JP2652006B2 - Ceramic molded product and its manufacturing method - Google Patents
Ceramic molded product and its manufacturing methodInfo
- Publication number
- JP2652006B2 JP2652006B2 JP6340789A JP34078994A JP2652006B2 JP 2652006 B2 JP2652006 B2 JP 2652006B2 JP 6340789 A JP6340789 A JP 6340789A JP 34078994 A JP34078994 A JP 34078994A JP 2652006 B2 JP2652006 B2 JP 2652006B2
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- raw material
- fine powder
- composition
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0036—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
- C03C10/0045—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0018—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
- C03C10/0027—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Glass Compositions (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、建築用石材や各種の機
構材に使用されるセラミック成型品の製造法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ceramic molded product used for architectural stones and various mechanical members.
【0002】[0002]
【従来の技術】近来建築用石材や各種の機構材料として
ガラス体中に結晶を析出させた結晶化ガラスが広く使用
されている。結晶化ガラスは天然石材と対比して機械的
強度や化学的耐蝕性に優れており、均質な製品が量産で
きる等の点で普及されてきた。2. Description of the Related Art Recently, crystallized glass in which crystals are precipitated in a glass body has been widely used as architectural stones and various mechanical materials. Crystallized glass has been widely used in that it has superior mechanical strength and chemical corrosion resistance as compared with natural stone materials, and can be used for mass production of homogeneous products.
【0003】従来の結晶化ガラス建材の材質は、析出成
分で分けるとβ−ワラストナイト〔β−CaO・SiO
2]、フオルステライト〔2MgO・SiO2]、エン
スタタイト〔MgO・SiO2]、ディオプサイド〔C
aO・MgO・2SiO2]及びフロゴパイト〔KMg
3(AlSi3O10)F2]等が知られている。[0003] The material of conventional crystallized glass building materials can be divided into β-wallastonite [β-CaO · SiO
2], Fuorusu Te light [2MgO · SiO 2], enstatite [MgO · SiO 2], diopside [C
aO.MgO.2SiO 2 ] and phlogopite [KMg
3 (AlSi 3 O 10 ) F 2 ] and the like are known.
【0004】これらの結晶化ガラスの製造法はロールア
ウト法と集積法に大別される。ロールアウト法は原料配
合物を1350℃以上の温度で溶融したガラスをロール
アウト方式で成型した後、所定の温度条件で熱処理をし
て結晶を析出させ、徐冷して製品を得る方法であり、集
積法は原料配合物を1350℃以上の温度で溶融したガ
ラスを結晶の析出を抑制した過冷却条件で水中投入や水
冷ロールにより冷却及び粉砕して粉体とし、 得られた
ガラス粉体を所要形状の耐火物製型に集積した後、加熱
炉により加熱し、ガラス粉体を融着一体化し、さらに所
定の温度条件で熱処理して結晶を析出させ、徐冷し、さ
らに研磨加工して製品を得る方法である。[0004] The production method of these crystallized glasses is roughly classified into a roll-out method and an integration method. The roll-out method is a method in which a glass obtained by melting a raw material mixture at a temperature of 1350 ° C. or more is formed by a roll-out method, and then heat-treated at a predetermined temperature condition to precipitate crystals and gradually cooled to obtain a product. In the integration method, a glass obtained by melting a raw material mixture at a temperature of 1350 ° C. or more is cooled and pulverized with water or a water-cooled roll under supercooling conditions in which precipitation of crystals is suppressed, to obtain a powder. After accumulating in the refractory mold of the required shape, heating in a heating furnace, fusing and integrating the glass powder, further heat treating under predetermined temperature conditions to precipitate crystals, gradually cooling, and further polishing How to get a product.
【0005】[0005]
【発明が解決しようとする課題】こうした従来の結晶化
ガラス建材は、評価すべき技術性と特性をもっている
が、特定の設備と高度の技術を必要としている。すなわ
ち上記したように高温度による原料配合物の溶融工程、
過冷却によるガラス粉砕工程、複雑な結晶化工程を必要
としており、一般的な窯業技術、たとえば陶磁器や耐火
物を生産する手段では実施できないものであった。Although such conventional crystallized glass building materials have technical properties and characteristics to be evaluated, they require specific equipment and advanced technology. That is, the melting step of the raw material mixture at a high temperature as described above,
It requires a glass crushing step by supercooling and a complicated crystallization step, and cannot be performed by general ceramic technology, for example, means for producing ceramics and refractories.
【0006】さらにまた製品特性の面でも酸性雨に耐え
得る材質が求められており、この点従来のフオルステラ
イトやフッ素マイカの単一結晶相のものは、その組成の
うえから不可避的にアルカリ分が多く従って耐酸性に劣
っており、酸性雨による経時変化に弱いという問題点が
あった。[0006] Further, in terms of product characteristics, there is a demand for a material capable of withstanding acid rain. In this regard, conventional forsterite or fluorine mica having a single crystal phase inevitably has an alkali content due to its composition. Therefore, it has poor acid resistance and is susceptible to changes over time due to acid rain.
【0007】本発明は上記した従来の結晶化ガラスの課
題を解決するため、結晶化ガラスの製造法を著しく改善
すると共に化学耐食性を備えたセラミック成型品及びそ
の製造法を提供しようとするものである。In order to solve the above-mentioned problems of the conventional crystallized glass, the present invention is to remarkably improve the method for producing the crystallized glass and to provide a ceramic molded article having chemical corrosion resistance and a method for producing the same. is there.
【0008】[0008]
【課題を解決するための手段】本発明者等は従来不可能
とされていたディオプサイドとフオルステライトとの共
生結晶相をもつセラミックス及びその製造を可能にする
ため研究の結果、以下述べる手段により本発明に到達し
たものである。The present inventors have conducted a study on ceramics having a coexisting crystal phase of diopside and forsterite, which had been impossible in the past, and a study for enabling the production thereof. Thus, the present invention has been achieved.
