturing process, it decreases remarkably with the increase in the silica content, and becomes almost the same as general porcelain products with the addition of 20 wt%. It can be seen that the addition of more than this results in a shrinkage of 15% or less and an increase in shape stability.

【0022】また上記の珪石添加粘土配合物の練土から
押し出し成形によりそれぞれ直径約5mmの丸棒を押出
し成形し、長さ50mmの試料棒を作成し、耐火物間に
架橋状態で静置し、950℃及び1000℃で1時間焼
成した。得られた焼結体の架橋の垂れ下がりの程度を図
4に示す。図4から、珪石粉末の添加が20wt%を越
えると、焼結体の1000℃で殆ど全く軟化変形を生じ
なくなることが分かる。これは珪石が骨材となるだけで
なく、試料のX線回折の結果から非晶質部分の結晶化が
珪石の存在で促進されるためと考えられる。
A round rod having a diameter of about 5 mm is extruded from the clay of the above-mentioned silica-added clay composition by extrusion, and a sample rod having a length of 50 mm is prepared. , 950 ° C and 1000 ° C for 1 hour. FIG. 4 shows the degree of sagging of the bridge in the obtained sintered body. From FIG. 4, it can be seen that if the addition of the silica powder exceeds 20 wt%, the sintered body hardly undergoes any softening deformation at 1000 ° C. It is considered that this is because not only silica becomes an aggregate but also the crystallization of the amorphous portion is promoted by the presence of the silica in the result of the X-ray diffraction of the sample.

【0023】[0023]

【実施例3】実施例2と同様のニュージーランドカオリ
ン及び炭酸カルシウムを60:40とになるように配合
し、さらにこれに対し平均粒径約1.0μm〜50μ
m、の粒度の異なる5種類の珪石粉末を、それぞれ33
wt%を配合し、それぞれスラリー状とした後十分超音
波混合を行い、脱水混練して多数の可塑性粘土配合物の
練土を得た。これらの各粘土配合物を用い、押し出し成
形によりそれぞれ直径約2mmの丸棒を押出し成形し、
空気中、900℃及び1000℃でそれぞれ1時間焼成
した。
Example 3 The same New Zealand kaolin and calcium carbonate as in Example 2 were blended at a ratio of 60:40, and the average particle size was about 1.0 μm to 50 μm.
m, 5 types of silica powder having different particle sizes
wt%, each was made into a slurry, and then sufficiently subjected to ultrasonic mixing and dewatered and kneaded to obtain a large number of clays of a plastic clay compound. Using each of these clay compounds, a round bar with a diameter of about 2 mm was extruded by extrusion,
Each was fired at 900 ° C. and 1000 ° C. for 1 hour in air.

【0024】それらの焼成収縮率及び平均曲げ強度の測
定を図5に示した。珪石の平均粒径が2μm以下の微粒
子となると、焼成温度が900℃程度では十分焼結が進
行せず、焼成収縮率は小さいが平均曲げ強度が不十分と
なり、また焼成温度が1000℃以上で焼成収縮が15
%を越えるようになる。また珪石の平均粒径が50μm
以上に粗大となると、平均曲げ強度が次第に低下するこ
とが分かる。
FIG. 5 shows the measurement of the firing shrinkage and the average bending strength. When the average particle diameter of silica is 2 μm or less, sintering does not proceed sufficiently at a sintering temperature of about 900 ° C., the sintering shrinkage is small, but the average bending strength is insufficient. Firing shrinkage is 15
%. The average particle size of the silica is 50 μm
It can be seen that the average bending strength gradually decreases with the coarseness.

【0025】[0025]

