JP6796390B2 - Alumina-based oxide continuous fiber and its manufacturing method - Google Patents

Alumina-based oxide continuous fiber and its manufacturing method Download PDF

Info

Publication number
JP6796390B2
JP6796390B2 JP2016063929A JP2016063929A JP6796390B2 JP 6796390 B2 JP6796390 B2 JP 6796390B2 JP 2016063929 A JP2016063929 A JP 2016063929A JP 2016063929 A JP2016063929 A JP 2016063929A JP 6796390 B2 JP6796390 B2 JP 6796390B2
Authority
JP
Japan
Prior art keywords
alumina
fiber
based oxide
tensile strength
continuous fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016063929A
Other languages
Japanese (ja)
Other versions
JP2017179619A (en
Inventor
和弘 粂田
和弘 粂田
栄二 鍋井
栄二 鍋井
伸 田中
伸 田中
Original Assignee
株式会社ニチビ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニチビ filed Critical 株式会社ニチビ
Priority to JP2016063929A priority Critical patent/JP6796390B2/en
Publication of JP2017179619A publication Critical patent/JP2017179619A/en
Application granted granted Critical
Publication of JP6796390B2 publication Critical patent/JP6796390B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、耐熱性に優れたアルミナ系酸化物連続繊維及びその製造方法に関する。 The present invention relates to an alumina-based oxide continuous fiber having excellent heat resistance and a method for producing the same.

一般にアルミナ長繊維と呼ばれるアルミナ(Al)を主成分とするアルミナ系酸化物連続繊維は、高い耐熱性を有し、引張強度が高く、また電気絶縁性に優れる等多くの優れた特性を有しており、特に高温耐熱材料として広い分野で使用されている。 Alumina-based oxide continuous fibers containing alumina (Al 2 O 3 ) as a main component, which are generally called alumina long fibers, have many excellent properties such as high heat resistance, high tensile strength, and excellent electrical insulation. It is used in a wide range of fields, especially as a high-temperature heat-resistant material.

しかしながら、従来のアルミナ系酸化物連続繊維は、1200℃以上の高温雰囲気で長時間使用されることによって引張強度の低下を生じる傾向にあり、さらなる耐熱性の向上が求められている。 However, conventional alumina-based oxide continuous fibers tend to have a decrease in tensile strength when used for a long time in a high temperature atmosphere of 1200 ° C. or higher, and further improvement in heat resistance is required.

アルミナ系酸化物連続繊維の耐熱性を向上させるために、通常アルミナの他にシリカ(SiO)を成分として含有させるが、さらに第3成分として酸化ホウ素を含有させることが提案されている(特許文献1、2、3、4)が、かかる繊維はホウ素を含有することが好ましくない用途や分野においては使用できないという問題がある。 In order to improve the heat resistance of alumina-based oxide continuous fibers, silica (SiO 2 ) is usually contained as a component in addition to alumina, but it has been proposed to further contain boron oxide as a third component (patented). Documents 1, 2, 3, and 4) have a problem that such fibers cannot be used in applications and fields where it is not preferable to contain boron.

他方、アルミナ系酸化物連続繊維を得るために、第3成分として酸化ホウ素以外の成分を含有させることも提案されている(特許文献5)。この提案では、アルミナを主成分とし、3〜12重量%のシリカと第3成分としてP、Ba、Sn、Y、Co、Sr、Cr、ZrまたはFeの酸化物の少なくとも1つを含有させたアルミナ質繊維が開示されているが、この繊維は不活性ガス雰囲気下で焼成されてなるものであり、また、この繊維の強さについては示されているものの、高温雰囲気で長時間使用された場合の引張強度の保持については何ら示されていない。 On the other hand, in order to obtain an alumina-based oxide continuous fiber, it has also been proposed to contain a component other than boron oxide as a third component (Patent Document 5). In this proposal, alumina is the main component, and 3 to 12% by weight of silica is contained, and at least one of P, Ba, Sn, Y, Co, Sr, Cr, Zr or Fe oxide is contained as the third component. Alumina fibers are disclosed, which are made by firing in an inert gas atmosphere, and although the strength of the fibers is shown, they have been used for a long time in a high temperature atmosphere. Nothing is shown about the retention of tensile strength in the case.

さらに、還元性金属化合物としてNi、Fe、CoまたはCuの化合物を不均一になるように添加したセラミック繊維が提案されている(特許文献6)が、この提案は還元雰囲気下で焼成することによって金属化合物を還元し、サーメット繊維を得るものであって、この繊維を高温雰囲気で長時間使用された場合の引張強度の保持については何ら示されていない。 Further, a ceramic fiber in which a compound of Ni, Fe, Co or Cu is added so as to be non-uniform has been proposed as a reducing metal compound (Patent Document 6), but this proposal is made by firing in a reducing atmosphere. The metal compound is reduced to obtain cermet fibers, and no retention of tensile strength is shown when the fibers are used for a long time in a high temperature atmosphere.

特公昭61−32405号公報Special Publication No. 61-32405 特公平1−14325号公報Special Fair 1-1425 特開昭63−288217号公報Japanese Unexamined Patent Publication No. 63-288217 特開2007−277744号公報JP-A-2007-277744 特開昭62−100457号公報Japanese Unexamined Patent Publication No. 62-100457 特開昭62−199818号公報Japanese Unexamined Patent Publication No. 62-199818

本発明は、上記のような従来のアルミナ系酸化物連続繊維における問題に鑑みなされたもので、アルミナ及びシリカを主成分とするアルミナ系酸化物連続繊維が、その製造時の焼成の過程で生成するムライト結晶の影響について検討し、特定の金属化合物を含有させた前駆体繊維を焼成することにより、焼成が完了した時点で、予めアルミナ系酸化物連続繊維を構成する結晶構造の一部を安定なムライトの結晶に転移させておくならば、その後1200℃以上の高温雰囲気下で長時間曝されても新たに生成するムライト結晶が成長し難くなり、繊維は緻密な結晶構造を維持することによって、引張強度の経時的低下が少なくなることを見いだし、本発明に至ったものである。
本発明の目的とするところは、1200℃以上の高温雰囲気下での長時間の使用時における引張強度の経時的低下が少なく、使用分野での制約のない耐熱性に優れたアルミナ系酸化物連続繊維を提供することにある。
The present invention has been made in view of the above-mentioned problems in conventional alumina-based oxide continuous fibers, and alumina-based oxide continuous fibers containing alumina and silica as main components are produced in the process of firing during the production thereof. By investigating the effect of mullite crystals and firing precursor fibers containing a specific metal compound, a part of the crystal structure constituting the alumina-based oxide continuous fiber is stabilized in advance when the firing is completed. If it is transferred to a mullite crystal, it becomes difficult for newly formed mullite crystal to grow even if it is subsequently exposed to a high temperature atmosphere of 1200 ° C. or higher for a long time, and the fiber maintains a dense crystal structure. It has been found that the decrease in tensile strength with time is reduced, and the present invention has been reached.
An object of the present invention is a continuous alumina-based oxide having excellent heat resistance without any restrictions in the field of use, with little decrease in tensile strength over time when used for a long time in a high temperature atmosphere of 1200 ° C. or higher. To provide the fiber.

本発明の要旨は、次のとおりである。
1.アルミナを全成分に対し70〜75重量%、シリカを全成分に対し20〜29.7重量%及び鉄(Fe)、マグネシウム(Mg)、銅(Cu)、イットリウム(Y)、ジルコニウム(Zr)、ニッケル(Ni)、亜鉛(Zn)の群から選ばれる金属の酸化物を全成分に対し0.3〜5重量%含み、繊維中の結晶構造全体に占めるムライトの比率が5〜50%であるアルミナ系酸化物連続繊維。
2.繊維の引張強度が60N/200Tex以上であり、1250℃で24時間加熱後の繊維の引張強度の保持率が加熱前の引張強度の70%以上である前記1に記載のアルミナ系酸化物連続繊維。
3.出発原料はいずれも水溶性または水分散性であって、アルミニウム化合物、ケイ素化合物、及びFe、Mg、Cu、Y、Zr、Ni、Znの群から選ばれる金属の化合物を出発原料とし、前記出発原料を水に溶解または懸濁させ、アルミニウム化合物をアルミナに換算して70〜75重量%、ケイ素化合物をシリカに換算して20〜29.7重量%、及び前記金属の群から選ばれる金属の化合物を該金属酸化物に換算して0.3〜5重量%の重量比で含み、20℃における粘度を10〜2000Pa・sの範囲に調製した紡糸原液を用い、乾式紡糸して得た前駆体繊維を1000〜1500℃の大気雰囲気でムライト化率5〜50%の結晶構造に焼成することを特徴とする前記1に記載のアルミナ系酸化物連続繊維の製造方法。
The gist of the present invention is as follows.
1. 1. Alumina is 70 to 75% by weight based on all components, silica is 20 to 29.7% by weight based on all components, and iron (Fe), magnesium (Mg), copper (Cu), yttrium (Y), zinc (Zr). , Nickel (Ni), Zinc (Zn) contains an oxide of a metal selected from the group of 0.3 to 5% by weight with respect to all components, and the ratio of mullite to the entire crystal structure in the fiber is 5 to 50%. A certain alumina-based oxide continuous fiber.
2. 2. The alumina-based oxide continuous fiber according to 1 above, wherein the tensile strength of the fiber is 60 N / 200 Tex or more, and the retention rate of the tensile strength of the fiber after heating at 1250 ° C. for 24 hours is 70% or more of the tensile strength before heating. ..
3. 3. The starting materials are all water-soluble or water-dispersible, and the starting materials are aluminum compounds, silicon compounds, and metal compounds selected from the group of Fe, Mg, Cu, Y, Zr, Ni, and Zn. The raw material is dissolved or suspended in water, and 70 to 75% by weight of the aluminum compound is converted to alumina, 20 to 29.7% by weight of the silicon compound is converted to silica, and the metal selected from the metal group. A precursor obtained by dry spinning using a spinning stock solution containing a compound in a weight ratio of 0.3 to 5% by weight in terms of the metal oxide and having a viscosity at 20 ° C. in the range of 10 to 2000 Pa · s. The method for producing an alumina-based oxide continuous fiber according to 1 above, wherein the body fiber is fired into a crystal structure having a mulliteization rate of 5 to 50% in an air atmosphere of 1000 to 1500 ° C.

本発明のアルミナ系酸化物連続繊維は、1200℃以上の高温雰囲気下での長時間の使用時における引張強度の経時的低下が少なく、長時間の使用に耐えるものであり、ホウ素を含まないことにより使用分野での制約のない耐熱性に優れたものである。
また、本発明のアルミナ系酸化物連続繊維の製造方法によれば、特定の金属化合物を用い第3成分として含ませることによって、特殊な焼成方法に拠らなくとも、耐熱性に優れたアルミナ系酸化物連続繊維を得ることが可能である。
The alumina-based oxide continuous fiber of the present invention has little decrease in tensile strength with time when used for a long time in a high temperature atmosphere of 1200 ° C. or higher, can withstand long-term use, and does not contain boron. Therefore, it has excellent heat resistance without restrictions in the field of use.
Further, according to the method for producing an alumina-based oxide continuous fiber of the present invention, by using a specific metal compound and including it as a third component, an alumina-based material having excellent heat resistance is excellent even if it does not depend on a special firing method. It is possible to obtain oxide continuous fibers.

以下、本発明の実施の形態について、詳細に説明する。
本発明のアルミナ系酸化物連続繊維は、アルミナを主成分とする繊維であって、アルミナを全成分に対し70〜75重量%、シリカを全成分に対し20〜29.7重量%、及びFe、Mg、Cu、Y、Zr、Ni、Znの群、好ましくはFe、Mg、Cu、Yの群から選ばれる金属の酸化物を全成分に対し0.3〜5重量%含み、繊維中の結晶構造全体に占めるムライト(3Al・2SiO〜2Al・SiO)の比率が5〜50%であるムライト結晶を有する繊維である。
Hereinafter, embodiments of the present invention will be described in detail.
The alumina-based oxide continuous fiber of the present invention is a fiber containing alumina as a main component, in which alumina is 70 to 75% by weight based on all components, silica is 20 to 29.7% by weight based on all components, and Fe. , Mg, Cu, Y, Zr, Ni, Zn, preferably a metal oxide selected from the group of Fe, Mg, Cu, Y is contained in the fiber in an amount of 0.3 to 5% by weight based on all the components. the ratio of mullite to total crystalline structure (3Al 2 O 3 · 2SiO 2 ~2Al 2 O 3 · SiO 2) is a fiber having a mullite crystal 5 to 50%.

