JP6602827B2 - Insulating material and manufacturing method thereof - Google Patents

Insulating material and manufacturing method thereof Download PDF

Info

Publication number
JP6602827B2
JP6602827B2 JP2017205809A JP2017205809A JP6602827B2 JP 6602827 B2 JP6602827 B2 JP 6602827B2 JP 2017205809 A JP2017205809 A JP 2017205809A JP 2017205809 A JP2017205809 A JP 2017205809A JP 6602827 B2 JP6602827 B2 JP 6602827B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
heat
mass
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017205809A
Other languages
Japanese (ja)
Other versions
JP2019078337A (en
Inventor
篤 末吉
浩史 塩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isolite Insulating Products Co Ltd
Original Assignee
Isolite Insulating Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isolite Insulating Products Co Ltd filed Critical Isolite Insulating Products Co Ltd
Priority to JP2017205809A priority Critical patent/JP6602827B2/en
Publication of JP2019078337A publication Critical patent/JP2019078337A/en
Application granted granted Critical
Publication of JP6602827B2 publication Critical patent/JP6602827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高い断熱性と高温下での耐熱性とを有し、更に高い機械的強度を有する断熱材及びその製造方法に関する。   The present invention relates to a heat insulating material having high heat insulating properties and heat resistance at high temperatures, and further having high mechanical strength, and a method for producing the same.

高温での処理が行われる工業炉等の産業設備に使用する断熱材には、省エネルギー化の観点から高い断熱性を有していることはもとより高温下での耐熱性に優れ、更に高い機械的強度を有していることが求められている。例えば、熱処理炉の断熱材は最高使用温度1400℃の耐熱性と高強度が求められている。断熱性については、エネルギーロスをできるだけ抑制するため、空気の熱伝導率と同程度かそれより小さい熱伝導率を有していることが求められている。   Insulating materials used in industrial equipment such as industrial furnaces that are processed at high temperatures have high heat resistance from the viewpoint of energy saving, as well as excellent heat resistance at high temperatures and higher mechanical properties. It is required to have strength. For example, a heat-insulating material for a heat treatment furnace is required to have heat resistance and high strength at a maximum use temperature of 1400 ° C. Regarding heat insulation, in order to suppress energy loss as much as possible, it is required to have a thermal conductivity that is comparable to or smaller than the thermal conductivity of air.

上記のような産業設備に使用する断熱材としては、従来、無機繊維を母材とする断熱材が使用されてきた。例えば特許文献1には、非繊維粒子が除去されたシリカアルミナ繊維等の無機繊維に、シリカゾル等の無機バインダーと凝集剤とを添加して脱水成形することにより製造された無機繊維質の断熱材が開示されている。この断熱材は1400℃の高温まで使用でき且つ高い強度を有しているが、断熱性については、1000℃での熱伝導率が0.15W/(m・K)、1200℃での熱伝導率が0.17W/(m・K)であった。空気の熱伝導率は、1000℃で0.08W/(m・K)、1200℃での熱伝導率は0.09W/(m・K)であるので、上記の無機繊維質の断熱材は空気に比べて熱伝導率が約2.0倍大きく、満足できる断熱性能を有しているとはいえなかった。   Conventionally, as a heat insulating material used for the industrial equipment as described above, a heat insulating material using an inorganic fiber as a base material has been used. For example, Patent Document 1 discloses an inorganic fiber heat insulating material manufactured by adding an inorganic binder such as silica sol and a flocculant to inorganic fibers such as silica alumina fibers from which non-fiber particles have been removed, and then performing dehydration molding. Is disclosed. Although this heat insulating material can be used up to a high temperature of 1400 ° C. and has high strength, the heat conductivity is 0.15 W / (m · K) at 1000 ° C. and heat conduction at 1200 ° C. The rate was 0.17 W / (m · K). The thermal conductivity of air is 0.08 W / (m · K) at 1000 ° C., and the thermal conductivity at 1200 ° C. is 0.09 W / (m · K). Compared to air, the thermal conductivity was about 2.0 times larger, and it could not be said that the thermal insulation performance was satisfactory.

上記の無機繊維質の断熱材よりも低熱伝導率の断熱材として、マイクロポーラス断熱材と称される低熱伝導率材料が知られている。例えば特許文献2には、ナノクラスの粒径の微粒子シリカを用いて粒子間の空隙サイズを小さくすることで気体の対流伝熱を抑制し、更に補強のために無機繊維を混合して圧縮成形した断熱材が開示されている。この断熱材は、微細な多孔構造にすることで最大限の断熱性能が得られるように設計されており、例えば800℃の熱伝導率が0.05W/(m・K)であり、同じ温度における空気の熱伝導率0.07W/(m・K)よりも小さいので優れた断熱性能を有している。   As a heat insulating material having a lower thermal conductivity than the above inorganic fibrous heat insulating material, a low thermal conductivity material called a microporous heat insulating material is known. For example, in Patent Document 2, the convective heat transfer of gas is suppressed by reducing the size of the voids between the particles by using fine silica particles having a nano-class particle diameter, and further, compression molding is performed by mixing inorganic fibers for reinforcement. An insulating material is disclosed. This heat insulating material is designed so that the maximum heat insulating performance can be obtained by forming a fine porous structure. For example, the heat conductivity at 800 ° C. is 0.05 W / (m · K), and the same temperature. Since the thermal conductivity of air is smaller than 0.07 W / (m · K), it has excellent heat insulation performance.

また、断熱材の原料にシリカよりも耐熱性が高いナノクラスのアルミナ粒子を使うことで、熱伝導率を低減すると共に耐熱性を高めることが提案されている。例えば特許文献3には、最高使用温度1200℃までの耐熱性を有し且つ1000℃での熱伝導率が0.07W/(m・K)の断熱材が開示されている。この断熱材は、同じ温度における空気の熱伝導率0.08W/(m・K)よりも小さい熱伝導率を有しているので優れた断熱性能を有している。更に、特許文献4には、1400℃で焼成された最高使用温度が1400℃、1000℃での熱伝導率が0.09W/(m・K)の断熱材が開示されている。   In addition, it has been proposed to use nano-class alumina particles having higher heat resistance than silica as a raw material for the heat insulating material, thereby reducing heat conductivity and increasing heat resistance. For example, Patent Document 3 discloses a heat insulating material having heat resistance up to a maximum use temperature of 1200 ° C. and a thermal conductivity at 1000 ° C. of 0.07 W / (m · K). Since this heat insulating material has a heat conductivity smaller than 0.08 W / (m · K) of air at the same temperature, it has excellent heat insulating performance. Further, Patent Document 4 discloses a heat insulating material having a maximum use temperature of 1400 ° C. baked at 1400 ° C. and a thermal conductivity of 0.09 W / (m · K) at 1000 ° C.

特開2014−228035号公報JP 2014-228035 A 特許第5683739号公報Japanese Patent No. 5683737 特開2016−40226号公報Japanese Patent Laid-Open No. 2006-40226 特開2016−173178号公報JP 2006-173178 A

しかしながら、特許文献3のようなマイクロポーラス断熱材は、ナノクラスの粒子が焼結して収縮するので、最高使用温度1200℃までの耐熱性しか有していない。特許文献4の断熱材は1400℃の耐熱性を有し、1000℃での熱伝導率が0.09W/(m・K)を実施例で示しているものの、微細な多孔構造により低熱伝導率を実現する必要があるため、ナノクラスの粒径を有するアルミナやムライト等の金属酸化物粒子を液体窒素の中に入れて凍結乾燥することで細孔を持つ凝集体を作製しており、工業的に生産する場合は割高になるとみられる。   However, the microporous heat insulating material as in Patent Document 3 has only heat resistance up to a maximum use temperature of 1200 ° C. because the nano-class particles are sintered and contracted. Although the heat insulating material of Patent Document 4 has heat resistance of 1400 ° C. and the thermal conductivity at 1000 ° C. is 0.09 W / (m · K) in the examples, it has low thermal conductivity due to the fine porous structure. Therefore, the aggregates with pores are produced by placing metal oxide particles such as alumina and mullite with nano-class particle diameters in liquid nitrogen and freeze-drying them. Production is likely to be expensive.

本発明は上記の従来の断熱材が抱える問題点に鑑みてなされたものであり、最高使用温度1400℃までの耐熱性を有し且つ所望の断熱性と高強度を有する断熱材を、工業的に安価に提供することを目的としている。   The present invention has been made in view of the problems of the above-described conventional heat insulating material, and has a heat resistance up to a maximum use temperature of 1400 ° C. and a desired heat insulating property and high strength. The purpose is to provide it inexpensively.

上記目的を達成するため、本発明に係る断熱材は、耐熱温度が1200℃以上の高耐熱性の組成物からなり孔径500〜1000nmの細孔を有する多孔質の断熱骨材を10〜40質量%含有し、耐火繊維を10〜30質量%含有し、平均粒径100nm以下の金属酸化物粒子からなる無機フィラーを40〜60質量%含有し、及び赤外線散乱材を8〜20質量%含有する焼結体であって、孔径100〜2000nmの気孔が全気孔の容積の30%以上60%以下を占めていることを特徴としている。   In order to achieve the above object, the heat insulating material according to the present invention is made of a high heat resistant composition having a heat resistant temperature of 1200 ° C. or more and 10 to 40 mass of a porous heat insulating aggregate having pores having a pore diameter of 500 to 1000 nm. Containing 10 to 30% by mass of refractory fiber, 40 to 60% by mass of inorganic filler composed of metal oxide particles having an average particle size of 100 nm or less, and 8 to 20% by mass of infrared scattering material. The sintered body is characterized in that pores having a pore diameter of 100 to 2000 nm occupy 30% or more and 60% or less of the total pore volume.

本発明によれば、所望の断熱性能と高強度とを有し、最高使用温度1400℃までの耐熱性を有する断熱材を工業的に安価に生産することができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat insulating material which has desired heat insulation performance and high intensity | strength, and has heat resistance to the maximum use temperature of 1400 degreeC can be produced industrially cheaply.

高温での処理が行われる工業炉等の産業設備の断熱に用いられる断熱材は、空気の熱伝導率と同程度か又はそれより小さい熱伝導率を有していることが好ましい。空気の熱伝導率は例えば1000℃では0.08W/(m・K)であり、1200℃では0.09W/(m・K)である。このような1000〜1200℃の高温域では、熱伝導率は対流伝熱とふく射伝熱の影響が大きくなる。これらのうち、対流伝熱は断熱材の細孔を空気の平均自由行程より小さくすることで抑制することができる。   It is preferable that the heat insulating material used for heat insulation of industrial equipment such as an industrial furnace where processing at a high temperature is performed has a thermal conductivity which is equal to or smaller than that of air. The thermal conductivity of air is, for example, 0.08 W / (m · K) at 1000 ° C. and 0.09 W / (m · K) at 1200 ° C. In such a high temperature range of 1000 to 1200 ° C., the thermal conductivity is greatly affected by convective heat transfer and radiation heat transfer. Among these, convective heat transfer can be suppressed by making the pores of the heat insulating material smaller than the mean free path of air.

空気の平均自由行程は温度に比例し、1000℃では273nm、1200℃では316nm、1400℃では359nmである。断熱材の細孔をこれらよりも小さくすることが望ましい。このような細孔を形成するには、シリカ、アルミナ、ムライト等のナノサイズの金属酸化物粒子を用いて粒子間の空隙サイズを小さくする方法や、原料を液体窒素の中に入れて凍結乾燥することで細孔を持つ凝集体を作製する方法がある。   The mean free path of air is proportional to temperature, 273 nm at 1000 ° C., 316 nm at 1200 ° C., and 359 nm at 1400 ° C. It is desirable to make the pores of the heat insulating material smaller than these. In order to form such pores, a method of reducing the void size between particles using nano-sized metal oxide particles such as silica, alumina, mullite, etc., or placing the raw material in liquid nitrogen and freeze-drying There is a method for producing an aggregate having pores.

一方、ふく射伝熱を低減するには、光の波長と同程度の大きさであるシングルミクロンサイズの気孔が多くなるようにしたり、シングルミクロンサイズの粒径を有する粒を多く含めたりすることで光の散乱効果を高める方法がある。特にふく射伝熱をもたらす赤外線の波長と同程度の平均粒径、好ましくは当該波長の半分程度の平均粒径を有する粒を含むのが望ましい。具体的に説明すると、例えば温度が100〜1000℃におけるピーク波長は、およそ2〜8μm(2000〜8000nm)である。このピーク波長の約半分に相当する1〜4μm(1000〜4000nm)であれば、ミー散乱によって、100〜1000℃におけるふく射伝熱を効果的に抑制することができる。   On the other hand, to reduce radiant heat transfer, increase the number of single-micron-sized pores that are about the same size as the wavelength of light, or include many grains having a single-micron-sized particle size. There is a method for enhancing the light scattering effect. In particular, it is desirable to include particles having an average particle size equivalent to the wavelength of infrared rays that causes radiative heat transfer, and preferably an average particle size about half the wavelength. More specifically, for example, the peak wavelength at a temperature of 100 to 1000 ° C. is about 2 to 8 μm (2000 to 8000 nm). If it is 1-4 micrometers (1000-4000 nm) corresponding to about half of this peak wavelength, the radiation heat transfer in 100-1000 degreeC can be effectively suppressed by Mie scattering.

また、断熱材の機械的強度は曲げ強さで評価しており、曲げ強さを0.5MPaよりも大きくすることで、昇温降温が繰り返される状況下においても優れた寸法安定性や形状安定性を維持することができ、更には施工時や加工時のハンドリングの際に損傷しにくいのはもちろんのこと、稜線の欠けや損耗が生じにくい強度を有する材料にすることができる。   In addition, the mechanical strength of the heat insulating material is evaluated by bending strength. By making the bending strength greater than 0.5 MPa, excellent dimensional stability and shape stability can be obtained even under conditions where temperature rise and fall are repeated. In addition, it is possible to make the material strong enough not to cause damage or damage to the ridgeline as well as to prevent damage during construction or handling during processing.

上記の知見に基づいて鋭意研究を重ねた結果、孔径500〜1000nmの細孔を有する多孔質構造の断熱骨材と、強化材としての耐火繊維と、ナノサイズの金属酸化物粒子からなる無機フィラーと、赤外線散乱材とによって多孔質の焼結体を構成することによって、高い断熱性と高温下での耐熱性とを有し、更に高い機械的強度を有する断熱材を安価に提供できることを見出し、本発明を完成するに至った。以下、上記の特徴を有する本発明の断熱材の実施形態について、構成要素ごとに具体的に説明する。なお、以下の説明においては、特にことわらない限り、孔径は水銀ポロシメータによって測定したものであり、平均粒径はレーザ回折式粒度分布測定装置によって測定した体積基準の50%径(D50)である。   As a result of intensive studies based on the above findings, a heat insulating aggregate having a porous structure having pores having a pore diameter of 500 to 1000 nm, a refractory fiber as a reinforcing material, and an inorganic filler comprising nano-sized metal oxide particles And the infrared scattering material to form a porous sintered body, it has been found that a heat insulating material having high heat insulation and heat resistance at high temperatures and having higher mechanical strength can be provided at low cost. The present invention has been completed. Hereinafter, the embodiment of the heat insulating material of the present invention having the above characteristics will be specifically described for each component. In the following description, unless otherwise specified, the pore diameter is measured by a mercury porosimeter, and the average particle diameter is a volume-based 50% diameter (D50) measured by a laser diffraction particle size distribution measuring device. .

本発明の実施形態の断熱材が有する多孔質の断熱骨材には、耐熱温度(最高使用温度とも称する)1200℃以上の高耐熱性の組成物からなり孔径500〜1000nmの細孔を有する多孔質構造の断熱骨材を用いる。また、例えば断熱材の最高使用温度を1200℃とするときは断熱骨材には耐熱温度1200℃以上のものを用い、断熱材の最高使用温度を1400℃とするときには断熱骨材には耐熱温度1400℃以上のものを用いる。なお、耐熱温度1400℃とは雰囲気温度1400℃で24時間加熱したときの加熱線収縮率が4%以下の場合をいい、耐熱温度1200℃とは雰囲気温度1200℃で24時間加熱したときの加熱線収縮率が4%以下の場合をいう。   The porous heat insulating aggregate of the heat insulating material according to the embodiment of the present invention is a porous heat-insulating composition (also referred to as a maximum use temperature) of 1200 ° C. or higher and having pores having a pore diameter of 500 to 1000 nm. Use heat-insulated aggregate with quality structure. For example, when the maximum use temperature of the heat insulating material is 1200 ° C., a heat insulating aggregate having a heat resistance temperature of 1200 ° C. or more is used, and when the maximum use temperature of the heat insulating material is 1400 ° C., the heat insulating temperature is high for the heat insulating aggregate. The one of 1400 ° C. or higher is used. The heat resistant temperature of 1400 ° C. means a case where the heating linear shrinkage rate is 4% or less when heated at an ambient temperature of 1400 ° C. for 24 hours, and the heat resistant temperature of 1200 ° C. means heating when heated at an atmospheric temperature of 1200 ° C. for 24 hours. The case where the linear shrinkage rate is 4% or less.

このような断熱骨材としては、限定するものではないが、耐熱温度1400℃以上の断熱骨材では例えばスピネル質セラミックス(クアーズテック株式会社製のThermoscatt(登録商標))や、CaO・6Al(カルシアアルミネート)セラミックス(Almatis社製のSLA−92)等を挙げることができ、耐熱温度1200℃以上の断熱骨材では例えば多孔質アルミナを挙げることができる。 Such a heat insulating aggregate is not limited, but for a heat insulating aggregate having a heat-resistant temperature of 1400 ° C. or higher, for example, spinel ceramics (Thermoscatt (registered trademark) manufactured by Coors Tech Co., Ltd.), CaO.6Al 2 O 3 (calcia aluminate) ceramics (SLA-92 manufactured by Almatis) and the like, and as a heat insulating aggregate having a heat resistant temperature of 1200 ° C. or higher, for example, porous alumina can be used.

本発明の実施形態の断熱材が有する強化材としての耐火繊維は、1400℃以上の高耐熱性の組成物からなる繊維を用いるのが好ましい。このような耐火繊維としては、限定するものではないが、例えばアルミナ質繊維、ムライト質繊維、CaO・6Al(カルシアアルミネート)繊維、ジルコニア繊維、及び生体溶解性繊維を挙げることができ、これら繊維からなる群より選択される1種以上を使用するのが好ましい。これら耐火繊維はいずれも発がん性の可能性がなく、特定化学物質に指定されていない点においても好ましい。これらの中では、ムライト質繊維(例えば株式会社ITM製のファイバーマックス1600)、又はアルミナ質繊維が好ましい。耐火繊維は、平均繊維径が1μm以上10μm以下であるのが好ましく、2μm以上6μm以下であるのがより好ましい。なお、上記の平均繊維径とは、測定対象の繊維群を電子顕微鏡で撮影し、得られた画像の中から任意に選択した200本以上の繊維の幅方向の距離を計測し、これらを算術平均したものである。 It is preferable to use a fiber made of a composition having a high heat resistance of 1400 ° C. or higher as the fireproof fiber as the reinforcing material included in the heat insulating material of the embodiment of the present invention. Examples of such refractory fibers include, but are not limited to, alumina fibers, mullite fibers, CaO · 6Al 2 O 3 (calcia aluminate) fibers, zirconia fibers, and biosoluble fibers. It is preferable to use one or more selected from the group consisting of these fibers. None of these refractory fibers are carcinogenic and are preferred because they are not designated as specific chemical substances. Among these, mullite fiber (for example, Fiber Max 1600 manufactured by ITM Co., Ltd.) or alumina fiber is preferable. The refractory fiber preferably has an average fiber diameter of 1 μm or more and 10 μm or less, and more preferably 2 μm or more and 6 μm or less. In addition, said average fiber diameter is the distance of the direction of the width | variety of 200 or more fibers arbitrarily selected from the image obtained by image | photographing the fiber group of a measuring object with an electron microscope, and calculating these. It is average.

本発明の実施形態の断熱材が有する無機フィラーは、高温での耐熱性を有する金属酸化物からなるナノサイズの微粒子を用いる。これにより、多孔質の断熱骨材と耐火繊維と赤外線散乱材との粒子間の空隙サイズを小さくでき、高温での気体の対流伝熱を抑制することができる。ここでナノサイズの微粒子とは、平均粒径1nm以上100nm以下の粒子を意味している。上記の金属酸化物としては、限定するものではないが、例えばアルミナ、マグネシア、ムライト、及びジルコニアを挙げることができ、これら金属酸化物からなる群より選択される1種以上を使用するのが好ましい。これらの中では、アルミナ、ムライト、又はジルコニアが好ましい。   The inorganic filler of the heat insulating material according to the embodiment of the present invention uses nano-sized fine particles made of a metal oxide having heat resistance at high temperatures. Thereby, the space | gap size between particle | grains of a porous heat insulation aggregate, a fireproof fiber, and an infrared scattering material can be made small, and the convective heat transfer of the gas at high temperature can be suppressed. Here, the nano-sized fine particles mean particles having an average particle diameter of 1 nm or more and 100 nm or less. Although it does not limit as said metal oxide, For example, an alumina, magnesia, mullite, and a zirconia can be mentioned, It is preferable to use 1 or more types selected from the group which consists of these metal oxides. . Among these, alumina, mullite, or zirconia is preferable.

本発明の実施形態の断熱材が有する赤外線散乱材は、ふく射による伝熱を低減可能な1000℃以上の耐熱温度を有する組成物からなるものであれば特に限定はないが、赤外線反射性のあるものが好ましい。このような組成物としては、例えば珪酸ジルコニウム、ジルコニア、及びアルミナ等を挙げることができ、これら組成物からなる群より選択される1種以上を使用するのが好ましい。また、上記の赤外線散乱材は、平均粒径が100nm以上5000nm以下であるのが好ましく、特に上限は、ふく射伝熱をもたらす赤外線の1200℃のピーク波長と同程度の平均粒子径である2000nm以下であるのがより好ましい。   The infrared scattering material included in the heat insulating material of the embodiment of the present invention is not particularly limited as long as it is made of a composition having a heat resistant temperature of 1000 ° C. or higher that can reduce heat transfer by radiation, but has infrared reflectivity. Those are preferred. Examples of such a composition include zirconium silicate, zirconia, and alumina, and it is preferable to use one or more selected from the group consisting of these compositions. The infrared scattering material preferably has an average particle diameter of 100 nm or more and 5000 nm or less, and particularly the upper limit is 2000 nm or less, which is an average particle diameter equivalent to the peak wavelength of 1200 ° C. of infrared radiation that causes radiation heat transfer. It is more preferable that

本発明の実施形態の断熱材では、上記多孔質の断熱骨材の含有率が少なすぎると該断熱材の全細孔の容積が小さくなるため伝導伝熱が多くなり、その結果、熱伝導率が大きくなって断熱性が低下する。逆に上記多孔質の断熱骨材の含有率が多すぎると該断熱材の強度が低下する。また、上記耐火繊維の含有率が少なすぎると強度が低下し、逆に上記耐火繊維の含有率が多すぎるとふく射抑制に効果のある細孔よりも大きな細孔が増えるのでふく射が多くなり、その結果、熱伝導率が大きくなって断熱性が低下する。また、上記無機フィラーの含有率が少なすぎると強度が低下し、逆に上記無機フィラーの含有率が多すぎると該断熱材の全細孔の容積が小さくなるため伝導伝熱が多くなり、その結果、熱伝導率が大きくなって断熱性が低下する。また、上記赤外線散乱材の含有率が少なすぎるとふく射抑制効果が少なくなり、熱伝導率が大きくなって断熱性が低下する。逆に上記赤外線散乱材の含有率が多すぎると該断熱材の強度が低下する。   In the heat insulating material according to the embodiment of the present invention, if the content of the porous heat insulating aggregate is too small, the volume of all the pores of the heat insulating material is reduced, so that the heat conduction is increased. Becomes larger and the heat insulation is reduced. Conversely, if the content of the porous heat insulating aggregate is too large, the strength of the heat insulating material is lowered. In addition, if the content of the refractory fiber is too small, the strength decreases, and conversely if the content of the refractory fiber is too large, the number of pores larger than the pores effective in suppressing radiation increases, so the radiation increases. As a result, the thermal conductivity is increased and the heat insulation is reduced. In addition, if the content of the inorganic filler is too small, the strength is reduced, and conversely, if the content of the inorganic filler is too large, the volume of all the pores of the heat insulating material is reduced and the conduction heat transfer is increased. As a result, the thermal conductivity is increased and the heat insulation is reduced. Moreover, when there is too little content rate of the said infrared-scattering material, the radiation suppression effect will decrease, thermal conductivity will become large, and heat insulation will fall. Conversely, when the content of the infrared scattering material is too large, the strength of the heat insulating material is lowered.

本発明の実施形態の断熱材を構成する上記の各構成要素の含有量は、上記を考慮したうえで所望の断熱材の特性が得られるように適宜含有量を調整することができる。具体的には、本発明の実施形態の断熱材を構成する上記の各構成要素の含有量は、多孔質の断熱骨材では10〜40質量%であり、耐火繊維では10〜30質量%であり、無機フィラーでは40〜60質量%であり、赤外線散乱材では8〜20質量%である。更に本発明の実施形態の断熱材は、上記した多孔質の断熱骨材、耐火繊維、無機フィラー、及び赤外線散乱材が合計98質量%以上含まれているのが好ましく、不可避不純物や成形助剤が含まれていてもよい。   In consideration of the above, the content of each component constituting the heat insulating material of the embodiment of the present invention can be appropriately adjusted so that desired heat insulating material characteristics can be obtained. Specifically, the content of each component constituting the heat insulating material of the embodiment of the present invention is 10 to 40% by mass for the porous heat insulating aggregate and 10 to 30% by mass for the refractory fiber. Yes, the inorganic filler is 40 to 60% by mass, and the infrared scattering material is 8 to 20% by mass. Furthermore, the heat insulating material of the embodiment of the present invention preferably contains a total of 98% by mass or more of the above-mentioned porous heat insulating aggregate, fireproof fiber, inorganic filler, and infrared scattering material. May be included.

本発明の実施形態の断熱材は、上記した断熱骨材、耐火繊維、無機フィラー、及び赤外線散乱材を有する原料を公知の方法で乾式混合した後、公知の方法で加圧成形することにより作製することができる。例えば、限定するものではないが、上記の原料を高速混合機(例えばレーデイゲミキサーやヘンシェルミキサー等)で乾式混合する工程と、得られた混合物を所定の成形型に充填して乾式プレス成形する工程とにより成形体を作製することができる。   The heat insulating material of the embodiment of the present invention is produced by dry-mixing a raw material having the above-mentioned heat insulating aggregate, fireproof fiber, inorganic filler, and infrared scattering material by a known method, and then press-molding by a known method. can do. For example, but not limited to, a step of dry-mixing the above raw materials with a high-speed mixer (for example, a Reedige mixer or a Henschel mixer) and a dry press molding by filling the obtained mixture into a predetermined mold A molded body can be produced by the process of performing.

得られた成形体は、熱収縮の防止と強度発現のために焼結処理を行うことで断熱材となる。この場合の焼結の条件には特に限定はないが、最高使用温度1400℃の断熱材を作製する場合は、耐熱温度1400℃以上の多孔質の断熱骨材を用い、成形体の表面温度が1400℃となる温度条件で1時間程度保持するのが好ましい。同様の成形体を焼結処理して最高使用温度1200℃の断熱材を作製する場合は、耐熱温度1200℃以上の多孔質の断熱骨材を用い、成形体の表面温度が1200℃となる温度条件で1時間程度保持するのが好ましい。なお、焼結処理する際の成形体の厚さによって保持時間を適宜変えてもかまわない。 The obtained molded body becomes a heat insulating material by performing a sintering process for preventing thermal shrinkage and developing strength. The sintering conditions in this case are not particularly limited, but when a heat insulating material having a maximum use temperature of 1400 ° C. is produced, a porous heat insulating aggregate having a heat resistant temperature of 1400 ° C. or higher is used, and the surface temperature of the molded body is It is preferable to hold for about 1 hour under a temperature condition of 1400 ° C. When a similar molded body is sintered to produce a heat insulating material having a maximum use temperature of 1200 ° C., a porous heat insulating aggregate having a heat resistant temperature of 1200 ° C. or higher is used, and the surface temperature of the molded body is 1200 ° C. It is preferable to hold for about 1 hour under conditions. Note that the holding time may be appropriately changed depending on the thickness of the molded body during the sintering process.

上記の焼結処理により得られる断熱材は、孔径100〜2000nmの気孔が全気孔の容積の30%以上60%以下となるようにする。この値が30%未満では、ふく射の抑制効果が得られにくくなり、所望の低熱伝導率が得られなくなる。一方、この値が60%を超えると強度上の問題が生じるおそれがある。なお、上記の孔径100〜2000nmの気孔の全気孔に対する容積割合が30%未満の場合は加圧成形時の圧力を低めに設定すればよく、逆に60%を超える場合は加圧成形時の圧力を高めに設定すればよい。   The heat insulating material obtained by the above sintering treatment is such that pores having a pore diameter of 100 to 2000 nm are 30% or more and 60% or less of the total pore volume. If this value is less than 30%, it becomes difficult to obtain the effect of suppressing radiation, and the desired low thermal conductivity cannot be obtained. On the other hand, if this value exceeds 60%, a problem in strength may occur. When the volume ratio of the pores having a pore diameter of 100 to 2000 nm to the total pores is less than 30%, the pressure at the time of pressure molding may be set lower, and conversely when it exceeds 60%, What is necessary is just to set pressure high.

上記の原料を用いて上記方法で作製することで得られる断熱材は、1200℃における熱伝導率を0.12W/(m・K)以下にすることができる。この熱伝導率の要件を満たさない場合は、成形体の配合割合を適宜変えればよい。例えば、強度が低くなり過ぎない範囲で断熱骨材や赤外線散乱材の含有量を多くしたり、耐火繊維や無機フィラーの含有量を少なくしたりすればよい。あるいは、加圧成形時の圧力を低めに設定してもよい。   The heat insulating material obtained by producing the above raw material by the above method can have a thermal conductivity at 1200 ° C. of 0.12 W / (m · K) or less. If this thermal conductivity requirement is not satisfied, the blending ratio of the molded body may be changed as appropriate. For example, the content of the heat insulating aggregate or the infrared scattering material may be increased within the range where the strength does not become too low, or the content of the refractory fiber or the inorganic filler may be decreased. Or you may set the pressure at the time of pressure molding low.

耐熱温度1400℃以上の多孔質の断熱骨材を用いる場合には、雰囲気温度1400℃で24時間の加熱処理条件で再加熱したときの加熱線収縮率が4%以下となるので、断熱材の最高使用温度を1400℃とすることができる。また、耐熱温度1200℃以上の多孔質の断熱骨材を用いた場合には、雰囲気温度1200℃で24時間の加熱処理条件で再加熱したときの加熱線収縮率が4%以下となるので、断熱材の最高使用温度を1200℃とすることができる。なお、1200℃の熱伝導率は平板比較法(JIS A1412-2付属書A)に準拠した試験方法で測定したものであり、加熱線収縮率はASTM C356に準拠した試験方法で測定したものである。   When using a porous heat insulating aggregate having a heat resistant temperature of 1400 ° C. or higher, the heating line shrinkage rate when reheated at a temperature of 1400 ° C. for 24 hours under heat treatment conditions is 4% or less. The maximum use temperature can be 1400 ° C. In addition, when a porous heat insulating aggregate having a heat resistant temperature of 1200 ° C. or higher is used, the heating linear shrinkage rate when reheated at an atmospheric temperature of 1200 ° C. under heat treatment conditions for 24 hours is 4% or less. The maximum use temperature of a heat insulating material can be 1200 degreeC. The thermal conductivity at 1200 ° C. was measured by a test method based on the flat plate comparison method (JIS A1412-2 Annex A), and the heat shrinkage was measured by a test method based on ASTM C356. is there.

また、上記の原料を用いて上記方法で得られる断熱材は、曲げ強さが0.5MPa以上より大きくなる。もし曲げ強さが0.5MPa未満であると、ハンドリング時や加工時に損傷し易くなるので好ましくない。なお、曲げ強さの要件を満たさない場合は、成形体の配合割合を適宜変えればよい。例えば、熱伝導率が高くなり過ぎない範囲で断熱骨材や赤外線散乱材の含有量を少なくしたり、耐火繊維や無機フィラーの含有量を多くしたりすればよい。あるいは、加圧成形時の圧力を高めに設定してもよい。なお、上記の曲げ強さと参考として圧縮強さは、それぞれ以下の方法によって測定したものである。   Moreover, the heat insulating material obtained by said method using said raw material becomes larger than 0.5 MPa or more in bending strength. If the bending strength is less than 0.5 MPa, it tends to be damaged during handling or processing, such being undesirable. In addition, what is necessary is just to change the mixture ratio of a molded object suitably, when the requirements of bending strength are not satisfy | filled. For example, the content of the heat insulating aggregate and the infrared scattering material may be reduced or the content of the refractory fiber and the inorganic filler may be increased as long as the thermal conductivity does not become too high. Or you may set the pressure at the time of pressure molding high. In addition, said bending strength and compressive strength as a reference are each measured by the following method.

(1)曲げ強さ
試験片を長さ150mm、幅50mm、厚さ25mmに切削加工し、支点間距離100mmにてオートグラフを用いて3点曲げ試験を行い、破壊に至るまでの最大荷重から算出した。
(2)圧縮強さ
試験片を長さ100mm、幅100mm、厚さ25mmに切削加工し、オートグラフを用いて圧縮試験を行い、10%歪に至るまでの最大荷重から算出した。
(1) Bending strength The test piece was cut to a length of 150 mm, a width of 50 mm, and a thickness of 25 mm, and a three-point bending test was performed using an autograph at a distance between fulcrums of 100 mm. From the maximum load until failure Calculated.
(2) Compressive strength The test piece was cut into a length of 100 mm, a width of 100 mm, and a thickness of 25 mm, subjected to a compression test using an autograph, and calculated from the maximum load up to 10% strain.

[実施例1]
原料として断熱骨材、耐火繊維、無機フィラー、及び赤外線散乱材を用意し、これらを混合及び成形して得た成形体を焼結処理して断熱材を形成し、その特性を評価した。具体的に説明すると、多孔質の断熱骨材には、クアーズテック株式会社製のスピネル質セラミックス(Thermoscatt(登録商標)、平均粒径8000nm)を用いた。この多孔質の断熱骨材は、JIS R2614により測定した気孔率が85〜91容積%であり、孔径500〜1000nmの細孔を有していた。耐熱繊維には、ムライト繊維(株式会社ITM製ファイバーマックス1600特殊品、平均繊維径4μm、ショット含有率0.5質量%)を用いた。
[Example 1]
Insulating aggregates, refractory fibers, inorganic fillers, and infrared scattering materials were prepared as raw materials, and a molded body obtained by mixing and molding these was sintered to form a heat insulating material, and its characteristics were evaluated. More specifically, spinel ceramics (Thermoscatt (registered trademark), average particle size 8000 nm) manufactured by Coors Tech Co., Ltd. were used as the porous heat insulating aggregate. The porous heat-insulated aggregate had a porosity of 85 to 91% by volume measured according to JIS R2614 and had pores with a pore diameter of 500 to 1000 nm. As the heat-resistant fiber, mullite fiber (ITM Co., Ltd. Fiber Max 1600 special product, average fiber diameter 4 μm, shot content 0.5 mass%) was used.

無機フィラーには、ナノサイズのアルミナ(キャボットジャパン株式会社製のSpectrAl(登録商標)100、BET法で測定した比表面積95〜100m/g、平均粒径約18nm)を用いた。赤外線散乱材には、珪酸ジルコニウム(キンセイマテック株式会社製のA−PAX 平均粒径(D50)1.0μm、比屈折率1.9)を用いた。これら4種類の原料を、断熱骨材10質量%、耐火繊維22質量%、無機フィラー60質量%、及び赤外線散乱材8質量%の割合で配合し、レーデイゲミキサーに装入して混合した。得られた混合物を5つに小分けし、それぞれ乾式プレスに装入して異なる圧力で加圧成形して5種類の成形体を作製した。 Nano-sized alumina (SpectrAl (registered trademark) 100 manufactured by Cabot Japan Co., Ltd., specific surface area of 95-100 m 2 / g measured by BET method, average particle size of about 18 nm) was used as the inorganic filler. As the infrared scattering material, zirconium silicate (A-PAX average particle size (D50) 1.0 μm, relative refractive index 1.9, manufactured by Kinsei Matech Co., Ltd.) was used. These four kinds of raw materials were blended in a proportion of 10% by mass of heat-insulated aggregate, 22% by mass of refractory fiber, 60% by mass of inorganic filler, and 8% by mass of infrared scattering material, and charged into a Raydege mixer and mixed. . The obtained mixture was divided into five parts, each was charged into a dry press and pressure-molded at different pressures to produce five types of molded bodies.

これら5種類の成形体を雰囲気温度1400℃で1時間保持することで焼成処理し、試料1〜5の断熱材を作製した。このようにして得た試料1〜5の断熱材の細孔径の容積と分布を水銀ポロシメータで測定した。その結果、得られた断熱材は、全気孔容積に対する孔径100〜2000nmの気孔の容積割合は、試料1では28容積%、試料2では30容積%、試料3では50容積%、試料4では60容積%、試料5では61容積%であった。また、1200℃での熱伝導率は、試料1では0.13W/(m・K)、試料2では0.12W/(m・K)、試料3では0.09W/(m・K)、試料4では0.09W/(m・K)、試料5では0.09W/(m・K)であった。   These five types of compacts were fired by holding them at an ambient temperature of 1400 ° C. for 1 hour, and heat insulating materials of Samples 1 to 5 were produced. The volume and distribution of pore diameters of the heat insulating materials of Samples 1 to 5 thus obtained were measured with a mercury porosimeter. As a result, in the obtained heat insulating material, the volume ratio of the pores having a pore diameter of 100 to 2000 nm with respect to the total pore volume is 28% by volume in the sample 1, 30% by volume in the sample 2, 50% by volume in the sample 3, and 60% in the sample 4. The volume% was 61 vol% for Sample 5. The thermal conductivity at 1200 ° C. is 0.13 W / (m · K) for sample 1, 0.12 W / (m · K) for sample 2, 0.09 W / (m · K) for sample 3, It was 0.09 W / (m · K) for sample 4 and 0.09 W / (m · K) for sample 5.

更に、曲げ強さと圧縮強さ及び1400℃における加熱線収縮率を前述の方法で測定したところ、試料2は曲げ強さ1.1MPa、圧縮強さ1.2MPa、加熱線収縮率2.8%であり、試料3は曲げ強さ0.6MPa、圧縮強さ0.8MPa、加熱線収縮率3.0%であり、試料4は曲げ強さ0.5MPa、圧縮強さ0.6MPa、加熱線収縮率3.4%であり、試料5は曲げ強さ0.3MPa、圧縮強さ0.4MPaであった。   Further, when the bending strength and compressive strength and the heating linear shrinkage rate at 1400 ° C. were measured by the above-described method, the specimen 2 had a bending strength of 1.1 MPa, a compressive strength of 1.2 MPa, and a heating linear shrinkage rate of 2.8%. Sample 3 has a bending strength of 0.6 MPa, a compressive strength of 0.8 MPa, and a heating linear shrinkage of 3.0%, and Sample 4 has a bending strength of 0.5 MPa, a compressive strength of 0.6 MPa, and a heating wire. The shrinkage rate was 3.4%, and Sample 5 had a flexural strength of 0.3 MPa and a compressive strength of 0.4 MPa.