【実施例4】本発明を更に実際的に行った実施例では、
市販の上質の木節粘土、石灰石、及び珪石を主原料と
し、一部着色用の陶磁器顔料などを使用した。石灰石は
平均粒径が2μm以下となるように予め微粉砕したもの
を用い、また珪石粉末は市販品で平均粒径が約200μ
mの粉砕物を直接用い、それぞれ表1に示した重量比で
配合し、珪石の平均粒径が3μm以下に小さくならない
ように比較的短時間のボールミル処理でそれぞれ6時間
粉砕混合し、種々のカラー粘土を調整した。この短時間
のボールミル混合により珪石の粒径は研磨面の電子顕微
鏡観察から、3〜15μm程度となっていた。
Embodiment 4 In a further practical embodiment of the present invention,
The main raw materials are commercially available high quality Kibushi clay, limestone, and silica stone, and some ceramic pigments for coloring are used. Limestone used is finely ground in advance so that the average particle size is 2 μm or less. Silica powder is a commercially available product with an average particle size of about 200 μm.
m were directly used, blended in the respective weight ratios shown in Table 1, and crushed and mixed for 6 hours by ball milling in a relatively short time so that the average particle diameter of silica was not reduced to 3 μm or less. Adjusted color clay. By the short-time ball mill mixing, the particle size of the silica was about 3 to 15 μm from observation of the polished surface with an electron microscope.

【0026】[0026]

【表1】 [Table 1]

【0027】表に示した試料は、総て練り土状態でろく
ろ成形ができる程度に十分な可塑性を持ち、可塑性成形
をした器物は総て小型のニクロム線電気炉中900℃で
3時間程度の急速な昇温で変形や亀裂を生ずることなく
強固な陶磁器体とすることができた。焼成温度が低いた
め、陶磁器顔料は反応することなく殆どそのまま残留す
るので総てパステルカラー調の美麗な着色陶磁器体とな
り、またD試料とE試料を混合すれば、ピンクと紺青の
2種類の顔料の混合色がそのまま保たれて紫色の陶磁器
体が得られるなどの特徴が見られた。また当然のことな
がらこれらは総て透明なフリット釉を施こして施釉陶器
とすることができた。このうち、A、B及びC試料の練
土に対し、押し出し成形によりそれぞれ直径約2mmの
丸棒を押出し成形し、空気中、850〜1100℃でそ
れぞれ1時間焼成した場合の焼成収縮率、及び平均曲げ
強度の測定結果を図6に示した。比較のため、現在生産
されている低温焼成の白雲陶器の素地土についても同様
の試験を行い図中に示した。現状の白雲陶器に比べて、
極めて優れた特徴が明りょうであり、強度も一般長石質
磁器の強度を上回ることが明らかに示されている。
All of the samples shown in the table have sufficient plasticity to be able to perform potter's wheel molding in the state of the kneaded soil, and all of the plastic molded articles are kept at 900 ° C. for about 3 hours in a small nichrome wire electric furnace. It was possible to obtain a strong ceramic body without deformation or cracking due to rapid temperature rise. Since the firing temperature is low, the ceramic pigment remains almost unchanged without reacting, so that all become beautiful pastel-colored colored ceramic bodies. If D sample and E sample are mixed, two kinds of pigments, pink and navy blue, are obtained. The characteristics such as a purple ceramic body can be obtained by maintaining the mixed color of as is. Naturally, all of these could be made into glazed pottery by applying transparent frit glaze. Among them, for the kneaded material of the A, B and C samples, a round bar having a diameter of about 2 mm was extruded by extrusion, respectively, and fired shrinkage rate when fired in air at 850 to 1100 ° C. for 1 hour, respectively, and The measurement results of the average bending strength are shown in FIG. For comparison, a similar test was carried out for the low-temperature fired Baiyun pottery base material that is currently being produced, and the results are shown in the figure. Compared to the current Baiyun pottery,
The outstanding features are evident, and the strength is clearly shown to exceed that of general feldspathic porcelain.