本発明のアルミナ系酸化物連続繊維は、好ましくは、アルミナを70〜74重量%、シリカを23〜29.5重量%、さらに第3成分であるFe、Mg、CuまたはYの酸化物を0.5〜3重量%含んでなる繊維である。 The alumina-based oxide continuous fiber of the present invention preferably contains 70 to 74% by weight of alumina, 23 to 29.5% by weight of silica, and 0 oxides of Fe, Mg, Cu or Y as a third component. .. A fiber containing 5 to 3% by weight.

また、本発明のアルミナ系酸化物連続繊維は、繊維中の結晶構造全体に占めるムライトの比率、即ちムライト化率が5〜50%の繊維である。ムライト化は、アルミナ、シリカによる結晶γアルミナ・非晶シリカからのムライトへの結晶転移であり、ムライト化率が高い程引張強度の保持率の面では好ましいが、焼成した繊維の引張強度が低く、使用用途等に制約を受け易くなる。本発明のアルミナ系酸化物連続繊維においては、ムライト化率は、好ましくは10〜45%であり、繊維の結晶構造にムライトが特定の比率で占めていることが必要である。
なお、ムライト化率は、前記結晶転移前後の粉末X線回析(XRD)による測定結果から算出される。
Further, the alumina-based oxide continuous fiber of the present invention is a fiber in which the ratio of mullite to the entire crystal structure in the fiber, that is, the mulliteization rate is 5 to 50%. Mullite formation is a crystal transition from crystalline γ-alumina / amorphous silica to mullite by alumina and silica. The higher the mulliteization rate, the more preferable in terms of retention of tensile strength, but the lower the tensile strength of the fired fiber. , It becomes easy to be restricted by the intended use. In the alumina-based oxide continuous fiber of the present invention, the mulliteization rate is preferably 10 to 45%, and it is necessary that mullite occupies a specific ratio in the crystal structure of the fiber.
The mulliteization rate is calculated from the measurement results by powder X-ray diffraction (XRD) before and after the crystal transition.

本発明のアルミナ系酸化物連続繊維は、主たる第1成分としてアルミナ、第2成分としてシリカ、さらには第3成分として前記金属の酸化物を含み、結晶構造の一部を安定なムライトとすることによって、繊維の引張強度が60N/200Tex以上、さらには65N/200Tex以上であり、1200℃以上の高温雰囲気下における引張強度の経時的低下が少なく、1250℃で24時間加熱後の引張強度の保持率が、加熱前の引張強度の70%以上、さらには75%以上であるという耐熱性に優れるものである。 The alumina-based oxide continuous fiber of the present invention contains alumina as a main first component, silica as a second component, and an oxide of the metal as a third component, and a part of the crystal structure is made into a stable mulite. As a result, the tensile strength of the fiber is 60 N / 200 Tex or more, further 65 N / 200 Tex or more, and there is little decrease in the tensile strength with time in a high temperature atmosphere of 1200 ° C. or higher, and the tensile strength is maintained after heating at 1250 ° C. for 24 hours. The ratio is 70% or more of the tensile strength before heating, and further is 75% or more, which is excellent in heat resistance.

本発明のアルミナを主成分とし、シリカ、さらに特定の前記金属の酸化物から選ばれる1種を含み、繊維中の結晶構造全体でのムライト化率が5〜50%であるアルミナ系酸化物連続繊維は、次のようにして製造することができる。 Alumina-based oxide continuous containing alumina as a main component of the present invention, silica, and one selected from oxides of the specific metal, and having a mulliteization rate of 5 to 50% in the entire crystal structure in the fiber. The fiber can be produced as follows.

すなわち、本発明のアルミナ系酸化物連続繊維は、出発原料はいずれも水溶性または水分散性の化合物であって、アルミニウム化合物、ケイ素化合物、及びFe、Mg、Cu、Y、Zr、Ni、Znの群、好ましくはFe、Mg、Cu、Yの群から選ばれる金属の化合物を出発原料とし、前記出発原料を水に溶解または懸濁させ、アルミニウム化合物をアルミナに換算し全成分に対し70〜75重量%、ケイ素化合物をシリカに換算し全成分に対し20〜29.7重量%、及びFe、Mg、Cu、Y、Zr、Ni、Znの群、好ましくはFe、Mg、Cu、Yの群から選ばれる金属の化合物を該金属酸化物に換算し全成分に対し0.3〜5重量%の重量比で含み、20℃における粘度を10〜2000Pa・sの範囲に調製した紡糸原液を用い、乾式紡糸して得た前駆体繊維を1000〜1500℃の大気雰囲気でムライト化率5〜50%の結晶構造に焼成することにより得ることができる。 That is, the alumina-based oxide continuous fiber of the present invention is a water-soluble or water-dispersible compound as a starting material, and is an aluminum compound, a silicon compound, and Fe, Mg, Cu, Y, Zr, Ni, Zn. As a starting material, a metal compound selected from the group of Fe, Mg, Cu, and Y is used as a starting material, the starting material is dissolved or suspended in water, and the aluminum compound is converted to alumina to be 70 to 70 to all the components. 75% by weight, 20 to 29.7% by weight of the silicon compound converted to silica, and Fe, Mg, Cu, Y, Zr, Ni, Zn groups, preferably Fe, Mg, Cu, Y. A spinning stock solution prepared by converting a metal compound selected from the group into the metal oxide and containing it in a weight ratio of 0.3 to 5% by weight with respect to all the components and preparing a viscosity at 20 ° C. in the range of 10 to 2000 Pa · s. It can be obtained by firing a precursor fiber obtained by dry spinning using a crystal structure having a mulliteization rate of 5 to 50% in an air atmosphere of 1000 to 1500 ° C.

本発明の製造方法において用いる出発原料は、いずれも水溶性または水分散性であり、
出発原料のアルミニウム化合物は、アルミナ系酸化物連続繊維の主成分であるアルミナを前駆体繊維の焼成の過程で形成しうるもので、例えば、塩基性酢酸アルミニウム、塩基性乳酸アルミニウム等の有機酸アルミニウムの塩基性塩、塩基性塩化アルミニウム、塩基性硝酸アルミニウム等の無機酸アルミニウムの塩基性塩、アルミナゾル等が挙げられる。
The starting materials used in the production method of the present invention are all water-soluble or water-dispersible.
The aluminum compound as a starting material can form alumina, which is the main component of the alumina-based oxide continuous fiber, in the process of firing the precursor fiber. For example, organic acid aluminum such as basic aluminum acetate and basic aluminum lactate. Examples thereof include a basic salt of the above, a basic salt of inorganic acid aluminum such as basic aluminum chloride and basic aluminum nitrate, and an alumina sol.

また、出発原料のケイ素化合物は、前駆体繊維の焼成の過程でシリカを形成しうるもので、例えば、メチルシリケート、エチルシリケート等の加水分解物、シリカゾル、水に溶けるように変性された水溶性シリコーン等のシリコーン化合物等が挙げられる。さらに、出発原料のFe、Mg、Cu、Y、Zr、NiまたはZnの化合物、好ましくはFe、Mg、CuまたはYの化合物は、前駆体繊維の焼成の過程で第3成分として該金属酸化物を形成しうるもので、例えば、これら金属の塩酸塩、硫酸塩、硝酸塩等の無機酸金属塩、酢酸塩、ギ酸塩等の有機酸金属塩が挙げられる。 Further, the silicon compound as a starting material can form silica in the process of firing the precursor fiber, and is, for example, a hydrolyzate such as methyl silicate or ethyl silicate, a silica sol, or a water-soluble compound modified to be soluble in water. Examples thereof include silicone compounds such as silicone. Further, the starting material Fe, Mg, Cu, Y, Zr, Ni or Zn compound, preferably the Fe, Mg, Cu or Y compound is the metal oxide as a third component in the process of firing the precursor fiber. Examples thereof include inorganic acid metal salts such as hydrochlorides, sulfates and nitrates of these metals, and organic acid metal salts such as acetates and formates.

出発原料であるアルミニウム化合物、ケイ素化合物、及び前記金属の化合物を水に溶解または懸濁させて紡糸原液を調製するに際しては、水溶性有機重合体を紡糸助剤として添加することが曳糸性を高めるうえで好ましい。水溶性有機重合体としては、曳糸性向上機能を有するものであればよく、カルボキシメチルセルロース、ポリメタクリル酸エステル、ポリビニルアルコール等が挙げられ、なかでもポリビニルアルコールが好ましいものとして挙げられる。 When preparing a spinning stock solution by dissolving or suspending an aluminum compound, a silicon compound, and a compound of the metal as starting materials in water, it is necessary to add a water-soluble organic polymer as a spinning aid to improve the spinnability. It is preferable to enhance it. The water-soluble organic polymer may be any one having a spinnability improving function, and examples thereof include carboxymethyl cellulose, polymethacrylic acid ester, polyvinyl alcohol, and the like, and polyvinyl alcohol is particularly preferable.

紡糸助剤を添加する際には、出発原料と紡糸助剤とを、出発原料を全酸化物に換算して重量比で好ましくは95/5〜70/30、より好ましくは90/10〜75/25の範囲になるようにして水に溶解または懸濁させ、アルミニウム化合物をアルミナに換算して70〜75重量%、ケイ素化合物をシリカに換算して20〜29.7重量%、及び前記金属の化合物を該金属酸化物に換算して0.3〜5重量%の重量比で含む紡糸原液を調製する。 When the spinning aid is added, the starting material and the spinning aid are preferably 95/5 to 70/30, more preferably 90/10 to 75 by weight in terms of the starting material in terms of total oxide. Dissolve or suspend in water so as to be in the range of / 25, and convert the aluminum compound to alumina to 70 to 75% by weight, the silicon compound to silica to 20 to 29.7% by weight, and the metal. A spinning stock solution containing the above compound in a weight ratio of 0.3 to 5% by weight in terms of the metal oxide is prepared.

紡糸原液の調製では、紡糸原液に含まれる前記金属の化合物は、該金属酸化物に換算して0.5〜3重量%添加することが必要であり、添加量が0.3重量%未満では、後述する添加の効力が発揮できず、5重量%を超えると、紡糸原液の粘度が経時的に急激に上昇し、また曳糸性も低下し、前駆体繊維を安定に得ることが困難になる。 In the preparation of the spinning stock solution, it is necessary to add 0.5 to 3% by weight of the metal compound contained in the spinning stock solution in terms of the metal oxide, and if the addition amount is less than 0.3% by weight. If the effect of the addition described later cannot be exhibited and exceeds 5% by weight, the viscosity of the spinning stock solution rapidly increases with time and the spinnability also decreases, making it difficult to stably obtain precursor fibers. Become.

また、紡糸原液としては、20℃における粘度を10〜2000Pa・sの範囲になるように調製した紡糸原液を用いることが乾式紡糸法により紡糸するうえで好ましく、より好ましくは粘度が20〜500Pa・sの範囲の紡糸原液であれば、紡糸工程の安定性をより増加させる。紡糸原液における粘度の調整は、減圧濃縮法によって好ましい粘度範囲に容易にすることができる。 Further, as the spinning stock solution, it is preferable to use a spinning stock solution prepared so that the viscosity at 20 ° C. is in the range of 10 to 2000 Pa · s in order to spin by the dry spinning method, and more preferably the viscosity is 20 to 500 Pa · s. A spinning stock solution in the range of s will further increase the stability of the spinning process. The viscosity of the undiluted spinning solution can be easily adjusted to a preferable viscosity range by the vacuum concentration method.