[実施例2]
断熱骨材としてスピネル質セラミックスの代わりに孔径500〜1000nmの細孔を有するCaO・6Al(カルシアアルミネート)セラミックス(Almatis社製のSLA−92、平均粒径8000nm)を用いた以外は上記実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料6の断熱材を作製した。得られた試料6の断熱材は、熱伝導率0.12W/(m・K)、曲げ強さ1.0MPa、圧縮強さ1.2MPa、加熱線収縮率2.8%であった。
[Example 2]
Except for using CaO · 6Al 2 O 3 (calcia aluminate) ceramics (SLA-92 manufactured by Almatis, average particle size of 8000 nm) having pores having a pore diameter of 500 to 1000 nm instead of spinel ceramics as the heat insulating aggregate. In the same manner as in the case of Sample 2 in Example 1, a heat insulating material of Sample 6 in which the volume ratio of pores having a pore diameter of 100 to 2000 nm to the total pore volume was 30% by volume was produced. The obtained heat insulating material of Sample 6 had a thermal conductivity of 0.12 W / (m · K), a bending strength of 1.0 MPa, a compressive strength of 1.2 MPa, and a heating linear shrinkage of 2.8%.

[実施例3]
耐火繊維としてムライト繊維の代わりにアルミナ繊維(三菱ケミカル株式会社製、マフテック特殊品、平均繊維径4μm、ショット含有率1.0%)を用いた以外は上記実施例の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料7の断熱材を作製した。得られた試料7の断熱材は、熱伝導率0.12W/(m・K)、曲げ強さ1.0MPa、圧縮強さ1.2MPa、加熱線収縮率2.8%であった。
[Example 3]
As in the case of Sample 2 in the above example, alumina fiber (Maftec Chemical Co., Ltd., Maftec special product, average fiber diameter 4 μm, shot content 1.0%) was used instead of mullite fiber as the refractory fiber. Thus, a heat insulating material of Sample 7 in which the volume ratio of pores having a pore diameter of 100 to 2000 nm with respect to the total pore volume was 30% by volume was produced. The obtained heat insulating material of Sample 7 had a thermal conductivity of 0.12 W / (m · K), a bending strength of 1.0 MPa, a compressive strength of 1.2 MPa, and a heating linear shrinkage of 2.8%.

[実施例4]
無機フィラーとしてナノサイズのアルミナの代わりにナノサイズのマグネシア(イオンセラミック株式会社製、粒径約90nm)用いた以外は上記実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料8の断熱材を作製した。得られた試料8の断熱材は、熱伝導率0.12W/(m・K)、曲げ強さ1.0MPa、圧縮強さ1.2MPa、加熱線収縮率2.6%であった。
[Example 4]
As in the case of Sample 2 in Example 1 except that nano-sized magnesia (made by Ion Ceramic Co., Ltd., particle size of about 90 nm) was used instead of nano-sized alumina as the inorganic filler, the pore diameter was 100 to 100 with respect to the total pore volume. A heat insulating material of Sample 8 having a volume ratio of 2000 nm pores of 30% by volume was produced. The obtained heat insulating material of Sample 8 had a thermal conductivity of 0.12 W / (m · K), a bending strength of 1.0 MPa, a compressive strength of 1.2 MPa, and a heating linear shrinkage of 2.6%.

[実施例5]
赤外線散乱材として珪酸ジルコニウムの代わりにキンセイマテック株式会社製の板状アルミナ(品番00610、平均粒径(D50)0.5μm、比屈折率1.7)を用いた以外は上記実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料9の断熱材を作製した。得られた試料9の断熱材は、熱伝導率0.12W/(m・K)、曲げ強さ1.0MPa、圧縮強さ1.2MPa、加熱線収縮率2.6%であった。
[Example 5]
Sample of Example 1 above, except that plate-like alumina (product number 00610, average particle size (D50) 0.5 μm, relative refractive index 1.7) manufactured by Kinsei Tech Co., Ltd. was used instead of zirconium silicate as the infrared scattering material. In the same manner as in No. 2, a heat insulating material of Sample 9 in which the volume ratio of pores having a pore diameter of 100 to 2000 nm to the total pore volume was 30% by volume was produced. The obtained heat insulating material of Sample 9 had a thermal conductivity of 0.12 W / (m · K), a bending strength of 1.0 MPa, a compressive strength of 1.2 MPa, and a heating linear shrinkage of 2.6%.

[実施例6]
無機フィラーとしてナノサイズのアルミナと実施例4で用いたナノサイズのマグネシアとを質量基準で1対1の配合割合で混合した混合物を用いた以外は上記実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料10の断熱材を作製した。得られた試料10の断熱材は、熱伝導率0.12W/(m・K)、曲げ強さ1.1MPa、圧縮強さ1.2MPa、加熱線収縮率2.6%であった。
[Example 6]
As in the case of Sample 2 in Example 1 above, except that a mixture in which nano-sized alumina and nano-sized magnesia used in Example 4 were mixed at a mixing ratio of 1: 1 on a mass basis was used as the inorganic filler. Thus, a heat insulating material of Sample 10 in which the volume ratio of pores having a pore diameter of 100 to 2000 nm with respect to the total pore volume was 30% by volume was produced. The obtained heat insulating material of Sample 10 had a thermal conductivity of 0.12 W / (m · K), a bending strength of 1.1 MPa, a compressive strength of 1.2 MPa, and a heating linear shrinkage of 2.6%.

[実施例7]
赤外線散乱材として珪酸ジルコニウムと実施例5で用いたアルミナとを質量基準で1対1の配合割合で混合した混合物を用いた以外は上記実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料11の断熱材を作製した。得られた試料11の断熱材は、熱伝導率0.12W/(m・K)、曲げ強さ1.1MPa、圧縮強さ1.2MPa、加熱線収縮率2.6%であった。
[Example 7]
The total pore volume was the same as in the case of Sample 2 of Example 1 except that a mixture of zirconium silicate and alumina used in Example 5 mixed at a mixing ratio of 1: 1 on a mass basis was used as the infrared scattering material. A heat insulating material of Sample 11 having a volume ratio of pores having a pore diameter of 100 to 2000 nm to 30% by volume was prepared. The obtained heat insulating material of Sample 11 had a thermal conductivity of 0.12 W / (m · K), a bending strength of 1.1 MPa, a compressive strength of 1.2 MPa, and a heating linear shrinkage of 2.6%.

[実施例8]
配合割合を、断熱骨材40質量%、耐火繊維10質量%、無機フィラー40質量%、及び赤外線散乱材10質量%とした以外は実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料12の断熱材を作製した。得られた試料12の断熱材は、熱伝導率0.12W/(m・K)、曲げ強さ0.6MPa、圧縮強さ0.7MPa、加熱線収縮率2.3%であった。
[Example 8]
Except that the blending ratio was 40% by mass of the heat insulating aggregate, 10% by mass of the refractory fiber, 40% by mass of the inorganic filler, and 10% by mass of the infrared scattering material, the same as in the case of the sample 2 of Example 1 with respect to the total pore volume. A heat insulating material of Sample 12 in which the volume ratio of pores having a pore diameter of 100 to 2000 nm was 30% by volume was produced. The obtained heat insulating material of Sample 12 had a thermal conductivity of 0.12 W / (m · K), a bending strength of 0.6 MPa, a compressive strength of 0.7 MPa, and a heating linear shrinkage of 2.3%.

[実施例9]
配合割合を、断熱骨材10質量%、耐火繊維30質量%、無機フィラー52質量%、及び赤外線散乱材8質量%とした以外は実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料13の断熱材を作製した。得られた試料13の断熱材は、熱伝導率0.12W/(m・K)、曲げ強さ0.9MPa、圧縮強さ1.0MPa、加熱線収縮率2.4%であった。
[Example 9]
Except that the blending ratio was 10% by mass of the heat insulating aggregate, 30% by mass of the refractory fiber, 52% by mass of the inorganic filler, and 8% by mass of the infrared scattering material, the same as in the case of the sample 2 of Example 1, with respect to the total pore volume. A heat insulating material of Sample 13 in which the volume ratio of pores having a pore diameter of 100 to 2000 nm was 30% by volume was produced. The obtained heat insulating material of Sample 13 had a thermal conductivity of 0.12 W / (m · K), a bending strength of 0.9 MPa, a compressive strength of 1.0 MPa, and a heating linear shrinkage of 2.4%.

[実施例10]
配合割合を、断熱骨材10質量%、耐火繊維22質量%、無機フィラー48質量%、及び赤外線散乱材20質量%とした以外は実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料14の断熱材を作製した。得られた試料14の断熱材は、熱伝導率0.12W/(m・K)、曲げ強さ0.8MPa、圧縮強さ1.0MPa、加熱線収縮率2.6%であった。
[Example 10]
Except that the blending ratio was 10% by mass of the heat insulating aggregate, 22% by mass of the refractory fiber, 48% by mass of the inorganic filler, and 20% by mass of the infrared scattering material, the same as in the case of the sample 2 of Example 1 with respect to the total pore volume. A heat insulating material of Sample 14 in which the volume ratio of pores having a pore diameter of 100 to 2000 nm was 30% by volume was produced. The obtained heat insulating material of Sample 14 had a thermal conductivity of 0.12 W / (m · K), a bending strength of 0.8 MPa, a compressive strength of 1.0 MPa, and a heating linear shrinkage of 2.6%.

[比較例1]
配合割合を、断熱骨材42質量%、耐火繊維10質量%、無機フィラー40質量%、及び赤外線散乱材8質量%とした以外は実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料15の断熱材を作製した。得られた試料15の断熱材は、熱伝導率が0.14W/(m・K)であった。
[Comparative Example 1]
Except that the blending ratio was 42% by mass of the heat insulating aggregate, 10% by mass of the refractory fiber, 40% by mass of the inorganic filler, and 8% by mass of the infrared scattering material, the same as in the case of the sample 2 of Example 1 with respect to the total pore volume. A heat insulating material of Sample 15 in which the volume ratio of pores having a pore diameter of 100 to 2000 nm was 30% by volume was produced. The heat insulating material of Sample 15 thus obtained had a thermal conductivity of 0.14 W / (m · K).

[比較例2]
配合割合を、断熱骨材9質量%、耐火繊維23質量%、無機フィラー60質量%、及び赤外線散乱材8質量%とした以外は実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料16の断熱材を作製した。得られた試料16の断熱材は、熱伝導率0.14W/(m・K)であった。
[Comparative Example 2]
Except that the blending ratio was 9% by mass of the heat insulating aggregate, 23% by mass of the refractory fiber, 60% by mass of the inorganic filler, and 8% by mass of the infrared scattering material, the same as in the case of the sample 2 of Example 1, the total pore volume. A heat insulating material of Sample 16 in which the volume ratio of pores having a pore diameter of 100 to 2000 nm was 30% by volume was produced. The heat insulating material of Sample 16 thus obtained had a thermal conductivity of 0.14 W / (m · K).

[比較例3]
配合割合を、断熱骨材10質量%、耐火繊維31質量%、無機フィラー51質量%、及び赤外線散乱材8質量%とした以外は実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料17の断熱材を作製した。得られた試料17の断熱材は、熱伝導率0.14W/(m・K)であった。
[Comparative Example 3]
Except that the blending ratio was 10% by mass of the heat insulating aggregate, 31% by mass of the refractory fiber, 51% by mass of the inorganic filler, and 8% by mass of the infrared scattering material, the same as in the case of the sample 2 of Example 1, the total pore volume. A heat insulating material of Sample 17 in which the volume ratio of pores having a pore diameter of 100 to 2000 nm was 30% by volume was produced. The heat insulating material of Sample 17 thus obtained had a thermal conductivity of 0.14 W / (m · K).

[比較例4]
配合割合を、断熱骨材23質量%、耐火繊維9質量%、無機フィラー60質量%、及び赤外線散乱材8質量%とした以外は実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料18の断熱材を作製した。得られた試料18の断熱材は、曲げ強さ0.4MPa、圧縮強さ0.5MPaであった。
[Comparative Example 4]
Except that the blending ratio was 23% by mass of the heat insulating aggregate, 9% by mass of the refractory fiber, 60% by mass of the inorganic filler, and 8% by mass of the infrared scattering material, the same as in the case of the sample 2 of Example 1, the total pore volume. A heat insulating material of Sample 18 in which the volume ratio of pores having a pore diameter of 100 to 2000 nm was 30% by volume was produced. The obtained heat insulating material of Sample 18 had a bending strength of 0.4 MPa and a compressive strength of 0.5 MPa.

[比較例5]
配合割合を、断熱骨材10質量%、耐火繊維21質量%、無機フィラー61質量%、及び赤外線散乱材8質量%とした以外は実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料19の断熱材を作製した。得られた試料19の断熱材は、熱伝導率0.14W/(m・K)であった。
[Comparative Example 5]
Except for the blending ratio being 10% by mass of the heat insulating aggregate, 21% by mass of the refractory fiber, 61% by mass of the inorganic filler, and 8% by mass of the infrared scattering material, the same as in the case of the sample 2 of Example 1 with respect to the total pore volume. A heat insulating material of Sample 19 in which the volume ratio of pores having a pore diameter of 100 to 2000 nm was 30% by volume was produced. The obtained heat insulating material of Sample 19 had a thermal conductivity of 0.14 W / (m · K).

[比較例6]
配合割合を、断熱骨材30質量%、耐火繊維24質量%、無機フィラー38質量%、及び赤外線散乱材8質量%とした以外は実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料20の断熱材を作製した。得られた試料20の断熱材は、熱伝導率0.14W/(m・K)であった。
[Comparative Example 6]
Except that the blending ratio was 30% by mass of the heat insulating aggregate, 24% by mass of the refractory fiber, 38% by mass of the inorganic filler, and 8% by mass of the infrared scattering material, the same as in the case of the sample 2 of Example 1 with respect to the total pore volume. A heat insulating material of Sample 20 in which the volume ratio of pores having a pore diameter of 100 to 2000 nm was 30% by volume was produced. The obtained heat insulating material of Sample 20 had a thermal conductivity of 0.14 W / (m · K).

[比較例7]
配合割合を、断熱骨材10質量%、耐火繊維23質量%、無機フィラー60質量%、及び赤外線散乱材7質量%とした以外は実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料21の断熱材を作製した。得られた試料21の断熱材は、熱伝導率0.14W/(m・K)であった。
[Comparative Example 7]
Except that the blending ratio was 10% by mass of the heat insulating aggregate, 23% by mass of the refractory fiber, 60% by mass of the inorganic filler, and 7% by mass of the infrared scattering material, the same as in the case of the sample 2 of Example 1, the total pore volume. A heat insulating material of Sample 21 in which the volume ratio of pores having a pore diameter of 100 to 2000 nm was 30% by volume was produced. The obtained heat insulating material of Sample 21 had a thermal conductivity of 0.14 W / (m · K).

[比較例8]
配合割合を、断熱骨材10質量%、耐火繊維22質量%、無機フィラー46質量%、及び赤外線散乱材22質量%とした以外は実施例1の試料2の場合と同様にして全気孔容積に対する孔径100〜2000nmの気孔の容積割合が30容積%の試料22の断熱材を作製した。得られた試料22の断熱材は、熱伝導率0.14W/(m・K)であった。上記の試料1〜22の原料の配合割合及び評価結果を下記表1にまとめた。
[Comparative Example 8]
Except that the blending ratio was 10% by mass of the heat insulating aggregate, 22% by mass of the refractory fiber, 46% by mass of the inorganic filler, and 22% by mass of the infrared scattering material, the same as in the case of the sample 2 of Example 1, the total pore volume. A heat insulating material of Sample 22 in which the volume ratio of pores having a pore diameter of 100 to 2000 nm was 30% by volume was produced. The heat insulating material of Sample 22 thus obtained had a thermal conductivity of 0.14 W / (m · K). The blending ratios and evaluation results of the raw materials of Samples 1 to 22 are summarized in Table 1 below.

Figure 0006602827
Figure 0006602827

上記表1の結果から、本発明の要件を満たす断熱材は、1200℃の熱伝導率が0.12W/(m・K)以下であり、曲げ強さがハンドリング可能な0.5MPa以上であり、1400℃での加熱線収縮率は4%以下となることが分かった。これに対して本発明の要件を満たさない断熱材は、上記の特性のいずれかにおいて満足な結果が得られなかった。   From the results in Table 1 above, the heat insulating material satisfying the requirements of the present invention has a thermal conductivity of 1200 ° C. of 0.12 W / (m · K) or less and a bending strength of 0.5 MPa or more that can be handled. It was found that the heating linear shrinkage at 1400 ° C. was 4% or less. On the other hand, a heat insulating material that does not satisfy the requirements of the present invention did not provide satisfactory results in any of the above characteristics.

Claims (7)

耐熱温度が1200℃以上の高耐熱性の組成物からなり孔径500〜1000nmの細孔を有する多孔質の断熱骨材を10〜40質量%含有し、耐火繊維を10〜30質量%含有し、平均粒径100nm以下の金属酸化物粒子からなる無機フィラーを40〜60質量%含有し、及び赤外線散乱材を8〜20質量%含有する焼結体であって、孔径100〜2000nmの気孔が全気孔の容積の30%以上60%以下を占めていることを特徴とする断熱材。   10 to 40% by mass of a porous heat-insulating aggregate made of a highly heat-resistant composition having a heat-resistant temperature of 1200 ° C. or higher and having pores having a pore diameter of 500 to 1000 nm, 10 to 30% by mass of refractory fiber, A sintered body containing 40 to 60% by mass of an inorganic filler composed of metal oxide particles having an average particle size of 100 nm or less and 8 to 20% by mass of an infrared scattering material, wherein all pores having a pore size of 100 to 2000 nm are contained. A heat insulating material characterized by occupying 30% to 60% of the volume of pores. 前記耐火繊維は、1400℃以上の高耐熱性の組成物からなり、アルミナ質繊維、ムライト質繊維、CaO・6Al(カルシアアルミネート)繊維、ジルコニア繊維、及び生体溶解性繊維からなる群より選択される1種以上である、請求項1に記載の断熱材。 The refractory fiber is made of a composition having a high heat resistance of 1400 ° C. or higher, and is made of alumina fiber, mullite fiber, CaO.6Al 2 O 3 (calcia aluminate) fiber, zirconia fiber, and biosoluble fiber. The heat insulating material according to claim 1, wherein the heat insulating material is one or more selected. 前記無機フィラーは、アルミナ、マグネシア、ムライト、及びジルコニアからなる群より選択される1種以上である、請求項1又は2に記載の断熱材。   The heat insulating material according to claim 1 or 2, wherein the inorganic filler is one or more selected from the group consisting of alumina, magnesia, mullite, and zirconia. 前記赤外線散乱材は、珪酸ジルコニウム、ジルコニア、及びアルミナからなる群より選択される1種以上である、請求項1〜3のいずれか1項に記載の断熱材。   4. The heat insulating material according to claim 1, wherein the infrared scattering material is at least one selected from the group consisting of zirconium silicate, zirconia, and alumina. 1200℃における熱伝導率が0.12W/(m・K)以下であり、曲げ強さが0.5MPa以上で、1400℃で24時間加熱したときの加熱線収縮率が4%以下であることを特徴とする、請求項1〜4のいずれか1項に記載の断熱材。   The thermal conductivity at 1200 ° C. is 0.12 W / (m · K) or less, the bending strength is 0.5 MPa or more, and the heating linear shrinkage when heated at 1400 ° C. for 24 hours is 4% or less. The heat insulating material according to claim 1, characterized in that: 請求項1〜5のいずれか1項に記載の断熱材の製造方法であって、前記断熱骨材、前記耐火繊維、前記無機フィラー、及び前記赤外線散乱材を乾式混合する混合工程と、得られた混合物を加圧成形する成形工程と、得られた前記加圧成形体を焼結する焼結工程とを有する断熱材の製造方法。   It is a manufacturing method of the heat insulating material of any one of Claims 1-5, Comprising: The mixing process of dry-mixing the said heat insulation aggregate, the said fireproof fiber, the said inorganic filler, and the said infrared scattering material, and obtained. The manufacturing method of the heat insulating material which has a shaping | molding process which press-molds the obtained mixture, and a sintering process which sinters the obtained said pressure-molded body. 前記焼結工程において、前記加圧成形体の表面温度が1200℃以上になるように加熱することで焼結することを特徴とする、請求項6に記載の断熱材の製造方法。 In the said sintering process, it sinters by heating so that the surface temperature of the said pressure forming body may be 1200 degreeC or more, The manufacturing method of the heat insulating material of Claim 6 characterized by the above-mentioned.
JP2017205809A 2017-10-25 2017-10-25 Insulating material and manufacturing method thereof Active JP6602827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017205809A JP6602827B2 (en) 2017-10-25 2017-10-25 Insulating material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017205809A JP6602827B2 (en) 2017-10-25 2017-10-25 Insulating material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2019078337A JP2019078337A (en) 2019-05-23
JP6602827B2 true JP6602827B2 (en) 2019-11-06

Family

ID=66627686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017205809A Active JP6602827B2 (en) 2017-10-25 2017-10-25 Insulating material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6602827B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6940792B2 (en) * 2019-12-03 2021-09-29 デンカ株式会社 Manufacturing method of inorganic fiber molded product, heating furnace, structure, and inorganic fiber molded product
JP7009534B2 (en) * 2020-03-12 2022-01-25 住友理工株式会社 Insulation for battery packs and battery packs
JPWO2022014611A1 (en) * 2020-07-13 2022-01-20
WO2023079860A1 (en) * 2021-11-08 2023-05-11 デンカ株式会社 Heat-resistant plate member and structure
WO2023132182A1 (en) * 2022-01-07 2023-07-13 デンカ株式会社 Ca6 particles and method for producing molded inorganic-fiber object using same
CN115583841A (en) * 2022-09-19 2023-01-10 广州世陶新材料有限公司 Fiber-reinforced porous heat-insulating material and preparation method thereof
CN115448739B (en) * 2022-11-14 2023-03-24 长兴华泰高温窑具股份有限公司 Corrosion-resistant zirconium mullite product for soft magnetic ferrite nitrogen kiln and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2951901B2 (en) * 1996-12-18 1999-09-20 日本フネン株式会社 flower pot
JP6431252B2 (en) * 2012-09-28 2018-11-28 黒崎播磨株式会社 Insulating material and manufacturing method thereof
JP2015038365A (en) * 2013-08-09 2015-02-26 イソライト工業株式会社 Heat insulation material and manufacturing method thereof
JP2015221737A (en) * 2014-05-23 2015-12-10 旭化成ケミカルズ株式会社 Porous body
JP6319909B2 (en) * 2014-11-07 2018-05-09 クアーズテック株式会社 Insulation

Also Published As

Publication number Publication date
JP2019078337A (en) 2019-05-23

Similar Documents

Publication Publication Date Title
JP6602827B2 (en) Insulating material and manufacturing method thereof
KR101506083B1 (en) Heat-insulating material
Tsetsekou A comparison study of tialite ceramics doped with various oxide materials and tialite–mullite composites: microstructural, thermal and mechanical properties
CN109311760B (en) Zirconia ceramic, porous material made therefrom, and method for manufacturing zirconia ceramic
WO2015011623A1 (en) Product having a high alumina content
JP5683739B1 (en) Insulating material and manufacturing method thereof
JP6607839B2 (en) Insulation
TWI652335B (en) Insulation material and manufacturing method thereof
KR101514180B1 (en) Method for manufacturing ceramic body having uniform density
Foratirad et al. Fabrication of porous titanium carbide ceramics by gelcasting process
JP5036110B2 (en) Lightweight ceramic sintered body
JP5928694B2 (en) Alumina sintered body and manufacturing method thereof
JP6319769B2 (en) Insulation
KR101133097B1 (en) Silicon carbide ceramic compositions for high temperature hot gas filters by mullite-zirconia bonding and preparing method of hot gas filters using this
JP5199151B2 (en) Ceramic fired body and manufacturing method thereof
JP2015038365A (en) Heat insulation material and manufacturing method thereof
JP6214514B2 (en) Insulation
Eom et al. Processing of Vermiculite-Silica Composites with Prefer-Oriented Rod-Like Pores
CN108137413B (en) Zirconium tin titanate composition, ceramic body comprising same, and method for producing same
JP6127353B2 (en) Insulating material and manufacturing method thereof
KR101850585B1 (en) Heat insulator
JP2002316869A (en) Roller for roller hearth kiln consisting of heat resistant mullite sintered compact
JP6319909B2 (en) Insulation
JP6214518B2 (en) Insulation
JP2001220260A (en) Alumina-based porous refractory sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191009

R150 Certificate of patent or registration of utility model

Ref document number: 6602827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250