JP5080736B2 - Refractory manufacturing method and refractory obtained thereby - Google Patents

Refractory manufacturing method and refractory obtained thereby Download PDF

Info

Publication number
JP5080736B2
JP5080736B2 JP2005348354A JP2005348354A JP5080736B2 JP 5080736 B2 JP5080736 B2 JP 5080736B2 JP 2005348354 A JP2005348354 A JP 2005348354A JP 2005348354 A JP2005348354 A JP 2005348354A JP 5080736 B2 JP5080736 B2 JP 5080736B2
Authority
JP
Japan
Prior art keywords
mass
refractory
average particle
particle diameter
mullite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005348354A
Other languages
Japanese (ja)
Other versions
JP2007153644A (en
Inventor
応明 河合
裕行 岩崎
勝弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2005348354A priority Critical patent/JP5080736B2/en
Publication of JP2007153644A publication Critical patent/JP2007153644A/en
Application granted granted Critical
Publication of JP5080736B2 publication Critical patent/JP5080736B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、変形やアルカリの侵食が極めて小さく、高温時における強度、ヤング率、熱伝導率及びクリープ特性に優れ、低温焼成を実現した耐火物の製造方法及びこれにより得られた耐火物に関する。   The present invention relates to a method for producing a refractory material that is extremely small in deformation and alkali erosion, has excellent strength, Young's modulus, thermal conductivity, and creep characteristics at high temperatures, and realizes low-temperature firing, and a refractory material obtained thereby.

ムライト(Al23−SiO2)系セラミックスは、古くから理化学用磁器、耐火物等として利用されてきたが、非酸化物系セラミックスと比べて、熱安定性に優れていることから好適に用いられてきた。 Mullite (Al 2 O 3 —SiO 2 ) -based ceramics have long been used as physics and chemistry porcelain, refractories, etc., but it is suitable because of its superior thermal stability compared to non-oxide ceramics. Has been used.

例えば、Al23−SiO2系の耐火物は、一般的に、シリマナイト(Al2SiO5)系天然原料を主とし、結合材に、Al23−SiO2系粘土鉱物を用いており、その焼成温度は、1500℃以下と比較的低温である。焼成時、シリマイトは、以下の式に従い一部ムライト化するが、高温(例えば、1300℃以上)での使用時には、更に、ムライト化が進行する。
3Al2SiO5→3Al23・2SiO2+SiO2
For example, Al 2 O 3 —SiO 2 -based refractories are generally composed mainly of sillimanite (Al 2 SiO 5 ) -based natural raw materials, and Al 2 O 3 —SiO 2 -based clay minerals are used as binders. The firing temperature is relatively low, 1500 ° C. or less. At the time of firing, the sillimitite is partially mulliteed according to the following formula, but when used at a high temperature (for example, 1300 ° C. or higher), mulliteization further proceeds.
3Al 2 SiO 5 → 3Al 2 O 3 .2SiO 2 + SiO 2

このため、シリマナイト(Al2SiO5)系天然原料を主としたAl23−SiO2系の耐火物は、ムライト化が進行し過ぎると組織の変化が起こり、ムライト高温特性(高温時における強度、ヤング率及びクリープ特性)の劣化及び変形が大きくなる。また、シリマナイトや粘土鉱物中に不純物が含まれているため、アルカリに侵食されやすい傾向を持つことが知られている。 For this reason, Al 2 O 3 —SiO 2 refractories mainly composed of sillimanite (Al 2 SiO 5 ) -based natural materials undergo structural changes when mullitization proceeds too much, and mullite high-temperature characteristics ( Deterioration and deformation of strength, Young's modulus and creep properties are increased. Moreover, since impurities are contained in sillimanite and clay minerals, it is known that they tend to be eroded by alkali.

一方、純度の高い合成原料を用いた耐火物は、不純物を必要最小限に抑制することができるため、高温特性に優れており、且つ耐久性が高いことが知られている。しかしながら、純度の高い合成原料を用いた耐火物を焼成するためには、1600〜1800℃の高温が必要であった。   On the other hand, refractories using high-purity synthetic raw materials are known to have excellent high-temperature characteristics and high durability because impurities can be suppressed to the minimum necessary. However, in order to fire a refractory using a high-purity synthetic raw material, a high temperature of 1600 to 1800 ° C. was required.

以上のことから、シリマナイト系天然原料を主としたAl23−SiO2系の耐火物は、1300℃以上の使用において、経時変化が大きく、特性劣化しやすいため、短いサイクルでの交換が必要となり、廃棄物量が多くなるため、経済的でなかった。 From the above, Al 2 O 3 —SiO 2 refractories mainly composed of sillimanite-based natural materials are subject to large changes over time and characteristics are likely to deteriorate when used at 1300 ° C. or higher. It was not economical because it required and increased the amount of waste.

また、純度の高い合成原料を用いた耐火物は、高温特性に優れ、高温使用での安定性を有するため、長期間の使用が可能であり、廃棄物量を削減することができるが、高温焼成(1600〜1800℃)をする必要があるため、焼成時のエネルギー消費量が多くなり、環境への負荷が増大するとともに、シリマナイト系天然原料を主としたAl23−SiO2系の耐火物の量産設備では焼成することが困難であった。 In addition, refractories using high-purity synthetic raw materials have excellent high-temperature characteristics and stability at high-temperature use, so they can be used for a long period of time, and the amount of waste can be reduced. (1600 to 1800 ° C.), the energy consumption during firing increases, the environmental load increases, and Al 2 O 3 —SiO 2 fire resistance mainly composed of sillimanite natural raw materials. It was difficult to sinter with mass production equipment.

本発明は、上述した従来技術の問題点に鑑みてなされたものであり、その目的とするところは、変形やアルカリの侵食が極めて小さく、高温時における強度、ヤング率、熱伝導率及びクリープ特性に優れ、低温焼成を実現した耐火物の製造方法及びこれにより得られた耐火物を提供する。   The present invention has been made in view of the above-mentioned problems of the prior art, and its object is that deformation and alkali erosion are extremely small, strength at high temperatures, Young's modulus, thermal conductivity, and creep characteristics. The manufacturing method of the refractory material which was excellent in this and implement | achieved low-temperature baking, and the refractory material obtained by this are provided.

上記目的を達成するため、本発明によって、下記の耐火物の製造方法及びこれにより得られた耐火物が提供される。   In order to achieve the above object, the present invention provides the following refractory production method and the refractory obtained thereby.

[1] 骨材として、平均粒径100μm〜4mmのムライト及び/又はアルミナを65〜80質量%、微粒から構成されたマトリックスとして、平均粒径1〜5μmのアルミナ及び/又はムライトを10〜33質量%、且つ結合材として、平均粒径0.5〜10μmであり、不純物量が7.5質量%以下のSiOを3〜8質量%配合したものを成形し、1400〜1600℃(1600℃を除く)の焼成温度で焼成する耐火物の製造方法。 [1] 65 to 80% by mass of mullite and / or alumina having an average particle diameter of 100 μm to 4 mm as an aggregate, and 10 to 33 alumina and / or mullite having an average particle diameter of 1 to 5 μm as a matrix composed of fine particles. wt%, as and binder, the average particle diameter of 0.5 to 10 [mu] m, and forming what amount of impurities is blended with 7.5 mass% of SiO 2 3 to 8% by weight, 1400 to 1600 ° C. (1600 A method for producing a refractory that is fired at a firing temperature ( excluding ° C) .

] 骨材/マトリックス(質量比)が、80/20〜65/35である[1に記載の耐火物の製造方法。 [ 2 ] The method for producing a refractory according to [1 ] , wherein the aggregate / matrix (mass ratio) is 80/20 to 65/35.

] 骨材として、平均粒径100μm〜4mmのムライト及び/又はアルミナを5〜70質量%と、平均粒径100μm〜4mmのSiCを10〜75質量%含み、微粒から構成されたマトリックスとして、平均粒径1〜5μmのアルミナ及び/又はムライトを10〜33質量%且つ結合材として、平均粒径0.5〜10μmであり、不純物量が7.5質量%以下のSiOを3〜8質量%配合したものを成形し、1400〜1600℃の焼成温度で焼成する耐火物の製造方法。 [3] as an aggregate, 5 to 70 wt% mullite and / or alumina having an average particle size of 100Myuemu~4mm, a SiC having an average particle size of 100Myuemu~4mm comprises 10 to 75 wt%, as a matrix composed of fine 3 to 10% by mass of alumina and / or mullite having an average particle size of 1 to 5 μm and 3% of SiO 2 having an average particle size of 0.5 to 10 μm and an impurity amount of 7.5% by mass or less as a binder. The manufacturing method of the refractory which shape | molds what mix | blended -8 mass% and bakes it with the baking temperature of 1400-1600 degreeC .

] 骨材/マトリックス(質量比)が、80/20〜65/35である[3]に記載の耐火物の製造方法。 [ 4 ] The method for producing a refractory according to [ 3] , wherein the aggregate / matrix (mass ratio) is 80/20 to 65/35.

] [1]〜[]のいずれかに記載の耐火物の製造方法で製造された耐火物。 [ 5 ] A refractory produced by the method for producing a refractory according to any one of [1] to [ 4 ].

以上説明したように、本発明の耐火物の製造方法及びこれにより得られた耐火物は、変形やアルカリの侵食が極めて小さく、高温時における強度、ヤング率、熱伝導率及びクリープ特性に優れ、低温焼成を実現することができる。   As described above, the method for producing a refractory according to the present invention and the refractory obtained thereby have extremely small deformation and alkali erosion, and are excellent in strength, Young's modulus, thermal conductivity and creep characteristics at high temperatures. Low temperature firing can be achieved.

以下、本発明の耐火物の製造方法及びこれにより得られた耐火物を具体的な実施形態に基づき詳細に説明するが、本発明は、これに限定されて解釈されるもではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るものである。   Hereinafter, the method for producing a refractory according to the present invention and the refractory obtained thereby will be described in detail on the basis of specific embodiments. However, the present invention is not construed as being limited thereto. Various changes, modifications, and improvements can be made based on the knowledge of those skilled in the art without departing from the scope of the above.

本発明に係る耐火物の製造方法(1)は、骨材として、平均粒径100μm〜4mmのムライト及び/又はアルミナを65〜80質量%、微粒から構成されたマトリックスとして、平均粒径1〜5μmのアルミナ及び/又はムライトを10〜33質量%、且つ結合材として、平均粒径0.5〜10μmであり、不純物量が7.5質量%以下のSiOを3〜8質量%配合したものを成形し、1400〜1600℃(1600℃を除く)の焼成温度で焼成するものである。 The method (1) for producing a refractory according to the present invention comprises an aggregate having 65 to 80% by mass of mullite and / or alumina having an average particle diameter of 100 μm to 4 mm as a matrix, and an average particle diameter of 1 to 10 to 33% by mass of 5 μm alumina and / or mullite, and 3 to 8% by mass of SiO 2 having an average particle size of 0.5 to 10 μm and an impurity amount of 7.5% by mass or less as a binder. A thing is shape | molded and baked with the calcination temperature of 1400-1600 degreeC (except 1600 degreeC ) .

また、本発明に係る耐火物の製造方法(2)は、骨材として、平均粒径100μm〜4mmのムライト及び/又はアルミナを5〜70質量%と、平均粒径100μm〜4mmのSiCを10〜75質量%微粒から構成されたマトリックスとして、平均粒径1〜5μmのアルミナ及び/又はムライトを10〜33質量%且つ結合材として、平均粒径0.5〜10μmであり、不純物量が7.5質量%以下のSiOを3〜8質量%配合したものを成形し、1400〜1600℃の焼成温度で焼成するものである。 A method of manufacturing a refractory according to the present invention (2), as the aggregate, 5 to 70 wt% mullite and / or alumina having an average particle size of 100Myuemu~4mm, a SiC having an average particle diameter of 100Myuemu~4mm 10 75 wt%, as a matrix composed of fine, average particle diameter 1~5μm alumina and / or mullite 10-33 wt%, as and binder, the average particle diameter of 0.5 to 10 [mu] m, the amount of impurities Is formed by blending 3 to 8% by mass of SiO 2 having a mass of 7.5% by mass or less and firing at a firing temperature of 1400 to 1600 ° C.

以上の製造方法(1)及び(2)で得られた耐火物は、従来の耐火物(例えば、シリマナイト系天然原料を主としたAl23−SiO2系の耐火物)と比較して、変形やアルカリの侵食が極めて小さく、高温時(例えば、1300℃以上)における強度、ヤング率、熱伝導率及びクリープ特性に優れているため、長いサイクルで使用することができるため、廃棄物量を低減することができ、経済的であるとともに、純度の高い合成原料を用いた耐火物と比較して、低温で焼成することができるため、焼成時のエネルギー消費量を抑制することができ、環境への負荷を低減することができるとともに、従来の耐火物(例えば、シリマナイト系天然原料を主としたAl23−SiO2系の耐火物)の量産設備でも焼成することができる。 The refractories obtained by the above production methods (1) and (2) are compared with conventional refractories (for example, Al 2 O 3 —SiO 2 refractories mainly composed of sillimanite natural raw materials). , Because deformation and alkali erosion are extremely small, and it has excellent strength, Young's modulus, thermal conductivity and creep characteristics at high temperatures (eg, 1300 ° C or higher), it can be used in a long cycle. Compared to refractories that use high-purity synthetic raw materials, it is possible to reduce the energy consumption during firing, and the environment can be reduced. Can be reduced, and can also be fired in mass production facilities of conventional refractories (for example, Al 2 O 3 —SiO 2 refractories mainly composed of silimanite-based natural raw materials).

このとき、本発明の耐火物の製造方法(1)及び(2)は、焼成温度の下限が、1400℃(より好ましくは、1440℃)である。これは、焼成温度が1400℃未満であると、室温時における強度やヤング率が低下するだけでなく、高温使用時(例えば、1300℃)においても十分な特性(強度、ヤング率及び熱伝導率)を有する耐火物を得ることができない。一方、焼成温度が1600℃を超過する場合、得られた耐火物の特性は問題無いが、焼成時のエネルギー消費量が多くなり、環境への負荷が増大するとともに、従来の耐火物(シリマナイト系天然原料を主としたAl23−SiO2系の耐火物)の量産設備では焼成することが困難である。 At this time, as for the manufacturing method (1) and (2) of the refractory of this invention, the minimum of a calcination temperature is 1400 degreeC (preferably 1440 degreeC). This is because when the firing temperature is less than 1400 ° C., not only the strength and Young's modulus at room temperature decrease, but also sufficient properties (strength, Young's modulus and thermal conductivity) even when used at high temperatures (eg, 1300 ° C.). ) Cannot be obtained. On the other hand, when the firing temperature exceeds 1600 ° C., there is no problem with the characteristics of the obtained refractory, but the energy consumption during firing increases, the load on the environment increases, and the conventional refractory (silimanite series) It is difficult to fire with mass production equipment of Al 2 O 3 —SiO 2 refractories mainly composed of natural raw materials.

また、本発明の耐火物の製造方法(1)では、骨材として、平均粒径100μm〜4mmのムライト及び/又はアルミナ(原材料)が65〜80質量%含まれていることが好ましい。これは、良好なクリープ特性を発現でき、熱応力により発生した亀裂の伝播を抑制できるからである。   Moreover, in the manufacturing method (1) of the refractory material of this invention, it is preferable that 65-80 mass% of mullite and / or alumina (raw material) with an average particle diameter of 100 micrometers-4 mm are contained as an aggregate. This is because good creep characteristics can be exhibited and propagation of cracks caused by thermal stress can be suppressed.

更に、本発明の耐火物の製造方法(2)では、骨材として、平均粒径100μm〜4mmのムライト及び/又はアルミナ(原材料)が5〜70質量%と、平均粒径100μm〜4mmのSiC(原材料)が10〜75質量%含まれていることが好ましい。   Furthermore, in the refractory manufacturing method (2) of the present invention, as aggregate, mullite and / or alumina (raw material) having an average particle diameter of 100 μm to 4 mm is 5 to 70 mass%, and SiC having an average particle diameter of 100 μm to 4 mm. It is preferable that 10 to 75% by mass of (raw material) is contained.

尚、本発明の耐火物の製造方法(1)及び(2)で用いる骨材は、100μm〜4mm(より好ましくは、200μm〜3mm)の原材料を、平均粒径ごとに所定の割合で、適宜配合されていることが好ましい。これは、原材料の充填が密になり、より良好なクリープ特性が発現できるからである。   The aggregate used in the refractory manufacturing methods (1) and (2) of the present invention is appropriately selected from 100 μm to 4 mm (more preferably 200 μm to 3 mm) of raw materials at a predetermined ratio for each average particle diameter. It is preferable that it is blended. This is because the raw material becomes densely packed and better creep characteristics can be expressed.

また、本発明の耐火物の製造方法(1)では、マトリックス(微粒成分)として、平均粒径1〜5μmのアルミナ又はムライトが10〜33質量%(より好ましくは、25〜30質量%)含まれていることが好ましい。これにより、組織の焼結性が向上し、良好な強度特性を発現することができる。   Moreover, in the manufacturing method (1) of the refractory according to the present invention, 10 to 33% by mass (more preferably 25 to 30% by mass) of alumina or mullite having an average particle size of 1 to 5 μm is contained as a matrix (fine component). It is preferable that Thereby, the sinterability of a structure | tissue improves and favorable intensity | strength characteristics can be expressed.

このとき、本発明の耐火物の製造方法(1)及び(2)では、骨材/マトリックス(質量比)が、80/20〜65/35であることが好ましい。これは、上述したように、良好なクリープ特性を発現でき、熱応力により発生した亀裂の伝播を抑制することができるからである。   At this time, in the refractory manufacturing methods (1) and (2) of the present invention, the aggregate / matrix (mass ratio) is preferably 80/20 to 65/35. This is because, as described above, good creep characteristics can be exhibited, and propagation of cracks caused by thermal stress can be suppressed.

更に、本発明の耐火物の製造方法(1)及び(2)では、上記骨材及び上記マトリックスに、結合材として、平均粒径0.5〜10μm(より好ましくは、0.5〜5μm)であり、不純物量が7.5%質量以下(より好ましくは、2質量%未満であり、更に好ましくは、1質量%未満)のSiO2を3〜8質量%(より好ましくは、4〜7質量%)配合されていることが好ましい。 Furthermore, in the manufacturing method (1) and (2) of the refractory according to the present invention, an average particle size of 0.5 to 10 μm (more preferably, 0.5 to 5 μm) is used as a binder for the aggregate and the matrix. 3 to 8% by mass (more preferably 4 to 7%) of SiO 2 having an impurity amount of 7.5% or less (more preferably less than 2% by mass, and still more preferably less than 1% by mass). (Mass%) is preferably blended.

これは、SiO2の平均粒径が0.5μm未満である場合、原料の混練時に凝集が起こり、分散性が低下するからである。また、SiO2の平均粒径が10μmを超過する場合、表面エネルギーが低下し、焼結効果が十分に得られないため、高温使用時(例えば、1300℃以上)における強度及びヤング率を十分に得ることができず、更に、室温時における強度やヤング率も低下する。 This is because when the average particle diameter of SiO 2 is less than 0.5 μm, aggregation occurs when the raw materials are kneaded and the dispersibility is lowered. In addition, when the average particle diameter of SiO 2 exceeds 10 μm, the surface energy is lowered and the sintering effect cannot be obtained sufficiently, so that the strength and Young's modulus at high temperature use (for example, 1300 ° C. or higher) are sufficiently obtained. In addition, the strength and Young's modulus at room temperature are also reduced.

また、SiO2の不純物量が7.5%を超過する場合、軟化温度の低いガラス相が生成するため、高温使用時(例えば、1300℃以上)における強度及びヤング率を十分に得ることができなかった。 In addition, when the amount of impurities of SiO 2 exceeds 7.5%, a glass phase with a low softening temperature is generated, so that sufficient strength and Young's modulus can be obtained when used at high temperatures (eg, 1300 ° C. or higher). There wasn't.

更に、SiO2の耐火物原料中への配合量が3質量%未満である場合、結合材量が不足するため、焼結効果が十分に得られず、高温使用時(例えば、1300℃以上)における強度及びヤング率を十分に得ることができず、更に、室温時における強度やヤング率も低下する。一方、SiO2の耐火物原料中への配合量が8質量%を超過する場合、開気孔率が低下し、熱衝撃による亀裂の伝播を抑制する特性が低下するため、割れが発生しやすくなる。 Furthermore, when the blending amount of SiO 2 in the refractory raw material is less than 3% by mass, the amount of the binder is insufficient, so that a sufficient sintering effect cannot be obtained, and when used at high temperatures (for example, 1300 ° C. or more) In addition, the strength and Young's modulus cannot be sufficiently obtained, and the strength and Young's modulus at room temperature also decrease. On the other hand, when the blending amount of SiO 2 in the refractory raw material exceeds 8% by mass, the open porosity is lowered, and the property of suppressing the propagation of cracks due to thermal shock is lowered, so that cracking is likely to occur. .

次に、本発明の耐火物の製造方法(1)及び(2)は、上記のように調整された骨材及びマトリックス(微粒成分)に、上記のように調整された結合材が配合された耐火物原料が所定量になるように秤量し(秤量工程)、得られた原料にバインダーを添加・混合後、更にイオン交換水を添加し・混錬を行った(混錬工程)後、室温で一定時間熟成し(熟成工程)、熟成された混練物を所定のサイズになるように成形(成形工程)・乾燥し(乾燥工程)、得られた成形体は、大気雰囲気中、1400℃程度で焼成後、必要な形状に加工する(加工工程)ものである。   Next, in the refractory manufacturing methods (1) and (2) of the present invention, the binder adjusted as described above was blended with the aggregate and matrix (fine component) adjusted as described above. Refractory raw materials are weighed to a predetermined amount (weighing step), binder is added to and mixed with the obtained raw materials, and ion exchange water is further added and kneaded (kneading step), then room temperature Aged for a certain period of time (ripening step), the aged kneaded product is molded (molding step) and dried (drying step) to a predetermined size, and the resulting molded body is about 1400 ° C. in an air atmosphere Then, after firing, it is processed into a required shape (processing step).

尚、マトリックス成分の平均粒子径は、JIS R 1629に準拠して、レーザー回折式粒度分布測定装置(ADL−3100[(株)島津製作所製])にて測定した。また、結合材であるSiO2の不純物量は、誘導結合プラズマ原子発光分析装置[ICP−55(日本JARRELL−ASH社製)]にて測定した。 In addition, the average particle diameter of the matrix component was measured with a laser diffraction particle size distribution analyzer (ADL-3100 [manufactured by Shimadzu Corporation]) in accordance with JIS R 1629. Further, the amount of impurities of SiO 2 as a binder was measured by an inductively coupled plasma atomic emission spectrometer [ICP-55 (manufactured by Japan JARREL-ASH)].

以下、本発明を実施例によってさらに具体的に説明するが、本発明は、これらの実施例によっていかなる制限を受けるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
平均粒径3mm、1mm、0.2mmのムライトを各々24.3質量%、24.3質量%、26.5質量%となるように調整した骨材に、平均粒径4μmのムライトから構成されたマトリックス(微粒成分)が20.7質量%と、平均粒径2μmのSiO2(不純物量1質量%未満)から構成された結合材を4.2質量%配合した耐火物原料を得た。得られた耐火物原料を表1に示す工程を経て、耐火物である焼成体を得た。
Example 1
It is composed of mullite with an average particle diameter of 4 μm on aggregates adjusted to 24.3 mass%, 24.3 mass%, and 26.5 mass% of mullite having an average particle diameter of 3 mm, 1 mm, and 0.2 mm, respectively. A refractory raw material was obtained in which 4.2% by mass of a binder composed of 20.7% by mass of a matrix (fine particle component) and SiO 2 having an average particle diameter of 2 μm (impurity content of less than 1% by mass) was obtained. The fired body which is a refractory was obtained through the steps shown in Table 1 for the obtained refractory raw material.

Figure 0005080736
Figure 0005080736

(実施例2)
平均粒径3mm、1mm、0.2mmのアルミナを各々24.3質量%、24.3質量%、26.5質量%となるように調整した骨材に、平均粒径4μmのアルミナから構成されたマトリックス(微粒成分)が20.7質量%と、平均粒径2μmのSiO2(不純物量1質量%未満)から構成された結合材を4.2質量%配合した耐火物原料を得た。得られた耐火物原料を表1に示す工程を経て、耐火物である焼成体を得た。
(Example 2)
It is composed of an alumina having an average particle diameter of 4 μm on an aggregate prepared by adjusting alumina having an average particle diameter of 3 mm, 1 mm, and 0.2 mm to 24.3 mass%, 24.3% by mass, and 26.5 mass%, respectively. A refractory raw material was obtained in which 4.2% by mass of a binder composed of 20.7% by mass of a matrix (fine particle component) and SiO 2 having an average particle diameter of 2 μm (impurity content of less than 1% by mass) was obtained. The fired body which is a refractory was obtained through the steps shown in Table 1 for the obtained refractory raw material.

(実施例3)
平均粒径3mm、1mm、0.2mmのムライトを各々21.1質量%、21.1質量%、23質量%となるように調整した骨材に、平均粒径4μmのムライトから構成されたマトリックス(微粒成分)が30.6質量%と、平均粒径2μmのSiO2(不純物量1質量%未満)から構成された結合材を4.2質量%配合した耐火物原料を得た。得られた耐火物原料を表1に示す工程を経て、耐火物である焼成体を得た。
(Example 3)
Matrix composed of mullite with an average particle size of 4 μm on aggregate adjusted to 21.1% by mass, 21.1% by mass, and 23% by mass of mullite with an average particle size of 3 mm, 1 mm, and 0.2 mm, respectively. A refractory material containing 4.2% by mass of a binder composed of 30.6% by mass of (fine component) and SiO 2 having an average particle size of 2 μm (impurity content of less than 1% by mass) was obtained. The fired body which is a refractory was obtained through the steps shown in Table 1 for the obtained refractory raw material.

(実施例4)
平均粒径3mm、1mm、0.2mmのムライトを各々26質量%、26質量%、28.3質量%となるように調整した骨材に、平均粒径4μmのムライトから構成されたマトリックス(微粒成分)が15.5質量%と、平均粒径2μmのSiO2(不純物量1質量%未満)から構成された結合材を4.2質量%配合した耐火物原料を得た。得られた耐火物原料を表1に示す工程を経て、耐火物である焼成体を得た。
Example 4
A matrix composed of mullite having an average particle size of 4 μm (aggregate of fine particles) on an aggregate prepared by adjusting mullite having an average particle size of 3 mm, 1 mm, and 0.2 mm to 26 mass%, 26 mass%, and 28.3 mass%, respectively. component) was obtained with 15.5 wt%, a refractory material which binding material is 4.2 wt% blending consists mean particle size 2μm of SiO 2 (impurity content of less than 1 wt%). The fired body which is a refractory was obtained through the steps shown in Table 1 for the obtained refractory raw material.

(実施例5)
平均粒径3mm、1mm、0.2mmのムライトを各々24.3質量%、24.3質量%、26.5質量%となるように調整した骨材に、平均粒径1μmのムライトから構成されたマトリックス(微粒成分)が20.7質量%と、平均粒径2μmのSiO2(不純物量1質量%未満)から構成された結合材を4.2質量%配合した耐火物原料を得た。得られた耐火物原料を表1に示す工程を経て、耐火物である焼成体を得た。
(Example 5)
It is composed of mullite with an average particle size of 1 μm on aggregates adjusted to 24.3% by mass, 24.3% by mass and 26.5% by mass of mullite with an average particle size of 3 mm, 1 mm and 0.2 mm, respectively. A refractory raw material was obtained in which 4.2% by mass of a binder composed of 20.7% by mass of a matrix (fine particle component) and SiO 2 having an average particle diameter of 2 μm (impurity content of less than 1% by mass) was obtained. The fired body which is a refractory was obtained through the steps shown in Table 1 for the obtained refractory raw material.

(実施例6)
平均粒径3mm、1mm、0.2mmのムライトを各々24.3質量%、24.3質量%、26.5質量%となるように調整した骨材に、平均粒径5μmのムライトから構成されたマトリックス(微粒成分)が20.7質量%と、平均粒径2μmのSiO2(不純物量1質量%未満)から構成された結合材を4.2質量%配合した耐火物原料を得た。得られた耐火物原料を表1に示す工程を経て、耐火物である焼成体を得た。
(Example 6)
It is composed of mullite with an average particle size of 5 μm on aggregate adjusted to 24.3 mass%, 24.3 mass%, and 26.5 mass% of mullite with an average particle diameter of 3 mm, 1 mm, and 0.2 mm, respectively. A refractory raw material was obtained in which 4.2% by mass of a binder composed of 20.7% by mass of a matrix (fine particle component) and SiO 2 having an average particle diameter of 2 μm (impurity content of less than 1% by mass) was obtained. The fired body which is a refractory was obtained through the steps shown in Table 1 for the obtained refractory raw material.

(実施例7)
平均粒径3mm、1mm、0.2mmのムライトを各々24.3質量%、24.3質量%、26.5質量%となるように調整した骨材に、平均粒径4μmのムライトから構成されたマトリックス(微粒成分)が20.7質量%と、平均粒径10μmのSiO2(不純物量1質量%未満)から構成された結合材を4.2質量%配合した耐火物原料を得た。得られた耐火物原料を表1に示す工程を経て、耐火物である焼成体を得た。
(Example 7)
It is composed of mullite with an average particle diameter of 4 μm on aggregates adjusted to 24.3 mass%, 24.3 mass%, and 26.5 mass% of mullite having an average particle diameter of 3 mm, 1 mm, and 0.2 mm, respectively. A refractory raw material was obtained in which 4.2% by mass of a binder composed of 20.7% by mass of the matrix (fine particle component) and SiO 2 having an average particle size of 10 μm (impurity content of less than 1% by mass) was obtained. The fired body which is a refractory was obtained through the steps shown in Table 1 for the obtained refractory raw material.

(実施例8)
平均粒径3mm、1mm、0.2mmのムライトを各々24.3質量%、24.3質量%、26.5質量%となるように調整した骨材に、平均粒径4μmのムライトから構成されたマトリックス(微粒成分)が21.9質量%と、平均粒径2μmのSiO2(不純物量1質量%未満)から構成された結合材を3質量%配合した耐火物原料を得た。得られた耐火物原料を表1に示す工程を経て、耐火物である焼成体を得た。
(Example 8)
It is composed of mullite with an average particle diameter of 4 μm on aggregates adjusted to 24.3 mass%, 24.3 mass%, and 26.5 mass% of mullite having an average particle diameter of 3 mm, 1 mm, and 0.2 mm, respectively. A refractory raw material was obtained in which 3% by mass of a binder composed of 21.9% by mass of the matrix (fine particle component) and SiO 2 having an average particle size of 2 μm (impurity content of less than 1% by mass) was obtained. The fired body which is a refractory was obtained through the steps shown in Table 1 for the obtained refractory raw material.

(実施例9)
平均粒径3mm、1mm、0.2mmのムライトを各々24.3質量%、24.3質量%、26.5質量%となるように調整した骨材に、平均粒径4μmのムライトから構成されたマトリックス(微粒成分)が16.9質量%と、平均粒径2μmのSiO2(不純物量1質量%未満)から構成された結合材を8質量%配合した耐火物原料を得た。得られた耐火物原料を表1に示す工程を経て、耐火物である焼成体を得た。
Example 9
It is composed of mullite with an average particle diameter of 4 μm on aggregates adjusted to 24.3 mass%, 24.3 mass%, and 26.5 mass% of mullite having an average particle diameter of 3 mm, 1 mm, and 0.2 mm, respectively. A refractory raw material was obtained in which 8% by mass of a binder composed of 16.9% by mass of the matrix (fine particle component) and SiO 2 having an average particle diameter of 2 μm (impurity content of less than 1% by mass) was blended. The fired body which is a refractory was obtained through the steps shown in Table 1 for the obtained refractory raw material.

(実施例10)
平均粒径3mm、1mm、0.2mmのムライトを各々24.3質量%、24.3質量%、26.5質量%となるように調整した骨材に、平均粒径4μmのムライトから構成されたマトリックス(微粒成分)が20.7質量%と、平均粒径2μmのSiO2(不純物量7.5質量%)から構成された結合材を4.2質量%配合した耐火物原料を得た。得られた耐火物原料を表1に示す工程を経て、耐火物である焼成体を得た。
(Example 10)
It is composed of mullite with an average particle diameter of 4 μm on aggregates adjusted to 24.3 mass%, 24.3 mass%, and 26.5 mass% of mullite having an average particle diameter of 3 mm, 1 mm, and 0.2 mm, respectively. A refractory material containing 20.7% by mass of a matrix (fine particle component) and 4.2% by mass of a binder composed of SiO 2 having an average particle size of 2 μm (amount of impurities of 7.5% by mass) was obtained. . The fired body which is a refractory was obtained through the steps shown in Table 1 for the obtained refractory raw material.

(実施例11)
平均粒径3mm、1mm、0.2mmのムライトを各々24.3質量%、24.3質量%、26.5質量%となるように調整した骨材に、平均粒径4μmのムライトから構成されたマトリックス(微粒成分)が20.7質量%と、平均粒径2μmのSiO2(不純物量1質量%未満)から構成された結合材を4.2質量%配合した耐火物原料を得た。得られた耐火物原料を表1に示す工程を経て、耐火物である焼成体を得た。但し、焼成は1400℃で行った。
(Example 11)
It is composed of mullite with an average particle diameter of 4 μm on aggregates adjusted to 24.3 mass%, 24.3 mass%, and 26.5 mass% of mullite having an average particle diameter of 3 mm, 1 mm, and 0.2 mm, respectively. A refractory raw material was obtained in which 4.2% by mass of a binder composed of 20.7% by mass of a matrix (fine particle component) and SiO 2 having an average particle diameter of 2 μm (impurity content of less than 1% by mass) was obtained. The fired body which is a refractory was obtained through the steps shown in Table 1 for the obtained refractory raw material. However, firing was performed at 1400 ° C.

(実施例12)
平均粒径1mmのムライトを25質量%、平均粒径3mm及び0.2mmのSiCを各々25質量%で構成された骨材に、平均粒径4μmのムライトから構成されたマトリックス(微粒成分)が18質量%と、平均粒径2μmのSiO2(不純物量1質量%未満)から構成された結合材を7質量%配合した耐火物原料を得た。得られた耐火物原料を表1に示す工程を経て、耐火物である焼成体を得た。
(Example 12)
A matrix composed of mullite having an average particle diameter of 4 μm is formed on an aggregate composed of 25% by weight of mullite having an average particle diameter of 1 mm and 25% by weight of SiC having an average particle diameter of 3 mm and 0.2 mm. A refractory material containing 7% by mass of a binder composed of 18% by mass and SiO 2 having an average particle diameter of 2 μm (impurity amount of less than 1% by mass) was obtained. The fired body which is a refractory was obtained through the steps shown in Table 1 for the obtained refractory raw material.

(比較例1)
平均粒径3mm、1mm、0.2mmのムライトを各々24.3質量%、24.3質量%、26.5質量%となるように調整した骨材に、平均粒径4μmのムライトから構成されたマトリックス(微粒成分)が20.7質量%と、平均粒径12μmのSiO2(不純物量1質量%未満)から構成された結合材を4.2質量%配合した耐火物原料を得た。得られた耐火物原料を表1に示す工程を経て、耐火物である焼成体を得た。
(Comparative Example 1)
It is composed of mullite with an average particle diameter of 4 μm on aggregates adjusted to 24.3 mass%, 24.3 mass%, and 26.5 mass% of mullite having an average particle diameter of 3 mm, 1 mm, and 0.2 mm, respectively. A refractory raw material was obtained in which 4.2% by mass of a binder composed of 20.7% by mass of the matrix (fine component) and SiO 2 having an average particle size of 12 μm (impurity content of less than 1% by mass) was obtained. The fired body which is a refractory was obtained through the steps shown in Table 1 for the obtained refractory raw material.

(比較例2)
平均粒径3mm、1mm、0.2mmのムライトを各々24.3質量%、24.3質量%、26.5質量%となるように調整した骨材に、平均粒径4μmのムライトから構成されたマトリックス(微粒成分)が22.9質量%と、平均粒径2μmのSiO2(不純物量1質量%未満)から構成された結合材を2質量%配合した耐火物原料を得た。得られた耐火物原料を表1に示す工程を経て、耐火物である焼成体を得た。
(Comparative Example 2)
It is composed of mullite with an average particle diameter of 4 μm on aggregates adjusted to 24.3 mass%, 24.3 mass%, and 26.5 mass% of mullite having an average particle diameter of 3 mm, 1 mm, and 0.2 mm, respectively. A refractory raw material was obtained in which 2% by mass of a binder composed of 22.9% by mass of the matrix (fine component) and SiO 2 having an average particle diameter of 2 μm (impurity content of less than 1% by mass) was blended. The fired body which is a refractory was obtained through the steps shown in Table 1 for the obtained refractory raw material.

(比較例3)
平均粒径3mm、1mm、0.2mmのムライトを各々24.3質量%、24.3質量%、26.5質量%となるように調整した骨材に、平均粒径4μmのムライトから構成されたマトリックス(微粒成分)が15.9質量%と、平均粒径2μmのSiO2(不純物量1質量%未満)から構成された結合材を9質量%配合した耐火物原料を得た。得られた耐火物原料を表1に示す工程を経て、耐火物である焼成体を得た。
(Comparative Example 3)
It is composed of mullite with an average particle diameter of 4 μm on aggregates adjusted to 24.3 mass%, 24.3 mass%, and 26.5 mass% of mullite having an average particle diameter of 3 mm, 1 mm, and 0.2 mm, respectively. A refractory raw material was obtained in which 9% by mass of a binder composed of 15.9% by mass of the matrix (fine particle component) and SiO 2 having an average particle diameter of 2 μm (impurity amount of less than 1% by mass) was blended. The fired body which is a refractory was obtained through the steps shown in Table 1 for the obtained refractory raw material.

(比較例4)
平均粒径3mm、1mm、0.2mmのムライトを各々24.3質量%、24.3質量%、26.5質量%となるように調整した骨材に、平均粒径4μmのムライトから構成されたマトリックス(微粒成分)が20.7質量%と、平均粒径2μmのSiO2(不純物量10質量%)から構成された結合材を4.2質量%配合した耐火物原料を得た。得られた耐火物原料を表1に示す工程を経て、耐火物である焼成体を得た。
(Comparative Example 4)
It is composed of mullite with an average particle diameter of 4 μm on aggregates adjusted to 24.3 mass%, 24.3 mass%, and 26.5 mass% of mullite having an average particle diameter of 3 mm, 1 mm, and 0.2 mm, respectively. A refractory raw material was obtained in which 4.2% by mass of a binder composed of 20.7% by mass of the matrix (fine component) and SiO 2 having an average particle size of 2 μm (impurity amount of 10% by mass) was obtained. The fired body which is a refractory was obtained through the steps shown in Table 1 for the obtained refractory raw material.

(比較例5)
平均粒径3mm、1mm、0.2mmのムライトを各々24.3質量%、24.3質量%、26.5質量%となるように調整した骨材に、平均粒径4μmのムライトから構成されたマトリックス(微粒成分)が20.7質量%と、平均粒径2μmのSiO2(不純物量1質量%未満)から構成された結合材を4.2質量%配合した耐火物原料を得た。得られた耐火物原料を表1に示す工程を経て、耐火物である焼成体を得た。但し、焼成は1300℃で行った。
(Comparative Example 5)
It is composed of mullite with an average particle diameter of 4 μm on aggregates adjusted to 24.3 mass%, 24.3 mass%, and 26.5 mass% of mullite having an average particle diameter of 3 mm, 1 mm, and 0.2 mm, respectively. A refractory raw material was obtained in which 4.2% by mass of a binder composed of 20.7% by mass of a matrix (fine particle component) and SiO 2 having an average particle diameter of 2 μm (impurity content of less than 1% by mass) was obtained. The fired body which is a refractory was obtained through the steps shown in Table 1 for the obtained refractory raw material. However, firing was performed at 1300 ° C.

(比較例6)
平均粒径3mm、1mm、0.2mmのシリマナイト系天然原料を各々25質量%となるように調整した骨材に、平均粒径4μmのムライトから構成されたマトリックス(微粒成分)20質量%と、平均粒径4μmのカオリナイト系粘土鉱物から構成された結合材を5質量%配合した耐火物原料を得た。得られた耐火物原料を表1に示す工程を経て、耐火物である焼成体を得た。
(Comparative Example 6)
To an aggregate prepared by adjusting the average particle size of 3 mm, 1 mm, and 0.2 mm of a sillimanite-based natural raw material to 25% by mass, a matrix (fine component) composed of 20% by mass of mullite having an average particle size of 4 μm, A refractory material containing 5% by mass of a binder composed of kaolinite clay mineral having an average particle size of 4 μm was obtained. The fired body which is a refractory was obtained through the steps shown in Table 1 for the obtained refractory raw material.

表2に基づき、得られたそれぞれの焼成体(実施例1〜12、比較例1〜6)から試験片を切り出し、表2に示す特性項目を評価した。4点曲げ強度試験は、JIS R 1601に準拠して実施した。尚、熱伝導率は、試験片が小さく、誤差が大きいため、無作為に5箇所から切り出した試験片の平均値を使用した。その結果を表3〜5に示す。   Based on Table 2, test pieces were cut out from the obtained fired bodies (Examples 1 to 12 and Comparative Examples 1 to 6), and the characteristic items shown in Table 2 were evaluated. The 4-point bending strength test was performed according to JIS R 1601. In addition, since the test piece was small and the error was large, the average value of the test piece cut out randomly from five places was used for thermal conductivity. The results are shown in Tables 3-5.

Figure 0005080736
Figure 0005080736

Figure 0005080736
Figure 0005080736

Figure 0005080736
Figure 0005080736

Figure 0005080736
Figure 0005080736

(考察:実施例1〜12)
表3〜5に示すように、実施例1〜12は、従来の耐火物(例えば、比較例6)と比較して、特に、高温時(例えば、1300℃以上)における強度、ヤング率及び熱伝導率に優れていることを確認した。特に、結合材であるSiO2をより好ましい範囲で含む実施例1〜6及び実施例12は、より好ましい範囲に含まれない実施例7〜10よりも優れた高温時(例えば、1300℃以上)における強度及びヤング率に優れていることを確認した。尚、実施例12は、骨材がムライトとSiCから構成されているため、実施例1〜11と比較して、すべての特性で優れており、特に、熱伝導率が飛躍的に向上していることを確認した。
(Discussion: Examples 1 to 12)
As shown in Tables 3-5, Examples 1-12 compared with the conventional refractory (for example, comparative example 6), especially the intensity | strength in high temperature (for example, 1300 degreeC or more), Young's modulus, and heat | fever. It was confirmed that the conductivity was excellent. In particular, Examples 1 to 6 and Example 12 including SiO 2 as a binder in a more preferable range are at a higher temperature (for example, 1300 ° C. or more) than Examples 7 to 10 not included in the more preferable range. It was confirmed that the strength and Young's modulus were excellent. In addition, since Example 12 is composed of mullite and SiC, Example 12 is superior in all properties compared to Examples 1 to 11, and in particular, the thermal conductivity is dramatically improved. I confirmed.

(考察:比較例1〜5)
表5に示すように、比較例1では、結合材であるSiO2の平均粒径が10μmを超過するため、高温使用時(例えば、1300℃以上)における強度及びヤング率を十分に得ることができず、更に、室温時における強度やヤング率も低下することを確認した。
(Discussion: Comparative Examples 1-5)
As shown in Table 5, in Comparative Example 1, since the average particle diameter of SiO 2 serving as the binder exceeds 10 μm, it is possible to sufficiently obtain strength and Young's modulus when used at a high temperature (for example, 1300 ° C. or higher). Further, it was confirmed that the strength and Young's modulus at room temperature also decreased.

比較例2では、結合材であるSiO2の耐火物原料中への配合量が3質量%未満であるため、高温使用時(例えば、1300℃以上)における強度及びヤング率を十分に得ることができず、更に、室温時における強度やヤング率も低下することを確認した。 In Comparative Example 2, since the amount of the binder in which SiO 2 refractory raw material is less than 3 wt%, use at high temperatures (e.g., 1300 ° C. or higher) is possible to obtain the strength and Young's modulus at sufficiently Further, it was confirmed that the strength and Young's modulus at room temperature also decreased.

比較例3では、結合材であるSiO2の配合量が8質量%を超過するため、高温使用時(例えば、1300℃以上)における強度及びヤング率を十分に得ることができなかった。 In Comparative Example 3, since the blending amount of SiO 2 as the binder exceeds 8% by mass, the strength and Young's modulus at the time of high temperature use (for example, 1300 ° C. or higher) could not be sufficiently obtained.

比較例4では、結合材であるSiO2の不純物量が7.5%を超過するため、高温使用時(例えば、1300℃以上)における強度及びヤング率を十分に得ることができなかった。 In Comparative Example 4, the amount of impurities of SiO 2 serving as the binder exceeded 7.5%, so that the strength and Young's modulus during high temperature use (for example, 1300 ° C. or higher) could not be sufficiently obtained.

比較例5では、焼成温度が1400℃未満であるため、室温時における強度やヤング率が低下するだけでなく、高温使用時(例えば、1300℃)においても十分な特性(強度、ヤング率及び熱伝導率)を有する耐火物を得ることができなかった。   In Comparative Example 5, since the firing temperature is less than 1400 ° C., not only the strength and Young's modulus at room temperature are lowered, but also sufficient characteristics (strength, Young's modulus and heat) are used even at high temperatures (eg, 1300 ° C.). A refractory having conductivity) could not be obtained.

(高温クリープ試験)
実施例1及び比較例6の焼成体からφ35mm×高さ50mmのサンプルをそれぞれ作製した。高温時の耐久性評価のため、得られたサンプルの縦方向に、荷重5kg/cm2を加えた状態で、1450℃の電気炉内に、サンプルを表6に示す保持時間で保持し、その変形量を測定した。その後、試験前後での高さの変形量から変形率を算出した。その結果を表6及び図1に示す。
(High temperature creep test)
Samples of φ35 mm × height 50 mm were prepared from the fired bodies of Example 1 and Comparative Example 6, respectively. In order to evaluate durability at high temperatures, the sample was held in the electric furnace at 1450 ° C. for the holding time shown in Table 6 in a state where a load of 5 kg / cm 2 was applied in the longitudinal direction of the obtained sample. The amount of deformation was measured. Thereafter, the deformation rate was calculated from the deformation amount of the height before and after the test. The results are shown in Table 6 and FIG.

Figure 0005080736
Figure 0005080736

(考察)
表6及び図1の結果から明らかなように、従来の耐火物である比較例6と比較して、本発明の耐火物(実施例1)は、高温時におけるクリープ性に優れていることを確認した。更に詳細には、高温クリープ試験の保持時間50hrにおける変形率は、比較例6と比較して、1/3程度まで低減することができることを確認した。
(Discussion)
As is apparent from the results of Table 6 and FIG. 1, the refractory of the present invention (Example 1) is superior in creep property at high temperatures as compared with Comparative Example 6 which is a conventional refractory. confirmed. More specifically, it was confirmed that the deformation rate at the holding time of 50 hours in the high-temperature creep test can be reduced to about 1/3 as compared with Comparative Example 6.

(アルカリ侵食試験)
実施例1及び比較例6の焼成体から70mm×20mm×10mmのサンプルをそれぞれ作製した。得られたサンプルを、KCl/NaCl飽和溶液に15分間真空含浸(ロータリーポンプ使用)し、1450℃で2時間加熱処理を施した。その後、サンプルの中央部付近の切断面が観察できるように、加工、樹脂埋め及び研磨を行った後、K/Naが耐火物中に存在しているかを、エネルギー分散型X線分析装置(EDS)にて定量分析を行った。視野の特定は、走査型電子顕微鏡(SEM)にて、無作為に10視野を選んだ。但し、比較例6の骨材部は、ムライト化した箇所から視野を選んだ。その結果を表7に示す。
(Alkaline erosion test)
Samples of 70 mm × 20 mm × 10 mm were prepared from the fired bodies of Example 1 and Comparative Example 6, respectively. The obtained sample was impregnated with a saturated solution of KCl / NaCl for 15 minutes (using a rotary pump), and heat-treated at 1450 ° C. for 2 hours. Then, after processing, resin filling and polishing so that the cut surface near the center of the sample can be observed, an energy dispersive X-ray analyzer (EDS) is used to determine whether K / Na is present in the refractory. ) Was quantitatively analyzed. To identify the field of view, 10 fields of view were randomly selected with a scanning electron microscope (SEM). However, the field of view of the aggregate part of Comparative Example 6 was selected from the mullitized portion. The results are shown in Table 7.

Figure 0005080736
Figure 0005080736

(考察)
表7に示すように、今回のアルカリ侵食試験では、実施例1の場合、試験前後における骨材及び微粒成分(マトリックス)中のアルカリ量の増減が無いことから、アルカリの侵食が認められなかった。一方、従来の耐火物である比較例6の場合、骨材、微粒成分(マトリックス)中、供にアルカリ量が増加しており、アルカリの侵食が認められた。特に、骨材中(ムライト化した箇所)でのアルカリの侵食が多く認められた。
(Discussion)
As shown in Table 7, in this alkaline erosion test, in the case of Example 1, since there was no increase or decrease in the amount of alkali in the aggregate and fine particle component (matrix) before and after the test, no alkali erosion was observed. . On the other hand, in the case of the comparative example 6 which is a conventional refractory, the amount of alkali increased in the aggregate and the fine particle component (matrix), and alkali erosion was observed. In particular, alkali erosion was frequently observed in the aggregate (the mullitized portion).

本発明の耐火物の製造方法及びこれにより得られた耐火物は、セッター等の窯道具類に好適に用いることができる。   The manufacturing method of the refractory of this invention and the refractory obtained by this can be used suitably for kiln tools, such as a setter.

実施例1及び比較例6における高温クリープ試験の結果を示すグラフである。It is a graph which shows the result of the high temperature creep test in Example 1 and Comparative Example 6.

Claims (5)

骨材として、平均粒径100μm〜4mmのムライト及び/又はアルミナを65〜80質量%、微粒から構成されたマトリックスとして、平均粒径1〜5μmのアルミナ及び/又はムライトを10〜33質量%、且つ結合材として、平均粒径0.5〜10μmであり、不純物量が7.5質量%以下のSiOを3〜8質量%配合したものを成形し、1400〜1600℃(1600℃を除く)の焼成温度で焼成する耐火物の製造方法。 As aggregate, 65 to 80% by mass of mullite and / or alumina having an average particle size of 100 μm to 4 mm, and 10 to 33% by mass of alumina and / or mullite having an average particle size of 1 to 5 μm as a matrix composed of fine particles, and as a binder, the average particle diameter of 0.5 to 10 [mu] m, and forming what amount of impurities was blended 7.5 weight percent of the SiO 2 3 to 8 wt%, excluding the 1400 to 1600 ° C. (1600 ° C. The manufacturing method of the refractory material baked at the calcination temperature of ) . 前記骨材/マトリックス(質量比)が、80/20〜65/35である請求項1に記載の耐火物の製造方法。The method for producing a refractory according to claim 1, wherein the aggregate / matrix (mass ratio) is 80/20 to 65/35. 骨材として、平均粒径100μm〜4mmのムライト及び/又はアルミナを5〜70質量%と、平均粒径100μm〜4mmのSiCを10〜75質量%、微粒から構成されたマトリックスとして、平均粒径1〜5μmのアルミナ及び/又はムライトを10〜33質量%、且つ結合材として、平均粒径0.5〜10μmであり、不純物量が7.5質量%以下のSiOAs an aggregate, an average particle diameter of 5 to 70% by mass of mullite and / or alumina having an average particle diameter of 100 μm to 4 mm, and an average particle diameter of 10 to 75% by mass of SiC having an average particle diameter of 100 μm to 4 mm and fine particles SiO having 1 to 5 μm of alumina and / or mullite in an amount of 10 to 33% by mass and a binder having an average particle size of 0.5 to 10 μm and an impurity amount of 7.5% by mass or less. 2 を3〜8質量%配合したものを成形し、1400〜1600℃の焼成温度で焼成する耐火物の製造方法。A method for producing a refractory that is formed by blending 3 to 8% by mass and calcined at a firing temperature of 1400 to 1600 ° C. 骨材/マトリックス(質量比)が、80/20〜65/35である請求項3に記載の耐火物の製造方法。The method for producing a refractory according to claim 3, wherein the aggregate / matrix (mass ratio) is 80/20 to 65/35. 請求項1〜4のいずれか1項に記載の耐火物の製造方法で製造された耐火物。The refractory manufactured with the manufacturing method of the refractory of any one of Claims 1-4.
JP2005348354A 2005-12-01 2005-12-01 Refractory manufacturing method and refractory obtained thereby Active JP5080736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005348354A JP5080736B2 (en) 2005-12-01 2005-12-01 Refractory manufacturing method and refractory obtained thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005348354A JP5080736B2 (en) 2005-12-01 2005-12-01 Refractory manufacturing method and refractory obtained thereby

Publications (2)

Publication Number Publication Date
JP2007153644A JP2007153644A (en) 2007-06-21
JP5080736B2 true JP5080736B2 (en) 2012-11-21

Family

ID=38238464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005348354A Active JP5080736B2 (en) 2005-12-01 2005-12-01 Refractory manufacturing method and refractory obtained thereby

Country Status (1)

Country Link
JP (1) JP5080736B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104591753A (en) * 2014-12-24 2015-05-06 江苏三恒高技术窑具有限公司 High-performance modified mullite high-temperature bedplate as well as manufacturing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044814A (en) * 2006-08-15 2008-02-28 Ngk Insulators Ltd Ceramic composite material and bottom board for firing
JP6264846B2 (en) * 2012-12-27 2018-01-24 東ソー株式会社 Oxide sintered body, sputtering target and manufacturing method thereof
CN107285779A (en) * 2017-06-28 2017-10-24 常州新之雅装饰材料有限公司 A kind of plastic refractory and preparation method thereof
CN116573944A (en) * 2023-04-28 2023-08-11 广东新岭南科技有限公司 Sillimanite refractory material, preparation method thereof and sillimanite brick

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976908A (en) * 1972-11-28 1974-07-24
FR2223330A1 (en) * 1973-03-28 1974-10-25 Norton Co Low temp firing alumina refractory body - comprises alumina, silicon carbide and opt. zirconia
JPS5988378A (en) * 1982-11-10 1984-05-22 東芝セラミツクス株式会社 Lightweight refractories and manufacture
JPS62265166A (en) * 1986-05-10 1987-11-18 北興化学工業株式会社 Manufacture of high temperature strength alumina silica baseceramic sintered body
JP2511061B2 (en) * 1987-08-24 1996-06-26 日本碍子株式会社 Alumina refractory manufacturing method
JPH0777981B2 (en) * 1991-10-18 1995-08-23 品川白煉瓦株式会社 High corrosion resistance silicon carbide / alumina brick
JPH05339047A (en) * 1992-06-08 1993-12-21 Kawasaki Refract Co Ltd Shaped fired refractory
JPH06157173A (en) * 1992-11-20 1994-06-03 Toshiba Ceramics Co Ltd Production of high corrosion resistant refractory material
JP2001220259A (en) * 2000-02-07 2001-08-14 Mitsui Mining & Smelting Co Ltd Alumina-mullite porous refractory sheet and method for producing the same
JP4160796B2 (en) * 2002-07-16 2008-10-08 黒崎播磨株式会社 High thermal shock resistant sliding nozzle plate brick

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104591753A (en) * 2014-12-24 2015-05-06 江苏三恒高技术窑具有限公司 High-performance modified mullite high-temperature bedplate as well as manufacturing method

Also Published As

Publication number Publication date
JP2007153644A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
JP6818022B2 (en) Sintered zirconia mullite refractory composite, its production method, and its use
JP5661303B2 (en) Composition for low-temperature fired porcelain and method for producing low-temperature fired porcelain
JPWO2005105704A1 (en) Aluminum magnesium titanate crystal structure and manufacturing method thereof
WO2009077589A1 (en) Lightweight ceramic material
KR940011452B1 (en) Silicon carbide refractories having modified silicon nitride bond
JP5080736B2 (en) Refractory manufacturing method and refractory obtained thereby
JP2019078337A (en) Heat insulation material and manufacturing method thereof
JP4617190B2 (en) Refractory manufacturing method
JP6396938B2 (en) Heat treatment container for positive electrode active material of lithium battery
JP2001220259A (en) Alumina-mullite porous refractory sheet and method for producing the same
Naga et al. Mullite/β-spodumene composites: Preparation and characterization
JP2003040688A (en) Lightweight ceramic sintered compact
JP2509093B2 (en) Refractory manufacturing method for slide gates
JP3368960B2 (en) SiC refractory
JP4073221B2 (en) Ceramic firing tool material and manufacturing method thereof
KR100356736B1 (en) Silicon carbide (SiC) quality urinary ware and its manufacturing method
JPH02311360A (en) Aluminum titanate sintered compact
JP3142360B2 (en) SiC refractory raw material, method of preparing the same, and SiC refractory obtained using the refractory raw material
Aramide et al. EFFECTS OF TITANIA AND SINTERING TEMPERATURE ON THE PHASE DEVELOPMENT AND PROPERTIES OF SINTERED MULLITECARBON COMPOSITE SYNTHESIZED FROM OKPELLA KAOLIN
KR101693077B1 (en) Low-Thermal-Expansion Ceramic Ware
JP2001220260A (en) Alumina-based porous refractory sheet and method for producing the same
KR102644852B1 (en) Synthesis of low thermal expansion cordierite ceramics using kaolin group minerals and cordierite ceramics with low thermal expansion thereof
JP2001080960A (en) Production of zirconia refractory and zirconia refractory manufactured by the same
JP4967739B2 (en) Ceramic electronic parts (hereinafter referred to as electronic parts) firing tool materials
WO2010150609A1 (en) Honeycomb filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5080736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150