本発明の製造方法においては、調製した紡糸原液を用いて乾式紡糸し、長繊維状の前駆体繊維を得る。乾式紡糸法により長繊維状の前駆体繊維を得る際には、紡糸原液を紡糸ノズルから加熱雰囲気中に吐出し、十分に乾燥しつつ所定の繊維径になるように巻き取る。 In the production method of the present invention, the prepared spinning stock solution is used for dry spinning to obtain long fibrous precursor fibers. When a long-fibrous precursor fiber is obtained by a dry spinning method, a spinning stock solution is discharged from a spinning nozzle into a heating atmosphere and wound up to a predetermined fiber diameter while being sufficiently dried.

前駆体繊維の焼成は、得られた前駆体繊維を、アルミナ系酸化物連続繊維の製造で通常用いられる焼成方法、すなわち1000〜1500℃、好ましくは1000〜1200℃の大気雰囲気下で焼成することにより、本発明のアルミナ系酸化物連続繊維が得られる。 The precursor fiber is fired by firing the obtained precursor fiber in an air atmosphere of 1000 to 1500 ° C., preferably 1000 to 1200 ° C., which is a firing method usually used in the production of alumina-based oxide continuous fiber. As a result, the alumina-based oxide continuous fiber of the present invention can be obtained.

本発明の製造方法においては、特に前記金属化合物を用い、金属酸化物に換算しての所定量を前駆体繊維に含ませたことにより、該前駆体繊維を焼成すると、添加した金属化合物が第3成分としての金属酸化物が生成する。該金属酸化物は、焼結助剤として作用し、短時間の焼成でアルミニウム化合物・ケイ素化合物から生成したγアルミナ・非晶シリカの一部を、速やかに安定なムライト結晶に結晶転移させ、ムライト化を生起させる。本発明の製造方法によれば、焼結助剤として作用する該金属酸化物の存在下での速やかな結晶転移によってムライト化率5〜50%の結晶構造とすることができる。 In the production method of the present invention, the metal compound is particularly used, and a predetermined amount in terms of metal oxide is contained in the precursor fiber, so that when the precursor fiber is fired, the added metal compound becomes the first. Metal oxides as three components are produced. The metal oxide acts as a sintering aid, and a part of γ-alumina / amorphous silica generated from an aluminum compound / silicon compound is rapidly crystallized into a stable mullite crystal by firing in a short time, and the mullite is formed. Causes crystallization. According to the production method of the present invention, a crystal structure having a mulliteization rate of 5 to 50% can be obtained by rapid crystal transition in the presence of the metal oxide acting as a sintering aid.

すなわち、本発明によれば、第3成分としての金属酸化物が含まれたアルミナ系酸化物連続繊維中には、焼成が完了した時点で既にムライト化率が5〜50%という特定比率の安定なムライトが結晶構造に存在している。そのため、本発明のアルミナ系酸化物連続繊維を耐熱材料として使用した際に、1200℃を超える高温に長時間曝されることによりムライト化率が50%以上にムライト化の進行により新たなムライト結晶が生成しても、既に存在するムライト結晶によって更なる結晶成長が阻害・抑制される。したがって、高温に長時間曝された繊維中には粗大なムライト結晶が少なく、緻密な結晶構造が維持されることによって、60N/200Tex以上の引張強度を有しながら、1200℃以上の高温雰囲気下における経時的な引張強度の低下が起こり難いアルミナ系酸化物連続繊維を得ることができる。 That is, according to the present invention, in the alumina-based oxide continuous fiber containing the metal oxide as the third component, the mulliteization rate is already stable at a specific ratio of 5 to 50% when the firing is completed. Mullite is present in the crystal structure. Therefore, when the alumina-based oxide continuous fiber of the present invention is used as a heat-resistant material, the mulliteization rate becomes 50% or more by being exposed to a high temperature exceeding 1200 ° C. for a long time, and new mullite crystals are formed due to the progress of mulliteization. Is generated, but further crystal growth is inhibited or suppressed by the already existing mullite crystals. Therefore, there are few coarse mullite crystals in the fibers exposed to high temperature for a long time, and by maintaining a dense crystal structure, the fiber has a tensile strength of 60 N / 200 Tex or more and is in a high temperature atmosphere of 1200 ° C. or more. It is possible to obtain an alumina-based oxide continuous fiber in which the tensile strength is unlikely to decrease with time.

以下、本発明を実施例に基づいてより具体的に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

(実施例1)
出発原料として、アルミニウム化合物に塩基性塩化アルミニウム水溶液、ケイ素化合物にシリカゾル、第3成分の金属酸化物となる金属化合物に硫酸鉄を用い、紡糸助剤としてポリビニルアルコール(PVA)を用い、出発原料とPVAとを出発原料を全酸化物に換算して85/15の重量比で水に添加して懸濁させ、出発原料を表1に示す成分比に換算して含む混合溶液とし、さらに減圧濃縮し20℃での粘度が240Pa・sの紡糸原液を調製した。この紡糸原液を用い、乾式紡糸法にて、紡糸ノズルから60℃の加熱雰囲気中に吐出し、線条物を乾燥して巻き取ることで長繊維状の前駆体繊維を作製した。得られた長繊維状の前駆体繊維を1170℃の大気雰囲気下で焼成して、繊度200Texのアルミナ系酸化物連続繊維を得た。
(Example 1)
As a starting material, a basic aluminum chloride aqueous solution was used as the aluminum compound, silica sol was used as the silicon compound, iron sulfate was used as the metal compound to be the metal oxide of the third component, and polyvinyl alcohol (PVA) was used as the spinning aid. PVA and PVA are added to water at a weight ratio of 85/15 to convert the starting material into total oxides and suspended to obtain a mixed solution containing the starting material converted to the component ratio shown in Table 1, and further concentrated under reduced pressure. A spinning stock solution having a viscosity of 240 Pa · s at 20 ° C. was prepared. Using this undiluted spinning solution, a long fibrous precursor fiber was produced by discharging from a spinning nozzle into a heating atmosphere at 60 ° C. and drying and winding the filament by a dry spinning method. The obtained long fibrous precursor fiber was calcined in an air atmosphere at 1170 ° C. to obtain an alumina-based oxide continuous fiber having a fineness of 200 Tex.

