JPH045770B2 - - Google Patents

Info

Publication number
JPH045770B2
JPH045770B2 JP57198171A JP19817182A JPH045770B2 JP H045770 B2 JPH045770 B2 JP H045770B2 JP 57198171 A JP57198171 A JP 57198171A JP 19817182 A JP19817182 A JP 19817182A JP H045770 B2 JPH045770 B2 JP H045770B2
Authority
JP
Japan
Prior art keywords
alumina
weight
compound
fibers
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57198171A
Other languages
Japanese (ja)
Other versions
JPS5988917A (en
Inventor
Fujio Hashimi
Tatsuo Ando
Masao Myajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP19817182A priority Critical patent/JPS5988917A/en
Publication of JPS5988917A publication Critical patent/JPS5988917A/en
Publication of JPH045770B2 publication Critical patent/JPH045770B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐火性アルミナ繊維に関する。 高温度で使用される無機質の繊維として種々の
ものが知られ、または提案されている。代表的な
ものとしてシリカ質及び/又はアルミナ質の原料
を溶融紡糸することによつて得られるガラス質の
繊維があり、既に広く利用に供されている。しか
しながらガラス質の繊維は高温度において再結晶
を受けることにより強度を失うので最高使用温度
は1200℃程度とされている。従つて、より高温度
の用途に対しては結晶質の繊維を使用することが
提案されている。 結晶質アルミナ繊維は融点205℃の酸化アルミ
ニウム(Al2O3)を主成分とするものであり、本
質的に耐高温性である。しかしながら従来知られ
ている結晶質アルミナ繊維は高温度での使用に対
して必ずしも十分な性能を有しているとは言えな
かつた。例えば特公昭47−37215号に、アルミナ
ゾル、塩化アルミニウムゾル等の無機酸化物ゾル
と繊維形成性有機重合体とを混合して得られた反
応混合物を引くか又は押し出すかし、得られた繊
維状先駆物を約300〜1000℃の温度で焼成してア
ルミナ繊維などの無機酸化物繊維を得る方法が開
示されている。この方法で得られたアルミナ繊維
はα−アルミナからなるものであるが、1000℃程
度の温度においてもかなりの収縮を示す。さらに
α−アルミナは1200℃以上の温度で結晶成長速度
が著しく大きくなる。このことは比較的低温度で
使用される触媒などの高表面積で多孔質の繊維と
しての用途においては問題とならないが、高温度
で使用される断熱材などの小さな繊維径と無孔質
緻密構造とが性能上要求される用途においては結
晶化傾向がさらに顕著となり易く、大きな問題と
なり得る。即ち、繊維質断熱材としての使用にお
いては高温に曝されることによつて繊維の収縮を
生じ、目地開きなどのトラブルを生ずる。製造時
の焼成温度をできるだけ高くして収縮を十分に先
行させれば使用時の収縮を小さくすることができ
る。これは高い焼成温度において繊維が脆化し、
粉化し易くなり、取扱いを困難にするという致命
的欠点を伴う。 本発明者らは高温断熱材としての用途において
耐熱収縮性が強く要望されることに着目し、アル
ミナ繊維中における酸化アルミニウムの基本的構
造及びその繊維物性に与える影響の観点から鋭意
検討を重ねた結果、結晶相の新規な安定化法によ
つて前記の問題点が解決されることを見出して本
発明に到達した。 即ち本発明の目的は高温での使用に適したアル
ミナ繊維を提供することにあり、その要旨は、 結晶性酸化アルミニウムを主成分とする金属
酸化物からなる繊維であつて、 酸化アルミニウム(Al2O3)、酸化ケイ素
(SiO2)及び酸化ジルコニウム(ZrO2)を、そ
れぞれ Al2O3 70〜98.9重量% SiO2 1〜29.9重量% ZrO2 0.1〜3重量% の割合で含有し、 酸化ケイ素の含有率Csi(重量%)と酸化ジル
コニウムの含有率Czr(重量%)とが次の関係
式: Csi≦−20log Czr+10 を満たし、かつ、 粉末X線回折スペクトル(対陰極:Cu−K〓)
におけるδ−アルミナピーク(2θ67.5°)の
強度I〓とα−アルミナピーク(2θ66.5°)の強
度I〓との比I〓/I〓として定義されるアルミナの
δ化度が0.5〜1.5の範囲内であることを特徴と
する耐火性アルミナ繊維、に存する。 以下、本発明について詳細に説明する。 本発明の耐火性アルミナ繊維を製造するには、
先ず、Al化合物、Si化合物、Zr化合物及び有機
高分子化合物を含有する曳糸性の水性液状物を調
製する。 該Al化合物としては、焼成によつてAl2O3を生
成する種々のAl化合物が使用され、具体例とし
ては塩化アルミニウム、オキシ塩化アルミニウ
ム、硫酸アルミニウム、硝酸アルミニウム等の無
機アルミニウム(Al)塩、並びに酢酸アルミニ
ウム等の有機アルミニウム(Al)塩が挙げられ
る。これらAl化合物は水溶液中で酸の陰イオン
の不足する溶液又はゾルを形成するような適宜の
条件下に処理され、そのような形で水性液状物中
で使用される。かかる酸の陰イオンの不足する溶
液又はゾルを形成する処理としては、例えば、上
記Al塩を水溶液中で部分的に加水分解する方法、
上記Al又はその陰イオンを形成する酸の水溶液
に適当量の金属アルミニウムを添加し溶解させる
方法、上記Al塩の水溶液から加熱・電解等の物
理的又は物理化学的手段によつて酸の陰イオンを
部分的に除去する方法、等が挙げられる。一例と
して塩化アルミニウムを原料とする系について説
明すれば、塩化アルミニウム水溶液又は塩酸に金
属アルミニウムの粒子又は薄板を加熱撹拌しなが
ら溶解することにより塩化物イオンの不足する水
溶液を調製する。その際、水溶液中のアルミニウ
ム原子と塩素原子とのモル比(Al/Cl)が1〜
2となるようにするのが好ましい。 上記Si化号物としては、焼成によつてSiO2
生成する種々のSi化合物が使用され、具体例とし
ては水分散性のシリカゲル、四塩化ケイ素等の無
機Si化合物、並びにオルトケイ酸エチル、オルト
ケイ酸メチル、シロキサン類、シラノール類、シ
ラノレート類等の有機Si化合物が挙げられる。上
記Si化合物のうちシリカゲル以外のものについて
は適宜加水分解等の処理をして水分散性を高めて
使用するのが望ましい。 さらに前記Zr化合物としては、焼成によつて
ZrO2を生成する種々のZr化合物が使用され、具
体例としてはオキシ塩化ジルコニウム等の無機
Zr化合物、並びにオキシ酢酸ジルコニウム等の
有機Zr化合物が挙げられる。 さて上記のAl化合物、Si化合物及びZr化合物
の三者は前記水性液状物中に特定の量比で存在し
ている必要がある。即ち、これら三者は、各化合
物の対応酸化物(Al2O3、SiO2及びZrO2)の重量
の総和を基準とする各化合物の対応酸化物の重量
百分率(以下「酸化物換算含有率」という)で表
わしてそれぞれ次の範囲内である必要がある。 Al化合物 70〜98.9重量% Si化合物 1〜29.9重量% Zr化合物 0.1〜3重量% 上記三者のより好適な量比は酸化物換算含有率
で表わしてそれぞれ次の範囲内である。 Al化合物 70〜95重量% Si化合物 5〜25重量% Zr化合物 0.2〜2重量% ここで本発明方法におけるSi化合物及びZr化合
物の使用、従つて本発明のアルミナ繊維中におけ
るSiO2及びZrO2の存在による効果について説明
する。 Al化合物と共にSi化合物が存在することによ
り、繊維状先駆物の焼成時にムライト
(3Al2O3・2SiO2)が生成するが、これはAl2O3
子間の結合を強化して繊維の強度を増大させる効
果を有する。Si化合物の使用量が酸化物換算含有
率で1重量%未満の場合には、この効果が殆ど現
われず、十分な強度を有する繊維は得られない。
一方、Si化合物の使用量が酸化物換算含有率で30
重量%以上の場合には、繊維状先駆物のの焼成時
にムライト組成を越えるSiO2が1200℃以上の高
温でクリストバライトを生成するが、これはその
生成時の体積変化及び熱膨張率が大きいので、生
成するアルミナ繊維を極端に脆弱化させる。 Zr化合物は繊維状先駆物の焼成時にAl2O3のα
−アルミナ化を促進すると共に結晶粒の過度の生
長を抑制する効果を有する。Zr化合物の使用量
が酸化物換算含有率で0.1重量%未満の場合には
α−アルミナ化を促進する効果は殆ど見られず、
Zr化合物を使用しない場合と同程度の高温度で
の焼成が必要となる。Zr化合物の使用量が酸化
物換算含有率で3重量%を超える場合にはAl2O3
のα−アルミナ化が過渡に促進され、粒界析出物
の量も増大して、最終のアルミナ繊維の強度は低
下する。 次に本発明が目的とする良好なアルミナ繊維を
得るためには前記水性液状物中でSi化合物とZr化
合物とが特定の量比関係を保持している必要があ
る。即ちSi化合物とZr化合物との量比関係によつ
ては紡糸原液となる水性液状物の調製時に白濁化
又はゲル化の現象が生起し、紡糸が不可能とな
る。これらの現象が生起する量比関係は、水性液
状物の調製に使用される有機高分子化合物の種類
及び性状にもある程度依存するが、例えば有機高
分子化合物としてポリビニルアルコールを使用し
た場合ゲル化現象生起時のSi化合及びZr化合物の
量比関係を酸化物換算含有率で表わすと次の表−
1の通りである。
The present invention relates to refractory alumina fibers. Various types of inorganic fibers that can be used at high temperatures are known or proposed. A typical example is glass fiber obtained by melt-spinning siliceous and/or alumina raw materials, which are already widely used. However, glass fibers lose their strength due to recrystallization at high temperatures, so the maximum operating temperature is said to be about 1200°C. Therefore, it has been proposed to use crystalline fibers for higher temperature applications. Crystalline alumina fibers are mainly composed of aluminum oxide (Al 2 O 3 ) with a melting point of 205° C., and are inherently resistant to high temperatures. However, conventionally known crystalline alumina fibers cannot necessarily be said to have sufficient performance for use at high temperatures. For example, in Japanese Patent Publication No. 47-37215, a reaction mixture obtained by mixing an inorganic oxide sol such as alumina sol or aluminum chloride sol with a fiber-forming organic polymer is drawn or extruded, and the resulting fibrous A method is disclosed in which precursors are calcined at temperatures of about 300-1000°C to obtain inorganic oxide fibers, such as alumina fibers. Although the alumina fibers obtained by this method are made of α-alumina, they show considerable shrinkage even at temperatures of about 1000°C. Furthermore, the crystal growth rate of α-alumina increases significantly at temperatures above 1200°C. This is not a problem in applications with high surface area and porous fibers, such as catalysts used at relatively low temperatures, but with small fiber diameters and non-porous dense structures, such as insulation materials used at high temperatures. In applications where performance is required, the crystallization tendency tends to become even more pronounced and can become a major problem. That is, when used as a fibrous heat insulating material, exposure to high temperatures causes the fibers to shrink, resulting in problems such as opening of the joints. Shrinkage during use can be reduced if the firing temperature during manufacture is set as high as possible to sufficiently advance shrinkage. This is because the fibers become brittle at high firing temperatures.
It has the fatal disadvantage of becoming easily powdered and difficult to handle. The present inventors focused on the strong demand for heat shrinkage resistance when used as a high-temperature insulation material, and conducted extensive studies from the viewpoint of the basic structure of aluminum oxide in alumina fibers and its effect on the physical properties of the fibers. As a result, the inventors have discovered that the above-mentioned problems can be solved by a novel method for stabilizing the crystalline phase, and have arrived at the present invention. That is, an object of the present invention is to provide an alumina fiber suitable for use at high temperatures. O 3 ), silicon oxide (SiO 2 ), and zirconium oxide (ZrO 2 ) in a proportion of Al 2 O 3 70 to 98.9% by weight, SiO 2 1 to 29.9% by weight, ZrO 2 0.1 to 3% by weight, and oxidized. The silicon content C si (wt%) and the zirconium oxide content C zr (wt%) satisfy the following relational expression: C si ≦−20log C zr +10, and the powder X-ray diffraction spectrum (anticathode :Cu−K〓)
The degree of delta-ization of alumina, defined as the ratio I〓/I〓 of the intensity I〓 of the δ-alumina peak (2θ67.5°) to the intensity I〓 of the α-alumina peak (2θ66.5°) at 0.5~ Refractory alumina fiber, characterized in that it is within the range of 1.5. The present invention will be explained in detail below. To produce the refractory alumina fiber of the present invention,
First, a spinnable aqueous liquid containing an Al compound, a Si compound, a Zr compound, and an organic polymer compound is prepared. As the Al compound, various Al compounds that generate Al 2 O 3 upon firing are used, and specific examples include inorganic aluminum (Al) salts such as aluminum chloride, aluminum oxychloride, aluminum sulfate, and aluminum nitrate; and organic aluminum (Al) salts such as aluminum acetate. These Al compounds are treated in an aqueous solution under suitable conditions to form a solution or sol deficient in acid anions, and used in such a form in an aqueous liquid. Examples of the treatment for forming a solution or sol lacking in acid anions include, for example, a method of partially hydrolyzing the above Al salt in an aqueous solution;
A method in which an appropriate amount of metallic aluminum is added and dissolved in an aqueous solution of an acid that forms Al or its anion, and an anion of the acid is prepared from an aqueous solution of the Al salt by physical or physicochemical means such as heating and electrolysis. Examples include a method of partially removing. As an example, to explain a system using aluminum chloride as a raw material, an aqueous solution lacking chloride ions is prepared by dissolving metallic aluminum particles or thin plates in an aluminum chloride aqueous solution or hydrochloric acid while stirring with heating. At that time, the molar ratio of aluminum atoms to chlorine atoms (Al/Cl) in the aqueous solution is 1 to 1.
It is preferable to set it to 2. As the above-mentioned Si compounds, various Si compounds that produce SiO 2 upon firing are used. Specific examples include water-dispersible silica gel, inorganic Si compounds such as silicon tetrachloride, and ethyl orthosilicate and orthosilicate. Examples include organic Si compounds such as acid methyl, siloxanes, silanols, and silanolates. Among the above-mentioned Si compounds, those other than silica gel are desirably treated with appropriate treatment such as hydrolysis to improve their water dispersibility before use. Furthermore, the Zr compound can be
Various Zr compounds are used to produce ZrO 2 , including inorganic compounds such as zirconium oxychloride.
Examples include Zr compounds and organic Zr compounds such as zirconium oxyacetate. Now, the above-mentioned three compounds, Al compound, Si compound, and Zr compound, must be present in a specific quantitative ratio in the aqueous liquid. In other words, these three are the weight percentages of the corresponding oxides of each compound based on the total weight of the corresponding oxides (Al 2 O 3 , SiO 2 and ZrO 2 ) of each compound (hereinafter referred to as the "oxide equivalent content rate"). ”) and must be within the following ranges. Al compound: 70 to 98.9% by weight Si compound: 1 to 29.9% by weight Zr compound: 0.1 to 3% by weight A more preferable quantitative ratio of the above three is expressed as an oxide equivalent content and is within the following range. Al compounds 70-95% by weight Si compounds 5-25% by weight Zr compounds 0.2-2% by weight Here we discuss the use of Si and Zr compounds in the method of the invention, and therefore the concentration of SiO 2 and ZrO 2 in the alumina fibers of the invention. Explain the effects of its presence. Due to the presence of Si compounds together with Al compounds, mullite (3Al 2 O 3 2SiO 2 ) is formed during firing of the fibrous precursor, which strengthens the bonds between Al 2 O 3 particles and increases the strength of the fibers. It has the effect of increasing When the amount of the Si compound used is less than 1% by weight in terms of oxide content, this effect hardly appears and fibers with sufficient strength cannot be obtained.
On the other hand, the amount of Si compound used is 30% in terms of oxide content.
If the SiO2 content exceeds the mullite composition when the fibrous precursor is fired, cristobalite is formed at a high temperature of 1200℃ or higher, but this is because the volume change and thermal expansion coefficient during its formation are large. , which makes the alumina fibers produced extremely brittle. When the fibrous precursor is calcined, the Zr compound is
- It has the effect of promoting aluminization and suppressing excessive growth of crystal grains. When the amount of Zr compound used is less than 0.1% by weight in terms of oxide content, almost no effect of promoting α-alumina formation is observed.
Firing at the same high temperature as when no Zr compound is used is required. If the amount of Zr compound used exceeds 3% by weight in terms of oxide content, Al 2 O 3
α-alumina formation is transiently promoted, the amount of grain boundary precipitates increases, and the strength of the final alumina fiber decreases. Next, in order to obtain a good alumina fiber as the object of the present invention, it is necessary that the Si compound and the Zr compound in the aqueous liquid have a specific quantitative relationship. That is, depending on the quantitative relationship between the Si compound and the Zr compound, a phenomenon of clouding or gelation may occur during the preparation of the aqueous liquid material used as the spinning stock solution, making spinning impossible. Although the quantitative ratio at which these phenomena occur depends to some extent on the type and properties of the organic polymer compound used to prepare the aqueous liquid, for example, gelation occurs when polyvinyl alcohol is used as the organic polymer compound. The relationship between the amounts of Si compounds and Zr compounds at the time of generation is expressed in terms of oxide content as shown in the following table.
1.

