JP3094226B2 - Crystallized glass composite ceramics and method for producing the same - Google Patents

Crystallized glass composite ceramics and method for producing the same

Info

Publication number
JP3094226B2
JP3094226B2 JP11083433A JP8343399A JP3094226B2 JP 3094226 B2 JP3094226 B2 JP 3094226B2 JP 11083433 A JP11083433 A JP 11083433A JP 8343399 A JP8343399 A JP 8343399A JP 3094226 B2 JP3094226 B2 JP 3094226B2
Authority
JP
Japan
Prior art keywords
glass
waste
wollastonite
crystallized glass
crystallized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11083433A
Other languages
Japanese (ja)
Other versions
JP2000272959A (en
Inventor
奉 寺尾
光 日向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukui Prefecture
Original Assignee
Fukui Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukui Prefecture filed Critical Fukui Prefecture
Priority to JP11083433A priority Critical patent/JP3094226B2/en
Application granted granted Critical
Publication of JP2000272959A publication Critical patent/JP2000272959A/en
Publication of JP3094226B2 publication Critical patent/JP3094226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/04Particles; Flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/14Waste material, e.g. to be disposed of
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/20Glass-ceramics matrix

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、建築・建設資材と
して使用する結晶化ガラスおよび複合セラミックスに関
する。
The present invention relates to crystallized glass and composite ceramics used as building and construction materials.

【0002】[0002]

【従来の技術】従来、前記の分野に用いられているセラ
ミックスには、磁器、せっ器、陶器、結晶化ガラス等が
あり、石英、長石、粘土等の結晶質天然鉱物を原料とし
て900℃以上で焼結あるいは熔融結晶化されて製造さ
れている。
2. Description of the Related Art Conventionally, ceramics used in the above-mentioned fields include porcelain, stoneware, pottery, crystallized glass and the like. Sintered or melt-crystallized.

【0003】焼結によって製造される陶磁器の組織は、
長石が熔融して生成したガラス質物が石英などの不熔性
粒子を熔着したり、粘土粒子が焼結した構造となってい
る。
[0003] The structure of ceramics produced by sintering is
The vitreous material produced by melting feldspar has a structure in which insoluble particles such as quartz are welded or clay particles are sintered.

【0004】セラミックスの一種である結晶化ガラス建
材は粘土を使用せず、長石や珪砂、石灰石、炭酸ソーダ
などを主原料としたものを、1400℃程度の高温で一
度熔融した後、急冷して粉砕し、これを造粒して110
0℃から1200℃の高温状態を保持して焼結すること
で、ガラス中にネフェリン、アノーサイト、ワラストナ
イトあるいはディオプサイト等の結晶を生成させる方法
(晶化焼結法あるいは集積法ともいう)や、熔融ガラス
を高温で板状に成形した後、1100から1200℃の
温度保持で結晶化させる方法(ロールアウト法)などで
製造され、ガラス質の素地中に結晶が分散した組織とな
っている。
[0004] A crystallized glass building material, which is a kind of ceramics, does not use clay, but is mainly made of feldspar, silica sand, limestone, sodium carbonate, etc. at a high temperature of about 1400 ° C, and then rapidly cooled. Pulverized and granulated to obtain 110
A method of generating crystals such as nepheline, anorthite, wollastonite or diopsite in glass by sintering while maintaining a high temperature state of 0 ° C. to 1200 ° C. (both crystallization sintering and integration methods) Or a method in which a molten glass is formed into a plate at a high temperature and then crystallized at a temperature of 1100 to 1200 ° C. (roll-out method) to produce a structure in which crystals are dispersed in a vitreous base. Has become.

【0005】[0005]

【発明が解決しようとする課題】従来の陶磁器建材は、
良質原料を用いてできるだけ組織欠陥の少ない成形体が
得られるように原料を配合調整し、緻密な焼結体を得る
ためには1100℃以上の高温を要し、しかも焼成中に
急激な熱ストレスが素地に加わらないよう昇温や冷却な
どの焼成条件を調節するので、製造に多くの熱エネルギ
ーを消費している。
The conventional ceramic building materials are:
The raw materials are blended and adjusted to obtain a compact having as few structural defects as possible using high quality raw materials. To obtain a dense sintered body, a high temperature of 1100 ° C or more is required, and rapid thermal stress during firing is required. Since the baking conditions such as heating and cooling are adjusted so as not to be added to the substrate, much heat energy is consumed in the production.