得られたアルミナ系酸化物連続繊維は、第3成分として酸化鉄を含み、引張強度が83.4N/200Texであり、XRDでの測定結果から、繊維の結晶構造のムライト化率が25%であった。
得られたアルミナ系酸化物連続繊維を1250℃で24時間(hr)加熱し、引張強度を測定したところ、引張強度が70.6N/200Texで、引張強度の保持率が85%であり、得られたアルミナ系酸化物連続繊維は、優れた耐熱性を示すものであった。
また1250℃で24hrの加熱では、ムライト化が進行し、ムライト化率がほぼ10
0%であったが、緻密な結晶構造は維持されていた
The obtained alumina-based oxide continuous fiber contains iron oxide as a third component, has a tensile strength of 83.4 N / 200 Tex, and from the measurement result by XRD, the mulliteization rate of the crystal structure of the fiber is 25%. there were.
The obtained alumina-based oxide continuous fiber was heated at 1250 ° C. for 24 hours (hr), and the tensile strength was measured. As a result, the tensile strength was 70.6 N / 200 Tex, and the tensile strength retention rate was 85%. The resulting alumina-based oxide continuous fiber exhibited excellent heat resistance.
Further, when heated at 1250 ° C. for 24 hours, mulliteization progresses, and the mulliteization rate is approximately 10.
Although it was 0% , the dense crystal structure was maintained .

(実施例2)
実施例1において、出発原料として、第3成分の金属酸化物となる硫酸鉄の成分比、紡糸原液粘度を、表1に示すように変更した以外は、実施例1と同様にして、乾式紡糸し、作製した長繊維状の前駆体繊維を焼成し、アルミナ系酸化物連続繊維を得た。
得られたアルミナ系酸化物連続繊維は、第3成分として酸化鉄を含み、表2に示すとおり、引張強度が72.6N/200Texであり、XRDでの測定結果から、繊維の結晶構造のムライト化率が30%であった。
得られたアルミナ系酸化物連続繊維を1250℃で24hr加熱し、引張強度を測定したところ、表2に示すとおり、引張強度が65.7N/200Texで、引張強度の保持率が90%であり、得られたアルミナ系酸化物連続繊維は、優れた耐熱性を示すものであった。また1250℃で24hrの加熱では、ムライト化が進行し、ムライト化率がほぼ100%であったが、緻密な結晶構造は維持されていた
(Example 2)
In Example 1, dry spinning was carried out in the same manner as in Example 1 except that the component ratio of iron sulfate, which is the metal oxide of the third component, and the viscosity of the undiluted spinning solution were changed as shown in Table 1. Then, the produced long fibrous precursor fibers were fired to obtain alumina-based oxide continuous fibers.
The obtained alumina-based oxide continuous fiber contains iron oxide as a third component, has a tensile strength of 72.6 N / 200 Tex as shown in Table 2, and from the measurement results by XRD, mullite having a crystal structure of the fiber. The conversion rate was 30%.
The obtained alumina-based oxide continuous fiber was heated at 1250 ° C. for 24 hours, and the tensile strength was measured. As shown in Table 2, the tensile strength was 65.7 N / 200 Tex, and the tensile strength retention rate was 90%. The obtained alumina-based oxide continuous fiber exhibited excellent heat resistance. Further, when heated at 1250 ° C. for 24 hours, mulliteization proceeded and the mulliteization rate was almost 100%, but the dense crystal structure was maintained .

(実施例3)
実施例1において、第3成分の金属酸化物となる出発原料を硫酸マグネシウムに、また紡糸原液粘度を表1に示すように変更した以外は、実施例1と同様にして、乾式紡糸し、作製した長繊維状の前駆体繊維を焼成し、アルミナ系酸化物連続繊維を得た。
得られたアルミナ系酸化物連続繊維は、第3成分として酸化マグネシウムを含み、表2に示すとおり、引張強度が78.5N/200Texであり、XRDでの測定結果から、繊維の結晶構造のムライト化率が40%であった。
得られたアルミナ系酸化物連続繊維を1250℃で24hr加熱し、引張強度を測定したところ、表2に示すとおり、引張強度が63.8N/200Texで、引張強度の保持率が81%であり、得られたアルミナ系酸化物連続繊維は、優れた耐熱性を示すものであった。また1250℃で24hrの加熱では、ムライト化が進行し、ムライト化率がほぼ100%であったが、緻密な結晶構造は維持されていた
(Example 3)
In Example 1, dry spinning was carried out in the same manner as in Example 1 except that the starting material for the metal oxide of the third component was magnesium sulfate and the viscosity of the undiluted spinning solution was changed as shown in Table 1. The long fibrous precursor fibers were fired to obtain alumina-based oxide continuous fibers.
The obtained alumina-based oxide continuous fiber contains magnesium oxide as a third component, has a tensile strength of 78.5 N / 200 Tex as shown in Table 2, and from the measurement results by XRD, mullite having a crystal structure of the fiber. The conversion rate was 40%.
The obtained alumina-based oxide continuous fiber was heated at 1250 ° C. for 24 hours, and the tensile strength was measured. As shown in Table 2, the tensile strength was 63.8 N / 200 Tex, and the tensile strength retention rate was 81%. The obtained alumina-based oxide continuous fiber exhibited excellent heat resistance. Further, when heated at 1250 ° C. for 24 hours, mulliteization proceeded and the mulliteization rate was almost 100%, but the dense crystal structure was maintained .