【0009】本発明の第1の発明(請求項1の発明をい
う)のセラミック成型品の成分組成は重量でSiO2
30〜75%、Al2O3 3〜20%、MgO 5〜
35%、CaO 2〜15%、K2O及び/又はBaO
3〜15%、 Na2O2〜12%、F 0〜2%未
満である。この組成により形成される組織はMgO−S
iO2 を共通の必須成分とするディオプサイド結晶と
フオルステライト結晶とを主体とし、その余をアルカリ
質分と酸質分が中和されている化学安定性をもつガラス
相が占めたセラミックスである。この主体結晶相はCa
O、K2O、Na2O、 SiO2、MgOの配合量と
組合せを要件としてディオプサイド〔CaO・MgO・
2 SiO2]結晶とフオルステライト[2MgO・S
iO2]結晶の析出量及び析出量比が決定される。[0009] The component composition of the ceramic molded article of the first invention of the present invention (referred to the invention of claim 1) is SiO 2 by weight.
30~75%, Al 2 O 3 3~20 %, MgO 5~
35%, CaO 2-15%, K 2 O and / or BaO
3 to 15%, Na 2 O 2 to 12%, F 0 to less than 2%. The structure formed by this composition is MgO-S
Ceramics mainly composed of diopside crystal and forsterite crystal having iO 2 as a common essential component, and the remainder is occupied by a chemically stable glass phase in which alkali and acid components are neutralized. is there. This main crystal phase is Ca
O, K 2 O, Na 2 O, diopside [CaO · MgO · a requirement SiO 2, MgO in the amount and the combination
2 SiO 2 ] crystal and forsterite [2MgOS
The amount of deposited [iO 2 ] crystal and the ratio of the amount of deposited crystal are determined.
【0010】これらの主体結晶は大半が径10μm以下
の微晶ガラスマトリックス中にほぼ均一に析出してお
り、セラミック成型品中重量で5〜55%析出生成し、
ディオプサイド結晶/フオルステライト結晶の比は原料
成分の配合比に依存して約10/90〜70/30、好
ましくは20/80〜60/40である。このセラミッ
ク成型品は後述する製法により、微粒子の結晶成分、ガ
ラス、粘土等を成型原料として成型し、焼結したもので
あり、結晶の析出状態は配向性がなく、成型品は均質で
あり、脈理等が存在しない多晶質組織を形成している。
こうした組成と組織とにより、セラミック成型品は化学
的に中和した安定組織であり、耐酸性を備え且つその曲
げ強さが450〜700kg/cm2を示している。Most of these main crystals are almost uniformly precipitated in a microcrystalline glass matrix having a diameter of 10 μm or less, and 5 to 55% by weight of a ceramic molded product is precipitated and formed.
The ratio of diopside crystal / forsterite crystal is about 10/90 to 70/30, preferably 20/80 to 60/40, depending on the mixing ratio of the raw material components. This ceramic molded product is formed by sintering, using a crystal component of fine particles, glass, clay, etc. as a molding raw material by a manufacturing method described below, and sintering. The crystal precipitation state is not oriented, and the molded product is homogeneous, A polycrystalline structure without striae is formed.
With such a composition and structure, the ceramic molded product is a chemically neutralized stable structure, has acid resistance, and exhibits a bending strength of 450 to 700 kg / cm 2 .
【0011】本発明の第2の発明(請求項2の発明をい
う)は重量でSiO2 30〜75%、Al2O3 3
〜20%、MgO 5〜35%、CaO 2〜15%、
K2O及び/又はBaO 3〜15%,Na2O 2〜
12%、F 0〜2%未満の組成の原料配合物の微粉末
をそのまま成型するか、又は原料配合物の微粉末を加熱
処理して仮焼体とした後、この仮焼体を再粉砕した微粉
末を成型し、次いで加熱焼結してディオプサイド結晶と
フオルステライト結晶の共生結晶を析出させることを特
徴とするセラミック成型品の製造法であり、また本発明
の第3の発明(請求項3の発明をいう)は、重量でSi
O2 30〜75%、Al2O3 3〜20%、MgO
5〜35%, CaO 2〜15%、K2O及び/又
はBaO3〜15%、Na2O 2〜12%、 F 0
〜2%未満の組成の原料配合物の微粉末、又はこの原料
配合物の微粉末を加熱処理して仮焼体としたのち再粉砕
した微粉末に、それぞれガラス及び/又は粘土の微粉末
を配合して成型し、次いで加熱焼結してディオプサイド
結晶とフオルステライト結晶の共生結晶を析出させるこ
とを特徴とするセラミック成型品の製造方法である。The second invention (referred to as the second invention) of the present invention is that 30 to 75% by weight of SiO 2 and Al 2 O 3 3
-20%, MgO 5-35%, CaO 2-15%,
K 2 O and / or BaO 3 to 15%, Na 2 O 2 to 2
After fine powder of a raw material mixture having a composition of 12% and F of less than 0 to 2% is directly molded or heat-treated to obtain a calcined body, the calcined body is reground. A method for producing a ceramic molded product, which comprises molding the fine powder thus obtained and then sintering it by heating to precipitate a symbiotic crystal of diopside crystal and forsterite crystal, and a third invention of the present invention ( The invention according to claim 3) is based on Si by weight.
O 2 30~75%, Al 2 O 3 3~20%, MgO
5 to 35%, CaO 2 to 15%, K 2 O and / or BaO 3 to 15%, Na 2 O 2 to 12%, F 0
Fine powder of glass and / or clay is added to the fine powder of the raw material blend having a composition of less than about 2%, or the fine powder of the raw material blend is heat-treated into a calcined body and then re-ground. This is a method for producing a ceramic molded product, which comprises blending and molding, and then heating and sintering to precipitate a symbiotic crystal of diopside crystal and forsterite crystal.
【0012】本発明のセラミックスを形成する原料とし
ては、工業材料、例えばシリカ、アルミナ、マグネシ
ア、これらの炭酸塩、ケイフッ化カリウム、ケイフッ化
ナトリウム及び窯業鉱物、例えばタルク、パイロフィラ
イト、天然マイカ、長石、霞石、カオリン、螢石、永晶
石、ガラス等を本発明のセラミックガラスの組成に相当
するように配合して使用する。The raw materials forming the ceramics of the present invention include industrial materials such as silica, alumina, magnesia, carbonates thereof, potassium fluorosilicate, sodium fluorosilicate and ceramic minerals such as talc, pyrophyllite, natural mica, Feldspar, nepheline, kaolin, fluorite, perovskite, glass and the like are blended and used so as to correspond to the composition of the ceramic glass of the present invention.
【0013】本発明の第2の発明は、上記した原料配合
物を平均粒径10μm以下に粉砕し、そのまま成型する
か、この微粉配合物を加熱処理して仮焼体としてから再
粉砕した微粉末を成型する。この場合の加熱処理は、上
記原料配合物の微粉末を耐火物容器に充填し、加熱炉で
600〜1100℃で1〜5時間加熱し、配合物中の結
晶水、炭酸分を揮散させて微粉末の活性化と凝集を行な
わせ、固相反応を進行させて後記する主体結晶の初期微
晶が形成された仮焼体とするものである。成型の態様と
しては、比較的小寸法成型品のプレス成型の場合には一
般に慣用される水や有機バインダー例えばCMC、ポリ
ビニールアルコール、アクリル等を用いて成型し、また
長尺寸法の成型品を得るためのプレス成型や押出し成型
の場合には窯業の常法である上記の有機バインダーを添
加してスラリーとした後ドライスプレー法で2次造粒体
として成型する。According to a second aspect of the present invention, the above-mentioned raw material mixture is pulverized to an average particle diameter of 10 μm or less and molded as it is, or this fine powder compound is heat-treated to form a calcined body and then re-pulverized. Mold the powder. In this case, the heat treatment is performed by charging the fine powder of the raw material mixture into a refractory container, heating the mixture in a heating furnace at 600 to 1100 ° C. for 1 to 5 hours, and volatilizing crystallization water and carbonic acid in the mixture. Activation and agglomeration of the fine powder are performed, and a solid phase reaction is advanced to form a calcined body in which initial fine crystals of a main crystal described later are formed. As a mode of molding, in the case of press molding of a relatively small-sized molded product, it is molded using water or an organic binder generally used such as CMC, polyvinyl alcohol, acrylic, or the like, and a molded product having a long dimension is used. In the case of press molding or extrusion molding for obtaining, the slurry is formed by adding the above-mentioned organic binder, which is a usual method of the ceramic industry, and then formed as a secondary granule by a dry spray method.
【0014】上記した成型工程により成型した成型品
を、次に加熱焼成して焼結する結晶化工程に移る。この
結晶化工程では成型物を室温〜200℃の温度で充分乾
燥した後、耐火物容器に収納し、加熱炉に装入して焼成
する。加熱は室温より所定の温度(900〜1200
℃)まで150〜200℃/hrの昇温速度で昇温し、
次いで所定の温度で1〜5時間保持して焼結と結晶化と
を同時に完了する。この焼結工程で成型品は600℃付
近より粒子間の結合が進み、逐次固相焼結(固相反応)
により緻密化し、900℃以上において初期結晶の析
出、成長が行なわれる。The molded article molded by the above molding step is then moved to a crystallization step of firing and sintering. In this crystallization step, the molded product is sufficiently dried at a temperature of room temperature to 200 ° C., then housed in a refractory container, charged into a heating furnace and fired. Heating is performed at a predetermined temperature (900 to 1200) from room temperature.
℃) at a heating rate of 150 to 200 ℃ / hr,
Then, the sintering and the crystallization are simultaneously completed by holding at a predetermined temperature for 1 to 5 hours. In the sintering process, the bonding between the particles of the molded product proceeds from around 600 ° C., and the solid phase sintering (solid phase reaction) is performed sequentially.
And initial crystals are precipitated and grown at 900 ° C. or higher.
【0015】こうして結晶成分単味の組成をもつセラミ
ックスが得られる。この組成はディオプサイド及びフオ
ルステライトの組成を複合したセラミックス組成、すな
わち結晶成分組成であって、本発明の基本物質となるも
のである。In this way, a ceramic having a composition of a single crystal component is obtained. This composition is a ceramic composition in which the composition of diopside and forsterite is combined, that is, a crystal component composition, which is a basic substance of the present invention.
【0016】上記の結晶成分単味の組成のセラミックス
のほかに、結晶成分又は加熱処理(仮焼処理)した結晶
成分にそれぞれガラス及び/又は粘土を添加してセラミ
ックスを造ることができる。この場合、ガラスは原料の
コストダウン及び焼結性の改良に、また粘土は成型性の
向上に資するものである。第3の発明の原料配合物の組
成は、ガラスの添加により焼結温度の降下、成分の拡散
化、アルカリ分の中和などを図るもので、ガラス材質と
しては一般的なガラスやびんガラス、フッ化物系乳白ガ
ラス等を使用することができ、製品の特性に支障がなけ
れば50重量%付近での添加が可能であり、ガラスのリ
サイクルにも寄与できる。In addition to the above-mentioned ceramic having a simple composition of the crystal component, glass and / or clay can be added to the crystal component or the heat-treated (calcined) crystal component to produce a ceramic. In this case, glass contributes to cost reduction of raw materials and improvement of sinterability, and clay contributes to improvement of moldability. The composition of the raw material mixture of the third invention is intended to lower the sintering temperature, diffuse components, neutralize alkali components, and the like by adding glass, and general glass and bottle glass are used as glass materials. Fluoride-based opalescent glass or the like can be used, and if the properties of the product are not hindered, it can be added at around 50% by weight, which can contribute to glass recycling.
【0017】第3発明においてはまた結晶成分に可塑材
として粘土(SiO2−Al2O3)を添加するもので
ある。これは製品セラミックスの形状が長尺寸法のもの
をプレス成型する場合や、長尺寸法の棒状、管状、中空
状等のものを押出し成型するような場合には、成型用の
配合物の型内流動性が小さく、成型圧伝達性が悪いの
で、粘土を添加して仮焼した原料配合物を粘稠化するこ
とにより成型性の改善を行なうもので、それには25重
量%以内で粘土を添加し、水を加えて混練し、脱泡した
粘稠性の捏合物を調製し、成型する。成型はプレス成型
の場合は200〜500kg/cm2、押出成型の場合
は15〜50kg/cm2の加圧下で成型を行う。In the third invention, clay (SiO 2 —Al 2 O 3 ) is added to the crystal component as a plasticizer. This is because in the case where the product ceramics are formed in a long dimension by press molding or in the case of extruding a long dimension rod, tube, hollow, etc. Since the fluidity is small and the molding pressure transmission is poor, the moldability is improved by adding clay to thicken the calcined raw material mixture, and the clay is added within 25% by weight. Then, water is added and kneaded to prepare a defoamed viscous kneaded product, which is molded. Molding is performed under pressure of 200 to 500 kg / cm 2 in the case of press molding, and 15 to 50 kg / cm 2 in the case of extrusion molding.
【0018】なお、本発明において製品セラミックスの
組成中に結晶成分量が70%以上配合され、成型が均一
で緻密に行なわれるような小寸法薄板(肉厚10mm以
下程度)を製造する場合には、上記結晶成分を仮焼体と
するための加熱処理を省略することができる。In the present invention, when a small-sized thin plate (having a thickness of about 10 mm or less) in which the amount of a crystal component is blended in the composition of the product ceramic of 70% or more and the molding is performed uniformly and densely is required. In addition, a heat treatment for converting the crystal component into a calcined body can be omitted.
【0019】第3の発明において加熱焼成に先だって成
型すべき原料配合物の各成分の配合率は、重量%で結晶
成分40〜95、ガラス(a) 0〜60、粘土(b)
0〜25、(a)+(b)5〜60、および上記原料配
合物に対し着色顔料や結晶核0〜5である。In the third invention, the compounding ratio of each component of the raw material mixture to be molded prior to the heating and baking is 40 to 95% by weight of the crystal component, glass (a) 0 to 60, and clay (b).
0 to 25, (a) + (b) 5 to 60, and coloring pigments and crystal nuclei 0 to 5 with respect to the raw material mixture.
【0020】第3の発明の成型操作は、第2の発明にお
ける成型操作が適用でき、また焼結結晶化処理も第2の
発明記載の条件下で実施できる。The molding operation according to the third aspect of the invention is applicable to the molding operation according to the second aspect of the invention, and the sintering and crystallization treatment can be performed under the conditions described in the second aspect of the invention.
【0021】本発明による第2および第3の発明のセラ
ミック成型品における結晶析出量は、結晶成分量、結晶
組成、焼成温度及び保持時間の兼ね合いにより、配合し
た結晶成分の30〜80%であり、セラミックス中5〜
55%で、ディオプサイド結晶/フオルステライト結晶
の比は原料配合物の配合比に依存して約10/90〜7
0/30、好ましくは20/80〜60/40である。
また全結晶量の1/5以下の副生結晶、すなわちディオ
プサイド結晶とフオルステライト結晶との共生結晶以外
の結晶、例えば少量のクリエノエンスタタイト、リヒテ
ライト、フッ素マイカ等が派生するが、これらの結晶の
存在は何れも本発明のセラミックスの特性に支障を及ぼ
すものではない。The amount of crystal precipitation in the ceramic molded articles of the second and third inventions according to the present invention is 30 to 80% of the blended crystal component depending on the amount of crystal component, crystal composition, firing temperature and holding time. , In ceramics 5-
At 55%, the ratio of diopside / forsterite crystals is about 10/90 to 7 depending on the blending ratio of the raw material blend.
0/30, preferably 20/80 to 60/40.
In addition, a by-product crystal of 1/5 or less of the total crystal amount, that is, a crystal other than a coexisting crystal of a diopside crystal and a forsterite crystal, for example, a small amount of clienoenstatite, richterite, fluorine mica, etc. None of the crystals has any effect on the properties of the ceramics of the present invention.
【0022】本発明のディオプサイド結晶とフオルステ
ライト結晶の共生結晶が析出したセラミックスは、組織
的にアルカリ成分量が抑制され中和されており、またこ
れらの結晶の母相であり、かつ結晶間を結合するガラス
マトリックスは中性で化学的に安定しており、従来のマ
イカ粉焼結品、溶融法や集積法によるマイカ質やフオル
ステライトの結晶化ガラス等のアルカリ組成のものと比
べて耐酸性にすぐれたセラミックスである。The ceramics according to the present invention in which the coexisting crystals of diopside crystals and forsterite crystals are precipitated are systematically suppressed in the amount of alkali components and are neutralized. The glass matrix that bonds between them is neutral and chemically stable, compared to conventional mica powder sintered products, alkali compositions such as mica or forsterite crystallized glass by the melting method or the accumulation method. Ceramics with excellent acid resistance.
【0023】上記のセラミックスの組成で、SiO2、
MgOはディオプサイドとフオルステライトの共通必須
成分であり、両者の結晶析出を確保するために、SiO
2が少なくとも30%(重量%、以下同じ)が必要であ
り、75%より多いと焼結性を悪くし、MgOは5%よ
り少ないと2つの結晶の析出が急激に減少し、35%よ
り多いとアルカリ分が過剰となり、また焼結性を悪くす
る。好適なMgOの量は8〜32%である。CaOはデ
ィオプサイドのみの必須成分であり、またディオプサイ
ドとフオレステライトの両結晶の生成比はCaOの可変
によりディオプサイドの析出を制御することによってき
まり、CaOが2%よりディオプサイドの析出が認めら
れ、以後15%まで次第に析出量が増えるが、15%よ
り多いとアルカリ分が過剰となり化学耐食性を劣化させ
る。好適なCaO量は3〜12%である。In the above ceramic composition, SiO 2 ,
MgO is a common essential component of diopside and forsterite, and in order to secure the crystal precipitation of both, SiOO
2 requires at least 30% (wt%, the same applies hereinafter). If it is more than 75%, the sinterability is deteriorated. If it is less than 5%, the precipitation of two crystals is sharply reduced, and If the amount is too large, the alkali content becomes excessive, and the sinterability deteriorates. The preferred amount of MgO is 8-32%. CaO is an essential component of only diopside, and the generation ratio of both diopside and foresterite crystals is determined by controlling the precipitation of diopside by varying CaO. Precipitation of the side is recognized, and thereafter the amount of precipitation gradually increases up to 15%. However, if it exceeds 15%, the alkali content becomes excessive and the chemical corrosion resistance is deteriorated. The preferred amount of CaO is 3 to 12%.
【0024】Al2O3は 3〜20%の範囲でCa
O、MgO等のアルカリ質分の過剰をSiO2と相関し
て中和するために配合される。3%より少ないと中和に
寄与せず、20%より多いと焼結温度を高くする。Na
2Oは2〜12%の範囲で、K2O及び/又はBaOは
3〜15%の範囲でそれぞれ各成分の固溶性の促進、焼
結温度の低下を図る常法的な媒溶成分である。Fは組成
物の融点を降下させ、焼結の促進剤として使用するもの
であるが、Fの量が増すとフッ素マイカが副成するの
で、この組成では0〜2%未満の範囲で使用する。そう
することによってフッ素マイカの析出は著しく減少する
か、または析出しなくなる。上記したセラミック組成に
対し、5%以下の範囲で結晶核、例えばTiO2、Zr
O2や顔料、例えば、Fe,Ni,Mn,Ti,Co等
の金属酸化物を添加しても差支えない。Al 2 O 3 is Ca in the range of 3 to 20%.
It is blended in order to neutralize excess alkali components such as O and MgO in relation to SiO 2 . If it is less than 3%, it does not contribute to neutralization, and if it is more than 20%, the sintering temperature is increased. Na
2 O is in the range of 2 to 12%, and K 2 O and / or BaO is in the range of 3 to 15%, which is a common solvent component for promoting the solid solubility of each component and lowering the sintering temperature. is there. F lowers the melting point of the composition and is used as an accelerator for sintering. However, when the amount of F increases, fluorine mica is formed as a by-product. . By doing so, the deposition of fluorine mica is significantly reduced or eliminated. Crystal nuclei, for example, TiO 2 , Zr, in the range of 5% or less based on the above ceramic composition
O 2 and pigments, for example, no problem Fe, Ni, Mn, Ti, even with the addition of metal oxides such as Co.
【0025】本発明のセラミックスの組織は、原料配合
物の成型物を加熱焼成することにより焼結と結晶化を行
なうか、加熱焼成による焼結とその焼結に先立って行な
われる原料配合物の仮焼処理とを併用し、固相反応によ
る焼結と結晶化を行なって形成するものである。この場
合の固相反応を促進す要件は(1)良好な反応性組成で
あること、(2)結晶成分含有量が高いこと、(3)微
粉末原料配合物の粒子が微細で充填度が高いことである
が、本発明による微粉末原料配合物はこれらの要件をす
べて満足するものである。そして焼成時におけるフッ化
物による融点の降下作用、蒸発凝縮によって行なわれる
成分交流による結晶生成作用等により、焼結と結晶化が
促進される。このことは従来の溶融法による結晶化ガラ
スの製法とはその趣を異にするものである。The structure of the ceramics of the present invention may be obtained by sintering and crystallizing by heating and sintering a molded product of the raw material mixture, or by sintering by heating and sintering the raw material mixture prior to the sintering. It is formed by performing sintering and crystallization by a solid phase reaction in combination with the calcination treatment. The requirements for promoting the solid phase reaction in this case are (1) a good reactive composition, (2) a high crystal component content, and (3) fine particles of the fine powder raw material composition having a high degree of filling. To a high degree, the fine powder raw material formulations according to the invention fulfill all of these requirements. Then, sintering and crystallization are promoted by the action of lowering the melting point of the fluoride during sintering, the action of crystal formation by the component exchange performed by evaporation and condensation, and the like. This is different from the conventional method for producing crystallized glass by a melting method.