【0006】また人造石材の質感を有する結晶化ガラス
建材は、1400℃以上の高温で溶融した後さらに11
00℃から1200℃の熱処理で結晶化するためにこれ
も多くの熱エネルギーを要する他、高価なために用途が
壁材に限られている。
[0006] In addition, a crystallized glass building material having the texture of artificial stone material is melted at a high temperature of 1400 ° C. or more, and further melted.
This also requires a large amount of heat energy to be crystallized by a heat treatment at a temperature of from 00 ° C. to 1200 ° C., and its use is limited to wall materials because it is expensive.

【0007】さらに近年は、良質天然原料が枯渇する一
方、製造時に発生する廃棄物の適正処分、不良品や回収
製品屑のリサイクル等が企業の責務として求められてい
るが、回収製品の組成のばらつきや異物の混入などの原
因から、原料の一部としてリサイクルすると、歩留まり
や品位が低下する問題があった。
In recent years, while high-quality natural raw materials have been depleted, companies have been required to properly dispose of waste generated during production and recycle defective products and collected product waste. When recycled as a part of the raw material due to variations or contamination of foreign substances, there has been a problem that the yield and quality are reduced.

【0008】また、焼成時間を早くすることで陶磁器質
建材の製造に要する熱エネルギーを低減する方法とし
て、直線的で低い膨張係数である天然のβ−ワラストナ
イト(熱膨張係数は65×10−7)や合成のα−ワラ
ストナイトを素地に配合する方法も検討されたが、焼結
法によってβ−ワラストナイトを生成させるには110
0℃以上の高温を要すること、その難焼結性によって緻
密化が困難であること、原料価格が高くなるなどの問題
から実用化に至っていなかった。
[0008] As a method of reducing the thermal energy required for the production of a ceramic building material by shortening the firing time, natural β-wollastonite having a linear and low expansion coefficient (the coefficient of thermal expansion is 65 × 10 -7) and a method of blending synthetic α-wollastonite into the base material have been studied.
It has not been put into practical use due to problems such as requiring a high temperature of 0 ° C. or more, difficulty in densification due to its difficulty in sintering, and an increase in the price of raw materials.

【0009】とりわけ、ワラストナイト系の結晶化ガラ
ス建材は、原料配合物をいったん熔融ガラス化して高温
保持で結晶化させる方法で製造されているので多くのエ
ネルギーを要するため、価格競争的に厳しい状況下にあ
るほか、製造において大量のCO2を発生させ環境負荷
も大きいことが問題となっていた。
In particular, wollastonite-based crystallized glass building materials require a large amount of energy since they are produced by a method in which the raw material mixture is once melted and vitrified and crystallized at a high temperature, so that price competition is severe. In addition to the situation, there has been a problem that a large amount of CO2 is generated in the production and the environmental load is large.

【0010】最近のセラミックス建材製造業を取り巻く
情勢は一段と厳しく、国際的合意事項であるCO2の削
減や廃棄物のリサイクル技術の確立などは、地球環境や
社会的課題として、セラミックス製造についても取り組
みの強化が迫られている現況にある。
In recent years, the situation surrounding the ceramic building materials manufacturing industry has become even more severe. The situation is in need of reinforcement.

【0011】前述の課題に対応する従来技術として、産
業廃棄物や一般廃棄物として発生するガラス屑を、長石
代替の媒熔材として従来の窯業原料に配合して1000
℃以上で焼成し、タイルやブリックとするものがある。
(例えば特開平08−165163、特開平09−77
530)
[0011] As a conventional technique to cope with the above-mentioned problem, glass waste generated as industrial waste or general waste is mixed with a conventional ceramic raw material as a medium melting material for feldspar, and is used as a raw material.
Some are baked at a temperature of ℃ or more to form tiles or bricks.
(For example, JP-A-08-165163, JP-A-09-77
530)

【0012】しかしそれらの場合、ガラスは熱伝導率が
小さくしかも膨張係数が高い(一般住宅窓用や瓶類に使
用されているソーダ石灰ガラスで膨張係数は90−10
0×10−7)ので、ガラス質部と結晶質部や骨材的粒
子との熱膨張係数の違いから、骨材や粘土鉱物を融着さ
せているガラス質部分に引っ張り応力が働き、亀裂を発
生させたり強度を低下させるので、骨材粒子を大きくさ
せたり、焼成温度を900℃以下にすることが出来なか
った。
However, in those cases, the glass has a low thermal conductivity and a high expansion coefficient (a soda-lime glass used for ordinary housing windows and bottles has an expansion coefficient of 90-10).
0 × 10-7), the difference in thermal expansion coefficient between the vitreous part and the crystalline part or the aggregate-like particles causes a tensile stress to act on the vitreous part where the aggregate and the clay mineral are fused, causing cracking. However, it was not possible to increase the size of the aggregate particles or reduce the firing temperature to 900 ° C. or less.

