JP5033064B2 - Ceramic body - Google Patents

Ceramic body Download PDF

Info

Publication number
JP5033064B2
JP5033064B2 JP2008152520A JP2008152520A JP5033064B2 JP 5033064 B2 JP5033064 B2 JP 5033064B2 JP 2008152520 A JP2008152520 A JP 2008152520A JP 2008152520 A JP2008152520 A JP 2008152520A JP 5033064 B2 JP5033064 B2 JP 5033064B2
Authority
JP
Japan
Prior art keywords
weight
clay
ceramic body
rice husk
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008152520A
Other languages
Japanese (ja)
Other versions
JP2009298612A (en
Inventor
隆史 今井
Original Assignee
丸二陶料株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丸二陶料株式会社 filed Critical 丸二陶料株式会社
Priority to JP2008152520A priority Critical patent/JP5033064B2/en
Publication of JP2009298612A publication Critical patent/JP2009298612A/en
Application granted granted Critical
Publication of JP5033064B2 publication Critical patent/JP5033064B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、多孔質のセラミック体に関する。 The present invention relates to a ceramic body of porous.

多孔質のセラミック体の製造方法としては、焼失性の粒子を混入した坏土の成形物を焼成することが知られている(例えば、特許文献1、2参照)。焼失性の粒子としては、パルプ、パルプスラッジ、天然繊維、化学繊維、い草、籾殻、おがくず、樹脂粒子、発泡プラスチックの粒子、石炭粒などが挙げられている。   As a method for producing a porous ceramic body, it is known to fire a molded body of clay containing burnt-out particles (see, for example, Patent Documents 1 and 2). Examples of burnout particles include pulp, pulp sludge, natural fibers, chemical fibers, grass, rice husk, sawdust, resin particles, foamed plastic particles, and coal particles.

しかし、これらの焼失性の粒子を用いた多孔質のセラミック体の製造方法においては、焼失性の粒子の混合率を大きくすると坏土の成形物がひび割れたりして成形性に問題を生じ、みかけ比重が小さくかつ高強度の軽量のセラミック体を得ることが難しかった。
特開2007−297259号公報 特開2007−63104号公報
However, in the method of manufacturing a porous ceramic body using these burnable particles, if the mixing ratio of burnable particles is increased, the molded product of the clay is cracked, resulting in a problem in moldability. It was difficult to obtain a lightweight ceramic body having a small specific gravity and high strength.
JP 2007-297259 A JP 2007-63104 A

本発明の目的は、みかけ比重が小さくかつ高強度の軽量の耐熱性セラミック体を提供しようとすることである。 An object of the present invention is to provide a lightweight heat-resistant ceramic body having a small apparent specific gravity and a high strength.

本発明の要旨とするところは、ベントナイトまたは蛙目粘土を主成分とする粘土と、かさ比重が0.11〜0.17の籾殻燻炭とを含む素地を焼成してなり、前記粘土と前記籾殻燻炭との比率が重量比で100:300〜400であり、籾殻の殻形状が維持されたシリカ粒子を含み、前記殻形状に由来する空洞を有するセラミック体であることにある。 It is an aspect of the present invention, a clay mainly composed of bentonite or gairome clay, bulk specific gravity is by firing a green body comprising a chaff smoked charcoal from 0.11 to 0.17, and the clay the The weight ratio of the rice husk and charcoal is 100: 300 to 400, and the ceramic body includes silica particles in which the shell shape of the rice husk is maintained and has a cavity derived from the shell shape .

前記素地は、前記粘土と前記籾殻燻炭とを含む混練物を1〜10MPaで加圧成形してなり得る。  The substrate may be formed by press-molding a kneaded material containing the clay and the rice husk charcoal at 1 to 10 MPa.

本発明によると、みかけ比重が小さくかつ高強度の軽量で耐熱性のセラミック体が提供される。 According to the present invention, a lightweight and heat-resistant ceramic body having a small apparent specific gravity and high strength is provided.

本発明のセラミック体は、粘土と、籾殻を焼成して燻炭となした籾殻燻炭と、を含む素地を焼成してなるセラミック体である。籾殻燻炭はこの素地の焼成過程で籾殻形状を維持しつつ焼成され、炭素成分が焼失して籾殻の殻形状を維持したシリカ粒子となり、この殻形状を維持したシリカ粒子と粘土とが焼結され、また、この殻形状を維持したシリカ粒子同士が焼結された粘土を介して焼結されて、多孔質のセラミック構造が得られる。本発明により、この殻形状に由来して軽量高強度の多孔質のセラミック体が得られる。   The ceramic body of the present invention is a ceramic body formed by firing a base material containing clay and rice husk firewood obtained by firing rice husk into firewood. Rice husk charcoal is fired while maintaining the shape of the rice husk in the firing process of this base, and the carbon component is burned down to become silica particles that maintain the shell shape of the rice husk, and the silica particles and clay that maintain this shell shape are sintered. In addition, the silica particles maintaining the shell shape are sintered through the sintered clay to obtain a porous ceramic structure. According to the present invention, a lightweight and high-strength porous ceramic body is obtained from this shell shape.

さらに、本発明においては、この殻形状のシリカ粒子は籾殻の形状に由来する空洞を燒結後も焼結体中に維持することができる。   Furthermore, in the present invention, the shell-shaped silica particles can maintain the cavity derived from the shape of the rice husk in the sintered body even after sintering.

かかる構造を有する本発明のセラミック体は、シリカ粒子と粘土とが焼結されているため優れた耐熱性と強度を有し、かつ、焼成による炭素成分の焼失とシリカ粒子が殻形状を維持した状態でセラミック体中に存在することにより、きわめてかさだかとなり、見かけ比重が小さくかつ高強度の軽量セラミック体が得られる。   The ceramic body of the present invention having such a structure has excellent heat resistance and strength because the silica particles and clay are sintered, and the carbon components are burned down by firing and the silica particles maintain the shell shape. By being present in the ceramic body in a state, it becomes very bulky, and a lightweight ceramic body having a small apparent specific gravity and high strength can be obtained.

本発明においては、粘土と籾殻燻炭との配合比率は重量比で100:300〜560であることができる。籾殻燻炭が粘土に対してこの範囲をしたまわると、セラミック体の耐熱性が低くなる。籾殻燻炭が粘土に対してこの範囲を超えて多くなると、焼成前の成形体がハンドリングで崩れやすく製造工程の円滑な遂行に支障をきたす。とくに、配合比率を100:300〜400にしたときには見かけ比重が0.4以下と極めて小さくかつ高強度の軽量で耐熱性を有するセラミック体が得られ好ましい。   In the present invention, the blending ratio of clay and rice husk charcoal can be 100: 300 to 560 in weight ratio. If rice husk charcoal goes around this range with respect to clay, the heat resistance of the ceramic body will be lowered. If the amount of rice husk charcoal exceeds this range, the green body before firing tends to collapse during handling, which hinders the smooth execution of the manufacturing process. In particular, when the blending ratio is 100: 300 to 400, a ceramic body having an apparent specific gravity as extremely low as 0.4 or less, a high strength, light weight and heat resistance is preferable.

なお、粘土と籾殻(生籾殻)とをかかる比率で配合したときには、その配合物は素地への成形の段階で圧縮すると、圧縮後の除重のときに成形体が籾殻の弾性回復により膨張して成形体がひび割れしたり崩れたりして所定の形状の成形体が得られず、フリクション成形法による成形が困難である。この圧縮を充分に行わないと素地の密度が過少となり、焼成後のセラミック体は充分な強度が得られない。   In addition, when clay and rice husk (raw rice husk) are blended in such a ratio, when the blend is compressed at the stage of molding into a base, the molded body expands due to elastic recovery of the rice husks when dewetting after compression. As a result, the molded body cracks or collapses, and a molded body having a predetermined shape cannot be obtained, and molding by the friction molding method is difficult. If this compression is not performed sufficiently, the density of the substrate becomes too low, and the fired ceramic body cannot obtain sufficient strength.

さらに、粘土に対する籾殻の比率を低くして、例えば粘土100重量%に対して籾殻を10〜40重量部配合したとしても、籾殻は水分を加えると保水現象と膨張現象を起し、また、弾力性がありプレス後成形体がふくれ、この成形体を乾燥すると破損・分離現象を生じ形状が崩れる。さらに、この乾燥後の成形体を焼成すると籾殻の燃焼により成形体がバラバラになる傾向にある。焼成してセラミック体が得られたとしても、本発明のセラミック体に比べて高比重であり、耐熱性に劣る。   Furthermore, even if the ratio of rice husk to clay is lowered, for example, 10 to 40 parts by weight of rice husk is blended with 100% by weight of clay, rice husk causes water retention and expansion when water is added. After pressing, the molded product is swollen, and when this molded product is dried, damage and separation phenomenon occur and the shape collapses. Furthermore, when the dried molded body is fired, the molded body tends to fall apart due to burning of rice husks. Even if the ceramic body is obtained by firing, it has a higher specific gravity than the ceramic body of the present invention and is inferior in heat resistance.

本発明においては、粘土と籾殻燻炭とは水を加えた混合物として調整して混練後、所定の圧力で加圧成形して成形体となし、その成形体を乾燥後焼成して本発明のセラミック体が得られる。   In the present invention, clay and rice husk charcoal are prepared as a mixture with water added and kneaded, and then pressed to form a molded body at a predetermined pressure to form a molded body. A ceramic body is obtained.

焼成は800〜1100℃で行なうことができる。800〜900℃であることが好ましい。焼成時間は8時間程度が好ましい。この焼成温度に達するまでの昇温速度は100℃/時間程度が好ましい。このような焼成により、成形体の中心部の炭素成分を完全に燃焼させ、中心部の酸化を究極まで行わせることができる。   Baking can be performed at 800-1100 degreeC. It is preferable that it is 800-900 degreeC. The firing time is preferably about 8 hours. The rate of temperature increase until reaching the firing temperature is preferably about 100 ° C./hour. By such firing, the carbon component in the central part of the molded body can be completely burned, and the central part can be oxidized to the ultimate.

また、本発明においては、成形体の焼成後にスポーリングが生じないので、冷却速度を比較的短くでき、工程時間の短縮がなされる。   In the present invention, since no spalling occurs after the molded body is fired, the cooling rate can be made relatively short and the process time can be shortened.

加圧成形における圧力は、1〜10MPaであることが比重が小さくかつ高強度のセラミック体を得るうえで好ましい。この圧力は通常の粘土の焼結体を得るとき、セラミック体が実用上充分な強度を得るうえで必要な加圧成形圧力よりも小さいが、本発明においては、シリカ粒子が殻形状を維持した状態でセラミック体中に存在するので、このような低い加圧成形でもセラミック体は実用上充分な強度が得られ、かつ、加圧成形圧力が低いことにより軽量セラミック体が得られる。この加圧成形の圧力が10MPaを超えて大きくなると、籾殻燻炭の殻構造がつぶされて、殻形状を維持した状態でセラミック体中に存在するシリカ粒子が少なくなる。加圧成形の圧力が1MPaをしたまわると、セラミック体がもろくなる。加圧の方式は問わないが、フリクション成形法を用いて繰り返しの加圧により成形体を得ることが比重が小さくかつ高強度のセラミック体を得るうえで好ましい。また、プレス成形法は6面カットを要しないので成形工程の短縮が可能である。   The pressure in the pressure molding is preferably 1 to 10 MPa in order to obtain a ceramic body having a small specific gravity and high strength. This pressure is smaller than the pressure molding pressure required for obtaining a practically sufficient strength when the ceramic body is sintered, but in the present invention, the silica particles maintained the shell shape. Since it exists in the ceramic body in a state, the ceramic body can obtain a practically sufficient strength even with such low pressure molding, and a lightweight ceramic body can be obtained due to the low pressure molding pressure. When the pressure of this pressure molding exceeds 10 MPa, the shell structure of rice husk and coal is crushed, and silica particles present in the ceramic body are reduced in a state where the shell shape is maintained. When the pressure of the pressure molding is 1 MPa, the ceramic body becomes brittle. There is no limitation on the method of pressurization, but it is preferable to obtain a molded body having a small specific gravity and high strength by repeatedly pressing using a friction molding method. Further, since the press molding method does not require a six-sided cut, the molding process can be shortened.

本発明においては、加圧成形圧力が低いことと籾殻燻炭の殻構造により、加圧成形後乾燥前の成形品の水分含有量は、通常の製陶工程の場合に比べ多くなっている。通常の乾式成形における加圧成形後乾燥前の成形品の水分率(成形品の全重量に対する水分の重量%)が7〜8重量%程であり、通常の湿式成形における加圧成形後乾燥前の成形品の水分率が18〜20重量%程であるのに対して、本発明においては、加圧成形後乾燥前の成形品の水分率は30〜50重量%ときわめて高くなっている。成形品の乾燥により水分が抜けて、かさだかな素地が得られ、この素地を焼成してかさだかなセラミック体が得られる。   In the present invention, due to the low pressure molding pressure and the shell structure of rice husk and charcoal, the moisture content of the molded product after pressure molding and before drying is higher than in the case of a normal ceramic making process. The moisture content of the molded product after pressure molding in normal dry molding and before drying (weight% of moisture relative to the total weight of the molded product) is about 7 to 8% by weight, and after drying after pressure molding in normal wet molding In the present invention, the moisture content of the molded product after pressure molding and before drying is as high as 30 to 50% by weight. Moisture is removed by drying of the molded product to obtain a bulky substrate, and the substrate is fired to obtain a bulky ceramic body.

また、粘土と籾殻灰とを混合した素地を焼成した焼成体は、焼成体中に殻形状のシリカ粒子はほとんど存在せず、本発明におけるような低比重のセラミック体は得られない。   In addition, a fired body obtained by firing a base material in which clay and rice husk ash are mixed has almost no shell-shaped silica particles in the fired body, and a low specific gravity ceramic body as in the present invention cannot be obtained.

本発明において用いる籾殻燻炭は、籾殻を燻焼したものである。燻焼における炭化温度は例えば650〜700℃である。籾殻燻炭のシリカ含有量は約30〜約50重量%の範囲であり、炭素の含有量は約30〜約40重量%の範囲である。   The chaff husk charcoal used in the present invention is obtained by burning the chaff. The carbonization temperature in smoldering is, for example, 650 to 700 ° C. Rice husk charcoal has a silica content in the range of about 30 to about 50% by weight, and a carbon content in the range of about 30 to about 40% by weight.

本発明において用いられる籾殻燻炭は、籾殻の殻形状を部分的にでも維持しているものであれば使用可能であるが、炭素が40〜70重量%含有されていることが好ましい。また、籾殻燻炭の集合物としてのかさ比重が0.10〜0.25であることが好ましい。0.11〜0.17であることがさらに好ましい。0.10から0.125であることが、軽量かつ高強度のセラミック体を得るうえでさらに好ましい。   The chaff husk charcoal used in the present invention can be used as long as it partially maintains the shell shape of the chaff, but preferably contains 40 to 70% by weight of carbon. Moreover, it is preferable that the bulk specific gravity as an aggregate of rice husk charcoal is 0.10-0.25. More preferably, it is 0.11-0.17. It is more preferable to obtain a lightweight and high-strength ceramic body from 0.10 to 0.125.

籾殻燻炭は焼成の度合いによりかさ比重が異なり、本発明においては、かさ比重が0.10〜0.22のものが好適に用いられる。なかでも、かさ比重が0.10〜0.12のものが高気孔率のセラミック体が得られて好ましい。   Rice husk charcoal has a bulk specific gravity that varies depending on the degree of firing, and in the present invention, a bulk specific gravity of 0.10 to 0.22 is preferably used. Among these, those having a bulk specific gravity of 0.10 to 0.12 are preferable because a ceramic body having a high porosity can be obtained.

本発明において用いる粘土は特に限定されないが、混練物(坏土)の成形性や耐熱性のうえでは蛙目粘土あるいはベントナイトが好ましい。蛙目粘土を用いる場合は、焼成工程の焼成温度が880〜950℃であることが耐圧強度、耐熱性、耐磨耗性のうえで好ましい。ベントナイトを用いる場合は、焼成工程の焼成温度が780〜850℃であることが耐圧強度、耐熱性、耐磨耗性のうえで好ましい。また、ベントナイトを用いる場合は、粘土中に280メッシュパス以上のベントナイトが30重量%以内含まれていることが良好な成形性を得るうえで好ましい。ベントナイトの粒度が360メッシュパス未満の場合は、籾殻燻炭の分散性が良好とはいえず、プレス成形で成形体が固まらないことがある。   The clay used in the present invention is not particularly limited. However, in terms of moldability and heat resistance of the kneaded material (kneaded clay), cocoon clay or bentonite is preferable. In the case of using the clay, the firing temperature in the firing step is preferably 880 to 950 ° C. in terms of pressure strength, heat resistance, and wear resistance. In the case of using bentonite, the firing temperature in the firing step is preferably 780 to 850 ° C. in terms of pressure strength, heat resistance, and wear resistance. Further, when bentonite is used, it is preferable that the clay contains bentonite of 280 mesh pass or more within 30% by weight in order to obtain good moldability. When the particle size of bentonite is less than 360 mesh pass, it cannot be said that the dispersibility of rice husk and charcoal is good, and the compact may not be hardened by press molding.

本発明においては、成形用の混練物(坏土)に中に添加物が含まれていてもよい。添加物としては糊剤、結合剤、離型剤、解膠剤などが例示されるがこれらに限定されず、通常の焼き物用に用いられる添加物であってもよい。結合剤としては、珪酸ソーダ、リン酸,リン酸ソーダ、リン酸アルミニウム、アルミナゾル、ワックス(油性)が例示される。   In the present invention, an additive may be contained in the kneaded material (kneaded material) for molding. Examples of the additive include a paste, a binder, a release agent, a peptizer, and the like, but the additive is not limited thereto, and may be an additive used for ordinary baking. Examples of the binder include sodium silicate, phosphoric acid, sodium phosphate, aluminum phosphate, alumina sol, and wax (oil).

成形前の混練物(坏土)に糊剤を適切に配合することにより、籾殻燻炭表面に粘土と糊剤を均質にコートすることができる。これにより、プレス成形時の成形圧力による脱水が防止され、保水量が成形体全体の重量に対して30重量%以上と極めて多いかさだかで均質な成形体を得ることができ、かつ、かさだかで高強度のセラミック体を得ることができる。糊剤の含有量は、成形用の混練物(坏土)に含まれる籾殻燻炭の量を100重量部としたときに、1〜2重量部であることが好ましい。   Clay and paste can be uniformly coated on the surface of rice husk and charcoal by appropriately blending paste into the kneaded product (kneaded clay) before molding. As a result, dehydration due to the molding pressure during press molding is prevented, and a uniform molded body can be obtained with a very large water retention amount of 30% by weight or more with respect to the total weight of the molded body. A high-strength ceramic body can be obtained. The content of the paste is preferably 1 to 2 parts by weight when the amount of rice husk and charcoal contained in the kneaded material (molded clay) for molding is 100 parts by weight.

さらに、成形前の混練物(坏土)にワックス系のバインダを含有させると、低圧でも均等にプレス成形されるので、成形圧力を低くすることができ、プレス成形時の成形圧力による脱水がさらに少なくなり、成形時の成形圧力による脱水が防止され、保水量が成形体全体の重量に対して40重量%以上と極めて多いかさだかで均質な成形体を得ることができ、さらにかさだかで均質な成形体を得ることができる。これにより、さらにかさだかであるいはさらに高強度のセラミック体を得ることができる。ワックス系のバインダとしては例えば、中京油脂株式会社製のバインダー(商品名:セルナWF−610)や、セルナWF−610と同系統でワックス系成分の含有量の多いP−222などが例示される。ワックス系のバインダの含有量は、成形用の混練物(坏土)に含まれる籾殻燻炭の量を100重量部としたときに、0.5〜3重量部であることが好ましい。   Furthermore, when a kneaded material (kneaded material) before molding contains a wax-based binder, the molding pressure can be reduced even at a low pressure, so that the molding pressure can be lowered, and dehydration due to the molding pressure during press molding can be further reduced. Dehydration due to molding pressure at the time of molding is reduced, and a uniform molded body can be obtained with an extremely large water retention amount of 40% by weight or more with respect to the weight of the entire molded body. Can be obtained. As a result, it is possible to obtain a ceramic body that is bulkier or has a higher strength. Examples of the wax-based binder include a binder (trade name: Selna WF-610) manufactured by Chukyo Yushi Co., Ltd., P-222 having the same system as Selna WF-610 and a high content of wax-based components. . The content of the wax-based binder is preferably 0.5 to 3 parts by weight when the amount of rice husk and charcoal contained in the kneaded material for molding (kneaded clay) is 100 parts by weight.

本発明のセラミック体は低比重、高耐熱であり断熱性に優れ、高温炉の炉材として好適に使用できる。   The ceramic body of the present invention has low specific gravity and high heat resistance, excellent heat insulation, and can be suitably used as a furnace material for a high temperature furnace.

実施例、参考例における圧縮強さは、JIS R2615に準拠して測定した。曲げ強さはJIS R2619に準拠して測定した。セラミック体のかさ比重はJIS R2614に準拠して測定した。 The compressive strength in Examples and Reference Examples was measured according to JIS R2615. The bending strength was measured according to JIS R2619. The bulk specific gravity of the ceramic body was measured according to JIS R2614.

実施例、参考例、実験例、比較例における成形体のサイズはJIS並型寸法に準拠して230×115×65(mm)とした。 The sizes of the molded bodies in the examples, reference examples, experimental examples, and comparative examples were set to 230 × 115 × 65 (mm) in accordance with the JIS parallel dimensions.

[比較例1]
籾殻(生籾殻)30乾燥重量部、水簸蛙目粘土(250メッシュ通過)70重量部、化学糊(CMC)1重量部に、水40重量部を混合して混練し坏土を得た。この坏土を4MPaでフリクションプレス成形した。プレス成形後、籾殻の反撥により成形体にクラックが入った。
[Comparative Example 1]
40 parts by weight of water was mixed and kneaded with 30 parts by weight of rice husk (raw husk), 70 parts by weight of water-cracked clay (through 250 mesh) and 1 part by weight of chemical glue (CMC) to obtain a clay. This clay was subjected to friction press molding at 4 MPa. After the press molding, the molded body was cracked by repulsion of rice husk.

[比較例2]
籾殻20乾燥重量部、水簸蛙目粘土(250メッシュ通過)80重量部、化学糊1重量部、水60重量部を混合して混練し坏土を得た。この坏土を4MPaでフリクションプレス成形した。プレス成形後、籾殻の反撥により成形体にクラックが入った。
[Comparative Example 2]
20 parts by weight of rice husk, 80 parts by weight of water-cracked clay (through 250 mesh), 1 part by weight of chemical glue and 60 parts by weight of water were mixed and kneaded to obtain a clay. This clay was subjected to friction press molding at 4 MPa. After the press molding, the molded body was cracked by repulsion of rice husk.

[比較例3]
籾殻10乾燥重量部、水簸蛙目粘土(250メッシュ通過)90重量部、化学糊1重量部、水60重量部を混合して混練し坏土を得た。この坏土を4MPaでフリクションプレス成形した。プレス成形後、籾殻の反撥により成形体にクラックが入った。
[Comparative Example 3]
10 parts by weight of rice husk, 90 parts by weight of water-cracked clay (through 250 mesh), 1 part by weight of chemical glue and 60 parts by weight of water were mixed and kneaded to obtain a clay. This clay was subjected to friction press molding at 4 MPa. After the press molding, the molded body was cracked by repulsion of rice husk.

[比較例4]
籾殻30乾燥重量部、水簸蛙目粘土(250メッシュ通過)70重量部、化学糊1重量部に、水40重量部を準備し、籾殻を水に12時間浸漬したのち水簸蛙目粘土と化学糊と合わせ混練後4MPaでフリクションプレス成形した。この成形体を1週間室内放置乾燥したら、籾殻に保水された水分がしみ出して乾燥時に成形体にクラックが入った。
[Comparative Example 4]
30 parts by weight of rice husk, 70 parts by weight of water husk clay (through 250 mesh), 1 part by weight of chemical glue, 40 parts by weight of water are prepared, and after immersing the rice husk in water for 12 hours, After kneading together with chemical glue, friction press molding was performed at 4 MPa. When this molded body was left to dry indoors for one week, moisture retained in the rice husks oozed out and cracked in the molded body during drying.

[比較例5]
籾殻20乾燥重量部、水簸蛙目粘土(250メッシュ通過)80重量部、化学糊1重量部に、水50重量部を準備し、籾殻を水に12時間浸漬したのち水簸蛙目粘土と化学糊と合わせ混練後4MPaでフリクションプレス成形した。この成形体を1週間室内放置乾燥したら、籾殻に保水された水分がしみ出して乾燥時に成形体にクラックが入った。
[Comparative Example 5]
50 parts by weight of water are prepared in 20 parts by weight of rice husk, 80 parts by weight of water husk clay (250 mesh), 1 part by weight of chemical glue, and after immersing the rice husk in water for 12 hours, After kneading together with chemical glue, friction press molding was performed at 4 MPa. When this molded body was left to dry indoors for one week, moisture retained in the rice husks oozed out and cracked in the molded body during drying.

[比較例6]
籾殻10乾燥重量部、水簸蛙目粘土(250メッシュ通過)90重量部、化学糊1重量部に、水60重量部を準備し、籾殻を水に12時間浸漬したのち水簸蛙目粘土と化学糊と合わせ混練後4MPaでフリクションプレス成形した。この成形体を1週間室内放置乾燥したら、籾殻に保水された水分がしみ出して乾燥時に成形体にクラックが入った。
[Comparative Example 6]
60 parts by weight of water is prepared in 10 parts by weight of rice husk, 90 parts by weight of water husk clay (250 mesh), 1 part by weight of chemical glue, and after immersing the rice husk in water for 12 hours, After kneading together with chemical glue, friction press molding was performed at 4 MPa. When this molded body was left to dry indoors for one week, moisture retained in the rice husks oozed out and cracked in the molded body during drying.

[比較例7]
籾殻(生籾殻)30重量部、水簸蛙目粘土(250メッシュ通過)70重量部、化学糊1重量部に、水60重量部を混合して混練し坏土を得た。この坏土を4MPaでフリクションプレス成形した。生籾殻は水分を加えると保水現象と膨張現象を起した。また、弾力性がありプレス後成形体がふくれ所定の形状に成形できなかった。
[Comparative Example 7]
60 parts by weight of water was mixed with 30 parts by weight of rice husk (raw rice husk), 70 parts by weight of water-cracked clay (through 250 mesh) and 1 part by weight of chemical glue to obtain a clay. This clay was subjected to friction press molding at 4 MPa. Ginger husks caused water retention and swelling when water was added. Further, it was elastic and the molded product after pressing could not be molded into a predetermined shape.

[比較例8]
生籾殻10重量部、水簸蛙目粘土(250メッシュ通過)90重量部、化学糊1重量部に、水40重量部を混合して混練し坏土を得た。この坏土を4MPaでフリクションプレス成形した。生籾殻は水分を加えると保水現象と膨張現象を起した。また、弾力性がありプレス後成形体がふくれたが所定の形状に成形は可能であった。しかし、成形体を1週間室内放置乾燥すると破損・分離現象を生じ形状が崩れた。さらに、この乾燥後の成形体を800℃で2時間焼成したら籾殻の燃焼により成形体がバラバラになった。
[Comparative Example 8]
40 parts by weight of water was mixed with 10 parts by weight of raw rice husk, 90 parts by weight of water-cracked clay (through 250 mesh) and 1 part by weight of chemical glue to obtain a clay. This clay was subjected to friction press molding at 4 MPa. Ginger husks caused water retention and swelling when water was added. Further, there was elasticity, and the molded product was swollen after pressing, but it could be molded into a predetermined shape. However, when the molded body was left to dry indoors for one week, it was damaged and separated, and its shape collapsed. Further, when the dried molded body was baked at 800 ° C. for 2 hours, the molded body was separated by burning of rice husks.

[実験例1]
籾殻燻炭(かさ比重0.11)50重量部、水簸蛙目粘土(250メッシュ通過)50重量部、化学糊1重量部に、水70重量部を混合して混練し坏土を得た。この坏土を4MPaでフリクションプレス成形し成形体を得た。この成形体を1週間室内放置乾燥し、次いで150℃で24時間乾燥してクラックのない乾燥成形体を得た。
[Experimental Example 1]
A kneaded mixture was obtained by mixing 50 parts by weight of rice husk charcoal (bulk specific gravity 0.11), 50 parts by weight of water clay (250 mesh) and 1 part by weight of chemical glue and mixing 70 parts by weight of water. . This clay was subjected to friction press molding at 4 MPa to obtain a molded body. The molded body was left to dry in a room for one week and then dried at 150 ° C. for 24 hours to obtain a dry molded body free from cracks.

[実験例2]
籾殻燻炭(かさ比重0.11)60重量部、水簸蛙目粘土(250メッシュ通過)40重量部、化学糊1重量部に、水95重量部を混練後4MPaでフリクションプレス成形し成形体を得た。この成形体を実験例1と同様に乾燥してクラックのない乾燥成形体を得た。
[Experiment 2]
Rice bran charcoal (bulk specific gravity 0.11) 60 parts by weight, water goblet clay (through 250 mesh) 40 parts by weight, chemical glue 1 part by weight, 95 parts by weight of water are kneaded and then subjected to friction press molding at 4 MPa. Got. This molded body was dried in the same manner as in Experimental Example 1 to obtain a dry molded body without cracks.

[実験例3]
籾殻燻炭(かさ比重0.11)65重量部、水簸蛙目粘土(250メッシュ通過)30重量部、化学糊1重量部に、水100重量部を混練後4MPaでフリクションプレス成形し成形体を得た。この成形体を実験例1と同様に乾燥してクラックのない乾燥成形体を得た。
[Experiment 3]
100 parts by weight of water is kneaded with 65 parts by weight of rice husk charcoal (bulk specific gravity 0.11), 30 parts by weight of water clay (250 mesh) and 1 part by weight of chemical glue, and then subjected to friction press molding at 4 MPa. Got. This molded body was dried in the same manner as in Experimental Example 1 to obtain a dry molded body without cracks.

[実験例4]
籾殻燻炭(かさ比重0.11)80重量部、水簸蛙目粘土(250メッシュ通過)20重量部、化学糊1重量部に、水100重量部を混練後4MPaでフリクションプレス成形し成形体を得た。この成形体を実験例1と同様に乾燥してクラックのない乾燥成形体を得た。
[Experimental Example 4]
100 parts by weight of water is mixed with 80 parts by weight of rice husk charcoal (bulk specific gravity of 0.11), 20 parts by weight of water clay (250 mesh) and 1 part by weight of chemical glue, and then subjected to friction press molding at 4 MPa. Got. This molded body was dried in the same manner as in Experimental Example 1 to obtain a dry molded body without cracks.

[実験例5]
籾殻燻炭(かさ比重0.11)90重量部、水簸蛙目粘土(250メッシュ通過)30重量部、化学糊1重量部に、水100重量部を混練後4MPaでフリクションプレス成形したが成形体のかたちが崩れた。この成形体を実験例1と同様に乾燥したがクラックが入った。
[Experimental Example 5]
100 parts by weight of water was kneaded with 90 parts by weight of rice husk charcoal (bulk specific gravity 0.11), 30 parts by weight of water clay (250 mesh) and 1 part by weight of chemical glue, and then subjected to friction press molding at 4 MPa. The shape of the body collapsed. This molded body was dried in the same manner as in Experimental Example 1, but cracked.

比較例1〜6、実験例1〜5における坏土の配合(重量部)と成形体の成形性を表1に示す。   Table 1 shows the composition (parts by weight) of the clay and the moldability of the molded bodies in Comparative Examples 1 to 6 and Experimental Examples 1 to 5.

Figure 0005033064
Figure 0005033064

[実施例1]
籾殻燻炭(かさ比重0.11)70重量部、水簸蛙目粘土(250メッシュ通過)30重量部、化学糊1重量部に、水100重量部を混練し坏土を得た。この坏土を4MPaでフリクションプレス成形し成形体を得た。この成形体を1週間室内放置乾燥し、次いで150℃で24時間乾燥してクラックのない乾燥成形体を得た。乾燥成形体を800℃で酸化雰囲気中で8時間焼成し、セラミック体を得た。
[Example 1]
100 parts by weight of water was kneaded with 70 parts by weight of rice husk charcoal (bulk specific gravity of 0.11), 30 parts by weight of water clay (250 mesh) and 1 part by weight of chemical glue to obtain a clay. This clay was subjected to friction press molding at 4 MPa to obtain a molded body. The molded body was left to dry in a room for one week and then dried at 150 ° C. for 24 hours to obtain a dry molded body free from cracks. The dried molded body was fired at 800 ° C. in an oxidizing atmosphere for 8 hours to obtain a ceramic body.

[実施例2]
籾殻燻炭としてかさ比重0.13の籾殻燻炭を用いたほかは実施例1と同様にしてセラミック体を得た。乾燥成形体にクラックはなかった。
[Example 2]
A ceramic body was obtained in the same manner as in Example 1 except that rice husk coal with a specific gravity of 0.13 was used as rice husk coal. There were no cracks in the dried molded body.

[実施例3]
籾殻燻炭としてかさ比重0.16の籾殻燻炭を用いたほかは実施例1と同様にしてセラミック体を得た。乾燥成形体にクラックはなかった。
[Example 3]
A ceramic body was obtained in the same manner as in Example 1 except that rice husk coal with a specific gravity of 0.16 was used as rice husk coal. There were no cracks in the dried molded body.

実施例1〜3における籾殻燻炭のかさ比重と成形体の成形性、セラミック体のかさ比重を表2に示す。   Table 2 shows the bulk specific gravity of rice husk and charcoal in Examples 1 to 3, the moldability of the molded body, and the bulk specific gravity of the ceramic body.

Figure 0005033064
Figure 0005033064

[実施例4]
粘土としてベントナイト(300メッシュパス)を用いたほかは実施例1と同様にしてセラミック体を得た。乾燥成形体にクラックはなかった。
[Example 4]
A ceramic body was obtained in the same manner as in Example 1 except that bentonite (300 mesh pass) was used as the clay. There were no cracks in the dried molded body.

参考例1
粘土としてニュージランドカオリンを用いたほかは実施例1と同様にしてセラミック体を得た。
[ Reference Example 1 ]
A ceramic body was obtained in the same manner as in Example 1 except that New Zealand kaolin was used as the clay.

参考例2
粘土としてベトナムカオリンを用いたほかは実施例1と同様にしてセラミック体を得た。
[ Reference Example 2 ]
A ceramic body was obtained in the same manner as in Example 1 except that Vietnamese kaolin was used as the clay.

参考例3
粘土として中国カオリンを用いたほかは実施例1と同様にしてセラミック体を得た。
[ Reference Example 3 ]
A ceramic body was obtained in the same manner as in Example 1 except that Chinese kaolin was used as the clay.

実施例1、4、参考例1〜3における成形性(素地への成形性と乾燥成形体の特性)、セラミック体の耐圧強度、耐磨耗性を表3に示す。成形性は実施例1、4、参考例1〜3とも良好でひび割れも認められなかった。耐圧強度は実施例1、4が特に優れていた。耐磨耗性は実施例4が特に優れていた。総合的には実施例4が特に優れていた。 Table 3 shows the formability (formability to the substrate and the characteristics of the dry molded body), the pressure resistance strength and the wear resistance of the ceramic bodies in Examples 1 and 4 and Reference Examples 1 to 3. The moldability was good in Examples 1 and 4 and Reference Examples 1 to 3, and no cracks were observed. Examples 1 and 4 were particularly excellent in pressure resistance. Example 4 was particularly excellent in abrasion resistance. Overall, Example 4 was particularly excellent.

Figure 0005033064
Figure 0005033064

[実施例
乾燥成形体の焼成温度・時間を900℃・8時間、1000℃・8時間、1100℃・8時間の3ケースとしたほかは実施例1と同様にしてセラミック体を得た。これら温度に達するまでの昇温速度は100℃/時間とした。焼成温度900℃のセラミック体はかさ比重が0.5であり、実施例1のものと同等の耐圧強度を有していた。焼成温度1000℃、1100℃のセラミック体は、焼成温度900℃のセラミック体に比べ耐圧強度が増加したものの、耐熱性が低下した。また、焼成温度1000℃、1100℃のセラミック体は、焼成によるかなりの収縮が発生した。
[Example 5 ]
A ceramic body was obtained in the same manner as in Example 1 except that the firing temperature and time of the dried molded body were set to 3 cases of 900 ° C. and 8 hours, 1000 ° C. and 8 hours, 1100 ° C. and 8 hours. The rate of temperature rise until reaching these temperatures was 100 ° C./hour. The ceramic body with a firing temperature of 900 ° C. had a bulk specific gravity of 0.5, and had a compressive strength equivalent to that of Example 1. The ceramic bodies with the firing temperatures of 1000 ° C. and 1100 ° C. had higher pressure resistance than the ceramic bodies with the firing temperature of 900 ° C., but the heat resistance was lowered. In addition, the ceramic bodies with the firing temperatures of 1000 ° C. and 1100 ° C. caused considerable shrinkage due to firing.

[実験例2]
乾燥成形体の焼成温度・時間を900℃・8時間、1000℃・8時間、1100℃・8時間の3ケースとしたほかは実施例4と同様にしてセラミック体を得た。これら温度に達するまでの昇温速度は100℃/時間とした。焼成温度900℃、1000℃のセラミック体は実施例4のものより耐圧強度が増加していたものの、満足な耐熱性が得られなかった。焼成温度900℃のセラミック体はかさ比重が0.4と軽量であったが焼成時に熱による形状変化がみられた。焼成温度1000℃のセラミック体は焼成時に熔化がみられ、焼成温度1100℃のセラミック体は熔化による変形が著しかった。
[Experiment 2]
A ceramic body was obtained in the same manner as in Example 4 except that the firing temperature and time of the dried molded body were set to 3 cases of 900 ° C. and 8 hours, 1000 ° C. and 8 hours, 1100 ° C. and 8 hours. The rate of temperature rise until reaching these temperatures was 100 ° C./hour. Although the ceramic bodies having the firing temperatures of 900 ° C. and 1000 ° C. had higher pressure strength than that of Example 4, satisfactory heat resistance was not obtained. The ceramic body with a firing temperature of 900 ° C. had a bulk specific gravity of 0.4 and a light weight, but a shape change due to heat was observed during firing. The ceramic body with a firing temperature of 1000 ° C. was melted during firing, and the ceramic body with a firing temperature of 1100 ° C. was significantly deformed by melting.

参考例4
乾燥成形体の焼成温度・時間を900℃・8時間、1000℃・8時間、1100℃・8時間の3ケースとしたほかは参考例1と同様にしてセラミック体を得た。これら温度に達するまでの昇温速度は100℃/時間とした。焼成温度900℃のセラミック体は参考例1のものより耐圧強度が増加し耐熱性は同等であった。焼成温度1000℃、1100℃のセラミック体は、焼成温度900℃のセラミック体に比べ耐圧強度が増加したものの、耐熱性が低下した。また、焼成温度1000℃、1100℃のセラミック体は、焼成によるかなりの収縮が発生した。
[ Reference Example 4 ]
A ceramic body was obtained in the same manner as in Reference Example 1 except that the firing temperature and time of the dried molded body were set to 3 cases of 900 ° C. and 8 hours, 1000 ° C. and 8 hours, 1100 ° C. and 8 hours. The rate of temperature rise until reaching these temperatures was 100 ° C./hour. The ceramic body with a firing temperature of 900 ° C. had a higher pressure resistance than that of Reference Example 1 , and the heat resistance was equivalent. The ceramic bodies with the firing temperatures of 1000 ° C. and 1100 ° C. had higher pressure resistance than the ceramic bodies with the firing temperature of 900 ° C., but the heat resistance was lowered. In addition, the ceramic bodies with the firing temperatures of 1000 ° C. and 1100 ° C. caused considerable shrinkage due to firing.

参考例5
乾燥成形体の焼成温度・時間を900℃・8時間、1000℃・8時間、1100℃・8時間の3ケースとしたほかは参考例2と同様にしてセラミック体を得た。これら温度に達するまでの昇温速度は100℃/時間とした。焼成温度900℃のセラミック体は参考例2のものより耐圧強度が増加し耐熱性は同等であった。焼成温度1000℃、1100℃のセラミック体は、焼成温度900℃のセラミック体に比べ耐圧強度が増加したものの、耐熱性が低下した。また、焼成温度1000℃、1100℃のセラミック体は、焼成によるかなりの収縮が発生した。
[ Reference Example 5 ]
A ceramic body was obtained in the same manner as in Reference Example 2 except that the firing temperature and time of the dried molded body were 3 cases of 900 ° C. and 8 hours, 1000 ° C. and 8 hours, 1100 ° C. and 8 hours. The rate of temperature rise until reaching these temperatures was 100 ° C./hour. The ceramic body with a firing temperature of 900 ° C. had a higher pressure resistance than that of Reference Example 2 , and the heat resistance was equivalent. The ceramic bodies with the firing temperatures of 1000 ° C. and 1100 ° C. had higher pressure resistance than the ceramic bodies with the firing temperature of 900 ° C., but the heat resistance was lowered. In addition, the ceramic bodies with the firing temperatures of 1000 ° C. and 1100 ° C. caused considerable shrinkage due to firing.

参考例6
乾燥成形体の焼成温度・時間を900℃・8時間、1000℃・8時間、1100℃・8時間の3ケースとしたほかは参考例3と同様にしてセラミック体を得た。これら温度に達するまでの昇温速度は100℃/時間とした。焼成温度900℃のセラミック体は参考例3のものより耐圧強度が増加し耐熱性は同等であった。焼成温度1000℃、1100℃のセラミック体は、焼成温度900℃のセラミック体に比べ耐圧強度が増加したものの、耐熱性が低下した。また、焼成温度1000℃、1100℃のセラミック体は、焼成によるかなりの収縮が発生した。
実施例、実験例2、参考例4〜6の結果を表4に示す。
[ Reference Example 6 ]
A ceramic body was obtained in the same manner as in Reference Example 3 , except that the firing temperature and time of the dried molded body were set to 3 cases of 900 ° C. and 8 hours, 1000 ° C. and 8 hours, 1100 ° C. and 8 hours. The rate of temperature rise until reaching these temperatures was 100 ° C./hour. The ceramic body with a firing temperature of 900 ° C. had a higher pressure resistance than that of Reference Example 3 , and the heat resistance was equivalent. The ceramic bodies with the firing temperatures of 1000 ° C. and 1100 ° C. had higher pressure resistance than the ceramic bodies with the firing temperature of 900 ° C., but the heat resistance was lowered. In addition, the ceramic bodies with the firing temperatures of 1000 ° C. and 1100 ° C. caused considerable shrinkage due to firing.
Table 4 shows the results of Example 5 , Experimental Example 2, and Reference Examples 4 to 6 .

Figure 0005033064
Figure 0005033064

実施例、実験例2、参考例4〜6より、焼成温度900℃のケースでは蛙目粘土使いが特に優れていることがわかった。 From Example 5 , Experimental Example 2 , and Reference Examples 4 to 6 , it was found that the use of the clay clay is particularly excellent in the case where the firing temperature is 900 ° C.

[実施例
籾殻燻炭(かさ比重0.11)75重量部、ベントナイト25重量部、化学糊1重量部に、水100重量部を混練し坏土を得た。この坏土を4MPaでフリクションプレス成形し成形体を得た。この成形体の水分含有量は、成形体全量に対して40重量%であった。この成形体を1週間室内放置乾燥し、次いで150℃で24時間乾燥してクラックのない乾燥成形体を得た。乾燥成形体を900℃で酸化雰囲気中で8時間焼成し、ハンドリングに必要な強度を有する良好なセラミック体を得た。900℃に達するまでの昇温速度は100℃/時間とした。
[Example 6 ]
100 parts by weight of water was kneaded with 75 parts by weight of rice husk charcoal (bulk specific gravity 0.11), 25 parts by weight of bentonite, and 1 part by weight of chemical paste to obtain clay. This clay was subjected to friction press molding at 4 MPa to obtain a molded body. The water content of this molded body was 40% by weight based on the total amount of the molded body. The molded body was left to dry in a room for one week and then dried at 150 ° C. for 24 hours to obtain a dry molded body free from cracks. The dried molded body was fired at 900 ° C. in an oxidizing atmosphere for 8 hours to obtain a good ceramic body having the strength required for handling. The rate of temperature increase until reaching 900 ° C. was 100 ° C./hour.

[実施例
籾殻燻炭(かさ比重0.122)80重量部、ベントナイト20重量部としたほかは実施例と同様にして、セラミック体を得た。このセラミック体の耐磨耗性は極めて良好であり、耐圧強度が良好であった。
[Example 7 ]
A ceramic body was obtained in the same manner as in Example 6 except that 80 parts by weight of rice husk charcoal (bulk specific gravity 0.122) and 20 parts by weight of bentonite were used. This ceramic body had very good wear resistance and good pressure strength.

[比較例9]
籾殻燻炭(かさ比重0.122)85重量部、ベントナイト15重量部としたほかは実施例と同様にして4MPaでフリクションプレス成形し成形体を得た。この成形体は移動させるための強度が不足して次の工程にのせることができなかった。
[Comparative Example 9]
A compact was obtained by friction press molding at 4 MPa in the same manner as in Example 6 except that 85 parts by weight of rice husk charcoal (bulk specific gravity 0.122) and 15 parts by weight of bentonite were used. This molded body was insufficient in strength to move and could not be put on the next step.

[実施例
ベントナイトに代えて水簸蛙目粘土(250メッシュ通過)を用いたほかは実施例と同様にしてハンドリングに必要な強度を有する良好なセラミック体を得た。
[Example 8 ]
A good ceramic body having the strength necessary for handling was obtained in the same manner as in Example 6 except that hydrangea clay (passing 250 mesh) was used instead of bentonite.

[実施例
ベントナイトに代えて水簸蛙目粘土(250メッシュ通過)を用いたほかは実施例と同様にしてセラミック体を得た。熱処理温度を900℃にすることにより、成形体内の炭素成分の酸化が促進され、焼成後の残留炭素がほとんどなくなり、かさ比重を小さく抑えるのに効果的であった。このセラミック体を再加熱したときの収縮率は800℃で−0.23%であり、かさ比重は0.36、圧縮強さは0.180MPaであり、熱伝導率(600℃)は、0.16W/m・k(0.138kcal/m・h・℃)であった。図1に示すこのセラミック体の顕微鏡写真(10倍)により、このセラミック体が、籾殻から炭素成分が酸化により散逸して残留したシリカ成分からなるシリカ粒子(B)と、焼成された粘土とを含み、このシリカ粒子と粘土とが焼結され、また、このシリカ粒子に籾殻の殻形状が維持されて殻形状に由来する空洞(A)を有することが確認された。
[Example 9 ]
A ceramic body was obtained in the same manner as in Example 7 except that hydrangea clay (through 250 mesh) was used instead of bentonite. By setting the heat treatment temperature to 900 ° C., the oxidation of the carbon component in the molded body was promoted, and there was almost no residual carbon after firing, which was effective in keeping the bulk specific gravity small. When the ceramic body was reheated, the shrinkage rate was -0.23% at 800 ° C, the bulk specific gravity was 0.36, the compressive strength was 0.180 MPa, and the thermal conductivity (600 ° C) was 0. .16 W / m · k (0.138 kcal / m · h · ° C.). According to a micrograph (10 times) of this ceramic body shown in FIG. 1, this ceramic body is composed of silica particles (B) composed of silica components remaining after carbon components are dissipated by oxidation from rice husks, and calcined clay. In addition, it was confirmed that the silica particles and clay were sintered, and that the silica particles maintained the shell shape of the rice husk and had cavities (A) derived from the shell shape.

再加熱収縮率は、モトヤマ製高温電気炉SHV−353GIを用いJIS R2613(1988)に準じて行った。加熱条件は室温から750℃が5℃/min,750℃から800℃が1℃/minであり、800℃の保持時間は12時間である。   The reheating shrinkage rate was measured according to JIS R2613 (1988) using a high-temperature electric furnace SHV-353GI manufactured by Motoyama. The heating conditions are from room temperature to 750 ° C. at 5 ° C./min, from 750 ° C. to 800 ° C. at 1 ° C./min, and the holding time at 800 ° C. is 12 hours.

熱伝導率は京都電子工業製熱伝導率測定装置TC−51を用いJIS R2616の非定常熱線法で測定した。   The thermal conductivity was measured by the unsteady hot wire method of JIS R2616 using a thermal conductivity measuring device TC-51 manufactured by Kyoto Electronics Industry.

[比較例10]
ベントナイトに代えて水簸蛙目粘土(250メッシュ通過)を用いたほかは比較例9と同様にして4MPaでフリクションプレス成形し成形体を得た。この成形体は移動させるための強度が不足して次の工程にのせることができなかった。
[Comparative Example 10]
A compact was obtained by friction press molding at 4 MPa in the same manner as in Comparative Example 9, except that hydrangea clay (through 250 mesh) was used instead of bentonite. This molded body was insufficient in strength to move and could not be put on the next step.

実施例1、4、6〜8、比較例9、10における坏土の配合(重量部)と成形体の成形性を表5に示す。 Table 5 shows the blending (parts by weight) of the clay and the moldability of the molded bodies in Examples 1, 4, 6 to 8 and Comparative Examples 9 and 10.

Figure 0005033064
Figure 0005033064

[実施例10
焼成温度・時間を800℃・8時間としたほかは実施例と同様にしてセラミック体を得た。800℃に達するまでの昇温速度は100℃/時間とした。このセラミック体の耐圧強度、耐熱性は極めて良好であり耐磨耗性は良好であった。このセラミック体を再加熱したときの収縮率は800℃で−0.22%であり、かさ比重は0.42、圧縮強さは0.21MPa、曲げ強さは0.19MPaであり、熱伝導率(600℃)は、0.19W/m・k(0.16kcal/m・h・℃)であった。
[Example 10 ]
A ceramic body was obtained in the same manner as in Example 7 except that the firing temperature and time were set to 800 ° C. and 8 hours. The rate of temperature increase until reaching 800 ° C. was 100 ° C./hour. The ceramic body had extremely good pressure strength and heat resistance and good wear resistance. When the ceramic body is reheated, the shrinkage rate is -0.22% at 800 ° C, the bulk specific gravity is 0.42, the compressive strength is 0.21 MPa, the bending strength is 0.19 MPa, The rate (600 ° C.) was 0.19 W / m · k (0.16 kcal / m · h · ° C.).

[実施例11
焼成温度・時間を850℃・8時間としたほかは実施例と同様にしてセラミック体を得た。850℃に達するまでの昇温速度は100℃/時間とした。
[Example 11 ]
A ceramic body was obtained in the same manner as in Example 7 except that the firing temperature and time were 850 ° C. and 8 hours. The rate of temperature increase until reaching 850 ° C. was 100 ° C./hour.

[実施例12
焼成温度・時間を950℃・8時間としたほかは実施例と同様にしてセラミック体を得た。950℃に達するまでの昇温速度は100℃/時間とした。
[Example 12 ]
A ceramic body was obtained in the same manner as in Example 7 except that the firing temperature and time were 950 ° C. and 8 hours. The rate of temperature increase until reaching 950 ° C. was 100 ° C./hour.

[実施例13
焼成温度・時間を800℃・8時間としたほかは実施例と同様にしてセラミック体を得た。800℃に達するまでの昇温速度は100℃/時間とした。
[Example 13 ]
A ceramic body was obtained in the same manner as in Example 9 except that the firing temperature and time were set to 800 ° C. and 8 hours. The rate of temperature increase until reaching 800 ° C. was 100 ° C./hour.

[実施例14
焼成温度・時間を850℃・8時間としたほかは実施例と同様にしてセラミック体を得た。850℃に達するまでの昇温速度は100℃/時間とした。
[Example 14 ]
A ceramic body was obtained in the same manner as in Example 9 except that the firing temperature and time were 850 ° C. and 8 hours. The rate of temperature increase until reaching 850 ° C. was 100 ° C./hour.

[実施例15
焼成温度・時間を950℃・8時間としたほかは実施例と同様にしてセラミック体を得た。950℃に達するまでの昇温速度は100℃/時間とした。
[Example 15 ]
A ceramic body was obtained in the same manner as in Example 9 except that the firing temperature and time were 950 ° C. and 8 hours. The rate of temperature increase until reaching 950 ° C. was 100 ° C./hour.

実施例7、10〜15における焼成温度と耐熱性、耐磨耗性、耐圧強度との関係を表6に示す。
耐熱性:セラミック体を焼成温度で再加熱したときの収縮やソリの状態で評価し、◎:ほとんど収縮やソリがない。○:収縮やソリが少なく断熱炉材として実用上問題ない。△:収縮やソリが生ずるが断熱炉材として実用上許容できる程度である。×:収縮やソリが断熱炉材として実用上問題である。
耐磨耗性:セラミック体を手でこすったときの磨耗状態で評価し、◎:ほとんど磨耗がない。○:磨耗が少なく断熱炉材として実用上問題ない。△:磨耗が生ずるが断熱炉材として実用上許容できる程度である。×:磨耗が断熱炉材として実用上問題である。
耐圧強度:セラミック体を手で押したときのへこみ状態で評価し、◎:ほとんどへこみがない。○:へこみが少なく断熱炉材として実用上問題ない。△:へこみが生ずるが断熱炉材として実用上許容できる程度である。×:へこみが断熱炉材として実用上問題である。
Table 6 shows the relationship between the firing temperature, heat resistance, wear resistance, and pressure resistance in Examples 7 and 10-15 .
Heat resistance: Evaluated by the state of shrinkage or warping when the ceramic body is reheated at the firing temperature. A: Almost no shrinkage or warping. ○: There is little shrinkage and warping, and there is no practical problem as a heat insulation furnace material. Δ: Shrinkage or warping occurs but is practically acceptable as a heat insulating furnace material. X: Shrinkage and warping are practical problems as a heat insulating furnace material.
Abrasion resistance: Evaluated by the state of wear when the ceramic body is rubbed by hand. A: Almost no wear. ○: There is little wear and there is no practical problem as a heat insulation furnace material. Δ: Wear occurs but is practically acceptable as a heat insulating furnace material. X: Wear is a practical problem as a heat insulating furnace material.
Compressive strength: Evaluated in the state of dent when the ceramic body is pushed by hand. A: Almost no dent. ○: There is little dent and there is no practical problem as a heat insulation furnace material. Δ: Dent is generated, but is practically acceptable as a heat insulating furnace material. X: A dent is a practical problem as a heat insulation furnace material.

Figure 0005033064
Figure 0005033064

[実施例16
籾殻燻炭(かさ比重0.11)80重量部、水簸蛙目粘土(250メッシュ通過)20重量部、化学糊1重量部、水100重量部、第三リン酸アルミニウム1重量部を混練後4MPaでフリクションプレス成形し成形体を得た。この成形体の水分含有量は、成形体全量に対して45重量%であった。この成形体を1週間室内放置乾燥し、次いで150℃で24時間乾燥した乾燥成形体を900℃で酸化雰囲気中で8時間焼成し、セラミック体を得た。900℃に達するまでの昇温速度は100℃/時間とした。
このセラミック体の耐熱性、耐磨耗性は良好であり、耐圧強度は極めて良好であった。このセラミック体を再加熱したときの収縮率は800℃で−0.11%であり、かさ比重は0.36、圧縮強さは0.2MPa、曲げ強さは0.13MPaであり、熱伝導率(600℃)は、0.17W/m・k(0.146kcal/m・h・℃)であった。
[Example 16 ]
After kneading 80 parts by weight of rice husk charcoal (bulk specific gravity 0.11), 20 parts by weight of water goblet clay (through 250 mesh), 1 part by weight of chemical glue, 100 parts by weight of water, and 1 part by weight of tertiary aluminum phosphate Friction press molding was performed at 4 MPa to obtain a molded body. The water content of this molded body was 45% by weight with respect to the total amount of the molded body. The molded body was left to dry in a room for one week, and then dried at 150 ° C. for 24 hours. The dried molded body was fired at 900 ° C. in an oxidizing atmosphere for 8 hours to obtain a ceramic body. The rate of temperature increase until reaching 900 ° C. was 100 ° C./hour.
The ceramic body had good heat resistance and wear resistance, and the pressure strength was extremely good. When this ceramic body is reheated, the shrinkage rate is -0.11% at 800 ° C, the bulk specific gravity is 0.36, the compressive strength is 0.2 MPa, the bending strength is 0.13 MPa, The rate (600 ° C.) was 0.17 W / m · k (0.146 kcal / m · h · ° C.).

[実施例17
第三リン酸アルミニウムの量を2重量部としたほかは実施例16と同様にしてセラミック体を得た。このセラミック体のかさ比重は0.45であり、実施例16で得られたセラミック体より熱伝導度が大きくなった。耐熱性、耐磨耗性は良好であり、耐圧強度は極めて良好であった。、
[Example 17 ]
A ceramic body was obtained in the same manner as in Example 16 except that the amount of tertiary aluminum phosphate was changed to 2 parts by weight. The bulk specific gravity of this ceramic body was 0.45, and the thermal conductivity was higher than that of the ceramic body obtained in Example 16 . The heat resistance and wear resistance were good, and the pressure strength was extremely good. ,

[実験例6、7]
粘土として、ベントナイト(250メッシュパス)、ベントナイト(200メッシュパス)の2ケースとしたほかは、実施例4と同様にして坏土を得た。この坏土を成形のため4MPaでフリクションプレスした。表7に成形結果を示す。
[Experimental Examples 6 and 7]
A clay was obtained in the same manner as in Example 4 except that two cases of bentonite (250 mesh pass) and bentonite (200 mesh pass) were used as clay. This clay was subjected to friction press at 4 MPa for molding. Table 7 shows the molding results.

Figure 0005033064
Figure 0005033064

[実施例18
籾殻燻炭(かさ比重0.122)80重量部、水簸蛙目粘土(250メッシュ通過)20重量部、化学糊1重量部、水100重量部、第三リン酸アルミニウム1重量部、ワックス系バインダ(中京油脂株式会社製:タイプP222(固型分20重量%))10重量部、を混練後3.5MPaでフリクションプレス成形し成形体を得た。この成形体の水分含有量は、成形体全量に対して50重量%であった。この成形体を1週間室内放置乾燥し、次いで150℃で24時間乾燥した乾燥成形体を900℃で酸化雰囲気中で8時間焼成し、セラミック体を得た。900℃に達するまでの昇温速度は100℃/時間とした。このセラミック体の耐熱性、耐磨耗性は良好であり、耐圧強度は極めて良好であった。このセラミック体を再加熱したときの収縮率は800℃で−0.17%であり、かさ比重は0.33、圧縮強さは0.13MPa、曲げ強さは0.08MPaであり、熱伝導率(600℃)は、0.16W/m・kであった。
[Example 18 ]
80 parts by weight of rice husk charcoal (bulk specific gravity 0.122), 20 parts by weight water clay (250 mesh), 1 part by weight of chemical glue, 100 parts by weight of water, 1 part by weight of tribasic aluminum phosphate, wax system 10 parts by weight of a binder (manufactured by Chukyo Yushi Co., Ltd .: type P222 (solid content 20 wt%)) was kneaded and then subjected to friction press molding at 3.5 MPa to obtain a molded body. The water content of this molded body was 50% by weight with respect to the total amount of the molded body. The molded body was left to dry in a room for one week, and then dried at 150 ° C. for 24 hours. The dried molded body was fired at 900 ° C. in an oxidizing atmosphere for 8 hours to obtain a ceramic body. The rate of temperature increase until reaching 900 ° C. was 100 ° C./hour. The ceramic body had good heat resistance and wear resistance, and the pressure strength was extremely good. When the ceramic body is reheated, the shrinkage rate is -0.17% at 800 ° C, the bulk specific gravity is 0.33, the compressive strength is 0.13 MPa, the bending strength is 0.08 MPa, The rate (600 ° C.) was 0.16 W / m · k.

その他、本発明は、主旨を逸脱しない範囲で当業者の知識に基づき種々なる改良、修正、変更を加えた態様で実施できるものである。   In addition, the present invention can be carried out in a mode in which various improvements, modifications, and changes are added based on the knowledge of those skilled in the art without departing from the spirit of the present invention.

本発明のセラミック体の構造を示す顕微鏡写真である。It is a microscope picture which shows the structure of the ceramic body of this invention.

Claims (2)

ベントナイトまたは蛙目粘土を主成分とする粘土と、かさ比重が0.11〜0.17の籾殻燻炭とを含む素地を焼成してなり、前記粘土と前記籾殻燻炭との比率が重量比で100:300〜400であり、籾殻の殻形状が維持されたシリカ粒子を含み、前記殻形状に由来する空洞を有するセラミック体。 It is obtained by firing a base material containing clay mainly composed of bentonite or cocoon clay and rice husk husk charcoal having a bulk specific gravity of 0.11 to 0.17, and the ratio of the clay to the husk husk charcoal is a weight ratio. 100: 300-400, a ceramic body including silica particles in which the shell shape of the rice husk is maintained and having a cavity derived from the shell shape . 前記素地が前記粘土と前記籾殻燻炭とを含む混練物を1〜10MPaで加圧成形してなる、請求項1に記載のセラミック体。2. The ceramic body according to claim 1, wherein the substrate is formed by press-molding a kneaded material containing the clay and the rice husk charcoal at 1 to 10 MPa.
JP2008152520A 2008-06-11 2008-06-11 Ceramic body Expired - Fee Related JP5033064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008152520A JP5033064B2 (en) 2008-06-11 2008-06-11 Ceramic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008152520A JP5033064B2 (en) 2008-06-11 2008-06-11 Ceramic body

Publications (2)

Publication Number Publication Date
JP2009298612A JP2009298612A (en) 2009-12-24
JP5033064B2 true JP5033064B2 (en) 2012-09-26

Family

ID=41545917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008152520A Expired - Fee Related JP5033064B2 (en) 2008-06-11 2008-06-11 Ceramic body

Country Status (1)

Country Link
JP (1) JP5033064B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101586172B1 (en) * 2015-07-23 2016-01-19 주국복 Lightweight porous ceramic sintered body and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000154073A (en) * 1998-11-17 2000-06-06 Noboru Ishibashi Production of porous fired body
JP3094226B2 (en) * 1999-03-26 2000-10-03 福井県 Crystallized glass composite ceramics and method for producing the same
JP2003020290A (en) * 2001-07-02 2003-01-24 Ueda Shikimono Kojo:Kk Porous base material made of ceramics and method for manufacturing the same and base material for soil obtained by pulverizing this porous base material
JP4119947B2 (en) * 2001-11-19 2008-07-16 独立行政法人産業技術総合研究所 Ceramic porous body and method for producing the same
JP3816376B2 (en) * 2001-11-27 2006-08-30 住江織物株式会社 Method for producing lightweight porous sintered body
JP2008290933A (en) * 2007-04-27 2008-12-04 Nissan Green Kk Production method of charcoal-containing earthenware

Also Published As

Publication number Publication date
JP2009298612A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JPS58204868A (en) Ceramic formed body
JP3530329B2 (en) Method for manufacturing porous carbon material product
JP5875596B2 (en) Ceramic firing processing
JP6602827B2 (en) Insulating material and manufacturing method thereof
JP4311609B2 (en) Method for producing porous ceramic body
JP2005035865A (en) Porous ceramics with high porosity produced from swellable microsphere and preceramic polymer, and its manufacturing process
JP4480758B2 (en) Refractory mortar cured molding
JP5033064B2 (en) Ceramic body
JP6214656B2 (en) Method for preparing highly porous ceramic materials
WO2016051053A1 (en) Process for manufacturing a solid element made of ceramic material, capable of being used in particular for heat storage - associated solid element
JP5080736B2 (en) Refractory manufacturing method and refractory obtained thereby
KR20110109706A (en) Method for manufacturing lightweight aggregate containing ash
US20020193493A1 (en) Method of making a product from an expanded mineral
JP6203809B2 (en) Carbon fiber heat insulating tile and method for manufacturing the same
CN101434487A (en) Porous silicon carbide sagger for dewaxing and manufacturing method thereof
JP4056669B2 (en) Insulating material and manufacturing method thereof
JP3816376B2 (en) Method for producing lightweight porous sintered body
JP3103480B2 (en) Method for producing zirconia refractory for thermal insulation
JP2020079182A (en) Fireproof heat insulating brick and its manufacturing method
JP3094147B2 (en) Firing jig
JP6166854B1 (en) Silicic refractory brick and manufacturing method thereof
JP4795754B2 (en) High thermal shock-resistant ceramic composite and manufacturing method thereof
JP3620058B2 (en) Thermal storage refractory brick for coke oven thermal storage room
JP4093488B2 (en) Method for producing brick with high coal ash content and brick obtained by the method
JP5631463B1 (en) Baked product using eggshell and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120629

R150 Certificate of patent or registration of utility model

Ref document number: 5033064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees