JPH0224779B2 - - Google Patents

Info

Publication number
JPH0224779B2
JPH0224779B2 JP15817381A JP15817381A JPH0224779B2 JP H0224779 B2 JPH0224779 B2 JP H0224779B2 JP 15817381 A JP15817381 A JP 15817381A JP 15817381 A JP15817381 A JP 15817381A JP H0224779 B2 JPH0224779 B2 JP H0224779B2
Authority
JP
Japan
Prior art keywords
sintered body
less
silica glass
fused silica
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15817381A
Other languages
Japanese (ja)
Other versions
JPS5860666A (en
Inventor
Taizo Kato
Toshihiro Morishita
Motohiro Goto
Takashi Mimori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP15817381A priority Critical patent/JPS5860666A/en
Publication of JPS5860666A publication Critical patent/JPS5860666A/en
Publication of JPH0224779B2 publication Critical patent/JPH0224779B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は溶融石英ガラス粉末を原料とした低気
孔率と低熱膨脹率を有する新規な組成の焼結体の
製造方法に係るものである。 石英ガラス製品は一般に熱膨脹係数が小さい
(5×10-7/℃)、化学的に不活性(特に耐酸性が
良い)である、軟化温度が高い、紫外及び可視領
域における透過率が高い等の特徴を有し、各種理
化学器具をはじめ、レンズ、プリズム、耐熱用容
器等に広く用いられている。 しかしながら、これらの製品は溶融成形加工に
際し、かなりの高温を要し、これが為にかなり高
価であるのみならず、成形性が悪いため大量生産
には不向きであるという欠点を有している。 これに対し、溶融石英ガラスの粉砕物を主原料
とする焼結体は通常の耐火物と同じ製法で得られ
る為、低熱膨脹等の特質を生かした工業製品とし
て古くから種々の用途に利用されている。 従来におけるこのような焼結体は、結合部にア
ルミナセメントやコロイダルシリカを含有する
為、低熱膨脹の製品は得られるが、低気孔率を得
ることが困難であり、他にカオリン等の粘土を結
合部に用いた焼結体も知られているが、これは比
較的低気孔率製品が得られる反面、粘土中のアル
カリ成分による石英ガラスの失透(結晶化)が大
きな欠点となつている。 溶融石英ガラスの焼結体中に含まれるアルカリ
成分は、特に1000℃付近において石英ガラスの失
透(結晶化)を生じさせる。即ち石英ガラスがβ
−クリストバライトに結晶化する為で、この部分
は失透していない石英ガラス部分に比して熱膨脹
係数が大きく、この熱膨脹係数の差により熱応力
を生じて焼成時や使用時に製品に亀裂が生じる。 又、β−クリストバライトは240℃付近におい
て、低温型のα−クリストバライトに転移し、こ
れに伴い6%もの体積減少があるので、やはり亀
裂を生じる原因となる。 更に、焼結性の向上の為に超微粉末を少量配合
したり、硝酸や燐酸等の酸やこれらの塩類を他の
結合剤と共に配合することも種々提案されている
が、何れも低気孔率製品とはなり難いのが実情で
ある。 本発明者はこれらの点に鑑み、低気孔率と低熱
膨脹率とを併せ持つた溶融石英ガラス焼結体を得
ることを目的として種々研究、検討した結果、特
定の溶融石英ガラス粉末を用い、且つ硼酸等の添
加剤を特定割合含有する特定組成の原料を用いて
焼結し、焼結体とすることにより、前記目的を達
成し得ることを見出した。 かくして、本発明は、実質的に100メツシユ以
下の溶融石英ガラス粉末にB2O3成分を重量%で
1〜25%加えて焼結し、焼結体のSiO2とB2O3
含量が99%を超える割合であり、アルカリ成分は
R2Oとして0.1%に満たない割合であり、かつ0
〜700℃における熱膨脹係数を15×10-7/℃以下、
気孔率を7%以下とすることを特徴とする緻密質
の溶融石英ガラス焼結体の製造方法を提供するに
ある。 本発明において、焼結体の原料となる溶融石英
ガラス粉末は、その粒度が100メツシユ以下であ
ることが必要である。 粒度が100メツシユより粗い場合には、焼結体
中に含まれるB2O3成分が石英ガラス粉末と不均
一に反応する恐れがあり、このような状態になる
とB2O3成分が全体として所定量添加されても本
発明の目的を達成し得ない。 このような理由から溶融石英ガラス粉末の粒度
は特に望ましくはその過半量以上が300メツシユ
以下の超微粉を用いる。 又、焼結中に含まれるB2O3成分は1〜25重量
%とすることが必要である。含有量が前記範囲に
満たない場合には緻密な焼結体が実質的に得られ
ず、逆に前記範囲を超える場合には焼結体が軟化
し易く、高温用途に適さないものとなるので何れ
も不適当である。 そしてB2O3成分の含有量として、4〜15重量
%を採用すると特に好ましい焼結体が得られる。
又、焼結体のSiO2とB2O3の含量は99重量%を超
える割合とすることが必要である。かかる含量が
99重量%以下であると十分緻密化(低気孔率化)
することが難しく、焼結体に亀裂を生ずることが
多いので不適当である。そしてこれら含量を99.5
重量%以上とする場合には十分緻密な焼結体が得
られるので特に好ましい。 更に本発明においては、焼結体に含まれるアル
カリ成分はR2Oとして0.1重量%を超えないこと
が必要である。かかる範囲を超える場合には、石
英ガラスが失透を起し、前述の如く不都合が生じ
るので不適当である。この為、望ましくは0.05重
量%以下と実質的に含まれないようにすることが
適当である。 又、本発明の焼結体の製造方法ではその熱膨脹
係数を0〜700℃において15×10-7/℃以下とす
ることが容易となる。 かかる熱膨脹係数とすることにより、焼成時や
使用時に焼結体に亀裂が生じることを防止し得る
こととなる。又、気孔率も7%以下と十分緻密な
焼結体を得ることが容易となる。 本発明による焼結体の製造方法では前述の如き
構成の原料を選択して、焼結することにより始め
て溶融石英ガラス粉末原料とした低気孔率と低熱
膨脹率とを具備した緻密な石英ガラス焼結体が得
られる。 次に本発明による焼結体の好ましい製造法につ
いて具体的に説明する。 先ず、100メツシユ以下の溶融石英ガラス粉末
を所定量と、B2O3成分を所定量混合する。この
場合B2O3成分としては、予め石英ガラス粉末中
に含まれているものを利用することも出来るが、
通常は石英ガラス粉末と別に配合することが好ま
しい。B2O3成分は予め酸化物となつているもの
でもよいが、通常は焼成によりB2O3となる硼酸
(H3BO3)や他の硼素化合物を用いるのが適当で
ある。 B2O3成分は溶融石英ガラス粉末と同様に微粉
末として原料に用いるのが望ましく、その粒度と
しては実質的に100メツシユ以下で特にその過半
量以上が300メツシユ以下の超微粉として用いる
のが好ましい。 これら溶融石英ガラス粉末とB2O3成分粉末は、
通常のプレスやラバープレス或は押出成形等で成
形し、焼結せしめるが、本発明の製造方法では比
較的低温の焼結でも緻密な焼結体が得られる。即
ち、焼結温度としては、800〜1400℃を採用する
のが適当である。焼結温度が800℃より低い場合
には、使用限界温度も800℃より低い温度となり、
逆に1400℃より高い場合には結果的に溶融石英ガ
ラスが失透(結晶化)し易く、失透すると焼結性
を阻害するので好ましくない。 尚、この焼結温度はB2O3成分が少なければ高