【0026】焼成品は所定の寸法に切断し、所望する外
観表情に応じて研磨するか又は未研磨の状態で製品とす
る。製品は従来の結晶化ガラスやタイルと比べて遜色な
く、物理的特性は吸水率0〜0.5%、曲げ強さは結晶
析出量20%で500kg/cm2以上であり、結晶析
出量40〜50%で700kg/cm2に達する。化学
特性は耐酸性、耐アルカリ性にすぐれている。また製品
セラミックスの外観は結晶の析出状態や着色剤により多
彩な表情のものになる。The baked product is cut into a predetermined size and polished according to a desired external appearance, or is made into an unpolished product. The product is comparable to conventional crystallized glass and tile, has physical properties of water absorption of 0 to 0.5%, flexural strength of 500 kg / cm 2 or more at a crystal precipitation of 20%, and a crystal precipitation of 40%. It reaches 700 kg / cm 2 at 5050%. Chemical properties are excellent in acid resistance and alkali resistance. In addition, the appearance of the product ceramics has various appearances depending on the crystal precipitation state and the colorant.
【0027】以下実施例を挙げて本発明を説明する。Hereinafter, the present invention will be described with reference to examples.
【0028】実施例1 本例は結晶成分の調製と結晶成分だけによるセラミック
スの製造例を説明する。表1に結晶成分の組成、処理条
件及び物性を示す。表1に示す組成により原料(K2O
として炭酸カリウム、MgOとしてマグネサイト、N
a2Oとして炭酸ソーダ、SiO2として、ケイ石、A
l2O3としてアルミナ、 CaOおよびFとして螢石
CaF2)を乾ボールミルで混合粉砕し、平均粒径10
μmの粉末とした。得られた粉末のうち試料No.3及
びNo.4はそれぞれそのままで、また試料No.1及
びNo.2は原料配合物の微粉をそれぞれアルミナ質ル
ツボに入れ、電気炉で900℃で3時間過熱処理をした
のち再粉砕して平均粒径5μmのとし、いづれも本発明
のセラミック成型品の製造用原料とした。試料No.1
とNo.2それぞれの製造用原料についてX線回折の結
果、ディオプサイド−フオルステライトの初期結晶が認
められた。Example 1 This example describes the preparation of a crystal component and an example of the production of ceramics using only the crystal component. Table 1 shows the composition, processing conditions and physical properties of the crystal components. According to the composition shown in Table 1, the raw material (K 2 O
As potassium carbonate, MgO as magnesite, N
sodium carbonate as a 2 O, silica stone as SiO 2 , A
Alumina as l 2 O 3 and fluorite CaF 2 ) as CaO and F were mixed and pulverized in a dry ball mill to give an average particle size of 10
μm powder. Of the obtained powder, sample No. 3 and No. 3 Sample No. 4 is the same as Sample No. 1 and No. 1 No. 2 puts the fine powder of the raw material mixture into an alumina crucible, heat-treats it at 900 ° C. for 3 hours in an electric furnace, and then re-pulverizes it to an average particle size of 5 μm. Raw materials. Sample No. 1
And No. 2 As a result of X-ray diffraction of each raw material for production, initial crystals of diopside-forsterite were found.
【0029】[0029]
【表1】 [Table 1]
【0030】過熱処理した試料No.1とNo.2及び
非過熱処理試料No.3とNo.4につき各結晶成分1
00重量部に対し、CMC 0.5重量部、水8重量部
を加えて混練し成型用の原料とした。プレス成型により
300kg/cm2で加圧成型し、95×95×8(m
m)の成型体を得た。さらにこの成型体を110℃で1
2時間乾燥したのち、電気炉で180〜200℃/Hr
の速度で表1に示す焼成温度まで昇温し、所定時間保持
したのち冷却して製品を得た。得られた製品は表1に示
す通り、ディオプサイド−フオルステライト共生結晶相
をもつ組織を形成しており、曲げ強度は約655〜67
0kg/cm2で全試料とも耐酸、耐アルカリ性は従来
の市販の石材、例えば溶融法や集積法による代表的な結
晶化ガラスであるβワラストナイト建材と比べて同等の
数値を示している。The overheat-treated sample No. 1 and No. 2 and the non-superheat-treated sample No. 2 3 and No. 4 each crystal component 1
With respect to 00 parts by weight, 0.5 parts by weight of CMC and 8 parts by weight of water were added and kneaded to obtain a raw material for molding. Press molding at 300 kg / cm 2 by press molding, 95 × 95 × 8 (m
m) was obtained. Further, the molded body is heated at 110 ° C. for 1 hour.
After drying for 2 hours, 180-200 ° C / Hr in an electric furnace
The temperature was raised to the sintering temperature shown in Table 1 at the speed described above, and the temperature was maintained for a predetermined time, followed by cooling to obtain a product. As shown in Table 1, the obtained product had a structure having a diopside-forsterite symbiotic crystal phase, and had a bending strength of about 655 to 67.
At 0 kg / cm 2 , all the samples show the same acid resistance and alkali resistance as those of conventional commercially available stone materials, for example, β-wallastonite building material, which is a typical crystallized glass obtained by a melting method or an accumulation method.
【0031】実施例2 本例は原料配合、すなわち実施例1によって得られた試
料No.1〜No.4の各結晶成分とガラス粉末及び/
又は粘土の2成分および3成分系の調製、更にはこれら
によってプレス成型と押出成型を行なう成型例を示す。
なお成型までの資料No.1〜No.4の処理は実施例
1と同じである。Example 2 This example relates to the mixing of the raw materials, that is, the sample No. obtained in Example 1. 1 to No. Each crystal component and glass powder and / or
Or, a molding example in which two-component and three-component systems of clay are prepared, and furthermore, press molding and extrusion molding are performed by using them.
Material No. up to molding. 1 to No. The process 4 is the same as that of the first embodiment.
【0032】表2は原料配合であり、表3は製品セラミ
ックスの特性である。また資料No.1〜No.4の結
晶成分は表1のそれと同一である。ガラス粉末は汎用フ
ロートガラス〔組成(重量%):SiO273.1、A
l2O31.7、CaO 10.3、MgO 0.2、
K2O 1.3、Na2O 13.4〕であり、粘土は
カオリン系粘土〔組成(重量%):SiO252、Al
2O334、 lg.Loss14〕 であって、これ
らの各成分を混合、粉砕して平均粒径5μmの粉末とし
た。Table 2 shows the raw material composition, and Table 3 shows the characteristics of the product ceramic. Material No. 1 to No. The crystal components of 4 are the same as those of Table 1. The glass powder is a general-purpose float glass [composition (% by weight): SiO 2 73.1, A
l 2 O 3 1.7, CaO 10.3, MgO 0.2,
K 2 O 1.3, Na 2 O 13.4], and the clay is kaolin-based clay [composition (% by weight): SiO 2 52, Al
2 O 3 34, lg. Loss14], and these components were mixed and pulverized to obtain a powder having an average particle size of 5 μm.
【0033】[0033]
【表2】 [Table 2]
【0034】[0034]
【表3】 [Table 3]
【0035】プレス成型では、表2による原料配合物
(試料No.1、No.3,No.4)100重量部に
対して有機バインダー(PVA)1重量部と水100重
量部を添加、湿式混合してスラリーとした後、スプレー
ドライヤーで乾燥して顆粒化する。この顆粒をプレス成
型機で300〜500kg/cm2の加圧で成型し、6
00×600×12mmの平板状成型体とし、 110
℃で2時間乾燥した後電気炉に装入し、180〜200
℃/Hr の昇温速度で各試料共表2に示す所定焼成温
度と保持時間に従って加熱焼成し、冷却(200〜25
0℃/Hr)して製品を得た。In the press molding, 1 part by weight of an organic binder (PVA) and 100 parts by weight of water were added to 100 parts by weight of the raw material compound (sample No. 1, No. 3, No. 4) according to Table 2, and wet After mixing into a slurry, the mixture is dried with a spray drier and granulated. The granules are molded with a press molding machine at a pressure of 300 to 500 kg / cm 2 ,
A flat molded body of 00 × 600 × 12 mm,
After drying at 2 ° C. for 2 hours, it was charged into an electric furnace,
Each sample was heated and baked at a heating rate of 2 ° C./Hr according to the predetermined calcination temperature and holding time shown in Table 2 for each sample, and then cooled (200 to 25
(0 ° C / Hr) to obtain a product.
【0036】また、押出成型では、表2による原料配合
物(試料No.2)100重量部に水20〜25重量
部、有機バインダー(CMC)1重量部を添加し、混練
機により押出し圧力20〜35kg/cm2、押出し速
度200〜300mm/minで押出し成型を行ない、
外径100mm、肉厚8mm、長さ310mmのパイプ
状成型体とし、さらにこれを切開して310×310×
8mmの平板状成型体とし、圧延ローラで肉厚調整及び
平面処理を行ない、最終的に320×320×6mmの
平板状成型体を得た。In the extrusion molding, 20 to 25 parts by weight of water and 1 part by weight of an organic binder (CMC) are added to 100 parts by weight of the raw material composition (sample No. 2) shown in Table 2, and the extruding pressure is set to 20 by a kneader. ~35kg / cm 2, subjected to extrusion molding at an extrusion rate 200~300mm / min,
A pipe-shaped molded body having an outer diameter of 100 mm, a wall thickness of 8 mm, and a length of 310 mm was cut out and cut into 310 × 310 ×
An 8 mm flat molded body was formed, and the thickness was adjusted and flattened with a rolling roller to finally obtain a 320 x 320 x 6 mm flat molded body.
【0037】これを熱風乾燥機により80〜120℃、
5〜7時間乾燥してから電気炉に装入し、 180〜2
00℃/Hrの昇温速度で各試料共表2の所定焼成温度
に昇温し、この温度で所定時間保って過熱焼成し、冷却
(200〜250℃/Hr)して製品(約300×30
0×5mm、収縮率78%)を得た。This is heated at 80 to 120 ° C. by a hot air drier.
After drying for 5-7 hours, put it in an electric furnace,
Each sample was heated to a predetermined firing temperature shown in Table 2 at a heating rate of 00 ° C./Hr, kept at this temperature for a predetermined time, overheated, cooled (200 to 250 ° C./Hr), and cooled to a product (about 300 × 30
0 × 5 mm, 78% shrinkage).
【0038】上記した各成型法によって得られた製品の
特性を表3に示す。Table 3 shows the characteristics of the products obtained by the above-mentioned molding methods.
【0039】[0039]
【発明の効果】本発明は従来の結晶化ガラス製造のため
の特定の設備や技術に依存せず、通常の窯業技術により
結晶化ガラスと同等の物理、化学的特性を備えることは
もちろん、従来のフッ素マイカ系やフオルステライト系
の結晶化ガラスがアルカリ成分が多く、耐酸性に劣る欠
点を改善することができるディオプサイド結晶とフオル
ステライト結晶が共生析出したセラミックスを得ること
ができ、更には長尺寸法品の製造、低温焼成、低原価原
料等の利用により省エネルギー製法を達成することがで
きる。The present invention does not depend on the specific equipment and technology for the production of the conventional crystallized glass, but has the same physical and chemical properties as the crystallized glass by the ordinary ceramic technology, The fluorinated mica-based or forsterite-based crystallized glass has a large amount of alkali components, and can obtain a ceramic in which diopside crystals and forsterite crystals are co-precipitated, which can improve the defect of poor acid resistance. An energy-saving manufacturing method can be achieved by manufacturing long-sized products, firing at low temperatures, and using low-cost raw materials.
Claims (3)
75%、Al2O33〜20%、MgO 5〜35%、
CaO 2〜15%、K2O及び又はBaO 3〜15
%、Na2O 2〜12%、F 0〜2%未満の組成と
し、デイオプサイド結晶とフオルステライト結晶との共
生結晶が析出して成るセラミック成型品。1. A SiO 2. 30 to by weight as essential components
75%, Al 2 O 3 3~20 %, 5~35% MgO,
CaO 2~15%, K 2 O and or BaO 3 to 15
%, Na 2 O 2 to 12%, F 0 to less than 2%, and a ceramic molded product in which a symbiotic crystal of diopside crystal and forsterite crystal is precipitated.
O3 3〜20%、MgO 5〜35%、 CaO 2
〜15%、 K2O 及び/又はBaO 3〜15%、
Na2O 2〜12%、 F 0〜2%未満の組成の原
料配合物の微粉末をそのまま成型するか、又はその原料
配合物の微粉末をさらに加熱処理して仮焼体とした後そ
の仮焼体を再粉砕した微粉末を成型し、次いで加熱焼結
してディオプサイド結晶とフオルスライト結晶の共生結
晶を析出させることを特徴とするセラミック成型品の製
造法。 2. 30% to 75% by weight of SiO 2 , Al 2
O 3 3~20%, 5~35% MgO , CaO 2
1515%, K 2 O and / or BaO 3-15%,
Na 2 O 2 to 12%, the after fine powder directly or molding, or further heat treated to calcined body a fine powder of a raw material blend of the raw material blend of the composition of F less than 0-2% A method for producing a molded ceramic article, comprising: forming a fine powder obtained by re-grinding a calcined body, followed by heat sintering to precipitate a symbiotic crystal of a diopside crystal and a forslite crystal.
3 3〜20%、MgO 5〜35%、CaO 2〜1
5%、K2O 及び/又はBaO 3〜15%、Na2
O 2〜12%、F 0〜2%未満の組成の原料配合物
の微粉末、又はその原料配合物の微粉末を加熱処理して
仮焼体としたのち再粉砕した微粉末に、それぞれガラス
及び/又は粘土の微粉末を配合した配合物を成型し、次
いで加熱焼結してディオプサイド結晶とフオルステライ
ト結晶の共生結晶を析出させることを特徴とするセラミ
ック成型品の製造法。3. 30% to 75% by weight of SiO 2 , A1 2 O
3 3~20%, 5~35% MgO, CaO 2~1
5%, K 2 O and / or BaO 3~15%, Na 2
Fine powder of a raw material blend having a composition of O 2 to 12% and F of less than 0 to 2%, or a fine powder of the raw material blend, which is heat-treated to form a calcined body and then reground to a fine powder, A method for producing a ceramic molded product, which comprises molding a mixture containing fine powder of clay and / or clay, followed by heat sintering to precipitate a symbiotic crystal of diopside crystal and forsterite crystal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6340789A JP2652006B2 (en) | 1994-12-26 | 1994-12-26 | Ceramic molded product and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6340789A JP2652006B2 (en) | 1994-12-26 | 1994-12-26 | Ceramic molded product and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08175845A JPH08175845A (en) | 1996-07-09 |
JP2652006B2 true JP2652006B2 (en) | 1997-09-10 |
Family
ID=18340313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6340789A Expired - Lifetime JP2652006B2 (en) | 1994-12-26 | 1994-12-26 | Ceramic molded product and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2652006B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62231668A (en) * | 1986-04-01 | 1987-10-12 | ホ−ヤ株式会社 | Inorganic bio-material and its production |
JPH0774084B2 (en) * | 1989-06-30 | 1995-08-09 | ホーヤ株式会社 | Method for producing inorganic biomaterial |
-
1994
- 1994-12-26 JP JP6340789A patent/JP2652006B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08175845A (en) | 1996-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0613869B1 (en) | Batch compositions for cordierite ceramics | |
CN101381240B (en) | Method for preparing dichroite heat proof/refractory materials | |
CZ2003197A3 (en) | Glass-ceramics, process for their preparation and use | |
JP2006131489A (en) | Tile, method for producing the same and tile raw material | |
JP3031865B2 (en) | Manufacturing method of thermal shock resistant ceramics | |
JP3617964B2 (en) | Large thin plate-like sintered body and method for producing the same | |
JP3548438B2 (en) | Method for producing low thermal expansion ceramics | |
JP6350703B2 (en) | Large ceramic plate and manufacturing method thereof | |
US20180065882A1 (en) | Method of making porous mono cordiertie glass ceramic material and its use | |
CZ2000200A3 (en) | Glass-ceramic materials process of their production and use | |
JP2582730B2 (en) | Manufacturing method of ceramic molded products | |
JP2652006B2 (en) | Ceramic molded product and its manufacturing method | |
JP6528879B2 (en) | Large ceramic plate and method of manufacturing the same | |
JP3034808B2 (en) | Thermal shock resistant ceramics and manufacturing method thereof | |
US5094677A (en) | Preparation of pollucite ceramics | |
CN1082013A (en) | Self-released enamel enhanced ceramic | |
Kichkailo et al. | Lithium-bearing heat-resistant ceramics (a review) | |
JP2606851B2 (en) | Manufacturing method of glass ceramics | |
JPH10226561A (en) | Production of low-temperature calcined argil and its ceramic | |
JP2823140B2 (en) | Method for producing cordierite porous body | |
JPH09227223A (en) | Production of free-cutting combined ceramics | |
JPH11147753A (en) | Plastic clay formulation for low-temperature baked pottery | |
Mukherjee et al. | Traditional and modern uses of ceramics, glass and refractories | |
JPH045770B2 (en) | ||
JP3017829B2 (en) | Calcium silicate sintered body and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080219 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20090219 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20100219 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100219 Year of fee payment: 11 |