【0013】さらにガラスは熔融時の粘性が長石などの
天然鉱物に比較して低いために、焼き曲がりなどの変形
が大きくなること、表面が平滑でガラス質の床材は濡れ
ると滑りやすい等の欠点や、結晶に比較して熱伝導率が
小さいので表面と内部の温度差から生じるストレスが大
きく、通常の陶磁器によりも長時間の徐冷操作を要す
る。
Further, since glass has a lower viscosity at the time of melting than natural minerals such as feldspar, deformation such as bending is large, and a glassy floor material has a smooth surface and is slippery when wet. The stress caused by the temperature difference between the surface and the inside is large because of the drawbacks and the low thermal conductivity as compared with the crystal, so that a longer slow cooling operation is required than with a normal ceramic.

【0014】また廃ガラスを原料として760から96
0℃でネフェリン系結晶化ガラスを製造する方法(特開
平5−97473)があるが、ネフェリンは高アルカリ
組成において生成するので、原料として多量のアルカリ
成分を添加しなければならず、原料コストが高くなる
他、結晶が針状でないこと等もあって物性はβ−ワラス
トナイト系より低く、白色度も低いので色調が限定され
る等の課題があった。
Further, waste glass is used as a raw material in the range of 760 to 96.
There is a method of producing nepheline-based crystallized glass at 0 ° C. (Japanese Patent Laid-Open No. 5-97473). However, since nepheline is produced in a high alkali composition, a large amount of an alkali component must be added as a raw material, and the raw material cost is reduced. In addition to the increase in the crystallinity, the crystal is not acicular, and the physical properties are lower than those of the β-wollastonite type.

【0015】さらに意匠性を高めるために、粒界の結晶
化ガラス部分に金属酸化物などの着色材で着色場合、色
調がどうしても暗くなるので、高価な着色材を節約しな
がら明るくすることが求められていた。
If the crystallized glass portion of the grain boundary is colored with a coloring material such as a metal oxide in order to further enhance the design, the color tone will inevitably become dark. Had been.

【0016】本発明は、このような課題を解決するため
に、ガラスやセメント等の廃棄物を活用し、低温で迅速
に製造できて環境への負荷も低減できる、β−ワラスト
ナイト系の結晶化ガラス複合セラミックスとその製造方
法を提供することを目的としている。
In order to solve such problems, the present invention utilizes β-wollastonite-based waste materials that can be manufactured quickly at low temperatures and reduce the burden on the environment by utilizing wastes such as glass and cement. It is an object of the present invention to provide a crystallized glass composite ceramic and a method for producing the same.

【0017】[0017]

【課題を解決するための手段】このような課題を解決す
るために、廉価で反応性の高い多成分原料として、廃ガ
ラスやポルトランドセメントあるいはポルトランドセメ
ント組成を主成分とする廃棄物、微粉砕した珪砂や珪酸
質植物の廃棄物などを用い、低温でワラストナイト結晶
が生成するようなセラミックスを得る。
In order to solve such problems, waste glass, Portland cement or waste mainly composed of Portland cement is finely pulverized as an inexpensive and highly reactive multicomponent material. Using silica sand or siliceous plant waste, ceramics that produce wollastonite crystals at low temperatures are obtained.

【0018】上記目的を達成するために、低温でガラス
化し骨材粒子の融着と結晶生成を促進させる媒熔原料と
してソーダ石灰系廃ガラス、ワラストナイトの構成成分
であるカルシウム原料は反応性が高く自硬性があるポル
トランドセメントかそれを主成分とする廃棄物、反応性
の良い珪酸原料として微粉砕した珪砂か非晶質珪酸含有
率の高い植物などを使用し、高温を長時間保持する方法
でなく、通常の焼成で結晶析出する組成となるように原
料配合調整する。
In order to achieve the above object, a soda-lime waste glass and a calcium raw material, which is a component of wollastonite, are used as a medium melting raw material for vitrifying at a low temperature and promoting fusion of aggregate particles and crystal formation. Use high-hardness and self-hardening Portland cement or waste containing it as the main component, and use high-reactivity silicic acid raw materials such as finely ground silica sand or plants with a high amorphous silica content to maintain high temperatures for a long time. Instead of the method, the raw materials are blended and adjusted so as to have a composition in which crystals are precipitated by ordinary firing.