(実施例4)
実施例1において、第3成分の金属酸化物となる出発原料を酢酸イットリウムに、またその成分比、紡糸原液粘度を表1に示すように変更した以外は、実施例1と同様にして、乾式紡糸し、作製した長繊維状の前駆体繊維を焼成し、アルミナ系酸化物連続繊維を得た。
得られたアルミナ系酸化物連続繊維は、第3成分として酸化イットリウムを含み、表2に示すとおり、引張強度が68.5N/200Texであり、XRDでの測定結果から、繊維の結晶構造のムライト化率が33%であった。
得られたアルミナ系酸化物連続繊維を1250℃で24hr加熱し、引張強度を測定したところ、表2に示すとおり、引張強度が62.8N/200Texで、引張強度の保持率が91%であり、得られたアルミナ系酸化物連続繊維は、優れた耐熱性を示すものであった。また1250℃で24hrの加熱では、ムライト化が進行し、ムライト化率がほぼ100%であったが、緻密な結晶構造は維持されていた
(Example 4)
In Example 1, the starting material for the metal oxide of the third component was yttrium acetate, and the component ratio and the viscosity of the spinning stock solution were changed as shown in Table 1, except that the dry type was used in the same manner as in Example 1. The long fibrous precursor fibers produced by spinning were fired to obtain alumina-based oxide continuous fibers.
The obtained alumina-based oxide continuous fiber contains yttrium oxide as a third component, has a tensile strength of 68.5 N / 200 Tex as shown in Table 2, and from the measurement results by XRD, the mullite having a crystal structure of the fiber. The conversion rate was 33%.
The obtained alumina-based oxide continuous fiber was heated at 1250 ° C. for 24 hours, and the tensile strength was measured. As shown in Table 2, the tensile strength was 62.8 N / 200 Tex, and the tensile strength retention rate was 91%. The obtained alumina-based oxide continuous fiber exhibited excellent heat resistance. Further, when heated at 1250 ° C. for 24 hours, mulliteization proceeded and the mulliteization rate was almost 100%, but the dense crystal structure was maintained .

(実施例5)
実施例1において、第3成分の金属酸化物となる出発原料を塩化銅に、また紡糸原液粘度を表1に示すように変更した以外は、実施例1と同様にして、乾式紡糸し、作製した長繊維状の前駆体繊維を焼成し、アルミナ系酸化物連続繊維を得た。
得られたアルミナ系酸化物連続繊維は、第3成分として酸化銅を含み、表2に示すとおり、引張強度が80.4N/200Texであり、XRDでの測定結果から、繊維の結晶構造のムライト化率が10%であった。
得られたアルミナ系酸化物連続繊維を1250℃で24hr加熱し、引張強度を測定したところ、表2に示すとおり、引張強度が64.7N/200Texで、引張強度の保持率が80%であり、得られたアルミナ系酸化物連続繊維は、優れた耐熱性を示すものであった。また1250℃で24hrの加熱では、ムライト化が進行し、ムライト化率がほぼ100%であったが、緻密な結晶構造は維持されていた
(Example 5)
In Example 1, dry spinning was carried out in the same manner as in Example 1 except that the starting material for the metal oxide of the third component was changed to copper chloride and the viscosity of the undiluted spinning solution was changed as shown in Table 1. The long fibrous precursor fibers were fired to obtain alumina-based oxide continuous fibers.
The obtained alumina-based oxide continuous fiber contains copper oxide as a third component, has a tensile strength of 80.4 N / 200 Tex as shown in Table 2, and from the measurement results by XRD, mullite having a crystal structure of the fiber. The conversion rate was 10%.
The obtained alumina-based oxide continuous fiber was heated at 1250 ° C. for 24 hours, and the tensile strength was measured. As shown in Table 2, the tensile strength was 64.7 N / 200 Tex, and the tensile strength retention rate was 80%. The obtained alumina-based oxide continuous fiber exhibited excellent heat resistance. Further, when heated at 1250 ° C. for 24 hours, mulliteization proceeded and the mulliteization rate was almost 100%, but the dense crystal structure was maintained .

(比較例1)
実施例1において、第3成分の金属酸化物となる出発原料の金属化合物を用いず、塩基性塩化アルミニウム水溶液とシリカゾルにて、成分比、紡糸原液粘度を表1に示すように変更した以外は、実施例1と同様にして、乾式紡糸し、作製した前駆体繊維を焼成し、アルミナ系酸化物長繊維を得た。
得られたアルミナ系酸化物連続繊維は、第3成分の金属酸化物を含まず、表2に示すとおり、引張強度が89.2N/200Texであり、XRDでの測定結果から、繊維の結晶構造のムライト化率が0%であって、結晶構造にはムライトが存在しないものであった。
また、得られたアルミナ系酸化物連続繊維を1250℃で24hr加熱し、XRDでの測定結果から繊維の結晶構造のムライト化率がほぼ100%となっていたが、引張強度を測定したところ、表2に示すとおり、引張強度が41.2N/200Texで、引張強度の保持率が46%であり、得られたアルミナ系酸化物連続繊維は、耐熱性に劣るものであった。
(Comparative Example 1)
In Example 1, the component ratio and the viscosity of the undiluted spinning solution were changed as shown in Table 1 with a basic aluminum chloride aqueous solution and silica sol without using the starting metal compound as the metal oxide of the third component. , The precursor fiber produced by dry spinning was fired in the same manner as in Example 1 to obtain an alumina-based oxide filament.
The obtained alumina-based oxide continuous fiber does not contain the metal oxide of the third component, has a tensile strength of 89.2 N / 200 Tex as shown in Table 2, and has a crystal structure of the fiber based on the measurement results by XRD. The mulliteization rate was 0%, and there was no mullite in the crystal structure.
Further, the obtained alumina-based oxide continuous fiber was heated at 1250 ° C. for 24 hours, and the mulliteization rate of the crystal structure of the fiber was almost 100% from the measurement result by XRD. However, when the tensile strength was measured, it was found. As shown in Table 2, the tensile strength was 41.2 N / 200 Tex, the retention rate of the tensile strength was 46%, and the obtained alumina-based oxide continuous fiber was inferior in heat resistance.

本発明のアルミナ系酸化物連続繊維は、1200℃以上の高温雰囲気下における引張強度の経時的低下が少なく、長時間の使用に耐え、耐熱性に優れるものであり、断熱材、耐火材、補強材、炉材、耐熱シール材、触媒担持材等の用途に有用なるもので、またホウ素を含まないことにより、意図しないホウ素の存在が好ましくない半導体製造等の分野での使用が可能である。さらに、本発明のアルミナ系酸化物連続繊維の製造方法は、大気雰囲気下での焼成を含むことから、前記繊維を商業的にも有利に得ることが可能である。

The alumina-based oxide continuous fiber of the present invention has little decrease in tensile strength with time in a high temperature atmosphere of 1200 ° C. or higher, can withstand long-term use, and has excellent heat resistance, and is a heat insulating material, a refractory material, and a reinforcing material. It is useful for applications such as materials, furnace materials, heat-resistant sealing materials, and catalyst-supporting materials, and because it does not contain boron, it can be used in fields such as semiconductor manufacturing in which the presence of unintended boron is not preferable. Furthermore, since the method for producing an alumina-based oxide continuous fiber of the present invention includes firing in an air atmosphere, it is possible to obtain the fiber commercially.