【表】 水性液状物からの繊維化形成が良好な状態で行
なわれるためには、白濁化又はゲル化の現象が生
起していないことだけでは不十分であつて、Si化
合物及びZr化合物はより厳しい量比関係を保持
している必要がある。即ち水性液状物が本発明の
目的に適う良好な繊維成能を有するためには、水
性液状物中のSi化合物の酸化物換算含有率Csi(重
量%)とZr化合物の酸化物換算含有率Czr(重量
%)とが次の関係式: Csi≦−20log Czr+10 を満たしていることが必要である。 水性液状物の調製に使用される有機高分子化合
物としては、繊維形成能を有する種々の水溶性有
機高分子化合物が使用される。具体的には例えば
澱粉、酢酸澱粉、ヒドロキシエチル澱粉、メチル
セルロース、エチルセルロース、ヒドロキシエチ
ルセルロース、カルボキシメチルセルロース等の
天然有機高分子化合物;ポリビニルアルコール、
ポリウレタン、ポリアクリル酸塩、ポリアクリル
アミド、ポリエチレンオキシド等の合成有機高分
子化合物が挙げられる。これらの中では特にポリ
ビニルアルコールが好適である。 上記有機高分子化合物の使用量は、水性液状物
中のAl化合物、Si化合物及びZr化合物の対応酸
化物の重量の総和を基準とする重量百分率「(以
下「酸化物基準百分率」という)で表わして、通
常5〜30重量%、好ましくは10〜15重量%であ
る。 本発明においては常法により前記のAl化合物、
Si化合物、Zr化合物及び有機高分子化合物を含有
する水性の溶液又はゾルを調製し、必要により適
度の粘度が得られるまで濃縮して曳糸性の水性液
状物を得る。繊維化のために適当な粘度は繊維化
の方法にある程度依存するが、通常1〜1000ポイ
ズ、好ましくは5〜100ポイズである。 このようにして調製された水性液状物に適当な
繊維化操作を施して繊維状先駆物を形成させる。
利用する繊維化操作は特に限定されないが、例え
ば、水性液状物を細孔から押し出す方法、水性液
状物を圧空により細孔から吹き出す方法、水性液
状物を遠心力により吹き出す方法、等の適宜の紡
糸手段を利用することができる。 繊維状先駆物の太さは最終のアルミナ繊維の具
体的な用途にも依存するが、高温断熱材としての
用途に適な繊維径は約1〜10μm、より好適には
1〜5μmである。 繊維状先駆物を高温度で焼成することによつて
本発明のアルミナ繊維が生成される。焼成処理に
先立つて気化性の成分を除去するための予備加熱
処理を行なうのが好ましい。予備加熱処理の温度
は通常800℃以下、好ましくは700℃以下である。
予備加熱処理は単独の工程として実施してもよ
く、また焼成処理と連結させて一貫工程として実
施してもよい。 本発明が目的とする耐火性アルミナ繊維は断熱
材等として高温度で使用した際の(長さ方向の)
収縮率(以下「再加熱線収縮率」という)が極め
て小さいものである必要がある。アルミナ繊維の
再加熱線収縮率は繊維状先駆物の焼成温度にも依
存する。本発明の目的に対しては最高焼成温度を
通常1210〜1280℃、好ましくは1220〜1270℃の範
囲とし、この温度で20分〜2時間程度の焼成を行
なうことによつて良好な結果が得らえる。1210℃
以下では前述のZrO2の存在による効果は発現せ
ず、Al2O3のα−アルミナ化が不十分であるの
で、再加熱線収縮率が十分に小さなアルミナ繊維
を得ることは困難である。一方、1280℃以上では
Zr化合物の存在量を前記した範囲内としてもα
−アルミナ化が過度に進行してアルミナ繊維が脆
弱化する傾向がある。 本発明のアルミナ繊維中においてはAl2O3が完
全にα−アルミナとなつていてはならず、部分的
にδ−アルミナのような中間状態のアルミナとし
て存在している必要がある。中間状態のアルミナ
の存在によつてアルミナ繊維に柔軟性が付与され
る。しかして前述のZrO2の存在によるα−アル
ミナ化の促進効果はZrO2の存在量に依存する。
従つて最終のアルミナ繊維中のAl2O3のα−アル
ミナ化の程度を好適なものとするための焼成温度
はZrO2の存在量に依存することとなる。即ち、
最高焼成温度T(℃)が次の関係式: −20logCzR+1220≦T≦−20logCzr+1260 を満たしている場合に良好な結果を得ることがで
きる。 上記の本発明方法によつて製造された本発明の
耐火性アルミナ繊維について以下に説明する。 本発明のアルミナ繊維は、結晶性Al2O3を主成
分とする金属酸化物繊維であつて、Al2O3、SiO2
及びZrO2をそれぞれ Al2O3 70〜98.9重量% SiO2 1〜29.9重量% ZrO2 0.1〜3重量% の割合で含有している。またSiO2の含有率Csi(重
量%)とZrO2の含有率Czr(重量%)とは次の関
係式: Csi≦−20log Czr+10 を満たしている。 さて、前述した通り、本発明のアルミナ繊維中
においてAl2O3は完全にα−アルミナ化してはお
らず、部分的にδ−アルミナのような中間状態の
アルミナとして存在しており、そのことによつて
本発明のアルミナ繊維は適度の柔軟性を有してい
る。 上記のα−アルミナ化の程度は以下に述べるδ
化度によつて規定される。本明細書中において
「δ化度」とは、粉末X線回折スペクトル(対陰
極:Cu−K〓)におけるδ−アルミナピーク(2θ
67.5°)のピーク強度I〓とα−アルミナピーク
(2θ66.5°)のピーク強度I〓との比I〓/I〓として

義される。 しかして本発明のアルミナ繊維中におけるアル
ミナのδ化度は0.5〜1.5の範囲内である必要があ
り、α−アルミナ部分とδ−アルミナ部分とがか
かる量的関係にあることによつてアルミナ繊維に
適度の柔軟性が付与される。 第1図は本発明のアルミナ繊維の一例(最高焼
成温度:1210℃)の粉末X線回折図である。本例
におけるδ化度は約1.5である。 第2図は本発明のアルミナ繊維の他の一例(最
高焼成温度:1250℃)の粉末X線回折図である。
本例におけるδ化度は約0.5である。 本発明のアルミナ繊維の表面を走査型電子顕微
鏡で観察すると、均一微細な結晶粒の分布に対応
する表面状態となつていることが認められる。即
ち本発明のアルミナ繊維は無孔質で平滑な表面と
緻密な構造を有する。 また本発明のアルミナ繊維は脆化度が低く、再
加熱線収縮率が小さいので高温度での用途に適し
ている。 さらに本発明のアルミナ繊維の製造法において
は従来法と比較して低い焼成温度で十分な性能を
有するアルミナ繊維を製造することができるの
で、焼成時の熱エネルギーを低減させることがで
き、工業的に有用である。 次に実施例により本発明の具体的態様をさらに
詳細に説明するが、本発明はその要旨を越えない
限り以下の実施例によつて限定されるものではな
い。 実施例 1 20%塩酸に金属アルミニウム片(純度99.5%以
上)をAl/Clモル比が1.85となるように添加し、
95℃で3時間加熱した後、不溶分を別して
Al/Clモル比が1.8のオキシ塩化アルミニウム水
溶液を得た。この水溶液に20%水性シリカゾル
(日産化学製:商品名スノーテツククス−0)、10
%オキシ塩化ジルコニウム水溶液及び10%ポリビ
ニルアルコール(PVA)水溶液(日本合成化学
工業製:商品名ゴーセノールGH−17)を、成分
量比が表−2に示す値となるように添加し、次い
で減圧下に50℃で濃縮して水性液状物を得た。得
られた水性液状物の性状(安定性)、粘度及び曳
糸性を表−2に示す。 上記の各水性液状物を圧空により細孔から吹き
出す方法によつて繊維化して繊維径2〜3μmの
繊維状先駆物を得た。 各繊維状先駆物を600℃で予備加熱処理した後、
表−2に示す最高焼成温度で焼成処理を行なつて
繊維径2〜3μmのアルミナ繊維を得た。各アル
ミナ繊維についての、粉末X線回折図所見、δ化
度、1400℃で24時間加熱時の再加熱線収縮率、及
び指触観察による脆化性所見を表−3に示す。
[Table] In order to form fibers from an aqueous liquid in good condition, it is not enough that the phenomenon of clouding or gelation does not occur, and Si compounds and Zr compounds are more effective. It is necessary to maintain a strict quantitative ratio relationship. That is, in order for the aqueous liquid to have good fiber forming properties that meet the purpose of the present invention, the oxide equivalent content C si (weight%) of the Si compound and the oxide equivalent content of the Zr compound in the aqueous liquid are required. It is necessary that C zr (weight %) satisfies the following relational expression: C si ≦−20log C zr +10. As the organic polymer compound used for preparing the aqueous liquid, various water-soluble organic polymer compounds having fiber-forming ability are used. Specifically, natural organic polymer compounds such as starch, starch acetate, hydroxyethyl starch, methylcellulose, ethylcellulose, hydroxyethylcellulose, and carboxymethylcellulose; polyvinyl alcohol;
Examples include synthetic organic polymer compounds such as polyurethane, polyacrylate, polyacrylamide, and polyethylene oxide. Among these, polyvinyl alcohol is particularly preferred. The amount of the organic polymer compound used is expressed as a weight percentage (hereinafter referred to as "oxide based percentage") based on the sum of the weights of the corresponding oxides of Al compound, Si compound, and Zr compound in the aqueous liquid. The amount is usually 5 to 30% by weight, preferably 10 to 15% by weight. In the present invention, the above Al compound,
An aqueous solution or sol containing a Si compound, a Zr compound, and an organic polymer compound is prepared and, if necessary, concentrated until an appropriate viscosity is obtained to obtain a stringable aqueous liquid. The suitable viscosity for fiberization depends to some extent on the method of fiberization, but is usually 1 to 1000 poise, preferably 5 to 100 poise. The aqueous liquid thus prepared is subjected to a suitable fiberizing operation to form a fibrous precursor.
The fiberizing operation to be used is not particularly limited, but suitable spinning methods include, for example, a method of extruding an aqueous liquid through pores, a method of blowing an aqueous liquid out of pores using compressed air, a method of blowing an aqueous liquid through centrifugal force, etc. means are available. Although the thickness of the fibrous precursor will also depend on the specific use of the final alumina fiber, suitable fiber diameters for use as high temperature insulation materials are about 1-10 .mu.m, more preferably 1-5 .mu.m. The alumina fibers of the present invention are produced by firing the fibrous precursor at high temperatures. It is preferable to perform a preheating treatment to remove volatile components prior to the firing treatment. The temperature of the preheating treatment is usually 800°C or lower, preferably 700°C or lower.
The preheating treatment may be carried out as an independent process, or may be carried out in conjunction with the firing treatment as an integrated process. The refractory alumina fiber that is the object of the present invention has a long-term
The shrinkage rate (hereinafter referred to as "reheat linear shrinkage rate") needs to be extremely small. The reheat linear shrinkage rate of alumina fibers also depends on the firing temperature of the fibrous precursor. For the purpose of the present invention, good results can be obtained by setting the maximum firing temperature in the range of usually 1210 to 1280°C, preferably 1220 to 1270°C, and performing firing at this temperature for about 20 minutes to 2 hours. I can see it. 1210℃
Below, the above-mentioned effect due to the presence of ZrO 2 is not manifested, and since α-alumina conversion of Al 2 O 3 is insufficient, it is difficult to obtain alumina fibers with a sufficiently small reheating linear shrinkage rate. On the other hand, above 1280℃