【0019】この場合、低温で緻密な焼結体を得る場合
は珪酸原料として有機物の残留していない稲科植物の灰
を使用し、多孔体や発泡体を得るときは有機物が残留し
ている稲科植物や、セメント類の成分が炭酸化している
ものを用いる。
In this case, when obtaining a dense sintered body at a low temperature, ash of a rice plant having no organic substance is used as a raw material of silicic acid, and when obtaining a porous body or a foam, the organic substance remains. Use rice plants and those in which the components of cement are carbonated.

【0020】また骨材的粒子としてガラス屑や陶磁器屑
を用いた結晶化ガラス複合セラミックスを製造する場合
は、骨材粒子の周囲を請求項2からなるワラストナイト
結晶が析出している結晶化ガラスで取り囲み、図1に示
したように粒子周囲に圧縮応力が加わるような組織構造
とする。
Further, in the case of producing crystallized glass composite ceramics using glass waste or ceramic waste as aggregate-like particles, crystallization in which wollastonite crystals according to claim 2 are precipitated around the aggregate particles. It is surrounded by glass and has a tissue structure in which a compressive stress is applied around the particles as shown in FIG.

【0021】さらに意匠性を高めたセラミックスを得る
ためには、ワラストナイト結晶が析出している結晶化ガ
ラス部の白色度を増加させる目的で酸化チタンあるいは
ジルコンの結晶がと無機系着色材が分散している組織構
造とするが、骨材粒子の選定によっても全体的色調も変
化させることができる。
In order to obtain ceramics with further improved design, titanium oxide or zircon crystals and inorganic colorants are used to increase the whiteness of the crystallized glass portion on which wollastonite crystals are precipitated. Although the structure is dispersed, the overall color tone can also be changed by selecting the aggregate particles.

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0022】前記の原料配合調整物は、セメントの水和
やそれに伴って生成した消石灰が水和反応や炭酸化反応
によって自硬性を発揮し、成形体は硬化する。
In the above-mentioned raw material mixture adjusted product, the hydrated cement and the slaked lime produced thereby exhibit self-hardening due to the hydration reaction and the carbonation reaction, and the molded product hardens.

【0023】これを焼成すると、セメント成分が水和し
て生成しているゲル状の珪酸カルシウム水和物の吸着水
は60℃〜70℃前後で脱水し、100から200℃の
範囲で結晶水を失ってワラストナイトの化学組成に近い
ものになる。
When this is calcined, the adsorbed water of the gelled calcium silicate hydrate formed by hydration of the cement component is dehydrated at about 60 ° C. to 70 ° C., and crystallized at a temperature of 100 ° C. to 200 ° C. And become closer to the chemical composition of wollastonite.

【0024】珪酸カルシウム水和物と同時に生成してい
る水酸化カルシウムは460℃付近で分解して水を放出
し、また炭酸ガスと反応して生成した炭酸カルシウム
は、天然鉱物の石灰石よりも200℃以上も低い700
℃で分解し、活性な酸化カルシウムを生成する。
Calcium hydroxide produced simultaneously with calcium silicate hydrate decomposes at around 460 ° C. to release water, and calcium carbonate produced by reaction with carbon dioxide gas is 200 times less than natural mineral limestone. 700 lower than ℃
Decomposes at ℃ to produce active calcium oxide.

【0025】珪酸質の植物は、有機物が残留している場
合は300℃付近で炭化し、450℃付近から炭素の燃
焼によって非晶質の珪酸を生成する。
When organic matter remains, the siliceous plant carbonizes at around 300 ° C. and generates amorphous silicic acid by burning carbon from around 450 ° C.

【0026】廃ガラスは、600℃付近から軟化して活
性な酸化カルシウムや珪酸等と固相反応し、750℃か
ら800℃の温度でガラス中にβ−ワラストナイトの結
晶を析出していくので、800℃から900℃程度の低
温で結晶とガラスが混在した結晶化ガラスが得られる。
The waste glass softens from around 600 ° C. and undergoes a solid-phase reaction with active calcium oxide, silicic acid, etc., and precipitates β-wollastonite crystals in the glass at a temperature of 750 ° C. to 800 ° C. Therefore, crystallized glass in which crystals and glass are mixed at a low temperature of about 800 ° C. to 900 ° C. is obtained.

【0027】なお有機物は燃焼して炭酸ガスを発生する
ので、組成や焼成条件を調整することで独立気孔や連続
気孔を有する結晶化ガラスの発泡体や多孔体が得られる
し、影響を受けない場合は緻密体が得られる。
Since organic matter is burned to generate carbon dioxide, by adjusting the composition and firing conditions, a foamed or porous body of crystallized glass having independent pores or continuous pores can be obtained and is not affected. In this case, a dense body is obtained.