Claims (2)

アルミナを全成分に対し70〜75重量%、シリカを全成分に対し20〜29.7重量%及び鉄、マグネシウム、銅、イットリウムの群から選ばれる金属の酸化物を全成分に対し0.3〜5重量%含み、主体成分に基づいた結晶γアルミナ・非晶シリカの一部のムライト化によるムライト化率が5〜50%である結晶構造の在るアルミナ系酸化物連続繊維。 Alumina is 70 to 75% by weight with respect to all components, silica is 20 to 29.7% by weight with respect to all components, and oxides of metals selected from the group of iron, magnesium, copper and ittrum are 0.3 with respect to all components. It includes 5 wt%, alumina-based oxides, continuous fibers that mullite ratio according to some mullite of crystal γ alumina amorphous silica based on the main component is in the crystal structure Ru 5-50% der. 繊維の引張強度が60N/200Tex以上であり、1250℃で24時間加熱後の繊維の引張強度の保持率が加熱前の引張強度の70%以上である請求項1に記載のアルミナ系酸化物連続繊維。 The alumina-based oxide continuous according to claim 1, wherein the tensile strength of the fiber is 60 N / 200 Tex or more, and the retention rate of the tensile strength of the fiber after heating at 1250 ° C. for 24 hours is 70% or more of the tensile strength before heating. fiber.
JP2016063929A 2016-03-28 2016-03-28 Alumina-based oxide continuous fiber and its manufacturing method Active JP6796390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016063929A JP6796390B2 (en) 2016-03-28 2016-03-28 Alumina-based oxide continuous fiber and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016063929A JP6796390B2 (en) 2016-03-28 2016-03-28 Alumina-based oxide continuous fiber and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2017179619A JP2017179619A (en) 2017-10-05
JP6796390B2 true JP6796390B2 (en) 2020-12-09

Family

ID=60003911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016063929A Active JP6796390B2 (en) 2016-03-28 2016-03-28 Alumina-based oxide continuous fiber and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6796390B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108315838B (en) * 2018-02-06 2020-05-22 山东大学 Method for preparing yttrium oxide nano-fiber by yttrium polymer precursor
CN111978550A (en) * 2020-09-10 2020-11-24 山东大学 Yttrium/aluminum-organic polymer precursor, yttrium aluminum garnet continuous fiber and preparation method
CN115259845A (en) * 2022-06-27 2022-11-01 东华大学 Preparation method of flexible continuous mullite filament

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4047965A (en) * 1976-05-04 1977-09-13 Minnesota Mining And Manufacturing Company Non-frangible alumina-silica fibers
JPS60167925A (en) * 1984-02-10 1985-08-31 Nichias Corp Heat-resistant inorganic fiber
JPH066764B2 (en) * 1985-12-12 1994-01-26 トヨタ自動車株式会社 Alumina continuous fiber reinforced metal composite containing mullite crystals
JPS62206021A (en) * 1986-03-06 1987-09-10 Nippon Light Metal Co Ltd Production of alumina based filament
WO2004003276A1 (en) * 2002-06-28 2004-01-08 Denki Kagaku Kogyo Kabushiki Kaisha Inorganic staple fiber accumulation for holding material, process for producing the same and holding material
US7910514B2 (en) * 2007-08-09 2011-03-22 Nissan Motor Co., Ltd. Inorganic fiber catalyst, production method thereof and catalyst structure
JP2012184512A (en) * 2011-03-03 2012-09-27 Nitivy Co Ltd Method for manufacturing alumina filament excellent in flexibility and heat resistance
WO2014115814A1 (en) * 2013-01-23 2014-07-31 電気化学工業株式会社 Alumina fiber and alumina fiber aggregate

Also Published As

Publication number Publication date
JP2017179619A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
US11572314B2 (en) Preparation method for yttrium aluminum garnet continuous fiber
JP6796390B2 (en) Alumina-based oxide continuous fiber and its manufacturing method
CN101935877B (en) Method for synthesizing mullite whiskers by normal pressure sintering
US5378665A (en) Crystalline yttrium aluminate and process for making
CN103819219A (en) Acid and alkali corrosion-resistant silicon carbide porous support
CN102070326B (en) Preparation process of multi-element composite alumina-based continuous fibers
KR20120115211A (en) Mullite ceramic and method for producing same
Cinibulk Effect of precursors and dopants on the synthesis and grain growth of calcium hexaluminate
RU2465247C2 (en) Polycrystalline corundum fibres and method of obtaining said fibres
Yalamaç et al. Ceramic fibers
CN114162844B (en) Precursor composite sol for alumina/mullite biphase fiber and preparation method thereof
Wei et al. Structure evolution and thermal stability of La2O3-doped mullite fibers via sol-gel method
JP6238286B2 (en) Zirconia continuous fiber and production method thereof
JP3038047B2 (en) Production method of high purity mullite
JP2010280529A (en) Method for manufacturing crucible for polycrystalline silicon production
CN110629322B (en) Preparation method of high-purity polycrystalline yttrium aluminum garnet continuous fiber
Huang et al. Preparation of an aluminium titanate-25 vol% mullite composite by sintering of gel-coated powders
CN114685149A (en) Functionalized alumina ceramic fiber and preparation method thereof
CA2561737A1 (en) Fiber-reinforced heat-resistant sound-absorbing material and process for producing the same
JP3013372B2 (en) Zircon sintered body and method for producing the same
RU2716621C1 (en) Method of producing modified aluminium oxide fibres
JP4470708B2 (en) Composite material and manufacturing method thereof
JP4196179B2 (en) Method for producing silicon nitride material
US5670103A (en) Method for making ceramic fibers from a water soluble pre-ceramic polymer solution
JPH045770B2 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201116

R150 Certificate of patent or registration of utility model

Ref document number: 6796390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250