【0028】なお、他の試料についても空気中、850
〜1100℃でそれぞれ1時間焼成し、焼成収縮率、及
び吸水率を測定した結果を図7に示した。これらの試料
は総て、珪石などの粗大粒子の混入によって、若干強度
を犠牲にするが実用に耐える十分な強度を保有したま
ま、可塑性、作業性や焼成収縮などを容易に改善するこ
とができる。図8に試料Dに対し、直径約100μmの
市販のガラスビーズを10、20及び40%添加混合し
十分均一にした後、指で細い棒状に可塑性成形し、90
0℃で1時間焼成した場合の焼成収縮率を示した。一般
に粗大粒子の混入によって吸水率は増大し、焼成収縮率
が低下し、焼成時の形状安定性は更に向上することは当
然であるが、この場合にも強度の維持は、カオリンまた
は粘土、炭酸カルシウム及び珪石粉末の粒度を限定した
3成分混合物から成る基本成分によるもので、何れも叩
けば高い清音を発し、十分実用に耐える陶磁器体と成っ
た。
The other samples were also measured in air at 850.
Each was fired at 〜1100 ° C. for one hour, and the firing shrinkage and the water absorption were measured. The results are shown in FIG. In all of these samples, plasticity, workability, firing shrinkage, etc. can be easily improved while retaining sufficient strength for practical use while sacrificing some strength by mixing coarse particles such as silica stone. . In FIG. 8, commercially available glass beads having a diameter of about 100 μm are added to the sample D, and the mixture is made sufficiently uniform by adding 10, 20 and 40%.
The firing shrinkage when firing at 0 ° C. for 1 hour is shown. In general, it is natural that the water absorption rate increases due to the incorporation of coarse particles, the firing shrinkage rate decreases, and the shape stability during firing further improves.However, in this case, the strength is maintained by kaolin or clay or carbonate. It is based on a basic component consisting of a three-component mixture in which the particle size of calcium and silica powder is limited, and all of them produce a high clear sound when hit, resulting in a ceramic body that can withstand practical use.

【0029】[0029]

【発明の効果】従来、趣味の陶芸などに用いる可塑性粘
土は一般にその焼成温度は1200℃以上が必要で、1
000℃以下の温度では、殆ど全く緻密化せず吸水性の
ある土器質のものしか得られなかったものを、新しい発
想により、最も一般的に陶磁器原料として用いられてい
るカオリンまたは粘土と炭酸カルシウムなど工業的に安
価な原料を主成分とし、これに適宜必要な添加剤を配合
して、可塑性成形性に優れ、1000℃以下の極めて低
温度、すなわち簡易なニクロム線電気炉の温度で、その
成形形状を保ったまま吸水率の比較的少ない強固な陶磁
器体とすることができる可塑性坏土を提供する。従っ
て、低温焼成によるカラフルな着色性や、焼成温度が上
がり過ぎたり、施釉など他の目的のため高温処理が必要
の場合にも、焼成温度幅の広さなど専門知識を要しない
焼成の簡易さなどの優れた作業性は陶芸用として極めて
有用であるとともに、銀やニッケルなど金属材料と組み
合わせて同時焼成もでき、建築用としても工業的にも全
く新しい製品を可能とするものである。
In the past, plastic clays used for hobby ceramics and the like generally require a firing temperature of 1200 ° C. or higher.
At a temperature of 000 ° C or less, it was possible to obtain only earthenware which had almost no densification at all and had water absorption. By a new idea, kaolin or clay and calcium carbonate, which are most commonly used as ceramic materials, were used. Ingredients such as industrially inexpensive raw materials as the main component, the necessary additives are blended as appropriate, excellent plastic moldability, very low temperature of 1000 ℃ or less, that is, the temperature of a simple nichrome wire electric furnace, Provided is a plastic clay capable of forming a strong ceramic body having a relatively small water absorption rate while maintaining a formed shape. Therefore, even if the colorability is low due to low temperature firing, the firing temperature is too high, or if high temperature treatment is required for other purposes such as glazing, the simplification of firing does not require special knowledge such as a wide firing temperature range. Such excellent workability is extremely useful for pottery purposes, and can be simultaneously fired in combination with a metal material such as silver or nickel, thereby enabling a completely new product both for building use and industrially.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基礎となるカオリンと微粒子炭酸カル
シウムの焼結活性な組成範囲を示す配合比と900℃焼
成後の見掛け気孔率の関係図。
FIG. 1 is a diagram showing the relationship between the compounding ratio indicating the composition range of sintering activity of kaolin and fine particle calcium carbonate, which are the basis of the present invention, and the apparent porosity after firing at 900 ° C.

【図2】本発明の組成範囲と950℃焼成後の焼成収縮
率及び平均曲げ強度の関係図。
FIG. 2 is a diagram showing the relationship between the composition range of the present invention, the firing shrinkage after firing at 950 ° C., and the average bending strength.

【図3】本発明の珪石配合量を変えた各種試料の900
℃各1時間焼成物の焼成収縮率の関係図。
FIG. 3 shows 900 samples of various samples of the present invention having different amounts of silica mixed therein.
FIG. 4 is a relationship diagram of a firing shrinkage rate of a fired product at 1 ° C. for 1 hour.

【図4】本発明の珪石配合量を変えた各種試料の900
℃各1時間焼成物の焼成軟化変形率の関係図。
FIG. 4 shows 900 samples of various samples of the present invention with different amounts of silica mixed therein.
FIG. 3 is a relationship diagram of a firing softening deformation rate of a fired product at 1 ° C. for 1 hour.

【図5】本発明の種々な平均粒度の珪石粉末を用いた場
合、900℃及び1000℃で各1時間焼成物の珪石粒
径に対する焼成収縮率、及び平均曲げ強度の関係図。
FIG. 5 is a graph showing the relationship between the firing shrinkage ratio and the average bending strength of silica gel powders of various average particle sizes according to the present invention, which are fired at 900 ° C. and 1000 ° C. for 1 hour each for the silica particle size.

【図6】本発明の応用例としてカラー粘土とした実施例FIG. 6 is an example in which color clay is used as an application example of the present invention.

【表1】の配合物の850℃、900℃、1000℃、
及び1100℃、各1時間焼成物の焼成収縮率、及び平
均曲げ強度の関係図。
850 ° C., 900 ° C., 1000 ° C.,
FIG. 1 is a diagram showing the relationship between the firing shrinkage of a fired product at 1100 ° C. for 1 hour and the average bending strength.

【図7】本発明の応用例としてカラー粘土とした実施例FIG. 7 is an example in which color clay is used as an application example of the present invention.

【表1】の配合物の850℃、900℃、1000℃、
及び1100℃、各1時間焼成物の焼成収縮率、及び吸
水率の関係図。
850 ° C., 900 ° C., 1000 ° C.,
And FIG. 1 is a relationship diagram of a firing shrinkage rate of a fired product for 1 hour at 1100 ° C. and a water absorption rate.

【図8】本発明の応用例としてカラー粘土とした実施例FIG. 8 shows an embodiment in which color clay is used as an application example of the present invention.

【表1】のD試料に対し、直径100μmのガラスビー
ズを、10、20および40wt%添加混合した配合物
の900℃1時間焼成した場合の焼成収縮率の関係図。
FIG. 4 is a graph showing the relationship between firing shrinkage ratios when a mixture obtained by adding 10, 20, and 40 wt% of glass beads having a diameter of 100 μm to the sample D in Table 1 was fired at 900 ° C. for 1 hour.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】カオリナイトもしくはハロイサイトの微粒
子と平均粒径が2.0μm以下の炭酸カルシウム微粒子
を、重量比で45:55から75:25までの割合で含
有し、これに対し平均粒径が3〜50μmの珪石粉末を
20〜40wt%を加えた3成分混合物を基本成分とし
て90%以上含有し、その成形体が1000℃以下の比
較的低温度で焼結して、焼成収縮率が15%以下でしか
も平均曲げ強度が60MPa以上の強固な、アノーサイ
ト及び石英を主成分とする結晶質の陶磁器体となり、且
つ1000℃以上でも軟化変形し難く焼成温度範囲が極
めて広いことを特徴とする低温焼成陶磁器用可塑性粘土
配合物。
(1) The composition contains kaolinite or halloysite fine particles and calcium carbonate fine particles having an average particle diameter of 2.0 μm or less in a weight ratio of 45:55 to 75:25. It contains 90% or more as a basic component of a ternary mixture to which 20 to 40% by weight of silica powder of 3 to 50 μm is added. % Or less, and has a strong average bending strength of 60 MPa or more, is a crystalline ceramic body mainly composed of anorthite and quartz, and is hardly softened and deformed even at 1000 ° C. or more, and has a very wide firing temperature range. Low temperature firing plastic clay compound for porcelain.
【請求項2】カオリナイトもしくはハロイサイトの微粒
子と平均粒径が2.0μm以下の炭酸カルシウム微粒子
を、重量比で45:55から75:25までの割合で含
有し、これに対し平均粒径が3〜50μmの珪石粉末を
20〜40wt%を加えた3成分混合物を基本成分とし
て90%以上含有する混合物に、更に外割りで40wt
%以下の平均粒径50〜200μmの無機質結晶または
ガラスの粗大粉末を加えた混合物で、その成形体が10
00℃以下の比較的低温度で焼結して、焼成収縮率が1
0%以下でしかも十分強固なアノーサイト及び石英を主
成分とする結晶質の陶磁器体となり、1000℃以上で
も軟化変形し難く焼成温度範囲が極めて広いことを特徴
とする低温焼成陶磁器用可塑性粘土配合物。
2. A composition comprising kaolinite or halloysite microparticles and calcium carbonate microparticles having an average particle size of 2.0 μm or less in a weight ratio of 45:55 to 75:25. A mixture containing 90% or more of a three-component mixture obtained by adding 20 to 40% by weight of silica powder of 3 to 50 μm as a basic component is further divided into 40% by weight.
% Or less of a coarse powder of inorganic crystals or glass having an average particle size of 50 to 200 μm or less.
Sintering at a relatively low temperature of 00 ° C or less, with a firing shrinkage of 1
A plastic porcelain for low-temperature firing porcelain, characterized in that it is a crystalline porcelain body mainly composed of anorthite and quartz which is not more than 0% and is sufficiently strong. Stuff.
JP34846397A 1997-11-11 1997-11-11 Plastic clay formulation for low-temperature baked pottery Pending JPH11147753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34846397A JPH11147753A (en) 1997-11-11 1997-11-11 Plastic clay formulation for low-temperature baked pottery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34846397A JPH11147753A (en) 1997-11-11 1997-11-11 Plastic clay formulation for low-temperature baked pottery

Publications (1)

Publication Number Publication Date
JPH11147753A true JPH11147753A (en) 1999-06-02

Family

ID=18397185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34846397A Pending JPH11147753A (en) 1997-11-11 1997-11-11 Plastic clay formulation for low-temperature baked pottery

Country Status (1)

Country Link
JP (1) JPH11147753A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020037504A (en) * 2018-09-05 2020-03-12 久美子 藤原 Manufacturing method of ornament, ornament, and composition
EP3919087A1 (en) * 2020-06-03 2021-12-08 Opera IP Ltd. Process for making a rod-like ceramic diffuser and rod-like ceramic diffuser for diffusing a volatile substance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020037504A (en) * 2018-09-05 2020-03-12 久美子 藤原 Manufacturing method of ornament, ornament, and composition
EP3919087A1 (en) * 2020-06-03 2021-12-08 Opera IP Ltd. Process for making a rod-like ceramic diffuser and rod-like ceramic diffuser for diffusing a volatile substance

Similar Documents

Publication Publication Date Title
CA2201937A1 (en) Synthetic clay for ceramics and process for preparing the same
CN114096497A (en) Artificial stone comprising synthetic silicate particles
CN108191235A (en) A kind of Bone China Glaze, glaze slip and preparation method
KR101417587B1 (en) Composition for Ceramic Ware with High Heat-Resistance and Thermal Shock Resistance and Method For Preparing the Ceramic Ware Using the Composition
JPS6156184B2 (en)
JPH11147753A (en) Plastic clay formulation for low-temperature baked pottery
JP3094226B2 (en) Crystallized glass composite ceramics and method for producing the same
JPH07237958A (en) High-strength porcelain and production thereof
JPH11157912A (en) Production of low-temperature baked rigid and high-strength earthenware
WO1995009820A1 (en) Body containing deposited corundum and process for producing the body
JP2582730B2 (en) Manufacturing method of ceramic molded products
US6251814B1 (en) Light-weight pottery article
JPH10226561A (en) Production of low-temperature calcined argil and its ceramic
CN1096999A (en) Olivine and iolite porcelain
KR20190088162A (en) White Ceramic Composition Comprising Powder from Amphibole and Manufacturing Method thereof
KR101819149B1 (en) Composition for functional ceramic ware using pumice and method for calcining thereof
JP3949408B2 (en) Silica brick for hot repair and its manufacturing method
JPH01192761A (en) Ingot azs refractory composition
KR930011258B1 (en) Method of manufacturing artificial marble
JPH09227223A (en) Production of free-cutting combined ceramics
JPH10245260A (en) Low-temperature baking color cray
JPH0224779B2 (en)
KR101265944B1 (en) Composite for ceramic ware including oxide pigment and manufacturing method of ceramic ware using the pigment
KR101930299B1 (en) Colored brick composition using maganese coloring agent and method for producing colored bricks
JP2652006B2 (en) Ceramic molded product and its manufacturing method