【0028】ガラス中にワラストナイト結晶を存在させ
れば、ガラス組成だけの場合よりも熱膨張係数が小さく
なることが知られているので、このことを利用して高機
能の複合セラミックスを得ることがで出来る。
It is known that the presence of wollastonite crystal in glass results in a smaller thermal expansion coefficient than in the case of only a glass composition. You can do it.

【0029】図1に示したように、骨材となる陶磁器屑
やガラス粒子の周囲を、請求項2からなる結晶化ガラス
(ガラス中にワラストナイト結晶が分散した状態の結晶
化ガラス)で取り囲んだ組織構造のセラミックスは、熱
膨張係数の違いから、高膨張粒子の周囲に圧縮応力が加
わり、機械的強度の高い結晶化ガラス複合セラミックス
となる。
As shown in FIG. 1, the surroundings of ceramic waste and glass particles serving as aggregates are made of the crystallized glass according to claim 2 (crystallized glass in which wollastonite crystals are dispersed in glass). Due to the difference in thermal expansion coefficient, the surrounding ceramic has a compressive stress applied around the high expansion particles, and becomes a crystallized glass composite ceramic having high mechanical strength.

【0030】またセラミックス中に分散している針状の
β−ワラストナイト結晶は、亀裂の伝播を阻害する働き
をするとともに、床材に使用した場合は滑り抵抗を高め
る役割も果たす。
The needle-like β-wollastonite crystals dispersed in the ceramic not only function to inhibit the propagation of cracks, but also play a role in increasing the slip resistance when used for flooring.

【0031】酸化チタンやジルコンは不熔性なので結晶
としてβ−ワラストナイト結晶が混在しているガラス中
に残留し、着色剤の発色効果を高める。
Since titanium oxide and zircon are insoluble, they remain in glass containing β-wollastonite crystals as crystals and enhance the coloring effect of the colorant.

【0032】[0032]

【実施例1】ガラス加工工場から廃出されるソーダ石灰
ガラスの粉砕物と、コンクリートパイル製造工場から廃
出される廃セメントスラリー(成分の80%がボルトラ
ンドセメント)、農協の施設から廃出される籾殻灰(燻
炭)等を様々な割合で配合し、成形実験を行った。
EXAMPLE 1 Soda-lime glass pulverized waste from a glass processing plant, waste cement slurry discharged from a concrete pile manufacturing plant (80% of component is Boltland cement), rice husk discharged from agricultural cooperative facilities Ash (charcoal) and the like were mixed in various ratios, and molding experiments were performed.

【0033】廃ガラスは乾式で微粉砕、廃セメントスラ
リーはまだ固まらない状態のものと室内放置で一度硬化
させてから乾式微粉砕したもの、籾殻燻炭は乾式微粉砕
したもの等を配合し、湿式混合したのち型に鋳込んで成
形したところ、セメント成分の自硬性によって硬化し
た。
The waste glass is finely pulverized in a dry system, the waste cement slurry is in a state of not yet solidified, the one hardened once in a room and then finely pulverized in a dry state. After being wet-mixed, the mixture was cast into a mold and molded, and hardened by the self-hardening property of the cement component.

【0034】[0034]

【実施例2】成形体を酸化雰囲気で800℃から110
0℃の範囲で焼成し、物性の測定や組成分析した結果、
β−ワラストナイト結晶を含む緻密体、発泡体、多孔体
などが、ソーダ石灰廃ガラスが40から80部、廃セメ
ントスラリーが10から40部、籾殻燻炭が0から40
部の範囲で得られた。
Embodiment 2 The compact was heated from 800 ° C. to 110 in an oxidizing atmosphere.
As a result of calcination in the range of 0 ° C, measurement of physical properties and composition analysis,
A dense body, a foamed body, a porous body, etc. containing β-wollastonite crystals are 40 to 80 parts of soda lime waste glass, 10 to 40 parts of waste cement slurry, and 0 to 40 parts of rice husk charcoal.
Parts obtained.

【0035】籾殻燻炭の代替原料として、完全に灰化し
た籾殻や10ミクロン以下に微粉砕した珪砂を使用し、
化学組成を同一にした配合物について燻炭との比較実験
をした結果、900℃における焼成体の物性は燻炭を使
用した場合とほぼ同一であった。
As an alternative raw material for rice husk charcoal, completely incinerated rice husk or silica sand finely pulverized to 10 microns or less is used.
As a result of conducting a comparative experiment with charcoal on a composition having the same chemical composition, the physical properties of the fired body at 900 ° C. were almost the same as those using charcoal.