Even if the amount of Zr compound is within the above range, α
- Alumina fibers tend to become brittle due to excessive alumina formation. In the alumina fiber of the present invention, Al 2 O 3 must not be completely in the form of α-alumina, but must partially exist as alumina in an intermediate state such as δ-alumina. The presence of intermediate alumina imparts flexibility to the alumina fibers. Therefore, the aforementioned effect of promoting α-aluminization due to the presence of ZrO 2 depends on the amount of ZrO 2 present.
Therefore, the firing temperature for achieving a suitable degree of α-aluminization of Al 2 O 3 in the final alumina fiber depends on the amount of ZrO 2 present. That is,
Good results can be obtained when the maximum firing temperature T (° C.) satisfies the following relational expression: −20logC zR +1220≦T≦−20logC zr +1260. The refractory alumina fiber of the present invention produced by the method of the present invention described above will be explained below. The alumina fiber of the present invention is a metal oxide fiber whose main component is crystalline Al 2 O 3 , Al 2 O 3 , SiO 2
and ZrO 2 in the proportions of 70 to 98.9% by weight of Al 2 O 3 , 1 to 29.9% by weight of SiO 2 , and 0.1 to 3% by weight of ZrO 2 . Moreover, the content C si (weight %) of SiO 2 and the content C zr (weight %) of ZrO 2 satisfy the following relational expression: C si ≦−20log C zr +10. Now, as mentioned above, in the alumina fiber of the present invention, Al 2 O 3 is not completely converted into α-alumina, but partially exists as alumina in an intermediate state such as δ-alumina, and Therefore, the alumina fiber of the present invention has appropriate flexibility. The degree of α-aluminization mentioned above is δ as described below.
It is determined by the degree of In this specification, the "delta degree" refers to the delta-alumina peak (2θ
It is defined as the ratio I〓/I〓 of the peak intensity I〓 of the α-alumina peak (2θ66.5°) to the peak intensity I〓 of the α-alumina peak (2θ66.5°). Therefore, the degree of δ alumina in the alumina fiber of the present invention must be within the range of 0.5 to 1.5, and by having such a quantitative relationship between the α-alumina portion and the δ-alumina portion, the alumina fiber is given a certain degree of flexibility. FIG. 1 is a powder X-ray diffraction diagram of an example of the alumina fiber of the present invention (maximum firing temperature: 1210°C). The degree of δ conversion in this example is approximately 1.5. FIG. 2 is a powder X-ray diffraction diagram of another example of the alumina fiber of the present invention (maximum firing temperature: 1250°C).
The degree of δ conversion in this example is approximately 0.5. When the surface of the alumina fiber of the present invention is observed with a scanning electron microscope, it is observed that the surface state corresponds to a distribution of uniform and fine crystal grains. That is, the alumina fiber of the present invention has a non-porous, smooth surface and a dense structure. Furthermore, the alumina fiber of the present invention has a low degree of embrittlement and a low linear reheating shrinkage rate, so it is suitable for use at high temperatures. Furthermore, in the alumina fiber production method of the present invention, alumina fibers with sufficient performance can be produced at a lower firing temperature than conventional methods, so the thermal energy during firing can be reduced, making it suitable for industrial use. It is useful for Next, specific embodiments of the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded. Example 1 Metal aluminum pieces (purity 99.5% or more) were added to 20% hydrochloric acid so that the Al/Cl molar ratio was 1.85,
After heating at 95℃ for 3 hours, remove the insoluble matter.
An aluminum oxychloride aqueous solution with an Al/Cl molar ratio of 1.8 was obtained. Add 20% aqueous silica sol (manufactured by Nissan Chemical: trade name Snotex-0) to this aqueous solution, 10%
% zirconium oxychloride aqueous solution and 10% polyvinyl alcohol (PVA) aqueous solution (manufactured by Nippon Gosei Kagaku Kogyo Co., Ltd., trade name Gohsenol GH-17) were added so that the component amount ratio would be the value shown in Table 2, and then under reduced pressure. The mixture was concentrated at 50°C to obtain an aqueous liquid. The properties (stability), viscosity, and stringiness of the obtained aqueous liquid are shown in Table 2. Each of the above aqueous liquids was made into fibers by blowing out from the pores using compressed air to obtain a fibrous precursor having a fiber diameter of 2 to 3 μm. After preheating each fibrous precursor at 600℃,
Firing treatment was performed at the maximum firing temperature shown in Table 2 to obtain alumina fibers with a fiber diameter of 2 to 3 μm. Table 3 shows the powder X-ray diffraction pattern findings, degree of δ-oxidation, reheating linear shrinkage rate upon heating at 1400° C. for 24 hours, and embrittlement findings by touch observation for each alumina fiber.

【表】【table】

【表】【table】

【表】 実施例 2 実施例1と同様に、オキシ塩化アルミニウム水
溶液(Al/Clモル比1.8)、20%水性シリカゾル、
10%オキシ塩化ジルコニウム水溶液及び10%
PVA水溶液を、Al:Si:Zr:PVAの成分量比が
94:4:2:10となるように混合し、減圧下に50
℃に濃縮して粘度22ポイズの水性液状物を得た。 上記水性液状物を遠心力により吹き出す方法に
よつて繊維化して繊維状先駆物を得、ついで1240
℃で焼成処理を行なつてアルミナ繊維を得た。こ
のアルミナ繊維の1400℃で24時間加熱時の再加熱
線収縮率は0.7%で良好であつた。 次に上例における水性液状物の成分量比Al:
Si:Zr:PVA=94:4:2:10をZr=2.0%の基
準として、Zr化合物の添加量のみを5.0%、1.0
%、0.75%、0.25%、0.1%及び0%(無添加)と
変化させた水性液状物を調製し、これらから得ら
れた繊維状先駆物を種々の最高焼成温度で焼成処
理してアルミナ繊維を得た。 上気各アルミナ繊維について粉末X線回折法に
よりα化度を求めた。ここに本実施例における
「α化度」とは、粉末X回折スペクトル(対陰
極:Cu−K〓)におけるα−アルミナピーク(2θ
66.5°)のピーク強度の相対値であつて、Zr=
0%(無添加)で最高焼成温度が1270℃のものの
それを100としたものである。 求められたα化度を第3図に示す。 第3図から明らかなようにZr化合物の添加量
を増大させるに伴い、より低い最高焼成温度で同
一のα化度が達成される。しかしZr化合物の添
加量が5%となると添加効果も小さくなり、かつ
α化度も過大(ほぼ250以上)となり易く、脆化
性の小さいアルミナ繊維を得るための焼成温度幅
が狭くなる。
[Table] Example 2 Same as Example 1, aluminum oxychloride aqueous solution (Al/Cl molar ratio 1.8), 20% aqueous silica sol,
10% zirconium oxychloride aqueous solution and 10%
PVA aqueous solution is mixed with an Al:Si:Zr:PVA component ratio.
Mix at a ratio of 94:4:2:10 and 50% under reduced pressure.
It was concentrated at 0.degree. C. to obtain an aqueous liquid with a viscosity of 22 poise. The above aqueous liquid is blown out using centrifugal force to obtain a fibrous precursor, and then 1240
Alumina fibers were obtained by firing at ℃. The reheating linear shrinkage rate of this alumina fiber when heated at 1400°C for 24 hours was 0.7%, which was good. Next, the component ratio Al of the aqueous liquid in the above example:
Based on Si:Zr:PVA=94:4:2:10 as the standard for Zr=2.0%, only the amount of Zr compound added is 5.0% and 1.0%.
%, 0.75%, 0.25%, 0.1% and 0% (no additives) were prepared, and the fibrous precursors obtained from these were sintered at various maximum sintering temperatures to produce alumina fibers. I got it. The degree of gelatinization was determined for each alumina fiber by powder X-ray diffraction method. Here, the "degree of α-ization" in this example refers to the α-alumina peak (2θ
66.5°), where Zr=
0% (no additives) and the maximum firing temperature is 1270°C, which is set as 100. The obtained degree of gelatinization is shown in FIG. As is clear from FIG. 3, as the amount of Zr compound added increases, the same degree of gelatinization is achieved at a lower maximum firing temperature. However, when the amount of Zr compound added is 5%, the effect of addition becomes small, and the degree of gelatinization tends to be excessive (approximately 250 or more), and the firing temperature range for obtaining alumina fibers with low embrittlement becomes narrow.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明のアルミナ繊維の例
の粉末X線回折図である。第3図は本発明のアル
ミナ繊維におけるZr化合物添加量及び焼成温度
とα化度との関係を示すグラフである。横軸は最
高焼成温度、縦軸はα化度、また各曲線に付した
数値はZr化合物の添加量をそれぞれ表わす。
1 and 2 are powder X-ray diffraction patterns of examples of alumina fibers of the present invention. FIG. 3 is a graph showing the relationship between the amount of Zr compound added, the firing temperature, and the degree of gelatinization in the alumina fiber of the present invention. The horizontal axis represents the maximum firing temperature, the vertical axis represents the degree of gelatinization, and the numbers attached to each curve represent the amount of Zr compound added.

Claims (1)

【特許請求の範囲】 1 結晶性酸化アルミニウムを主成分とする金属
酸化物からなる繊維であつて、 酸化アルミニウム(Al2O3)、酸化ケイ素
(SiO2)及び酸化ジルコニウム(ZrO2)を、それ
ぞれ Al2O3 70〜98.9重量% SiO2 1〜29.9重量% ZrO2 0.1〜3重量% の割合で含有し、 酸化ケイ素の含有率Csi(重量%)と酸化ジルコ
ニウムの含有率Czr(重量%)とが次の関係式: Csi≦−20log Czr+10 を満たし、かつ、 粉末X線回折スペクトル(対陰極:Cu−K〓)
におけるδ−アルミナピーク(2θ67.5°)の強
度I〓とα−アルミナピーク(2θ66.5°)の強度I〓
との比I〓/I〓として定義されるアルミナのδ化度
が0.5〜1.5の範囲内であることを特徴とする耐火
性アルミナ繊維。
[Claims] 1. A fiber made of a metal oxide whose main component is crystalline aluminum oxide, which contains aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), and zirconium oxide (ZrO 2 ), They contain Al 2 O 3 70 to 98.9% by weight, SiO 2 1 to 29.9% by weight, ZrO 2 0.1 to 3% by weight, and the silicon oxide content C si (weight %) and the zirconium oxide content C zr ( weight%) satisfies the following relational expression: C si ≦−20log C zr +10, and the powder X-ray diffraction spectrum (Anticathode: Cu−K〓)
Intensity I〓 of δ-alumina peak (2θ67.5°) and intensity I〓 of α-alumina peak (2θ66.5°) at
A refractory alumina fiber characterized in that the degree of δ of alumina defined as the ratio I〓/I〓 is within the range of 0.5 to 1.5.
JP19817182A 1982-11-11 1982-11-11 Refractory alumina fiber and its manufacture Granted JPS5988917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19817182A JPS5988917A (en) 1982-11-11 1982-11-11 Refractory alumina fiber and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19817182A JPS5988917A (en) 1982-11-11 1982-11-11 Refractory alumina fiber and its manufacture

Publications (2)

Publication Number Publication Date
JPS5988917A JPS5988917A (en) 1984-05-23
JPH045770B2 true JPH045770B2 (en) 1992-02-03

Family

ID=16386647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19817182A Granted JPS5988917A (en) 1982-11-11 1982-11-11 Refractory alumina fiber and its manufacture

Country Status (1)

Country Link
JP (1) JPS5988917A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160103426A (en) * 2015-02-24 2016-09-01 정성화 Dry distillation type pyrolysis system of waste electric wire and communication line

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2885697B2 (en) * 1996-04-22 1999-04-26 イソライト工業株式会社 Alumina zirconia fiber and method for producing the same
JP5200789B2 (en) * 2007-10-23 2013-06-05 三菱化学株式会社 Resin composition
CN103820882B (en) * 2014-03-07 2015-12-30 武汉大学 Hollow inorganic oxide fibre and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522092A (en) * 1978-07-26 1980-02-16 Carborundum Co Shrinkage resistant and fire retarded fiber and method
JPS55142718A (en) * 1979-03-05 1980-11-07 Johns Manville Method and composition for producing alumina containing fiber
JPS5620361A (en) * 1979-07-26 1981-02-25 Nippon Telegr & Teleph Corp <Ntt> Multiple data frame transmission system
JPS58186613A (en) * 1982-04-26 1983-10-31 Mitsubishi Keikinzoku Kogyo Kk Production of refractory alumina fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522092A (en) * 1978-07-26 1980-02-16 Carborundum Co Shrinkage resistant and fire retarded fiber and method
JPS55142718A (en) * 1979-03-05 1980-11-07 Johns Manville Method and composition for producing alumina containing fiber
JPS5620361A (en) * 1979-07-26 1981-02-25 Nippon Telegr & Teleph Corp <Ntt> Multiple data frame transmission system
JPS58186613A (en) * 1982-04-26 1983-10-31 Mitsubishi Keikinzoku Kogyo Kk Production of refractory alumina fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160103426A (en) * 2015-02-24 2016-09-01 정성화 Dry distillation type pyrolysis system of waste electric wire and communication line

Also Published As

Publication number Publication date
JPS5988917A (en) 1984-05-23

Similar Documents

Publication Publication Date Title
US3503765A (en) High temperature alumina-silica fibers and method of manufacture
CN116693324B (en) Preparation method of lightweight heat-insulating aluminum titanate porous ceramic with multistage pore structure
RU2465247C2 (en) Polycrystalline corundum fibres and method of obtaining said fibres
CN114685149A (en) Functionalized alumina ceramic fiber and preparation method thereof
JPH045770B2 (en)
JP6796390B2 (en) Alumina-based oxide continuous fiber and its manufacturing method
WO1998051981A1 (en) Glass fiber reinforced ceramic molding compositions
JPH0372724B2 (en)
JP2582730B2 (en) Manufacturing method of ceramic molded products
RU2212388C2 (en) Method of manufacturing high-temperature alumina-based fiber
JP2990320B2 (en) Insulation material and its manufacturing method
JPH01280022A (en) Aluminum nitride fiber and production thereof
JPH06219828A (en) Production of mullite-silicon carbide combined ceramics
JPH11246280A (en) Monoclinic celsian porous body and its production
JPH04349177A (en) Heat insulator
JPS62206021A (en) Production of alumina based filament
JP4319866B2 (en) Method for producing inorganic fibrous refractory insulation
JPH06316467A (en) Production of incombustible molding
JP2017048477A (en) Alumina fiber aggregate and manufacturing method therefor
EP1305265A1 (en) Bonded fibrous materials
JP2652006B2 (en) Ceramic molded product and its manufacturing method
CN114107961A (en) Mullite alumina sol heat-resistant composite coating material and preparation method thereof
JPS6360131B2 (en)
JPS605022A (en) Manufacture of alumina fiber
JPS60173151A (en) Production of ceramic fiber blanket