温が要求され、主としてB2O3成分の配合量によ
つて決定される。 又、焼成に際し、望ましい条件としては焼成雰
囲気をアルカリ成分がないか極めて少なくせしめ
て溶融石英ガラスの失透を防ぎ、目的とする緻密
な焼結体を得やすくせしめる。 かかる具体的手段としては、アルカリ成分の含
有量が1%以下のサヤ材に被焼成成形体を収容し
て焼結する。サヤ材及び成形体は、アルカリ成分
含有量が0.1%以下の珪砂等の上に置き、又アル
カリ成分が含まれているダストの多いトンネルキ
ルン等で焼結する場合には空気を予め浄化せしめ
ておく等の手段を採用するのが好ましい。 かくして本発明の焼結体の製造方法では低熱膨
脹を維持したまま低気孔率で緻密な焼結体が得ら
れる。 この主焼結体において従来の殆んどのものは気
孔率が8%以上、更にその多くは10%以上であ
り、特殊な方法で得たものは稀に5%程度或はそ
れ以下のものが得られた旨の報告もあるが、実際
には工業化には程遠いものであつた。 本発明による焼結体は、熱膨脹率が15×10-7
℃以下であり、石英ガラスのそれ(5×10-7
℃)に近いものであり、更に耐圧強度、耐薬品性
等についても十分な性質を備えており、工業的な
製品として多大な価値を有している。 [実施例] 篩の325メツシユ通過の溶融石英ガラス粉末と
硼酸(H3BO3)を第1表に示すように調合した
後、アムスラー型プレスで2000Kg/cm2で10mmφ×
20mm(高さ)に成形し、アルカリ成分を殆ど含ま
ないサヤ材に収容し、第1表に示す焼成温度で焼
成した。 得られた焼結体の物性などを測定した結果は第
2表に示す通りであつた。
[Industrial Field of Application] The present invention relates to a method for manufacturing a sintered body having a novel composition having low porosity and low coefficient of thermal expansion using fused silica glass powder as a raw material. Quartz glass products generally have a small coefficient of thermal expansion (5 x 10 -7 /℃), are chemically inert (especially good acid resistance), have a high softening temperature, and have high transmittance in the ultraviolet and visible regions. Due to its unique characteristics, it is widely used in various physical and chemical instruments, lenses, prisms, heat-resistant containers, etc. However, these products require considerable high temperatures during melt-molding processing, and are therefore not only quite expensive, but also have the disadvantage that they are unsuitable for mass production due to poor moldability. On the other hand, sintered bodies made mainly from crushed fused silica glass can be produced using the same manufacturing method as ordinary refractories, so they have long been used for various purposes as industrial products that take advantage of their characteristics such as low thermal expansion. ing. Conventionally, such sintered bodies contain alumina cement and colloidal silica in the bonding part, so it is possible to obtain a product with low thermal expansion, but it is difficult to obtain a low porosity, and it is difficult to obtain a product with low porosity. A sintered body used for the joint is also known, but while this can produce a product with relatively low porosity, it has a major drawback of devitrification (crystallization) of the quartz glass due to the alkaline components in the clay. . The alkaline component contained in the sintered body of fused silica glass causes devitrification (crystallization) of the quartz glass, especially at around 1000°C. In other words, quartz glass is β
- This is because it crystallizes into cristobalite, and this part has a larger thermal expansion coefficient than the non-devitrified quartz glass part, and this difference in thermal expansion coefficient causes thermal stress, which causes cracks in the product during firing and use. . Furthermore, β-cristobalite transforms into low-temperature α-cristobalite at around 240° C., and as a result, the volume decreases by as much as 6%, which also causes cracks. Furthermore, various proposals have been made to blend small amounts of ultrafine powder or to blend acids such as nitric acid or phosphoric acid or their salts with other binders to improve sintering properties, but none of these have been proposed to improve sinterability. The reality is that it is difficult to become a rate product. In view of these points, the present inventor conducted various studies and examinations with the aim of obtaining a fused silica glass sintered body having both low porosity and low coefficient of thermal expansion. It has been found that the above object can be achieved by sintering a raw material having a specific composition containing a specific proportion of an additive such as boric acid to form a sintered body. Thus, in the present invention, the content of SiO 2 and B 2 O 3 in the sintered body is reduced by adding 1 to 25% by weight of the B 2 O 3 component to fused silica glass powder of substantially less than 100 meshes and sintering it. is over 99%, and the alkaline component is
The proportion of R 2 O is less than 0.1%, and 0
Thermal expansion coefficient at ~700℃ is 15×10 -7 /℃ or less,
The present invention provides a method for producing a dense fused silica glass sintered body characterized by having a porosity of 7% or less. In the present invention, the fused silica glass powder used as the raw material for the sintered body must have a particle size of 100 mesh or less. If the particle size is coarser than 100 mesh, the B 2 O 3 component contained in the sintered body may react unevenly with the silica glass powder, and in such a state, the B 2 O 3 component as a whole may Even if a predetermined amount is added, the object of the present invention cannot be achieved. For these reasons, the particle size of the fused silica glass powder is particularly preferably ultra-fine, the majority of which is 300 mesh or less. Further, it is necessary that the B 2 O 3 component contained during sintering be 1 to 25% by weight. If the content is less than the above range, a dense sintered body will not substantially be obtained, whereas if it exceeds the above range, the sintered body will easily soften and become unsuitable for high-temperature applications. Both are inappropriate. A particularly preferable sintered body can be obtained when the content of the B 2 O 3 component is 4 to 15% by weight.
Further, it is necessary that the content of SiO 2 and B 2 O 3 in the sintered body exceeds 99% by weight. This content is
Sufficient densification (low porosity) when the content is 99% by weight or less
It is difficult to do so and often causes cracks in the sintered body, so it is unsuitable. And these contents are 99.5
It is particularly preferable that the amount is at least % by weight because a sufficiently dense sintered body can be obtained. Furthermore, in the present invention, it is necessary that the alkaline component contained in the sintered body does not exceed 0.1% by weight as R 2 O. If it exceeds this range, the silica glass will devitrify, causing the above-mentioned problems, and is therefore unsuitable. For this reason, it is preferable that it is substantially not contained, desirably at 0.05% by weight or less. Further, in the method for producing a sintered body of the present invention, it is easy to make the thermal expansion coefficient of the sintered body 15×10 -7 /°C or less at 0 to 700°C. By setting such a coefficient of thermal expansion, it is possible to prevent the sintered body from cracking during firing or use. Further, the porosity is 7% or less, making it easy to obtain a sufficiently dense sintered body. In the method for producing a sintered body according to the present invention, a raw material having the above-mentioned structure is selected and sintered to produce a dense fused silica glass powder material having a low porosity and a low coefficient of thermal expansion. Solids are obtained. Next, a preferred method for manufacturing the sintered body according to the present invention will be specifically explained. First, a predetermined amount of fused silica glass powder of 100 mesh or less and a predetermined amount of B 2 O 3 component are mixed. In this case, as the B 2 O 3 component, it is also possible to use what is already contained in the quartz glass powder, but
It is usually preferable to mix it separately from the quartz glass powder. The B 2 O 3 component may be an oxide in advance, but it is usually appropriate to use boric acid (H 3 BO 3 ) or other boron compounds that become B 2 O 3 by firing. It is desirable to use the B 2 O 3 component as a raw material in the form of a fine powder, similar to the fused silica glass powder, and it is preferable to use it as an ultra-fine powder with a particle size of substantially less than 100 mesh, and in particular, the majority of it is less than 300 mesh. preferable. These fused silica glass powder and B 2 O 3- component powder are
Although it is formed and sintered using a conventional press, rubber press, extrusion molding, etc., the production method of the present invention allows a dense sintered body to be obtained even when sintered at a relatively low temperature. That is, it is appropriate to adopt a sintering temperature of 800 to 1400°C. If the sintering temperature is lower than 800℃, the service limit temperature will also be lower than 800℃.
On the other hand, if the temperature is higher than 1400°C, the fused silica glass tends to devitrify (crystallize) as a result, and devitrification impairs sinterability, which is not preferable. Note that this sintering temperature is required to be high if the B 2 O 3 component is small, and is mainly determined by the blending amount of the B 2 O 3 component. Further, during firing, the desirable conditions are to make the firing atmosphere free of or extremely low in alkaline components to prevent devitrification of the fused silica glass and to facilitate obtaining the desired dense sintered body. As a specific example of such a method, the molded body to be fired is housed in a pod material having an alkali component content of 1% or less, and then sintered. Place the pod material and molded body on silica sand etc. with an alkaline content of 0.1% or less, and when sintering in a dusty tunnel kiln etc. that contains alkaline components, purify the air beforehand. It is preferable to adopt a method such as putting it in place. Thus, in the method for producing a sintered body of the present invention, a dense sintered body with low porosity can be obtained while maintaining low thermal expansion. Most of the conventional main sintered bodies have a porosity of 8% or more, and most of them have a porosity of 10% or more, and those obtained by special methods rarely have a porosity of about 5% or less. Although there are reports that it has been obtained, in reality it is far from being industrialized. The sintered body according to the present invention has a coefficient of thermal expansion of 15×10 -7 /
℃ or lower than that of silica glass (5×10 -7 /
℃), and also has sufficient properties such as pressure resistance and chemical resistance, and has great value as an industrial product. [Example] After mixing fused silica glass powder that passed through a 325-mesh sieve and boric acid (H 3 BO 3 ) as shown in Table 1, it was prepared using an Amsler type press at 2000 kg/cm 2 and 10 mmφ×
It was molded to a size of 20 mm (height), housed in a pod material containing almost no alkali component, and fired at the firing temperature shown in Table 1. The results of measuring the physical properties of the obtained sintered body are shown in Table 2.