【0036】[0036]

【実施例3】実施例2により、900℃焼成でβ−ワラ
ストナイトを生成することが確認された配合物(ソーダ
石灰ガラス組成の廃ガラス40部、廃セメントスラリー
20部、籾殻燻炭20部からなる混合物)を水とバイン
ダーを加えて微粉砕し、5ミリから1ミリの大きさに粒
度調整した廃ガラスカレットに乾燥重量比で10分の1
になるよう添加し、添加物が廃ガラスカレットの周囲を
覆うようにミキサーで混合した。
Example 3 In Example 2, a composition confirmed to produce β-wollastonite by firing at 900 ° C. (40 parts of waste glass having a soda-lime glass composition, 20 parts of waste cement slurry, 20 parts of rice husk charcoal) Part of the mixture), water and a binder are added, and the mixture is pulverized, and the waste glass cullet having a particle size adjusted from 5 mm to 1 mm is reduced to 1/10 by dry weight ratio.
And the mixture was mixed with a mixer so that the additive covered the waste glass cullet.

【0037】これを、厚さ10ミリで縦横50ミリの耐
火物の型に混合物を充填し、ガラスカレットのみを同様
に充填させたものと比較するために、同じ焼成炉にいれ
て900℃で焼成した。
In order to compare this with a refractory mold having a thickness of 10 mm and a length and width of 50 mm filled with the mixture and similarly filled only with glass cullet, it was placed in the same firing furnace at 900 ° C. Fired.

【0038】実施例3の焼成物は、骨材としたガラス粒
子の粒界が結晶化している半透明な板状になり、亀裂の
発生もみられなかったが、廃ガラスカレットのみの場合
は泡の混入した透明な板状となり、一部に亀裂がみられ
た。
The fired product of Example 3 was in the form of a translucent plate in which the grain boundaries of the glass particles used as the aggregate were crystallized, and no cracks were observed. In the form of a transparent plate, with some cracks.

【0039】それらの機械的強度を測定するために、表
面を同様に研磨し、厚さと幅が5ミリで長さが50ミリ
の試験体を作成し、曲げ強度などの物性値を比較した結
果、表1に示したとおり、本発明によるガラスセラミッ
クスが熱膨張係数も小さく、曲げ強度も高い結果を示し
た。
In order to measure their mechanical strength, the surface was polished in the same manner, a test piece having a thickness and width of 5 mm and a length of 50 mm was prepared, and the physical properties such as bending strength were compared. As shown in Table 1, the glass-ceramics according to the present invention showed a small coefficient of thermal expansion and a high bending strength.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【実施例4】白色度や明度を改善するために、実施例2
の本発明による原料組成物に重量百分率でジルコン5
%、酸化チタン2%添加したものや添加しないものに、
それぞれ無機系着色剤として酸化コバルト系顔料を0.
1から3%の範囲で添加し、実施例3で用いた方法で、
廃ガラス粒子の周囲をコーティングしてから型に充填し
900℃で焼成した。
Embodiment 4 In order to improve whiteness and lightness, Embodiment 2
Of the raw material composition according to the invention by weight percentage of zircon 5
%, Titanium oxide 2% added or not added,
Cobalt oxide pigments are used as inorganic colorants in an amount of 0.
In the method used in Example 3 by adding in the range of 1 to 3%,
The periphery of the waste glass particles was coated, filled in a mold, and fired at 900 ° C.

【0042】その結果、ガラス粒子の周囲がブルーに着
色したやや不透明で独特の風合いのある結晶化ガラス複
合セラミックスが得られ、ジルコンや酸化チタンを添加
したものはしないものに比較して明るい色調となること
が確認された。
As a result, a crystallized glass composite ceramics having a slightly opaque and unique texture in which the periphery of the glass particles was colored blue was obtained, and had a brighter color tone than those without zircon or titanium oxide added. It was confirmed that it became.

【0043】[0043]

【発明の効果】本発明は以上説明したように構成されて
いるので、以下に記載されるような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0044】従来の天然鉱物原料と異なり、ガラス屑や
セメント廃材など多成分の合成材料廃棄物や植物灰のよ
うな廃棄分解生成物を原料とするので、原料コストが大
幅に削減できる。
Unlike conventional natural mineral raw materials, multi-component synthetic material waste such as glass waste and cement waste and waste decomposition products such as plant ash are used as raw materials, so that raw material costs can be greatly reduced.