【表】【table】

【表】【table】

【表】 膨張係数、気孔率を測つた結果
[Table] Results of measuring expansion coefficient and porosity

Claims (1)

【特許請求の範囲】 1 実質的に100メツシユ以下の溶融石英ガラス
粉末にB2O3成分を重量%で1〜25%加えて焼結
し、焼結体のSiO2とB2O3の含量が99%を超える
割合であり、アルカリ成分はR2Oとして0.1%に
満たない割合であり、かつ0〜700℃における熱
膨脹係数を15×10-7/℃以下、気孔率を7%以下
とすることを特徴とする緻密質の溶融石英ガラス
焼結体の製造方法。 2 B2O3成分を重量%で4〜15%加えて焼結す
る特許請求の範囲第1項に記載の緻密質溶融石英
ガラス焼結体の製造方法。
[Claims] 1. 1 to 25% by weight of the B 2 O 3 component is added to fused silica glass powder of substantially 100 mesh or less and sintered to form a sintered body of SiO 2 and B 2 O 3 . The content is more than 99%, the alkaline component is less than 0.1% as R 2 O, and the coefficient of thermal expansion at 0 to 700°C is 15 × 10 -7 /°C or less, and the porosity is 7% or less. A method for producing a dense fused silica glass sintered body, characterized by: 2. The method for producing a dense fused silica glass sintered body according to claim 1, wherein 4 to 15% by weight of the B2O3 component is added and sintered.
JP15817381A 1981-10-06 1981-10-06 Fine fused quartz sintered body Granted JPS5860666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15817381A JPS5860666A (en) 1981-10-06 1981-10-06 Fine fused quartz sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15817381A JPS5860666A (en) 1981-10-06 1981-10-06 Fine fused quartz sintered body

Publications (2)

Publication Number Publication Date
JPS5860666A JPS5860666A (en) 1983-04-11
JPH0224779B2 true JPH0224779B2 (en) 1990-05-30

Family

ID=15665863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15817381A Granted JPS5860666A (en) 1981-10-06 1981-10-06 Fine fused quartz sintered body

Country Status (1)

Country Link
JP (1) JPS5860666A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599992A (en) * 1982-07-08 1984-01-19 株式会社日立製作所 Method of producing multilayer circuit board
JPS6021855A (en) * 1983-07-11 1985-02-04 株式会社村田製作所 Low temperature sintering ceramic composition
JPS6021856A (en) * 1983-07-11 1985-02-04 株式会社村田製作所 Low temperature sintering ceramic composition
JPS63312630A (en) * 1987-06-15 1988-12-21 Toshiba Ceramics Co Ltd Device for heat treatment of semiconductor wafer
US10370304B2 (en) 2012-11-29 2019-08-06 Corning Incorporated Fused silica based cellular structures

Also Published As

Publication number Publication date
JPS5860666A (en) 1983-04-11

Similar Documents

Publication Publication Date Title
EP0244101B1 (en) Cordierite ceramics containing silicon carbide whisker reinforcement
JPH02503190A (en) cordierite with a small amount of calcia enhanced
US4300953A (en) Dense cordierite containing manganese
KR20120022960A (en) Sintered product based on chromium oxide
JPH0224779B2 (en)
US3279930A (en) Ceramic product and its preparation
US5094677A (en) Preparation of pollucite ceramics
KR100479688B1 (en) Dielectric ceramic composition and method for preparing dielectric ceramic for low temperature co-fired ceramic
JP3254878B2 (en) High strength porcelain and its manufacturing method
JPS61275163A (en) Manufacture of high temperature strength alumina silica baseceramic sintered body
JP3082862B2 (en) Sealing material
JPH0639483A (en) Ceramic core
WO1995009820A1 (en) Body containing deposited corundum and process for producing the body
JPH10212158A (en) Refractory for glass fusion furnace
US1818506A (en) Refractory and method of making the same
JPH01192761A (en) Ingot azs refractory composition
JP3142360B2 (en) SiC refractory raw material, method of preparing the same, and SiC refractory obtained using the refractory raw material
JP2020532483A (en) Yoshiokaite glass ceramic obtained from glass frit
JPS6374978A (en) Ceramic composite body
JP3226056B2 (en) Low dielectric constant high strength glass ceramic composition
US1859227A (en) Process of making glass tank blocks and like refractories and article made thereby
JPH03159970A (en) Ceramic sintered body of heat-resistant porous non-oxide base and production thereof
JPH10226561A (en) Production of low-temperature calcined argil and its ceramic
JPH07196338A (en) Production of filler powder
JPH0753617B2 (en) Ceramics complex