【0045】多成分の合成原料廃棄物や植物灰のような
活性な原料を使用し、熔融法でなく焼結法であるので、
結晶化温度も低下出来、製造に要する熱エネルギーが従
来の約1/3程度(電気炉での比較)と焼成コストが大
幅に削減できる。
Since active raw materials such as multi-component synthetic raw material waste and vegetable ash are used and the sintering method is used instead of the melting method,
The crystallization temperature can be lowered, and the heat energy required for the production is about one-third of the conventional one (compared with an electric furnace), so that the firing cost can be greatly reduced.

【0046】本発明の結晶化ガラス複合セラミックス
は、成形に自硬性を利用できるので、型を使用した鋳造
法によって異形複雑形状の製造が可能となる。
Since the crystallized glass composite ceramics of the present invention can utilize the self-hardening property for molding, it is possible to produce an irregular complex shape by a casting method using a mold.

【0047】骨材粒子をガラスにした複合セラミックス
は、ガラス質でありながらガラスより熱ストレスに強く
滑りにくいので、浴室、外壁やエクステリア、床・舗装
用としても使用できる各種のガラス質建材が得られる。
The composite ceramics in which the aggregate particles are made of glass are highly viscous and less slippery than glass, even though they are glassy. Can be

【0048】本発明の結晶化ガラス複合セラミックス
は、従来のワラストナイト結晶化ガラス建材よりも廉価
で製造でき、リサイクルの推進と環境負荷の低減にな
る。
The crystallized glass composite ceramics of the present invention can be manufactured at a lower cost than conventional wollastonite crystallized glass building materials, which promotes recycling and reduces the environmental burden.

【0049】また瓦などの陶磁器屑の他にゴミ溶融スラ
ッジなどを骨材とする粒子のバインダーとしても利用で
き、大きな骨材粒子も融着出来ることから、吸音や透水
性能等の物性に優れたリサイクル高機能建材に応用する
ことが出来る。
In addition to ceramic waste such as tiles, it can be used as a binder for particles made of refuse melting sludge or the like, and large aggregate particles can be fused, so that it has excellent physical properties such as sound absorption and water permeability. It can be applied to recycled high-performance building materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来のガラスセラミックス組織と本発明のガラ
スセラミックス組織との比較。
FIG. 1 shows a comparison between a conventional glass ceramic structure and the glass ceramic structure of the present invention.

【図2】従来法と本発明法の比較図FIG. 2 is a comparison diagram of the conventional method and the method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C04B 35/00 C04B 35/16 - 35/22 C03C 10/00 - 10/16 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C04B 35/00 C04B 35/16-35/22 C03C 10/00-10/16

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガラス屑や陶磁器屑等の廃棄物から得られ
た骨材粒子と、β−ワラストナイト(低温型珪灰石)結
晶が析出分散した状態の結晶化ガラスとを少なくとも含
み、前記骨材粒子はそれよりも熱膨張係数の小さい前記
結晶化ガラスにより覆われていることを特徴とする、結
晶化ガラス複合セラミックス
1. The method according to claim 1, further comprising at least aggregate particles obtained from waste such as glass waste and ceramic waste, and crystallized glass in which β-wollastonite (low-temperature wollastonite) crystals are precipitated and dispersed. Characterized in that the aggregate particles are covered with the crystallized glass having a smaller coefficient of thermal expansion than the crystallized glass composite ceramics.
【請求項2】ソーダ石灰ガラス粉砕物あるいはそれを主
成分とする廃材を40から80部と、ポルトランドセメ
ントあるいはそれを主成分とする廃材を10から40部
と、無機成分が珪酸質である植物の灰あるいは微粉砕し
たけい砂を0から40部とを混合微粉砕した後、それを
ガラス屑や陶磁器屑などの廃棄物から得られた骨材粒子
と混合し、これを800℃から1100℃の温度で焼結
させることにより、β−ワラストナイト(低温型珪灰
石)結晶が析出分散した状態の結晶化ガラスで、前記骨
材粒子が覆われることを特徴とするセラミックスの製造
方法。
2. A plant comprising 40 to 80 parts of pulverized soda lime glass or waste material containing the same as a main component, 10 to 40 parts of Portland cement or waste material containing the same as a main component, and a siliceous inorganic component. Ash or finely ground silica sand is mixed and finely ground with 0 to 40 parts and then mixed with aggregate particles obtained from waste such as glass chips and ceramics chips. A method for producing ceramics, wherein the aggregate particles are covered with crystallized glass in a state in which β-wollastonite (low-temperature wollastonite) crystals are precipitated and dispersed by sintering at the above temperature.
JP11083433A 1999-03-26 1999-03-26 Crystallized glass composite ceramics and method for producing the same Expired - Fee Related JP3094226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11083433A JP3094226B2 (en) 1999-03-26 1999-03-26 Crystallized glass composite ceramics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11083433A JP3094226B2 (en) 1999-03-26 1999-03-26 Crystallized glass composite ceramics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000272959A JP2000272959A (en) 2000-10-03
JP3094226B2 true JP3094226B2 (en) 2000-10-03

Family

ID=13802312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11083433A Expired - Fee Related JP3094226B2 (en) 1999-03-26 1999-03-26 Crystallized glass composite ceramics and method for producing the same

Country Status (1)

Country Link
JP (1) JP3094226B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200483465Y1 (en) * 2015-09-08 2017-05-18 주식회사 토마스존 Belt having multi-function
CN110028296A (en) * 2019-04-02 2019-07-19 普定县银丰农业科技发展有限公司 A kind of building brick and preparation method thereof containing construction waste regenerant
CN113754285A (en) * 2021-08-23 2021-12-07 湖州大享玻璃制品有限公司 Bentonite tailing-based ecological glass ceramic

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756254B2 (en) * 2001-04-10 2011-08-24 昌利 佐藤 Wollastonite low-temperature fired glass ceramics and method for producing the same
KR20030079097A (en) * 2002-04-01 2003-10-10 윤연흠 Production of glass-ceramics from waste glass and waste shell
JP5033064B2 (en) * 2008-06-11 2012-09-26 丸二陶料株式会社 Ceramic body
KR101994682B1 (en) * 2017-10-30 2019-09-30 대운프라스틱(주) Crystallized glass composition and crystallized glass using waste glass for architecture interior and exterior material producing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200483465Y1 (en) * 2015-09-08 2017-05-18 주식회사 토마스존 Belt having multi-function
CN110028296A (en) * 2019-04-02 2019-07-19 普定县银丰农业科技发展有限公司 A kind of building brick and preparation method thereof containing construction waste regenerant
CN110028296B (en) * 2019-04-02 2021-09-14 普定县银丰农业科技发展有限公司 Building brick containing construction waste recycling object and manufacturing method thereof
CN113754285A (en) * 2021-08-23 2021-12-07 湖州大享玻璃制品有限公司 Bentonite tailing-based ecological glass ceramic
CN113754285B (en) * 2021-08-23 2023-08-25 湖州大享玻璃制品有限公司 Bentonite tailing-based ecological glass ceramic

Also Published As

Publication number Publication date
JP2000272959A (en) 2000-10-03

Similar Documents

Publication Publication Date Title
US9290409B2 (en) Glaze composition, method for manufacturing the glaze composition and methods of glazing
US20160264446A1 (en) Foam glassy materials and processes for production
JP2000508290A (en) Production of ceramic tiles from fly ash
KR20180065675A (en) Method for manufacturing ceramic composition with excellent durability
JP3038679B2 (en) Porcelain tile
US6743383B2 (en) Process for the production of ceramic tiles
CN101948285A (en) Calcium silicate material prepared from waste ceramic powder and preparation method thereof
JP3094226B2 (en) Crystallized glass composite ceramics and method for producing the same
KR950014715B1 (en) Process for producing silica rbick
US20150368142A1 (en) Self glazed ceramic/glass composite and method for manufacturing the same
EP2752394B1 (en) Method for manufacturing glass-ceramic composite
RU2374206C1 (en) Raw mixture for making ceramic objects
KR20110125913A (en) Bricks for interior containing stone sludge and methods for preparing thereof
JP2000063172A (en) Production of highly strong lightweight ceramic plate
JPH11171635A (en) Production of ceramic for construction
KR102721947B1 (en) Clay Brick composition and method of manufacturing the same
JPH0674169B2 (en) Ceramic sinter
JPH11246279A (en) Lightweight ceramics and its production
Vangordon Recovered Soda‐Lime Glass as a Ceramic Body Flux
Mukherjee et al. Traditional and modern uses of ceramics, glass and refractories
KR940000722B1 (en) Process for preparation of multiple coating foaming grass
JPS5827223B2 (en) Manufacturing method of sintered body
JP4275381B2 (en) Tile manufacturing method using molten slag
JP2002284568A (en) Sintered compact and method of manufacturing the same
Bengisu et al. Structure and Properties of Conventional Ceramics

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees